xref: /openbmc/linux/fs/btrfs/compression.c (revision 2d68bb26)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
33 		u64 start, struct page **pages, unsigned long *out_pages,
34 		unsigned long *total_in, unsigned long *total_out);
35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
36 int zlib_decompress(struct list_head *ws, unsigned char *data_in,
37 		struct page *dest_page, unsigned long start_byte, size_t srclen,
38 		size_t destlen);
39 struct list_head *zlib_alloc_workspace(unsigned int level);
40 void zlib_free_workspace(struct list_head *ws);
41 struct list_head *zlib_get_workspace(unsigned int level);
42 
43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
44 		u64 start, struct page **pages, unsigned long *out_pages,
45 		unsigned long *total_in, unsigned long *total_out);
46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
47 int lzo_decompress(struct list_head *ws, unsigned char *data_in,
48 		struct page *dest_page, unsigned long start_byte, size_t srclen,
49 		size_t destlen);
50 struct list_head *lzo_alloc_workspace(unsigned int level);
51 void lzo_free_workspace(struct list_head *ws);
52 
53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
54 		u64 start, struct page **pages, unsigned long *out_pages,
55 		unsigned long *total_in, unsigned long *total_out);
56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
57 int zstd_decompress(struct list_head *ws, unsigned char *data_in,
58 		struct page *dest_page, unsigned long start_byte, size_t srclen,
59 		size_t destlen);
60 void zstd_init_workspace_manager(void);
61 void zstd_cleanup_workspace_manager(void);
62 struct list_head *zstd_alloc_workspace(unsigned int level);
63 void zstd_free_workspace(struct list_head *ws);
64 struct list_head *zstd_get_workspace(unsigned int level);
65 void zstd_put_workspace(struct list_head *ws);
66 
67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
68 
69 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 	case BTRFS_COMPRESS_LZO:
74 	case BTRFS_COMPRESS_ZSTD:
75 	case BTRFS_COMPRESS_NONE:
76 		return btrfs_compress_types[type];
77 	default:
78 		break;
79 	}
80 
81 	return NULL;
82 }
83 
84 bool btrfs_compress_is_valid_type(const char *str, size_t len)
85 {
86 	int i;
87 
88 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
89 		size_t comp_len = strlen(btrfs_compress_types[i]);
90 
91 		if (len < comp_len)
92 			continue;
93 
94 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
95 			return true;
96 	}
97 	return false;
98 }
99 
100 static int compression_compress_pages(int type, struct list_head *ws,
101                struct address_space *mapping, u64 start, struct page **pages,
102                unsigned long *out_pages, unsigned long *total_in,
103                unsigned long *total_out)
104 {
105 	switch (type) {
106 	case BTRFS_COMPRESS_ZLIB:
107 		return zlib_compress_pages(ws, mapping, start, pages,
108 				out_pages, total_in, total_out);
109 	case BTRFS_COMPRESS_LZO:
110 		return lzo_compress_pages(ws, mapping, start, pages,
111 				out_pages, total_in, total_out);
112 	case BTRFS_COMPRESS_ZSTD:
113 		return zstd_compress_pages(ws, mapping, start, pages,
114 				out_pages, total_in, total_out);
115 	case BTRFS_COMPRESS_NONE:
116 	default:
117 		/*
118 		 * This can't happen, the type is validated several times
119 		 * before we get here. As a sane fallback, return what the
120 		 * callers will understand as 'no compression happened'.
121 		 */
122 		return -E2BIG;
123 	}
124 }
125 
126 static int compression_decompress_bio(int type, struct list_head *ws,
127 		struct compressed_bio *cb)
128 {
129 	switch (type) {
130 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
132 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
133 	case BTRFS_COMPRESS_NONE:
134 	default:
135 		/*
136 		 * This can't happen, the type is validated several times
137 		 * before we get here.
138 		 */
139 		BUG();
140 	}
141 }
142 
143 static int compression_decompress(int type, struct list_head *ws,
144                unsigned char *data_in, struct page *dest_page,
145                unsigned long start_byte, size_t srclen, size_t destlen)
146 {
147 	switch (type) {
148 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
153 						start_byte, srclen, destlen);
154 	case BTRFS_COMPRESS_NONE:
155 	default:
156 		/*
157 		 * This can't happen, the type is validated several times
158 		 * before we get here.
159 		 */
160 		BUG();
161 	}
162 }
163 
164 static int btrfs_decompress_bio(struct compressed_bio *cb);
165 
166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
167 				      unsigned long disk_size)
168 {
169 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
170 
171 	return sizeof(struct compressed_bio) +
172 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
173 }
174 
175 static int check_compressed_csum(struct btrfs_inode *inode,
176 				 struct compressed_bio *cb,
177 				 u64 disk_start)
178 {
179 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
180 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
181 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
182 	int ret;
183 	struct page *page;
184 	unsigned long i;
185 	char *kaddr;
186 	u8 csum[BTRFS_CSUM_SIZE];
187 	u8 *cb_sum = cb->sums;
188 
189 	if (inode->flags & BTRFS_INODE_NODATASUM)
190 		return 0;
191 
192 	shash->tfm = fs_info->csum_shash;
193 
194 	for (i = 0; i < cb->nr_pages; i++) {
195 		page = cb->compressed_pages[i];
196 
197 		crypto_shash_init(shash);
198 		kaddr = kmap_atomic(page);
199 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
200 		kunmap_atomic(kaddr);
201 		crypto_shash_final(shash, (u8 *)&csum);
202 
203 		if (memcmp(&csum, cb_sum, csum_size)) {
204 			btrfs_print_data_csum_error(inode, disk_start,
205 					csum, cb_sum, cb->mirror_num);
206 			ret = -EIO;
207 			goto fail;
208 		}
209 		cb_sum += csum_size;
210 
211 	}
212 	ret = 0;
213 fail:
214 	return ret;
215 }
216 
217 /* when we finish reading compressed pages from the disk, we
218  * decompress them and then run the bio end_io routines on the
219  * decompressed pages (in the inode address space).
220  *
221  * This allows the checksumming and other IO error handling routines
222  * to work normally
223  *
224  * The compressed pages are freed here, and it must be run
225  * in process context
226  */
227 static void end_compressed_bio_read(struct bio *bio)
228 {
229 	struct compressed_bio *cb = bio->bi_private;
230 	struct inode *inode;
231 	struct page *page;
232 	unsigned long index;
233 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
234 	int ret = 0;
235 
236 	if (bio->bi_status)
237 		cb->errors = 1;
238 
239 	/* if there are more bios still pending for this compressed
240 	 * extent, just exit
241 	 */
242 	if (!refcount_dec_and_test(&cb->pending_bios))
243 		goto out;
244 
245 	/*
246 	 * Record the correct mirror_num in cb->orig_bio so that
247 	 * read-repair can work properly.
248 	 */
249 	ASSERT(btrfs_io_bio(cb->orig_bio));
250 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
251 	cb->mirror_num = mirror;
252 
253 	/*
254 	 * Some IO in this cb have failed, just skip checksum as there
255 	 * is no way it could be correct.
256 	 */
257 	if (cb->errors == 1)
258 		goto csum_failed;
259 
260 	inode = cb->inode;
261 	ret = check_compressed_csum(BTRFS_I(inode), cb,
262 				    (u64)bio->bi_iter.bi_sector << 9);
263 	if (ret)
264 		goto csum_failed;
265 
266 	/* ok, we're the last bio for this extent, lets start
267 	 * the decompression.
268 	 */
269 	ret = btrfs_decompress_bio(cb);
270 
271 csum_failed:
272 	if (ret)
273 		cb->errors = 1;
274 
275 	/* release the compressed pages */
276 	index = 0;
277 	for (index = 0; index < cb->nr_pages; index++) {
278 		page = cb->compressed_pages[index];
279 		page->mapping = NULL;
280 		put_page(page);
281 	}
282 
283 	/* do io completion on the original bio */
284 	if (cb->errors) {
285 		bio_io_error(cb->orig_bio);
286 	} else {
287 		struct bio_vec *bvec;
288 		struct bvec_iter_all iter_all;
289 
290 		/*
291 		 * we have verified the checksum already, set page
292 		 * checked so the end_io handlers know about it
293 		 */
294 		ASSERT(!bio_flagged(bio, BIO_CLONED));
295 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
296 			SetPageChecked(bvec->bv_page);
297 
298 		bio_endio(cb->orig_bio);
299 	}
300 
301 	/* finally free the cb struct */
302 	kfree(cb->compressed_pages);
303 	kfree(cb);
304 out:
305 	bio_put(bio);
306 }
307 
308 /*
309  * Clear the writeback bits on all of the file
310  * pages for a compressed write
311  */
312 static noinline void end_compressed_writeback(struct inode *inode,
313 					      const struct compressed_bio *cb)
314 {
315 	unsigned long index = cb->start >> PAGE_SHIFT;
316 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
317 	struct page *pages[16];
318 	unsigned long nr_pages = end_index - index + 1;
319 	int i;
320 	int ret;
321 
322 	if (cb->errors)
323 		mapping_set_error(inode->i_mapping, -EIO);
324 
325 	while (nr_pages > 0) {
326 		ret = find_get_pages_contig(inode->i_mapping, index,
327 				     min_t(unsigned long,
328 				     nr_pages, ARRAY_SIZE(pages)), pages);
329 		if (ret == 0) {
330 			nr_pages -= 1;
331 			index += 1;
332 			continue;
333 		}
334 		for (i = 0; i < ret; i++) {
335 			if (cb->errors)
336 				SetPageError(pages[i]);
337 			end_page_writeback(pages[i]);
338 			put_page(pages[i]);
339 		}
340 		nr_pages -= ret;
341 		index += ret;
342 	}
343 	/* the inode may be gone now */
344 }
345 
346 /*
347  * do the cleanup once all the compressed pages hit the disk.
348  * This will clear writeback on the file pages and free the compressed
349  * pages.
350  *
351  * This also calls the writeback end hooks for the file pages so that
352  * metadata and checksums can be updated in the file.
353  */
354 static void end_compressed_bio_write(struct bio *bio)
355 {
356 	struct compressed_bio *cb = bio->bi_private;
357 	struct inode *inode;
358 	struct page *page;
359 	unsigned long index;
360 
361 	if (bio->bi_status)
362 		cb->errors = 1;
363 
364 	/* if there are more bios still pending for this compressed
365 	 * extent, just exit
366 	 */
367 	if (!refcount_dec_and_test(&cb->pending_bios))
368 		goto out;
369 
370 	/* ok, we're the last bio for this extent, step one is to
371 	 * call back into the FS and do all the end_io operations
372 	 */
373 	inode = cb->inode;
374 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
375 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
376 			cb->start, cb->start + cb->len - 1,
377 			bio->bi_status == BLK_STS_OK);
378 	cb->compressed_pages[0]->mapping = NULL;
379 
380 	end_compressed_writeback(inode, cb);
381 	/* note, our inode could be gone now */
382 
383 	/*
384 	 * release the compressed pages, these came from alloc_page and
385 	 * are not attached to the inode at all
386 	 */
387 	index = 0;
388 	for (index = 0; index < cb->nr_pages; index++) {
389 		page = cb->compressed_pages[index];
390 		page->mapping = NULL;
391 		put_page(page);
392 	}
393 
394 	/* finally free the cb struct */
395 	kfree(cb->compressed_pages);
396 	kfree(cb);
397 out:
398 	bio_put(bio);
399 }
400 
401 /*
402  * worker function to build and submit bios for previously compressed pages.
403  * The corresponding pages in the inode should be marked for writeback
404  * and the compressed pages should have a reference on them for dropping
405  * when the IO is complete.
406  *
407  * This also checksums the file bytes and gets things ready for
408  * the end io hooks.
409  */
410 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
411 				 unsigned long len, u64 disk_start,
412 				 unsigned long compressed_len,
413 				 struct page **compressed_pages,
414 				 unsigned long nr_pages,
415 				 unsigned int write_flags,
416 				 struct cgroup_subsys_state *blkcg_css)
417 {
418 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
419 	struct bio *bio = NULL;
420 	struct compressed_bio *cb;
421 	unsigned long bytes_left;
422 	int pg_index = 0;
423 	struct page *page;
424 	u64 first_byte = disk_start;
425 	blk_status_t ret;
426 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
427 
428 	WARN_ON(!PAGE_ALIGNED(start));
429 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
430 	if (!cb)
431 		return BLK_STS_RESOURCE;
432 	refcount_set(&cb->pending_bios, 0);
433 	cb->errors = 0;
434 	cb->inode = inode;
435 	cb->start = start;
436 	cb->len = len;
437 	cb->mirror_num = 0;
438 	cb->compressed_pages = compressed_pages;
439 	cb->compressed_len = compressed_len;
440 	cb->orig_bio = NULL;
441 	cb->nr_pages = nr_pages;
442 
443 	bio = btrfs_bio_alloc(first_byte);
444 	bio->bi_opf = REQ_OP_WRITE | write_flags;
445 	bio->bi_private = cb;
446 	bio->bi_end_io = end_compressed_bio_write;
447 
448 	if (blkcg_css) {
449 		bio->bi_opf |= REQ_CGROUP_PUNT;
450 		bio_associate_blkg_from_css(bio, blkcg_css);
451 	}
452 	refcount_set(&cb->pending_bios, 1);
453 
454 	/* create and submit bios for the compressed pages */
455 	bytes_left = compressed_len;
456 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
457 		int submit = 0;
458 
459 		page = compressed_pages[pg_index];
460 		page->mapping = inode->i_mapping;
461 		if (bio->bi_iter.bi_size)
462 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
463 							  0);
464 
465 		page->mapping = NULL;
466 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
467 		    PAGE_SIZE) {
468 			/*
469 			 * inc the count before we submit the bio so
470 			 * we know the end IO handler won't happen before
471 			 * we inc the count.  Otherwise, the cb might get
472 			 * freed before we're done setting it up
473 			 */
474 			refcount_inc(&cb->pending_bios);
475 			ret = btrfs_bio_wq_end_io(fs_info, bio,
476 						  BTRFS_WQ_ENDIO_DATA);
477 			BUG_ON(ret); /* -ENOMEM */
478 
479 			if (!skip_sum) {
480 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
481 				BUG_ON(ret); /* -ENOMEM */
482 			}
483 
484 			ret = btrfs_map_bio(fs_info, bio, 0);
485 			if (ret) {
486 				bio->bi_status = ret;
487 				bio_endio(bio);
488 			}
489 
490 			bio = btrfs_bio_alloc(first_byte);
491 			bio->bi_opf = REQ_OP_WRITE | write_flags;
492 			bio->bi_private = cb;
493 			bio->bi_end_io = end_compressed_bio_write;
494 			bio_add_page(bio, page, PAGE_SIZE, 0);
495 		}
496 		if (bytes_left < PAGE_SIZE) {
497 			btrfs_info(fs_info,
498 					"bytes left %lu compress len %lu nr %lu",
499 			       bytes_left, cb->compressed_len, cb->nr_pages);
500 		}
501 		bytes_left -= PAGE_SIZE;
502 		first_byte += PAGE_SIZE;
503 		cond_resched();
504 	}
505 
506 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
507 	BUG_ON(ret); /* -ENOMEM */
508 
509 	if (!skip_sum) {
510 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
511 		BUG_ON(ret); /* -ENOMEM */
512 	}
513 
514 	ret = btrfs_map_bio(fs_info, bio, 0);
515 	if (ret) {
516 		bio->bi_status = ret;
517 		bio_endio(bio);
518 	}
519 
520 	return 0;
521 }
522 
523 static u64 bio_end_offset(struct bio *bio)
524 {
525 	struct bio_vec *last = bio_last_bvec_all(bio);
526 
527 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
528 }
529 
530 static noinline int add_ra_bio_pages(struct inode *inode,
531 				     u64 compressed_end,
532 				     struct compressed_bio *cb)
533 {
534 	unsigned long end_index;
535 	unsigned long pg_index;
536 	u64 last_offset;
537 	u64 isize = i_size_read(inode);
538 	int ret;
539 	struct page *page;
540 	unsigned long nr_pages = 0;
541 	struct extent_map *em;
542 	struct address_space *mapping = inode->i_mapping;
543 	struct extent_map_tree *em_tree;
544 	struct extent_io_tree *tree;
545 	u64 end;
546 	int misses = 0;
547 
548 	last_offset = bio_end_offset(cb->orig_bio);
549 	em_tree = &BTRFS_I(inode)->extent_tree;
550 	tree = &BTRFS_I(inode)->io_tree;
551 
552 	if (isize == 0)
553 		return 0;
554 
555 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
556 
557 	while (last_offset < compressed_end) {
558 		pg_index = last_offset >> PAGE_SHIFT;
559 
560 		if (pg_index > end_index)
561 			break;
562 
563 		page = xa_load(&mapping->i_pages, pg_index);
564 		if (page && !xa_is_value(page)) {
565 			misses++;
566 			if (misses > 4)
567 				break;
568 			goto next;
569 		}
570 
571 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
572 								 ~__GFP_FS));
573 		if (!page)
574 			break;
575 
576 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
577 			put_page(page);
578 			goto next;
579 		}
580 
581 		end = last_offset + PAGE_SIZE - 1;
582 		/*
583 		 * at this point, we have a locked page in the page cache
584 		 * for these bytes in the file.  But, we have to make
585 		 * sure they map to this compressed extent on disk.
586 		 */
587 		set_page_extent_mapped(page);
588 		lock_extent(tree, last_offset, end);
589 		read_lock(&em_tree->lock);
590 		em = lookup_extent_mapping(em_tree, last_offset,
591 					   PAGE_SIZE);
592 		read_unlock(&em_tree->lock);
593 
594 		if (!em || last_offset < em->start ||
595 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
596 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
597 			free_extent_map(em);
598 			unlock_extent(tree, last_offset, end);
599 			unlock_page(page);
600 			put_page(page);
601 			break;
602 		}
603 		free_extent_map(em);
604 
605 		if (page->index == end_index) {
606 			char *userpage;
607 			size_t zero_offset = offset_in_page(isize);
608 
609 			if (zero_offset) {
610 				int zeros;
611 				zeros = PAGE_SIZE - zero_offset;
612 				userpage = kmap_atomic(page);
613 				memset(userpage + zero_offset, 0, zeros);
614 				flush_dcache_page(page);
615 				kunmap_atomic(userpage);
616 			}
617 		}
618 
619 		ret = bio_add_page(cb->orig_bio, page,
620 				   PAGE_SIZE, 0);
621 
622 		if (ret == PAGE_SIZE) {
623 			nr_pages++;
624 			put_page(page);
625 		} else {
626 			unlock_extent(tree, last_offset, end);
627 			unlock_page(page);
628 			put_page(page);
629 			break;
630 		}
631 next:
632 		last_offset += PAGE_SIZE;
633 	}
634 	return 0;
635 }
636 
637 /*
638  * for a compressed read, the bio we get passed has all the inode pages
639  * in it.  We don't actually do IO on those pages but allocate new ones
640  * to hold the compressed pages on disk.
641  *
642  * bio->bi_iter.bi_sector points to the compressed extent on disk
643  * bio->bi_io_vec points to all of the inode pages
644  *
645  * After the compressed pages are read, we copy the bytes into the
646  * bio we were passed and then call the bio end_io calls
647  */
648 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
649 				 int mirror_num, unsigned long bio_flags)
650 {
651 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
652 	struct extent_map_tree *em_tree;
653 	struct compressed_bio *cb;
654 	unsigned long compressed_len;
655 	unsigned long nr_pages;
656 	unsigned long pg_index;
657 	struct page *page;
658 	struct bio *comp_bio;
659 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
660 	u64 em_len;
661 	u64 em_start;
662 	struct extent_map *em;
663 	blk_status_t ret = BLK_STS_RESOURCE;
664 	int faili = 0;
665 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
666 	u8 *sums;
667 
668 	em_tree = &BTRFS_I(inode)->extent_tree;
669 
670 	/* we need the actual starting offset of this extent in the file */
671 	read_lock(&em_tree->lock);
672 	em = lookup_extent_mapping(em_tree,
673 				   page_offset(bio_first_page_all(bio)),
674 				   PAGE_SIZE);
675 	read_unlock(&em_tree->lock);
676 	if (!em)
677 		return BLK_STS_IOERR;
678 
679 	compressed_len = em->block_len;
680 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
681 	if (!cb)
682 		goto out;
683 
684 	refcount_set(&cb->pending_bios, 0);
685 	cb->errors = 0;
686 	cb->inode = inode;
687 	cb->mirror_num = mirror_num;
688 	sums = cb->sums;
689 
690 	cb->start = em->orig_start;
691 	em_len = em->len;
692 	em_start = em->start;
693 
694 	free_extent_map(em);
695 	em = NULL;
696 
697 	cb->len = bio->bi_iter.bi_size;
698 	cb->compressed_len = compressed_len;
699 	cb->compress_type = extent_compress_type(bio_flags);
700 	cb->orig_bio = bio;
701 
702 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
703 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
704 				       GFP_NOFS);
705 	if (!cb->compressed_pages)
706 		goto fail1;
707 
708 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
709 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
710 							      __GFP_HIGHMEM);
711 		if (!cb->compressed_pages[pg_index]) {
712 			faili = pg_index - 1;
713 			ret = BLK_STS_RESOURCE;
714 			goto fail2;
715 		}
716 	}
717 	faili = nr_pages - 1;
718 	cb->nr_pages = nr_pages;
719 
720 	add_ra_bio_pages(inode, em_start + em_len, cb);
721 
722 	/* include any pages we added in add_ra-bio_pages */
723 	cb->len = bio->bi_iter.bi_size;
724 
725 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
726 	comp_bio->bi_opf = REQ_OP_READ;
727 	comp_bio->bi_private = cb;
728 	comp_bio->bi_end_io = end_compressed_bio_read;
729 	refcount_set(&cb->pending_bios, 1);
730 
731 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
732 		int submit = 0;
733 
734 		page = cb->compressed_pages[pg_index];
735 		page->mapping = inode->i_mapping;
736 		page->index = em_start >> PAGE_SHIFT;
737 
738 		if (comp_bio->bi_iter.bi_size)
739 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
740 							  comp_bio, 0);
741 
742 		page->mapping = NULL;
743 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
744 		    PAGE_SIZE) {
745 			unsigned int nr_sectors;
746 
747 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
748 						  BTRFS_WQ_ENDIO_DATA);
749 			BUG_ON(ret); /* -ENOMEM */
750 
751 			/*
752 			 * inc the count before we submit the bio so
753 			 * we know the end IO handler won't happen before
754 			 * we inc the count.  Otherwise, the cb might get
755 			 * freed before we're done setting it up
756 			 */
757 			refcount_inc(&cb->pending_bios);
758 
759 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
760 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
761 							    sums);
762 				BUG_ON(ret); /* -ENOMEM */
763 			}
764 
765 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
766 						  fs_info->sectorsize);
767 			sums += csum_size * nr_sectors;
768 
769 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
770 			if (ret) {
771 				comp_bio->bi_status = ret;
772 				bio_endio(comp_bio);
773 			}
774 
775 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
776 			comp_bio->bi_opf = REQ_OP_READ;
777 			comp_bio->bi_private = cb;
778 			comp_bio->bi_end_io = end_compressed_bio_read;
779 
780 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
781 		}
782 		cur_disk_byte += PAGE_SIZE;
783 	}
784 
785 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
786 	BUG_ON(ret); /* -ENOMEM */
787 
788 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
789 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
790 		BUG_ON(ret); /* -ENOMEM */
791 	}
792 
793 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
794 	if (ret) {
795 		comp_bio->bi_status = ret;
796 		bio_endio(comp_bio);
797 	}
798 
799 	return 0;
800 
801 fail2:
802 	while (faili >= 0) {
803 		__free_page(cb->compressed_pages[faili]);
804 		faili--;
805 	}
806 
807 	kfree(cb->compressed_pages);
808 fail1:
809 	kfree(cb);
810 out:
811 	free_extent_map(em);
812 	return ret;
813 }
814 
815 /*
816  * Heuristic uses systematic sampling to collect data from the input data
817  * range, the logic can be tuned by the following constants:
818  *
819  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
820  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
821  */
822 #define SAMPLING_READ_SIZE	(16)
823 #define SAMPLING_INTERVAL	(256)
824 
825 /*
826  * For statistical analysis of the input data we consider bytes that form a
827  * Galois Field of 256 objects. Each object has an attribute count, ie. how
828  * many times the object appeared in the sample.
829  */
830 #define BUCKET_SIZE		(256)
831 
832 /*
833  * The size of the sample is based on a statistical sampling rule of thumb.
834  * The common way is to perform sampling tests as long as the number of
835  * elements in each cell is at least 5.
836  *
837  * Instead of 5, we choose 32 to obtain more accurate results.
838  * If the data contain the maximum number of symbols, which is 256, we obtain a
839  * sample size bound by 8192.
840  *
841  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
842  * from up to 512 locations.
843  */
844 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
845 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
846 
847 struct bucket_item {
848 	u32 count;
849 };
850 
851 struct heuristic_ws {
852 	/* Partial copy of input data */
853 	u8 *sample;
854 	u32 sample_size;
855 	/* Buckets store counters for each byte value */
856 	struct bucket_item *bucket;
857 	/* Sorting buffer */
858 	struct bucket_item *bucket_b;
859 	struct list_head list;
860 };
861 
862 static struct workspace_manager heuristic_wsm;
863 
864 static void free_heuristic_ws(struct list_head *ws)
865 {
866 	struct heuristic_ws *workspace;
867 
868 	workspace = list_entry(ws, struct heuristic_ws, list);
869 
870 	kvfree(workspace->sample);
871 	kfree(workspace->bucket);
872 	kfree(workspace->bucket_b);
873 	kfree(workspace);
874 }
875 
876 static struct list_head *alloc_heuristic_ws(unsigned int level)
877 {
878 	struct heuristic_ws *ws;
879 
880 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
881 	if (!ws)
882 		return ERR_PTR(-ENOMEM);
883 
884 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
885 	if (!ws->sample)
886 		goto fail;
887 
888 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
889 	if (!ws->bucket)
890 		goto fail;
891 
892 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
893 	if (!ws->bucket_b)
894 		goto fail;
895 
896 	INIT_LIST_HEAD(&ws->list);
897 	return &ws->list;
898 fail:
899 	free_heuristic_ws(&ws->list);
900 	return ERR_PTR(-ENOMEM);
901 }
902 
903 const struct btrfs_compress_op btrfs_heuristic_compress = {
904 	.workspace_manager = &heuristic_wsm,
905 };
906 
907 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
908 	/* The heuristic is represented as compression type 0 */
909 	&btrfs_heuristic_compress,
910 	&btrfs_zlib_compress,
911 	&btrfs_lzo_compress,
912 	&btrfs_zstd_compress,
913 };
914 
915 static struct list_head *alloc_workspace(int type, unsigned int level)
916 {
917 	switch (type) {
918 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
919 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
920 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
921 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
922 	default:
923 		/*
924 		 * This can't happen, the type is validated several times
925 		 * before we get here.
926 		 */
927 		BUG();
928 	}
929 }
930 
931 static void free_workspace(int type, struct list_head *ws)
932 {
933 	switch (type) {
934 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
935 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
936 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
937 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
938 	default:
939 		/*
940 		 * This can't happen, the type is validated several times
941 		 * before we get here.
942 		 */
943 		BUG();
944 	}
945 }
946 
947 static void btrfs_init_workspace_manager(int type)
948 {
949 	struct workspace_manager *wsm;
950 	struct list_head *workspace;
951 
952 	wsm = btrfs_compress_op[type]->workspace_manager;
953 	INIT_LIST_HEAD(&wsm->idle_ws);
954 	spin_lock_init(&wsm->ws_lock);
955 	atomic_set(&wsm->total_ws, 0);
956 	init_waitqueue_head(&wsm->ws_wait);
957 
958 	/*
959 	 * Preallocate one workspace for each compression type so we can
960 	 * guarantee forward progress in the worst case
961 	 */
962 	workspace = alloc_workspace(type, 0);
963 	if (IS_ERR(workspace)) {
964 		pr_warn(
965 	"BTRFS: cannot preallocate compression workspace, will try later\n");
966 	} else {
967 		atomic_set(&wsm->total_ws, 1);
968 		wsm->free_ws = 1;
969 		list_add(workspace, &wsm->idle_ws);
970 	}
971 }
972 
973 static void btrfs_cleanup_workspace_manager(int type)
974 {
975 	struct workspace_manager *wsman;
976 	struct list_head *ws;
977 
978 	wsman = btrfs_compress_op[type]->workspace_manager;
979 	while (!list_empty(&wsman->idle_ws)) {
980 		ws = wsman->idle_ws.next;
981 		list_del(ws);
982 		free_workspace(type, ws);
983 		atomic_dec(&wsman->total_ws);
984 	}
985 }
986 
987 /*
988  * This finds an available workspace or allocates a new one.
989  * If it's not possible to allocate a new one, waits until there's one.
990  * Preallocation makes a forward progress guarantees and we do not return
991  * errors.
992  */
993 struct list_head *btrfs_get_workspace(int type, unsigned int level)
994 {
995 	struct workspace_manager *wsm;
996 	struct list_head *workspace;
997 	int cpus = num_online_cpus();
998 	unsigned nofs_flag;
999 	struct list_head *idle_ws;
1000 	spinlock_t *ws_lock;
1001 	atomic_t *total_ws;
1002 	wait_queue_head_t *ws_wait;
1003 	int *free_ws;
1004 
1005 	wsm = btrfs_compress_op[type]->workspace_manager;
1006 	idle_ws	 = &wsm->idle_ws;
1007 	ws_lock	 = &wsm->ws_lock;
1008 	total_ws = &wsm->total_ws;
1009 	ws_wait	 = &wsm->ws_wait;
1010 	free_ws	 = &wsm->free_ws;
1011 
1012 again:
1013 	spin_lock(ws_lock);
1014 	if (!list_empty(idle_ws)) {
1015 		workspace = idle_ws->next;
1016 		list_del(workspace);
1017 		(*free_ws)--;
1018 		spin_unlock(ws_lock);
1019 		return workspace;
1020 
1021 	}
1022 	if (atomic_read(total_ws) > cpus) {
1023 		DEFINE_WAIT(wait);
1024 
1025 		spin_unlock(ws_lock);
1026 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1027 		if (atomic_read(total_ws) > cpus && !*free_ws)
1028 			schedule();
1029 		finish_wait(ws_wait, &wait);
1030 		goto again;
1031 	}
1032 	atomic_inc(total_ws);
1033 	spin_unlock(ws_lock);
1034 
1035 	/*
1036 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1037 	 * to turn it off here because we might get called from the restricted
1038 	 * context of btrfs_compress_bio/btrfs_compress_pages
1039 	 */
1040 	nofs_flag = memalloc_nofs_save();
1041 	workspace = alloc_workspace(type, level);
1042 	memalloc_nofs_restore(nofs_flag);
1043 
1044 	if (IS_ERR(workspace)) {
1045 		atomic_dec(total_ws);
1046 		wake_up(ws_wait);
1047 
1048 		/*
1049 		 * Do not return the error but go back to waiting. There's a
1050 		 * workspace preallocated for each type and the compression
1051 		 * time is bounded so we get to a workspace eventually. This
1052 		 * makes our caller's life easier.
1053 		 *
1054 		 * To prevent silent and low-probability deadlocks (when the
1055 		 * initial preallocation fails), check if there are any
1056 		 * workspaces at all.
1057 		 */
1058 		if (atomic_read(total_ws) == 0) {
1059 			static DEFINE_RATELIMIT_STATE(_rs,
1060 					/* once per minute */ 60 * HZ,
1061 					/* no burst */ 1);
1062 
1063 			if (__ratelimit(&_rs)) {
1064 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1065 			}
1066 		}
1067 		goto again;
1068 	}
1069 	return workspace;
1070 }
1071 
1072 static struct list_head *get_workspace(int type, int level)
1073 {
1074 	switch (type) {
1075 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1076 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1077 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1078 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1079 	default:
1080 		/*
1081 		 * This can't happen, the type is validated several times
1082 		 * before we get here.
1083 		 */
1084 		BUG();
1085 	}
1086 }
1087 
1088 /*
1089  * put a workspace struct back on the list or free it if we have enough
1090  * idle ones sitting around
1091  */
1092 void btrfs_put_workspace(int type, struct list_head *ws)
1093 {
1094 	struct workspace_manager *wsm;
1095 	struct list_head *idle_ws;
1096 	spinlock_t *ws_lock;
1097 	atomic_t *total_ws;
1098 	wait_queue_head_t *ws_wait;
1099 	int *free_ws;
1100 
1101 	wsm = btrfs_compress_op[type]->workspace_manager;
1102 	idle_ws	 = &wsm->idle_ws;
1103 	ws_lock	 = &wsm->ws_lock;
1104 	total_ws = &wsm->total_ws;
1105 	ws_wait	 = &wsm->ws_wait;
1106 	free_ws	 = &wsm->free_ws;
1107 
1108 	spin_lock(ws_lock);
1109 	if (*free_ws <= num_online_cpus()) {
1110 		list_add(ws, idle_ws);
1111 		(*free_ws)++;
1112 		spin_unlock(ws_lock);
1113 		goto wake;
1114 	}
1115 	spin_unlock(ws_lock);
1116 
1117 	free_workspace(type, ws);
1118 	atomic_dec(total_ws);
1119 wake:
1120 	cond_wake_up(ws_wait);
1121 }
1122 
1123 static void put_workspace(int type, struct list_head *ws)
1124 {
1125 	switch (type) {
1126 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1127 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1128 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1129 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1130 	default:
1131 		/*
1132 		 * This can't happen, the type is validated several times
1133 		 * before we get here.
1134 		 */
1135 		BUG();
1136 	}
1137 }
1138 
1139 /*
1140  * Given an address space and start and length, compress the bytes into @pages
1141  * that are allocated on demand.
1142  *
1143  * @type_level is encoded algorithm and level, where level 0 means whatever
1144  * default the algorithm chooses and is opaque here;
1145  * - compression algo are 0-3
1146  * - the level are bits 4-7
1147  *
1148  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1149  * and returns number of actually allocated pages
1150  *
1151  * @total_in is used to return the number of bytes actually read.  It
1152  * may be smaller than the input length if we had to exit early because we
1153  * ran out of room in the pages array or because we cross the
1154  * max_out threshold.
1155  *
1156  * @total_out is an in/out parameter, must be set to the input length and will
1157  * be also used to return the total number of compressed bytes
1158  *
1159  * @max_out tells us the max number of bytes that we're allowed to
1160  * stuff into pages
1161  */
1162 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1163 			 u64 start, struct page **pages,
1164 			 unsigned long *out_pages,
1165 			 unsigned long *total_in,
1166 			 unsigned long *total_out)
1167 {
1168 	int type = btrfs_compress_type(type_level);
1169 	int level = btrfs_compress_level(type_level);
1170 	struct list_head *workspace;
1171 	int ret;
1172 
1173 	level = btrfs_compress_set_level(type, level);
1174 	workspace = get_workspace(type, level);
1175 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1176 					 out_pages, total_in, total_out);
1177 	put_workspace(type, workspace);
1178 	return ret;
1179 }
1180 
1181 /*
1182  * pages_in is an array of pages with compressed data.
1183  *
1184  * disk_start is the starting logical offset of this array in the file
1185  *
1186  * orig_bio contains the pages from the file that we want to decompress into
1187  *
1188  * srclen is the number of bytes in pages_in
1189  *
1190  * The basic idea is that we have a bio that was created by readpages.
1191  * The pages in the bio are for the uncompressed data, and they may not
1192  * be contiguous.  They all correspond to the range of bytes covered by
1193  * the compressed extent.
1194  */
1195 static int btrfs_decompress_bio(struct compressed_bio *cb)
1196 {
1197 	struct list_head *workspace;
1198 	int ret;
1199 	int type = cb->compress_type;
1200 
1201 	workspace = get_workspace(type, 0);
1202 	ret = compression_decompress_bio(type, workspace, cb);
1203 	put_workspace(type, workspace);
1204 
1205 	return ret;
1206 }
1207 
1208 /*
1209  * a less complex decompression routine.  Our compressed data fits in a
1210  * single page, and we want to read a single page out of it.
1211  * start_byte tells us the offset into the compressed data we're interested in
1212  */
1213 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1214 		     unsigned long start_byte, size_t srclen, size_t destlen)
1215 {
1216 	struct list_head *workspace;
1217 	int ret;
1218 
1219 	workspace = get_workspace(type, 0);
1220 	ret = compression_decompress(type, workspace, data_in, dest_page,
1221 				     start_byte, srclen, destlen);
1222 	put_workspace(type, workspace);
1223 
1224 	return ret;
1225 }
1226 
1227 void __init btrfs_init_compress(void)
1228 {
1229 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1230 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1231 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1232 	zstd_init_workspace_manager();
1233 }
1234 
1235 void __cold btrfs_exit_compress(void)
1236 {
1237 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1238 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1239 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1240 	zstd_cleanup_workspace_manager();
1241 }
1242 
1243 /*
1244  * Copy uncompressed data from working buffer to pages.
1245  *
1246  * buf_start is the byte offset we're of the start of our workspace buffer.
1247  *
1248  * total_out is the last byte of the buffer
1249  */
1250 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1251 			      unsigned long total_out, u64 disk_start,
1252 			      struct bio *bio)
1253 {
1254 	unsigned long buf_offset;
1255 	unsigned long current_buf_start;
1256 	unsigned long start_byte;
1257 	unsigned long prev_start_byte;
1258 	unsigned long working_bytes = total_out - buf_start;
1259 	unsigned long bytes;
1260 	char *kaddr;
1261 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1262 
1263 	/*
1264 	 * start byte is the first byte of the page we're currently
1265 	 * copying into relative to the start of the compressed data.
1266 	 */
1267 	start_byte = page_offset(bvec.bv_page) - disk_start;
1268 
1269 	/* we haven't yet hit data corresponding to this page */
1270 	if (total_out <= start_byte)
1271 		return 1;
1272 
1273 	/*
1274 	 * the start of the data we care about is offset into
1275 	 * the middle of our working buffer
1276 	 */
1277 	if (total_out > start_byte && buf_start < start_byte) {
1278 		buf_offset = start_byte - buf_start;
1279 		working_bytes -= buf_offset;
1280 	} else {
1281 		buf_offset = 0;
1282 	}
1283 	current_buf_start = buf_start;
1284 
1285 	/* copy bytes from the working buffer into the pages */
1286 	while (working_bytes > 0) {
1287 		bytes = min_t(unsigned long, bvec.bv_len,
1288 				PAGE_SIZE - buf_offset);
1289 		bytes = min(bytes, working_bytes);
1290 
1291 		kaddr = kmap_atomic(bvec.bv_page);
1292 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1293 		kunmap_atomic(kaddr);
1294 		flush_dcache_page(bvec.bv_page);
1295 
1296 		buf_offset += bytes;
1297 		working_bytes -= bytes;
1298 		current_buf_start += bytes;
1299 
1300 		/* check if we need to pick another page */
1301 		bio_advance(bio, bytes);
1302 		if (!bio->bi_iter.bi_size)
1303 			return 0;
1304 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1305 		prev_start_byte = start_byte;
1306 		start_byte = page_offset(bvec.bv_page) - disk_start;
1307 
1308 		/*
1309 		 * We need to make sure we're only adjusting
1310 		 * our offset into compression working buffer when
1311 		 * we're switching pages.  Otherwise we can incorrectly
1312 		 * keep copying when we were actually done.
1313 		 */
1314 		if (start_byte != prev_start_byte) {
1315 			/*
1316 			 * make sure our new page is covered by this
1317 			 * working buffer
1318 			 */
1319 			if (total_out <= start_byte)
1320 				return 1;
1321 
1322 			/*
1323 			 * the next page in the biovec might not be adjacent
1324 			 * to the last page, but it might still be found
1325 			 * inside this working buffer. bump our offset pointer
1326 			 */
1327 			if (total_out > start_byte &&
1328 			    current_buf_start < start_byte) {
1329 				buf_offset = start_byte - buf_start;
1330 				working_bytes = total_out - start_byte;
1331 				current_buf_start = buf_start + buf_offset;
1332 			}
1333 		}
1334 	}
1335 
1336 	return 1;
1337 }
1338 
1339 /*
1340  * Shannon Entropy calculation
1341  *
1342  * Pure byte distribution analysis fails to determine compressibility of data.
1343  * Try calculating entropy to estimate the average minimum number of bits
1344  * needed to encode the sampled data.
1345  *
1346  * For convenience, return the percentage of needed bits, instead of amount of
1347  * bits directly.
1348  *
1349  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1350  *			    and can be compressible with high probability
1351  *
1352  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1353  *
1354  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1355  */
1356 #define ENTROPY_LVL_ACEPTABLE		(65)
1357 #define ENTROPY_LVL_HIGH		(80)
1358 
1359 /*
1360  * For increasead precision in shannon_entropy calculation,
1361  * let's do pow(n, M) to save more digits after comma:
1362  *
1363  * - maximum int bit length is 64
1364  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1365  * - 13 * 4 = 52 < 64		-> M = 4
1366  *
1367  * So use pow(n, 4).
1368  */
1369 static inline u32 ilog2_w(u64 n)
1370 {
1371 	return ilog2(n * n * n * n);
1372 }
1373 
1374 static u32 shannon_entropy(struct heuristic_ws *ws)
1375 {
1376 	const u32 entropy_max = 8 * ilog2_w(2);
1377 	u32 entropy_sum = 0;
1378 	u32 p, p_base, sz_base;
1379 	u32 i;
1380 
1381 	sz_base = ilog2_w(ws->sample_size);
1382 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1383 		p = ws->bucket[i].count;
1384 		p_base = ilog2_w(p);
1385 		entropy_sum += p * (sz_base - p_base);
1386 	}
1387 
1388 	entropy_sum /= ws->sample_size;
1389 	return entropy_sum * 100 / entropy_max;
1390 }
1391 
1392 #define RADIX_BASE		4U
1393 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1394 
1395 static u8 get4bits(u64 num, int shift) {
1396 	u8 low4bits;
1397 
1398 	num >>= shift;
1399 	/* Reverse order */
1400 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1401 	return low4bits;
1402 }
1403 
1404 /*
1405  * Use 4 bits as radix base
1406  * Use 16 u32 counters for calculating new position in buf array
1407  *
1408  * @array     - array that will be sorted
1409  * @array_buf - buffer array to store sorting results
1410  *              must be equal in size to @array
1411  * @num       - array size
1412  */
1413 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1414 		       int num)
1415 {
1416 	u64 max_num;
1417 	u64 buf_num;
1418 	u32 counters[COUNTERS_SIZE];
1419 	u32 new_addr;
1420 	u32 addr;
1421 	int bitlen;
1422 	int shift;
1423 	int i;
1424 
1425 	/*
1426 	 * Try avoid useless loop iterations for small numbers stored in big
1427 	 * counters.  Example: 48 33 4 ... in 64bit array
1428 	 */
1429 	max_num = array[0].count;
1430 	for (i = 1; i < num; i++) {
1431 		buf_num = array[i].count;
1432 		if (buf_num > max_num)
1433 			max_num = buf_num;
1434 	}
1435 
1436 	buf_num = ilog2(max_num);
1437 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1438 
1439 	shift = 0;
1440 	while (shift < bitlen) {
1441 		memset(counters, 0, sizeof(counters));
1442 
1443 		for (i = 0; i < num; i++) {
1444 			buf_num = array[i].count;
1445 			addr = get4bits(buf_num, shift);
1446 			counters[addr]++;
1447 		}
1448 
1449 		for (i = 1; i < COUNTERS_SIZE; i++)
1450 			counters[i] += counters[i - 1];
1451 
1452 		for (i = num - 1; i >= 0; i--) {
1453 			buf_num = array[i].count;
1454 			addr = get4bits(buf_num, shift);
1455 			counters[addr]--;
1456 			new_addr = counters[addr];
1457 			array_buf[new_addr] = array[i];
1458 		}
1459 
1460 		shift += RADIX_BASE;
1461 
1462 		/*
1463 		 * Normal radix expects to move data from a temporary array, to
1464 		 * the main one.  But that requires some CPU time. Avoid that
1465 		 * by doing another sort iteration to original array instead of
1466 		 * memcpy()
1467 		 */
1468 		memset(counters, 0, sizeof(counters));
1469 
1470 		for (i = 0; i < num; i ++) {
1471 			buf_num = array_buf[i].count;
1472 			addr = get4bits(buf_num, shift);
1473 			counters[addr]++;
1474 		}
1475 
1476 		for (i = 1; i < COUNTERS_SIZE; i++)
1477 			counters[i] += counters[i - 1];
1478 
1479 		for (i = num - 1; i >= 0; i--) {
1480 			buf_num = array_buf[i].count;
1481 			addr = get4bits(buf_num, shift);
1482 			counters[addr]--;
1483 			new_addr = counters[addr];
1484 			array[new_addr] = array_buf[i];
1485 		}
1486 
1487 		shift += RADIX_BASE;
1488 	}
1489 }
1490 
1491 /*
1492  * Size of the core byte set - how many bytes cover 90% of the sample
1493  *
1494  * There are several types of structured binary data that use nearly all byte
1495  * values. The distribution can be uniform and counts in all buckets will be
1496  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1497  *
1498  * Other possibility is normal (Gaussian) distribution, where the data could
1499  * be potentially compressible, but we have to take a few more steps to decide
1500  * how much.
1501  *
1502  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1503  *                       compression algo can easy fix that
1504  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1505  *                       probability is not compressible
1506  */
1507 #define BYTE_CORE_SET_LOW		(64)
1508 #define BYTE_CORE_SET_HIGH		(200)
1509 
1510 static int byte_core_set_size(struct heuristic_ws *ws)
1511 {
1512 	u32 i;
1513 	u32 coreset_sum = 0;
1514 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1515 	struct bucket_item *bucket = ws->bucket;
1516 
1517 	/* Sort in reverse order */
1518 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1519 
1520 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1521 		coreset_sum += bucket[i].count;
1522 
1523 	if (coreset_sum > core_set_threshold)
1524 		return i;
1525 
1526 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1527 		coreset_sum += bucket[i].count;
1528 		if (coreset_sum > core_set_threshold)
1529 			break;
1530 	}
1531 
1532 	return i;
1533 }
1534 
1535 /*
1536  * Count byte values in buckets.
1537  * This heuristic can detect textual data (configs, xml, json, html, etc).
1538  * Because in most text-like data byte set is restricted to limited number of
1539  * possible characters, and that restriction in most cases makes data easy to
1540  * compress.
1541  *
1542  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1543  *	less - compressible
1544  *	more - need additional analysis
1545  */
1546 #define BYTE_SET_THRESHOLD		(64)
1547 
1548 static u32 byte_set_size(const struct heuristic_ws *ws)
1549 {
1550 	u32 i;
1551 	u32 byte_set_size = 0;
1552 
1553 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1554 		if (ws->bucket[i].count > 0)
1555 			byte_set_size++;
1556 	}
1557 
1558 	/*
1559 	 * Continue collecting count of byte values in buckets.  If the byte
1560 	 * set size is bigger then the threshold, it's pointless to continue,
1561 	 * the detection technique would fail for this type of data.
1562 	 */
1563 	for (; i < BUCKET_SIZE; i++) {
1564 		if (ws->bucket[i].count > 0) {
1565 			byte_set_size++;
1566 			if (byte_set_size > BYTE_SET_THRESHOLD)
1567 				return byte_set_size;
1568 		}
1569 	}
1570 
1571 	return byte_set_size;
1572 }
1573 
1574 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1575 {
1576 	const u32 half_of_sample = ws->sample_size / 2;
1577 	const u8 *data = ws->sample;
1578 
1579 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1580 }
1581 
1582 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1583 				     struct heuristic_ws *ws)
1584 {
1585 	struct page *page;
1586 	u64 index, index_end;
1587 	u32 i, curr_sample_pos;
1588 	u8 *in_data;
1589 
1590 	/*
1591 	 * Compression handles the input data by chunks of 128KiB
1592 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1593 	 *
1594 	 * We do the same for the heuristic and loop over the whole range.
1595 	 *
1596 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1597 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1598 	 */
1599 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1600 		end = start + BTRFS_MAX_UNCOMPRESSED;
1601 
1602 	index = start >> PAGE_SHIFT;
1603 	index_end = end >> PAGE_SHIFT;
1604 
1605 	/* Don't miss unaligned end */
1606 	if (!IS_ALIGNED(end, PAGE_SIZE))
1607 		index_end++;
1608 
1609 	curr_sample_pos = 0;
1610 	while (index < index_end) {
1611 		page = find_get_page(inode->i_mapping, index);
1612 		in_data = kmap(page);
1613 		/* Handle case where the start is not aligned to PAGE_SIZE */
1614 		i = start % PAGE_SIZE;
1615 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1616 			/* Don't sample any garbage from the last page */
1617 			if (start > end - SAMPLING_READ_SIZE)
1618 				break;
1619 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1620 					SAMPLING_READ_SIZE);
1621 			i += SAMPLING_INTERVAL;
1622 			start += SAMPLING_INTERVAL;
1623 			curr_sample_pos += SAMPLING_READ_SIZE;
1624 		}
1625 		kunmap(page);
1626 		put_page(page);
1627 
1628 		index++;
1629 	}
1630 
1631 	ws->sample_size = curr_sample_pos;
1632 }
1633 
1634 /*
1635  * Compression heuristic.
1636  *
1637  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1638  * quickly (compared to direct compression) detect data characteristics
1639  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1640  * data.
1641  *
1642  * The following types of analysis can be performed:
1643  * - detect mostly zero data
1644  * - detect data with low "byte set" size (text, etc)
1645  * - detect data with low/high "core byte" set
1646  *
1647  * Return non-zero if the compression should be done, 0 otherwise.
1648  */
1649 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1650 {
1651 	struct list_head *ws_list = get_workspace(0, 0);
1652 	struct heuristic_ws *ws;
1653 	u32 i;
1654 	u8 byte;
1655 	int ret = 0;
1656 
1657 	ws = list_entry(ws_list, struct heuristic_ws, list);
1658 
1659 	heuristic_collect_sample(inode, start, end, ws);
1660 
1661 	if (sample_repeated_patterns(ws)) {
1662 		ret = 1;
1663 		goto out;
1664 	}
1665 
1666 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1667 
1668 	for (i = 0; i < ws->sample_size; i++) {
1669 		byte = ws->sample[i];
1670 		ws->bucket[byte].count++;
1671 	}
1672 
1673 	i = byte_set_size(ws);
1674 	if (i < BYTE_SET_THRESHOLD) {
1675 		ret = 2;
1676 		goto out;
1677 	}
1678 
1679 	i = byte_core_set_size(ws);
1680 	if (i <= BYTE_CORE_SET_LOW) {
1681 		ret = 3;
1682 		goto out;
1683 	}
1684 
1685 	if (i >= BYTE_CORE_SET_HIGH) {
1686 		ret = 0;
1687 		goto out;
1688 	}
1689 
1690 	i = shannon_entropy(ws);
1691 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1692 		ret = 4;
1693 		goto out;
1694 	}
1695 
1696 	/*
1697 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1698 	 * needed to give green light to compression.
1699 	 *
1700 	 * For now just assume that compression at that level is not worth the
1701 	 * resources because:
1702 	 *
1703 	 * 1. it is possible to defrag the data later
1704 	 *
1705 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1706 	 * values, every bucket has counter at level ~54. The heuristic would
1707 	 * be confused. This can happen when data have some internal repeated
1708 	 * patterns like "abbacbbc...". This can be detected by analyzing
1709 	 * pairs of bytes, which is too costly.
1710 	 */
1711 	if (i < ENTROPY_LVL_HIGH) {
1712 		ret = 5;
1713 		goto out;
1714 	} else {
1715 		ret = 0;
1716 		goto out;
1717 	}
1718 
1719 out:
1720 	put_workspace(0, ws_list);
1721 	return ret;
1722 }
1723 
1724 /*
1725  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1726  * level, unrecognized string will set the default level
1727  */
1728 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1729 {
1730 	unsigned int level = 0;
1731 	int ret;
1732 
1733 	if (!type)
1734 		return 0;
1735 
1736 	if (str[0] == ':') {
1737 		ret = kstrtouint(str + 1, 10, &level);
1738 		if (ret)
1739 			level = 0;
1740 	}
1741 
1742 	level = btrfs_compress_set_level(type, level);
1743 
1744 	return level;
1745 }
1746 
1747 /*
1748  * Adjust @level according to the limits of the compression algorithm or
1749  * fallback to default
1750  */
1751 unsigned int btrfs_compress_set_level(int type, unsigned level)
1752 {
1753 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1754 
1755 	if (level == 0)
1756 		level = ops->default_level;
1757 	else
1758 		level = min(level, ops->max_level);
1759 
1760 	return level;
1761 }
1762