1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping, 33 u64 start, struct page **pages, unsigned long *out_pages, 34 unsigned long *total_in, unsigned long *total_out); 35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 36 int zlib_decompress(struct list_head *ws, unsigned char *data_in, 37 struct page *dest_page, unsigned long start_byte, size_t srclen, 38 size_t destlen); 39 struct list_head *zlib_alloc_workspace(unsigned int level); 40 void zlib_free_workspace(struct list_head *ws); 41 struct list_head *zlib_get_workspace(unsigned int level); 42 43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping, 44 u64 start, struct page **pages, unsigned long *out_pages, 45 unsigned long *total_in, unsigned long *total_out); 46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 47 int lzo_decompress(struct list_head *ws, unsigned char *data_in, 48 struct page *dest_page, unsigned long start_byte, size_t srclen, 49 size_t destlen); 50 struct list_head *lzo_alloc_workspace(unsigned int level); 51 void lzo_free_workspace(struct list_head *ws); 52 53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 54 u64 start, struct page **pages, unsigned long *out_pages, 55 unsigned long *total_in, unsigned long *total_out); 56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb); 57 int zstd_decompress(struct list_head *ws, unsigned char *data_in, 58 struct page *dest_page, unsigned long start_byte, size_t srclen, 59 size_t destlen); 60 void zstd_init_workspace_manager(void); 61 void zstd_cleanup_workspace_manager(void); 62 struct list_head *zstd_alloc_workspace(unsigned int level); 63 void zstd_free_workspace(struct list_head *ws); 64 struct list_head *zstd_get_workspace(unsigned int level); 65 void zstd_put_workspace(struct list_head *ws); 66 67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 68 69 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 case BTRFS_COMPRESS_LZO: 74 case BTRFS_COMPRESS_ZSTD: 75 case BTRFS_COMPRESS_NONE: 76 return btrfs_compress_types[type]; 77 default: 78 break; 79 } 80 81 return NULL; 82 } 83 84 bool btrfs_compress_is_valid_type(const char *str, size_t len) 85 { 86 int i; 87 88 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 89 size_t comp_len = strlen(btrfs_compress_types[i]); 90 91 if (len < comp_len) 92 continue; 93 94 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 95 return true; 96 } 97 return false; 98 } 99 100 static int compression_compress_pages(int type, struct list_head *ws, 101 struct address_space *mapping, u64 start, struct page **pages, 102 unsigned long *out_pages, unsigned long *total_in, 103 unsigned long *total_out) 104 { 105 switch (type) { 106 case BTRFS_COMPRESS_ZLIB: 107 return zlib_compress_pages(ws, mapping, start, pages, 108 out_pages, total_in, total_out); 109 case BTRFS_COMPRESS_LZO: 110 return lzo_compress_pages(ws, mapping, start, pages, 111 out_pages, total_in, total_out); 112 case BTRFS_COMPRESS_ZSTD: 113 return zstd_compress_pages(ws, mapping, start, pages, 114 out_pages, total_in, total_out); 115 case BTRFS_COMPRESS_NONE: 116 default: 117 /* 118 * This can't happen, the type is validated several times 119 * before we get here. As a sane fallback, return what the 120 * callers will understand as 'no compression happened'. 121 */ 122 return -E2BIG; 123 } 124 } 125 126 static int compression_decompress_bio(int type, struct list_head *ws, 127 struct compressed_bio *cb) 128 { 129 switch (type) { 130 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 131 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 132 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 133 case BTRFS_COMPRESS_NONE: 134 default: 135 /* 136 * This can't happen, the type is validated several times 137 * before we get here. 138 */ 139 BUG(); 140 } 141 } 142 143 static int compression_decompress(int type, struct list_head *ws, 144 unsigned char *data_in, struct page *dest_page, 145 unsigned long start_byte, size_t srclen, size_t destlen) 146 { 147 switch (type) { 148 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 149 start_byte, srclen, destlen); 150 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 151 start_byte, srclen, destlen); 152 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 153 start_byte, srclen, destlen); 154 case BTRFS_COMPRESS_NONE: 155 default: 156 /* 157 * This can't happen, the type is validated several times 158 * before we get here. 159 */ 160 BUG(); 161 } 162 } 163 164 static int btrfs_decompress_bio(struct compressed_bio *cb); 165 166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 167 unsigned long disk_size) 168 { 169 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 170 171 return sizeof(struct compressed_bio) + 172 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 173 } 174 175 static int check_compressed_csum(struct btrfs_inode *inode, 176 struct compressed_bio *cb, 177 u64 disk_start) 178 { 179 struct btrfs_fs_info *fs_info = inode->root->fs_info; 180 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 181 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 182 int ret; 183 struct page *page; 184 unsigned long i; 185 char *kaddr; 186 u8 csum[BTRFS_CSUM_SIZE]; 187 u8 *cb_sum = cb->sums; 188 189 if (inode->flags & BTRFS_INODE_NODATASUM) 190 return 0; 191 192 shash->tfm = fs_info->csum_shash; 193 194 for (i = 0; i < cb->nr_pages; i++) { 195 page = cb->compressed_pages[i]; 196 197 crypto_shash_init(shash); 198 kaddr = kmap_atomic(page); 199 crypto_shash_update(shash, kaddr, PAGE_SIZE); 200 kunmap_atomic(kaddr); 201 crypto_shash_final(shash, (u8 *)&csum); 202 203 if (memcmp(&csum, cb_sum, csum_size)) { 204 btrfs_print_data_csum_error(inode, disk_start, 205 csum, cb_sum, cb->mirror_num); 206 ret = -EIO; 207 goto fail; 208 } 209 cb_sum += csum_size; 210 211 } 212 ret = 0; 213 fail: 214 return ret; 215 } 216 217 /* when we finish reading compressed pages from the disk, we 218 * decompress them and then run the bio end_io routines on the 219 * decompressed pages (in the inode address space). 220 * 221 * This allows the checksumming and other IO error handling routines 222 * to work normally 223 * 224 * The compressed pages are freed here, and it must be run 225 * in process context 226 */ 227 static void end_compressed_bio_read(struct bio *bio) 228 { 229 struct compressed_bio *cb = bio->bi_private; 230 struct inode *inode; 231 struct page *page; 232 unsigned long index; 233 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 234 int ret = 0; 235 236 if (bio->bi_status) 237 cb->errors = 1; 238 239 /* if there are more bios still pending for this compressed 240 * extent, just exit 241 */ 242 if (!refcount_dec_and_test(&cb->pending_bios)) 243 goto out; 244 245 /* 246 * Record the correct mirror_num in cb->orig_bio so that 247 * read-repair can work properly. 248 */ 249 ASSERT(btrfs_io_bio(cb->orig_bio)); 250 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 251 cb->mirror_num = mirror; 252 253 /* 254 * Some IO in this cb have failed, just skip checksum as there 255 * is no way it could be correct. 256 */ 257 if (cb->errors == 1) 258 goto csum_failed; 259 260 inode = cb->inode; 261 ret = check_compressed_csum(BTRFS_I(inode), cb, 262 (u64)bio->bi_iter.bi_sector << 9); 263 if (ret) 264 goto csum_failed; 265 266 /* ok, we're the last bio for this extent, lets start 267 * the decompression. 268 */ 269 ret = btrfs_decompress_bio(cb); 270 271 csum_failed: 272 if (ret) 273 cb->errors = 1; 274 275 /* release the compressed pages */ 276 index = 0; 277 for (index = 0; index < cb->nr_pages; index++) { 278 page = cb->compressed_pages[index]; 279 page->mapping = NULL; 280 put_page(page); 281 } 282 283 /* do io completion on the original bio */ 284 if (cb->errors) { 285 bio_io_error(cb->orig_bio); 286 } else { 287 struct bio_vec *bvec; 288 struct bvec_iter_all iter_all; 289 290 /* 291 * we have verified the checksum already, set page 292 * checked so the end_io handlers know about it 293 */ 294 ASSERT(!bio_flagged(bio, BIO_CLONED)); 295 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 296 SetPageChecked(bvec->bv_page); 297 298 bio_endio(cb->orig_bio); 299 } 300 301 /* finally free the cb struct */ 302 kfree(cb->compressed_pages); 303 kfree(cb); 304 out: 305 bio_put(bio); 306 } 307 308 /* 309 * Clear the writeback bits on all of the file 310 * pages for a compressed write 311 */ 312 static noinline void end_compressed_writeback(struct inode *inode, 313 const struct compressed_bio *cb) 314 { 315 unsigned long index = cb->start >> PAGE_SHIFT; 316 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 317 struct page *pages[16]; 318 unsigned long nr_pages = end_index - index + 1; 319 int i; 320 int ret; 321 322 if (cb->errors) 323 mapping_set_error(inode->i_mapping, -EIO); 324 325 while (nr_pages > 0) { 326 ret = find_get_pages_contig(inode->i_mapping, index, 327 min_t(unsigned long, 328 nr_pages, ARRAY_SIZE(pages)), pages); 329 if (ret == 0) { 330 nr_pages -= 1; 331 index += 1; 332 continue; 333 } 334 for (i = 0; i < ret; i++) { 335 if (cb->errors) 336 SetPageError(pages[i]); 337 end_page_writeback(pages[i]); 338 put_page(pages[i]); 339 } 340 nr_pages -= ret; 341 index += ret; 342 } 343 /* the inode may be gone now */ 344 } 345 346 /* 347 * do the cleanup once all the compressed pages hit the disk. 348 * This will clear writeback on the file pages and free the compressed 349 * pages. 350 * 351 * This also calls the writeback end hooks for the file pages so that 352 * metadata and checksums can be updated in the file. 353 */ 354 static void end_compressed_bio_write(struct bio *bio) 355 { 356 struct compressed_bio *cb = bio->bi_private; 357 struct inode *inode; 358 struct page *page; 359 unsigned long index; 360 361 if (bio->bi_status) 362 cb->errors = 1; 363 364 /* if there are more bios still pending for this compressed 365 * extent, just exit 366 */ 367 if (!refcount_dec_and_test(&cb->pending_bios)) 368 goto out; 369 370 /* ok, we're the last bio for this extent, step one is to 371 * call back into the FS and do all the end_io operations 372 */ 373 inode = cb->inode; 374 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 375 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 376 cb->start, cb->start + cb->len - 1, 377 bio->bi_status == BLK_STS_OK); 378 cb->compressed_pages[0]->mapping = NULL; 379 380 end_compressed_writeback(inode, cb); 381 /* note, our inode could be gone now */ 382 383 /* 384 * release the compressed pages, these came from alloc_page and 385 * are not attached to the inode at all 386 */ 387 index = 0; 388 for (index = 0; index < cb->nr_pages; index++) { 389 page = cb->compressed_pages[index]; 390 page->mapping = NULL; 391 put_page(page); 392 } 393 394 /* finally free the cb struct */ 395 kfree(cb->compressed_pages); 396 kfree(cb); 397 out: 398 bio_put(bio); 399 } 400 401 /* 402 * worker function to build and submit bios for previously compressed pages. 403 * The corresponding pages in the inode should be marked for writeback 404 * and the compressed pages should have a reference on them for dropping 405 * when the IO is complete. 406 * 407 * This also checksums the file bytes and gets things ready for 408 * the end io hooks. 409 */ 410 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 411 unsigned long len, u64 disk_start, 412 unsigned long compressed_len, 413 struct page **compressed_pages, 414 unsigned long nr_pages, 415 unsigned int write_flags, 416 struct cgroup_subsys_state *blkcg_css) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 struct bio *bio = NULL; 420 struct compressed_bio *cb; 421 unsigned long bytes_left; 422 int pg_index = 0; 423 struct page *page; 424 u64 first_byte = disk_start; 425 blk_status_t ret; 426 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 427 428 WARN_ON(!PAGE_ALIGNED(start)); 429 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 430 if (!cb) 431 return BLK_STS_RESOURCE; 432 refcount_set(&cb->pending_bios, 0); 433 cb->errors = 0; 434 cb->inode = inode; 435 cb->start = start; 436 cb->len = len; 437 cb->mirror_num = 0; 438 cb->compressed_pages = compressed_pages; 439 cb->compressed_len = compressed_len; 440 cb->orig_bio = NULL; 441 cb->nr_pages = nr_pages; 442 443 bio = btrfs_bio_alloc(first_byte); 444 bio->bi_opf = REQ_OP_WRITE | write_flags; 445 bio->bi_private = cb; 446 bio->bi_end_io = end_compressed_bio_write; 447 448 if (blkcg_css) { 449 bio->bi_opf |= REQ_CGROUP_PUNT; 450 bio_associate_blkg_from_css(bio, blkcg_css); 451 } 452 refcount_set(&cb->pending_bios, 1); 453 454 /* create and submit bios for the compressed pages */ 455 bytes_left = compressed_len; 456 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 457 int submit = 0; 458 459 page = compressed_pages[pg_index]; 460 page->mapping = inode->i_mapping; 461 if (bio->bi_iter.bi_size) 462 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 463 0); 464 465 page->mapping = NULL; 466 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 467 PAGE_SIZE) { 468 /* 469 * inc the count before we submit the bio so 470 * we know the end IO handler won't happen before 471 * we inc the count. Otherwise, the cb might get 472 * freed before we're done setting it up 473 */ 474 refcount_inc(&cb->pending_bios); 475 ret = btrfs_bio_wq_end_io(fs_info, bio, 476 BTRFS_WQ_ENDIO_DATA); 477 BUG_ON(ret); /* -ENOMEM */ 478 479 if (!skip_sum) { 480 ret = btrfs_csum_one_bio(inode, bio, start, 1); 481 BUG_ON(ret); /* -ENOMEM */ 482 } 483 484 ret = btrfs_map_bio(fs_info, bio, 0); 485 if (ret) { 486 bio->bi_status = ret; 487 bio_endio(bio); 488 } 489 490 bio = btrfs_bio_alloc(first_byte); 491 bio->bi_opf = REQ_OP_WRITE | write_flags; 492 bio->bi_private = cb; 493 bio->bi_end_io = end_compressed_bio_write; 494 bio_add_page(bio, page, PAGE_SIZE, 0); 495 } 496 if (bytes_left < PAGE_SIZE) { 497 btrfs_info(fs_info, 498 "bytes left %lu compress len %lu nr %lu", 499 bytes_left, cb->compressed_len, cb->nr_pages); 500 } 501 bytes_left -= PAGE_SIZE; 502 first_byte += PAGE_SIZE; 503 cond_resched(); 504 } 505 506 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 507 BUG_ON(ret); /* -ENOMEM */ 508 509 if (!skip_sum) { 510 ret = btrfs_csum_one_bio(inode, bio, start, 1); 511 BUG_ON(ret); /* -ENOMEM */ 512 } 513 514 ret = btrfs_map_bio(fs_info, bio, 0); 515 if (ret) { 516 bio->bi_status = ret; 517 bio_endio(bio); 518 } 519 520 return 0; 521 } 522 523 static u64 bio_end_offset(struct bio *bio) 524 { 525 struct bio_vec *last = bio_last_bvec_all(bio); 526 527 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 528 } 529 530 static noinline int add_ra_bio_pages(struct inode *inode, 531 u64 compressed_end, 532 struct compressed_bio *cb) 533 { 534 unsigned long end_index; 535 unsigned long pg_index; 536 u64 last_offset; 537 u64 isize = i_size_read(inode); 538 int ret; 539 struct page *page; 540 unsigned long nr_pages = 0; 541 struct extent_map *em; 542 struct address_space *mapping = inode->i_mapping; 543 struct extent_map_tree *em_tree; 544 struct extent_io_tree *tree; 545 u64 end; 546 int misses = 0; 547 548 last_offset = bio_end_offset(cb->orig_bio); 549 em_tree = &BTRFS_I(inode)->extent_tree; 550 tree = &BTRFS_I(inode)->io_tree; 551 552 if (isize == 0) 553 return 0; 554 555 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 556 557 while (last_offset < compressed_end) { 558 pg_index = last_offset >> PAGE_SHIFT; 559 560 if (pg_index > end_index) 561 break; 562 563 page = xa_load(&mapping->i_pages, pg_index); 564 if (page && !xa_is_value(page)) { 565 misses++; 566 if (misses > 4) 567 break; 568 goto next; 569 } 570 571 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 572 ~__GFP_FS)); 573 if (!page) 574 break; 575 576 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 577 put_page(page); 578 goto next; 579 } 580 581 end = last_offset + PAGE_SIZE - 1; 582 /* 583 * at this point, we have a locked page in the page cache 584 * for these bytes in the file. But, we have to make 585 * sure they map to this compressed extent on disk. 586 */ 587 set_page_extent_mapped(page); 588 lock_extent(tree, last_offset, end); 589 read_lock(&em_tree->lock); 590 em = lookup_extent_mapping(em_tree, last_offset, 591 PAGE_SIZE); 592 read_unlock(&em_tree->lock); 593 594 if (!em || last_offset < em->start || 595 (last_offset + PAGE_SIZE > extent_map_end(em)) || 596 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 597 free_extent_map(em); 598 unlock_extent(tree, last_offset, end); 599 unlock_page(page); 600 put_page(page); 601 break; 602 } 603 free_extent_map(em); 604 605 if (page->index == end_index) { 606 char *userpage; 607 size_t zero_offset = offset_in_page(isize); 608 609 if (zero_offset) { 610 int zeros; 611 zeros = PAGE_SIZE - zero_offset; 612 userpage = kmap_atomic(page); 613 memset(userpage + zero_offset, 0, zeros); 614 flush_dcache_page(page); 615 kunmap_atomic(userpage); 616 } 617 } 618 619 ret = bio_add_page(cb->orig_bio, page, 620 PAGE_SIZE, 0); 621 622 if (ret == PAGE_SIZE) { 623 nr_pages++; 624 put_page(page); 625 } else { 626 unlock_extent(tree, last_offset, end); 627 unlock_page(page); 628 put_page(page); 629 break; 630 } 631 next: 632 last_offset += PAGE_SIZE; 633 } 634 return 0; 635 } 636 637 /* 638 * for a compressed read, the bio we get passed has all the inode pages 639 * in it. We don't actually do IO on those pages but allocate new ones 640 * to hold the compressed pages on disk. 641 * 642 * bio->bi_iter.bi_sector points to the compressed extent on disk 643 * bio->bi_io_vec points to all of the inode pages 644 * 645 * After the compressed pages are read, we copy the bytes into the 646 * bio we were passed and then call the bio end_io calls 647 */ 648 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 649 int mirror_num, unsigned long bio_flags) 650 { 651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 652 struct extent_map_tree *em_tree; 653 struct compressed_bio *cb; 654 unsigned long compressed_len; 655 unsigned long nr_pages; 656 unsigned long pg_index; 657 struct page *page; 658 struct bio *comp_bio; 659 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 660 u64 em_len; 661 u64 em_start; 662 struct extent_map *em; 663 blk_status_t ret = BLK_STS_RESOURCE; 664 int faili = 0; 665 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 666 u8 *sums; 667 668 em_tree = &BTRFS_I(inode)->extent_tree; 669 670 /* we need the actual starting offset of this extent in the file */ 671 read_lock(&em_tree->lock); 672 em = lookup_extent_mapping(em_tree, 673 page_offset(bio_first_page_all(bio)), 674 PAGE_SIZE); 675 read_unlock(&em_tree->lock); 676 if (!em) 677 return BLK_STS_IOERR; 678 679 compressed_len = em->block_len; 680 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 681 if (!cb) 682 goto out; 683 684 refcount_set(&cb->pending_bios, 0); 685 cb->errors = 0; 686 cb->inode = inode; 687 cb->mirror_num = mirror_num; 688 sums = cb->sums; 689 690 cb->start = em->orig_start; 691 em_len = em->len; 692 em_start = em->start; 693 694 free_extent_map(em); 695 em = NULL; 696 697 cb->len = bio->bi_iter.bi_size; 698 cb->compressed_len = compressed_len; 699 cb->compress_type = extent_compress_type(bio_flags); 700 cb->orig_bio = bio; 701 702 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 703 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 704 GFP_NOFS); 705 if (!cb->compressed_pages) 706 goto fail1; 707 708 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 709 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 710 __GFP_HIGHMEM); 711 if (!cb->compressed_pages[pg_index]) { 712 faili = pg_index - 1; 713 ret = BLK_STS_RESOURCE; 714 goto fail2; 715 } 716 } 717 faili = nr_pages - 1; 718 cb->nr_pages = nr_pages; 719 720 add_ra_bio_pages(inode, em_start + em_len, cb); 721 722 /* include any pages we added in add_ra-bio_pages */ 723 cb->len = bio->bi_iter.bi_size; 724 725 comp_bio = btrfs_bio_alloc(cur_disk_byte); 726 comp_bio->bi_opf = REQ_OP_READ; 727 comp_bio->bi_private = cb; 728 comp_bio->bi_end_io = end_compressed_bio_read; 729 refcount_set(&cb->pending_bios, 1); 730 731 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 732 int submit = 0; 733 734 page = cb->compressed_pages[pg_index]; 735 page->mapping = inode->i_mapping; 736 page->index = em_start >> PAGE_SHIFT; 737 738 if (comp_bio->bi_iter.bi_size) 739 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 740 comp_bio, 0); 741 742 page->mapping = NULL; 743 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 744 PAGE_SIZE) { 745 unsigned int nr_sectors; 746 747 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 748 BTRFS_WQ_ENDIO_DATA); 749 BUG_ON(ret); /* -ENOMEM */ 750 751 /* 752 * inc the count before we submit the bio so 753 * we know the end IO handler won't happen before 754 * we inc the count. Otherwise, the cb might get 755 * freed before we're done setting it up 756 */ 757 refcount_inc(&cb->pending_bios); 758 759 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 760 ret = btrfs_lookup_bio_sums(inode, comp_bio, 761 sums); 762 BUG_ON(ret); /* -ENOMEM */ 763 } 764 765 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 766 fs_info->sectorsize); 767 sums += csum_size * nr_sectors; 768 769 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 770 if (ret) { 771 comp_bio->bi_status = ret; 772 bio_endio(comp_bio); 773 } 774 775 comp_bio = btrfs_bio_alloc(cur_disk_byte); 776 comp_bio->bi_opf = REQ_OP_READ; 777 comp_bio->bi_private = cb; 778 comp_bio->bi_end_io = end_compressed_bio_read; 779 780 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 781 } 782 cur_disk_byte += PAGE_SIZE; 783 } 784 785 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 786 BUG_ON(ret); /* -ENOMEM */ 787 788 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 789 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 790 BUG_ON(ret); /* -ENOMEM */ 791 } 792 793 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 794 if (ret) { 795 comp_bio->bi_status = ret; 796 bio_endio(comp_bio); 797 } 798 799 return 0; 800 801 fail2: 802 while (faili >= 0) { 803 __free_page(cb->compressed_pages[faili]); 804 faili--; 805 } 806 807 kfree(cb->compressed_pages); 808 fail1: 809 kfree(cb); 810 out: 811 free_extent_map(em); 812 return ret; 813 } 814 815 /* 816 * Heuristic uses systematic sampling to collect data from the input data 817 * range, the logic can be tuned by the following constants: 818 * 819 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 820 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 821 */ 822 #define SAMPLING_READ_SIZE (16) 823 #define SAMPLING_INTERVAL (256) 824 825 /* 826 * For statistical analysis of the input data we consider bytes that form a 827 * Galois Field of 256 objects. Each object has an attribute count, ie. how 828 * many times the object appeared in the sample. 829 */ 830 #define BUCKET_SIZE (256) 831 832 /* 833 * The size of the sample is based on a statistical sampling rule of thumb. 834 * The common way is to perform sampling tests as long as the number of 835 * elements in each cell is at least 5. 836 * 837 * Instead of 5, we choose 32 to obtain more accurate results. 838 * If the data contain the maximum number of symbols, which is 256, we obtain a 839 * sample size bound by 8192. 840 * 841 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 842 * from up to 512 locations. 843 */ 844 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 845 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 846 847 struct bucket_item { 848 u32 count; 849 }; 850 851 struct heuristic_ws { 852 /* Partial copy of input data */ 853 u8 *sample; 854 u32 sample_size; 855 /* Buckets store counters for each byte value */ 856 struct bucket_item *bucket; 857 /* Sorting buffer */ 858 struct bucket_item *bucket_b; 859 struct list_head list; 860 }; 861 862 static struct workspace_manager heuristic_wsm; 863 864 static void free_heuristic_ws(struct list_head *ws) 865 { 866 struct heuristic_ws *workspace; 867 868 workspace = list_entry(ws, struct heuristic_ws, list); 869 870 kvfree(workspace->sample); 871 kfree(workspace->bucket); 872 kfree(workspace->bucket_b); 873 kfree(workspace); 874 } 875 876 static struct list_head *alloc_heuristic_ws(unsigned int level) 877 { 878 struct heuristic_ws *ws; 879 880 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 881 if (!ws) 882 return ERR_PTR(-ENOMEM); 883 884 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 885 if (!ws->sample) 886 goto fail; 887 888 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 889 if (!ws->bucket) 890 goto fail; 891 892 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 893 if (!ws->bucket_b) 894 goto fail; 895 896 INIT_LIST_HEAD(&ws->list); 897 return &ws->list; 898 fail: 899 free_heuristic_ws(&ws->list); 900 return ERR_PTR(-ENOMEM); 901 } 902 903 const struct btrfs_compress_op btrfs_heuristic_compress = { 904 .workspace_manager = &heuristic_wsm, 905 }; 906 907 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 908 /* The heuristic is represented as compression type 0 */ 909 &btrfs_heuristic_compress, 910 &btrfs_zlib_compress, 911 &btrfs_lzo_compress, 912 &btrfs_zstd_compress, 913 }; 914 915 static struct list_head *alloc_workspace(int type, unsigned int level) 916 { 917 switch (type) { 918 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 919 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 920 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 921 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 922 default: 923 /* 924 * This can't happen, the type is validated several times 925 * before we get here. 926 */ 927 BUG(); 928 } 929 } 930 931 static void free_workspace(int type, struct list_head *ws) 932 { 933 switch (type) { 934 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 935 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 936 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 937 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 938 default: 939 /* 940 * This can't happen, the type is validated several times 941 * before we get here. 942 */ 943 BUG(); 944 } 945 } 946 947 static void btrfs_init_workspace_manager(int type) 948 { 949 struct workspace_manager *wsm; 950 struct list_head *workspace; 951 952 wsm = btrfs_compress_op[type]->workspace_manager; 953 INIT_LIST_HEAD(&wsm->idle_ws); 954 spin_lock_init(&wsm->ws_lock); 955 atomic_set(&wsm->total_ws, 0); 956 init_waitqueue_head(&wsm->ws_wait); 957 958 /* 959 * Preallocate one workspace for each compression type so we can 960 * guarantee forward progress in the worst case 961 */ 962 workspace = alloc_workspace(type, 0); 963 if (IS_ERR(workspace)) { 964 pr_warn( 965 "BTRFS: cannot preallocate compression workspace, will try later\n"); 966 } else { 967 atomic_set(&wsm->total_ws, 1); 968 wsm->free_ws = 1; 969 list_add(workspace, &wsm->idle_ws); 970 } 971 } 972 973 static void btrfs_cleanup_workspace_manager(int type) 974 { 975 struct workspace_manager *wsman; 976 struct list_head *ws; 977 978 wsman = btrfs_compress_op[type]->workspace_manager; 979 while (!list_empty(&wsman->idle_ws)) { 980 ws = wsman->idle_ws.next; 981 list_del(ws); 982 free_workspace(type, ws); 983 atomic_dec(&wsman->total_ws); 984 } 985 } 986 987 /* 988 * This finds an available workspace or allocates a new one. 989 * If it's not possible to allocate a new one, waits until there's one. 990 * Preallocation makes a forward progress guarantees and we do not return 991 * errors. 992 */ 993 struct list_head *btrfs_get_workspace(int type, unsigned int level) 994 { 995 struct workspace_manager *wsm; 996 struct list_head *workspace; 997 int cpus = num_online_cpus(); 998 unsigned nofs_flag; 999 struct list_head *idle_ws; 1000 spinlock_t *ws_lock; 1001 atomic_t *total_ws; 1002 wait_queue_head_t *ws_wait; 1003 int *free_ws; 1004 1005 wsm = btrfs_compress_op[type]->workspace_manager; 1006 idle_ws = &wsm->idle_ws; 1007 ws_lock = &wsm->ws_lock; 1008 total_ws = &wsm->total_ws; 1009 ws_wait = &wsm->ws_wait; 1010 free_ws = &wsm->free_ws; 1011 1012 again: 1013 spin_lock(ws_lock); 1014 if (!list_empty(idle_ws)) { 1015 workspace = idle_ws->next; 1016 list_del(workspace); 1017 (*free_ws)--; 1018 spin_unlock(ws_lock); 1019 return workspace; 1020 1021 } 1022 if (atomic_read(total_ws) > cpus) { 1023 DEFINE_WAIT(wait); 1024 1025 spin_unlock(ws_lock); 1026 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1027 if (atomic_read(total_ws) > cpus && !*free_ws) 1028 schedule(); 1029 finish_wait(ws_wait, &wait); 1030 goto again; 1031 } 1032 atomic_inc(total_ws); 1033 spin_unlock(ws_lock); 1034 1035 /* 1036 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1037 * to turn it off here because we might get called from the restricted 1038 * context of btrfs_compress_bio/btrfs_compress_pages 1039 */ 1040 nofs_flag = memalloc_nofs_save(); 1041 workspace = alloc_workspace(type, level); 1042 memalloc_nofs_restore(nofs_flag); 1043 1044 if (IS_ERR(workspace)) { 1045 atomic_dec(total_ws); 1046 wake_up(ws_wait); 1047 1048 /* 1049 * Do not return the error but go back to waiting. There's a 1050 * workspace preallocated for each type and the compression 1051 * time is bounded so we get to a workspace eventually. This 1052 * makes our caller's life easier. 1053 * 1054 * To prevent silent and low-probability deadlocks (when the 1055 * initial preallocation fails), check if there are any 1056 * workspaces at all. 1057 */ 1058 if (atomic_read(total_ws) == 0) { 1059 static DEFINE_RATELIMIT_STATE(_rs, 1060 /* once per minute */ 60 * HZ, 1061 /* no burst */ 1); 1062 1063 if (__ratelimit(&_rs)) { 1064 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1065 } 1066 } 1067 goto again; 1068 } 1069 return workspace; 1070 } 1071 1072 static struct list_head *get_workspace(int type, int level) 1073 { 1074 switch (type) { 1075 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1076 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1077 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1078 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1079 default: 1080 /* 1081 * This can't happen, the type is validated several times 1082 * before we get here. 1083 */ 1084 BUG(); 1085 } 1086 } 1087 1088 /* 1089 * put a workspace struct back on the list or free it if we have enough 1090 * idle ones sitting around 1091 */ 1092 void btrfs_put_workspace(int type, struct list_head *ws) 1093 { 1094 struct workspace_manager *wsm; 1095 struct list_head *idle_ws; 1096 spinlock_t *ws_lock; 1097 atomic_t *total_ws; 1098 wait_queue_head_t *ws_wait; 1099 int *free_ws; 1100 1101 wsm = btrfs_compress_op[type]->workspace_manager; 1102 idle_ws = &wsm->idle_ws; 1103 ws_lock = &wsm->ws_lock; 1104 total_ws = &wsm->total_ws; 1105 ws_wait = &wsm->ws_wait; 1106 free_ws = &wsm->free_ws; 1107 1108 spin_lock(ws_lock); 1109 if (*free_ws <= num_online_cpus()) { 1110 list_add(ws, idle_ws); 1111 (*free_ws)++; 1112 spin_unlock(ws_lock); 1113 goto wake; 1114 } 1115 spin_unlock(ws_lock); 1116 1117 free_workspace(type, ws); 1118 atomic_dec(total_ws); 1119 wake: 1120 cond_wake_up(ws_wait); 1121 } 1122 1123 static void put_workspace(int type, struct list_head *ws) 1124 { 1125 switch (type) { 1126 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1127 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1128 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1129 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1130 default: 1131 /* 1132 * This can't happen, the type is validated several times 1133 * before we get here. 1134 */ 1135 BUG(); 1136 } 1137 } 1138 1139 /* 1140 * Given an address space and start and length, compress the bytes into @pages 1141 * that are allocated on demand. 1142 * 1143 * @type_level is encoded algorithm and level, where level 0 means whatever 1144 * default the algorithm chooses and is opaque here; 1145 * - compression algo are 0-3 1146 * - the level are bits 4-7 1147 * 1148 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1149 * and returns number of actually allocated pages 1150 * 1151 * @total_in is used to return the number of bytes actually read. It 1152 * may be smaller than the input length if we had to exit early because we 1153 * ran out of room in the pages array or because we cross the 1154 * max_out threshold. 1155 * 1156 * @total_out is an in/out parameter, must be set to the input length and will 1157 * be also used to return the total number of compressed bytes 1158 * 1159 * @max_out tells us the max number of bytes that we're allowed to 1160 * stuff into pages 1161 */ 1162 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1163 u64 start, struct page **pages, 1164 unsigned long *out_pages, 1165 unsigned long *total_in, 1166 unsigned long *total_out) 1167 { 1168 int type = btrfs_compress_type(type_level); 1169 int level = btrfs_compress_level(type_level); 1170 struct list_head *workspace; 1171 int ret; 1172 1173 level = btrfs_compress_set_level(type, level); 1174 workspace = get_workspace(type, level); 1175 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1176 out_pages, total_in, total_out); 1177 put_workspace(type, workspace); 1178 return ret; 1179 } 1180 1181 /* 1182 * pages_in is an array of pages with compressed data. 1183 * 1184 * disk_start is the starting logical offset of this array in the file 1185 * 1186 * orig_bio contains the pages from the file that we want to decompress into 1187 * 1188 * srclen is the number of bytes in pages_in 1189 * 1190 * The basic idea is that we have a bio that was created by readpages. 1191 * The pages in the bio are for the uncompressed data, and they may not 1192 * be contiguous. They all correspond to the range of bytes covered by 1193 * the compressed extent. 1194 */ 1195 static int btrfs_decompress_bio(struct compressed_bio *cb) 1196 { 1197 struct list_head *workspace; 1198 int ret; 1199 int type = cb->compress_type; 1200 1201 workspace = get_workspace(type, 0); 1202 ret = compression_decompress_bio(type, workspace, cb); 1203 put_workspace(type, workspace); 1204 1205 return ret; 1206 } 1207 1208 /* 1209 * a less complex decompression routine. Our compressed data fits in a 1210 * single page, and we want to read a single page out of it. 1211 * start_byte tells us the offset into the compressed data we're interested in 1212 */ 1213 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1214 unsigned long start_byte, size_t srclen, size_t destlen) 1215 { 1216 struct list_head *workspace; 1217 int ret; 1218 1219 workspace = get_workspace(type, 0); 1220 ret = compression_decompress(type, workspace, data_in, dest_page, 1221 start_byte, srclen, destlen); 1222 put_workspace(type, workspace); 1223 1224 return ret; 1225 } 1226 1227 void __init btrfs_init_compress(void) 1228 { 1229 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1230 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1231 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1232 zstd_init_workspace_manager(); 1233 } 1234 1235 void __cold btrfs_exit_compress(void) 1236 { 1237 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1238 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1239 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1240 zstd_cleanup_workspace_manager(); 1241 } 1242 1243 /* 1244 * Copy uncompressed data from working buffer to pages. 1245 * 1246 * buf_start is the byte offset we're of the start of our workspace buffer. 1247 * 1248 * total_out is the last byte of the buffer 1249 */ 1250 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1251 unsigned long total_out, u64 disk_start, 1252 struct bio *bio) 1253 { 1254 unsigned long buf_offset; 1255 unsigned long current_buf_start; 1256 unsigned long start_byte; 1257 unsigned long prev_start_byte; 1258 unsigned long working_bytes = total_out - buf_start; 1259 unsigned long bytes; 1260 char *kaddr; 1261 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1262 1263 /* 1264 * start byte is the first byte of the page we're currently 1265 * copying into relative to the start of the compressed data. 1266 */ 1267 start_byte = page_offset(bvec.bv_page) - disk_start; 1268 1269 /* we haven't yet hit data corresponding to this page */ 1270 if (total_out <= start_byte) 1271 return 1; 1272 1273 /* 1274 * the start of the data we care about is offset into 1275 * the middle of our working buffer 1276 */ 1277 if (total_out > start_byte && buf_start < start_byte) { 1278 buf_offset = start_byte - buf_start; 1279 working_bytes -= buf_offset; 1280 } else { 1281 buf_offset = 0; 1282 } 1283 current_buf_start = buf_start; 1284 1285 /* copy bytes from the working buffer into the pages */ 1286 while (working_bytes > 0) { 1287 bytes = min_t(unsigned long, bvec.bv_len, 1288 PAGE_SIZE - buf_offset); 1289 bytes = min(bytes, working_bytes); 1290 1291 kaddr = kmap_atomic(bvec.bv_page); 1292 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1293 kunmap_atomic(kaddr); 1294 flush_dcache_page(bvec.bv_page); 1295 1296 buf_offset += bytes; 1297 working_bytes -= bytes; 1298 current_buf_start += bytes; 1299 1300 /* check if we need to pick another page */ 1301 bio_advance(bio, bytes); 1302 if (!bio->bi_iter.bi_size) 1303 return 0; 1304 bvec = bio_iter_iovec(bio, bio->bi_iter); 1305 prev_start_byte = start_byte; 1306 start_byte = page_offset(bvec.bv_page) - disk_start; 1307 1308 /* 1309 * We need to make sure we're only adjusting 1310 * our offset into compression working buffer when 1311 * we're switching pages. Otherwise we can incorrectly 1312 * keep copying when we were actually done. 1313 */ 1314 if (start_byte != prev_start_byte) { 1315 /* 1316 * make sure our new page is covered by this 1317 * working buffer 1318 */ 1319 if (total_out <= start_byte) 1320 return 1; 1321 1322 /* 1323 * the next page in the biovec might not be adjacent 1324 * to the last page, but it might still be found 1325 * inside this working buffer. bump our offset pointer 1326 */ 1327 if (total_out > start_byte && 1328 current_buf_start < start_byte) { 1329 buf_offset = start_byte - buf_start; 1330 working_bytes = total_out - start_byte; 1331 current_buf_start = buf_start + buf_offset; 1332 } 1333 } 1334 } 1335 1336 return 1; 1337 } 1338 1339 /* 1340 * Shannon Entropy calculation 1341 * 1342 * Pure byte distribution analysis fails to determine compressibility of data. 1343 * Try calculating entropy to estimate the average minimum number of bits 1344 * needed to encode the sampled data. 1345 * 1346 * For convenience, return the percentage of needed bits, instead of amount of 1347 * bits directly. 1348 * 1349 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1350 * and can be compressible with high probability 1351 * 1352 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1353 * 1354 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1355 */ 1356 #define ENTROPY_LVL_ACEPTABLE (65) 1357 #define ENTROPY_LVL_HIGH (80) 1358 1359 /* 1360 * For increasead precision in shannon_entropy calculation, 1361 * let's do pow(n, M) to save more digits after comma: 1362 * 1363 * - maximum int bit length is 64 1364 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1365 * - 13 * 4 = 52 < 64 -> M = 4 1366 * 1367 * So use pow(n, 4). 1368 */ 1369 static inline u32 ilog2_w(u64 n) 1370 { 1371 return ilog2(n * n * n * n); 1372 } 1373 1374 static u32 shannon_entropy(struct heuristic_ws *ws) 1375 { 1376 const u32 entropy_max = 8 * ilog2_w(2); 1377 u32 entropy_sum = 0; 1378 u32 p, p_base, sz_base; 1379 u32 i; 1380 1381 sz_base = ilog2_w(ws->sample_size); 1382 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1383 p = ws->bucket[i].count; 1384 p_base = ilog2_w(p); 1385 entropy_sum += p * (sz_base - p_base); 1386 } 1387 1388 entropy_sum /= ws->sample_size; 1389 return entropy_sum * 100 / entropy_max; 1390 } 1391 1392 #define RADIX_BASE 4U 1393 #define COUNTERS_SIZE (1U << RADIX_BASE) 1394 1395 static u8 get4bits(u64 num, int shift) { 1396 u8 low4bits; 1397 1398 num >>= shift; 1399 /* Reverse order */ 1400 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1401 return low4bits; 1402 } 1403 1404 /* 1405 * Use 4 bits as radix base 1406 * Use 16 u32 counters for calculating new position in buf array 1407 * 1408 * @array - array that will be sorted 1409 * @array_buf - buffer array to store sorting results 1410 * must be equal in size to @array 1411 * @num - array size 1412 */ 1413 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1414 int num) 1415 { 1416 u64 max_num; 1417 u64 buf_num; 1418 u32 counters[COUNTERS_SIZE]; 1419 u32 new_addr; 1420 u32 addr; 1421 int bitlen; 1422 int shift; 1423 int i; 1424 1425 /* 1426 * Try avoid useless loop iterations for small numbers stored in big 1427 * counters. Example: 48 33 4 ... in 64bit array 1428 */ 1429 max_num = array[0].count; 1430 for (i = 1; i < num; i++) { 1431 buf_num = array[i].count; 1432 if (buf_num > max_num) 1433 max_num = buf_num; 1434 } 1435 1436 buf_num = ilog2(max_num); 1437 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1438 1439 shift = 0; 1440 while (shift < bitlen) { 1441 memset(counters, 0, sizeof(counters)); 1442 1443 for (i = 0; i < num; i++) { 1444 buf_num = array[i].count; 1445 addr = get4bits(buf_num, shift); 1446 counters[addr]++; 1447 } 1448 1449 for (i = 1; i < COUNTERS_SIZE; i++) 1450 counters[i] += counters[i - 1]; 1451 1452 for (i = num - 1; i >= 0; i--) { 1453 buf_num = array[i].count; 1454 addr = get4bits(buf_num, shift); 1455 counters[addr]--; 1456 new_addr = counters[addr]; 1457 array_buf[new_addr] = array[i]; 1458 } 1459 1460 shift += RADIX_BASE; 1461 1462 /* 1463 * Normal radix expects to move data from a temporary array, to 1464 * the main one. But that requires some CPU time. Avoid that 1465 * by doing another sort iteration to original array instead of 1466 * memcpy() 1467 */ 1468 memset(counters, 0, sizeof(counters)); 1469 1470 for (i = 0; i < num; i ++) { 1471 buf_num = array_buf[i].count; 1472 addr = get4bits(buf_num, shift); 1473 counters[addr]++; 1474 } 1475 1476 for (i = 1; i < COUNTERS_SIZE; i++) 1477 counters[i] += counters[i - 1]; 1478 1479 for (i = num - 1; i >= 0; i--) { 1480 buf_num = array_buf[i].count; 1481 addr = get4bits(buf_num, shift); 1482 counters[addr]--; 1483 new_addr = counters[addr]; 1484 array[new_addr] = array_buf[i]; 1485 } 1486 1487 shift += RADIX_BASE; 1488 } 1489 } 1490 1491 /* 1492 * Size of the core byte set - how many bytes cover 90% of the sample 1493 * 1494 * There are several types of structured binary data that use nearly all byte 1495 * values. The distribution can be uniform and counts in all buckets will be 1496 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1497 * 1498 * Other possibility is normal (Gaussian) distribution, where the data could 1499 * be potentially compressible, but we have to take a few more steps to decide 1500 * how much. 1501 * 1502 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1503 * compression algo can easy fix that 1504 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1505 * probability is not compressible 1506 */ 1507 #define BYTE_CORE_SET_LOW (64) 1508 #define BYTE_CORE_SET_HIGH (200) 1509 1510 static int byte_core_set_size(struct heuristic_ws *ws) 1511 { 1512 u32 i; 1513 u32 coreset_sum = 0; 1514 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1515 struct bucket_item *bucket = ws->bucket; 1516 1517 /* Sort in reverse order */ 1518 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1519 1520 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1521 coreset_sum += bucket[i].count; 1522 1523 if (coreset_sum > core_set_threshold) 1524 return i; 1525 1526 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1527 coreset_sum += bucket[i].count; 1528 if (coreset_sum > core_set_threshold) 1529 break; 1530 } 1531 1532 return i; 1533 } 1534 1535 /* 1536 * Count byte values in buckets. 1537 * This heuristic can detect textual data (configs, xml, json, html, etc). 1538 * Because in most text-like data byte set is restricted to limited number of 1539 * possible characters, and that restriction in most cases makes data easy to 1540 * compress. 1541 * 1542 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1543 * less - compressible 1544 * more - need additional analysis 1545 */ 1546 #define BYTE_SET_THRESHOLD (64) 1547 1548 static u32 byte_set_size(const struct heuristic_ws *ws) 1549 { 1550 u32 i; 1551 u32 byte_set_size = 0; 1552 1553 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1554 if (ws->bucket[i].count > 0) 1555 byte_set_size++; 1556 } 1557 1558 /* 1559 * Continue collecting count of byte values in buckets. If the byte 1560 * set size is bigger then the threshold, it's pointless to continue, 1561 * the detection technique would fail for this type of data. 1562 */ 1563 for (; i < BUCKET_SIZE; i++) { 1564 if (ws->bucket[i].count > 0) { 1565 byte_set_size++; 1566 if (byte_set_size > BYTE_SET_THRESHOLD) 1567 return byte_set_size; 1568 } 1569 } 1570 1571 return byte_set_size; 1572 } 1573 1574 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1575 { 1576 const u32 half_of_sample = ws->sample_size / 2; 1577 const u8 *data = ws->sample; 1578 1579 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1580 } 1581 1582 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1583 struct heuristic_ws *ws) 1584 { 1585 struct page *page; 1586 u64 index, index_end; 1587 u32 i, curr_sample_pos; 1588 u8 *in_data; 1589 1590 /* 1591 * Compression handles the input data by chunks of 128KiB 1592 * (defined by BTRFS_MAX_UNCOMPRESSED) 1593 * 1594 * We do the same for the heuristic and loop over the whole range. 1595 * 1596 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1597 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1598 */ 1599 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1600 end = start + BTRFS_MAX_UNCOMPRESSED; 1601 1602 index = start >> PAGE_SHIFT; 1603 index_end = end >> PAGE_SHIFT; 1604 1605 /* Don't miss unaligned end */ 1606 if (!IS_ALIGNED(end, PAGE_SIZE)) 1607 index_end++; 1608 1609 curr_sample_pos = 0; 1610 while (index < index_end) { 1611 page = find_get_page(inode->i_mapping, index); 1612 in_data = kmap(page); 1613 /* Handle case where the start is not aligned to PAGE_SIZE */ 1614 i = start % PAGE_SIZE; 1615 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1616 /* Don't sample any garbage from the last page */ 1617 if (start > end - SAMPLING_READ_SIZE) 1618 break; 1619 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1620 SAMPLING_READ_SIZE); 1621 i += SAMPLING_INTERVAL; 1622 start += SAMPLING_INTERVAL; 1623 curr_sample_pos += SAMPLING_READ_SIZE; 1624 } 1625 kunmap(page); 1626 put_page(page); 1627 1628 index++; 1629 } 1630 1631 ws->sample_size = curr_sample_pos; 1632 } 1633 1634 /* 1635 * Compression heuristic. 1636 * 1637 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1638 * quickly (compared to direct compression) detect data characteristics 1639 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1640 * data. 1641 * 1642 * The following types of analysis can be performed: 1643 * - detect mostly zero data 1644 * - detect data with low "byte set" size (text, etc) 1645 * - detect data with low/high "core byte" set 1646 * 1647 * Return non-zero if the compression should be done, 0 otherwise. 1648 */ 1649 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1650 { 1651 struct list_head *ws_list = get_workspace(0, 0); 1652 struct heuristic_ws *ws; 1653 u32 i; 1654 u8 byte; 1655 int ret = 0; 1656 1657 ws = list_entry(ws_list, struct heuristic_ws, list); 1658 1659 heuristic_collect_sample(inode, start, end, ws); 1660 1661 if (sample_repeated_patterns(ws)) { 1662 ret = 1; 1663 goto out; 1664 } 1665 1666 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1667 1668 for (i = 0; i < ws->sample_size; i++) { 1669 byte = ws->sample[i]; 1670 ws->bucket[byte].count++; 1671 } 1672 1673 i = byte_set_size(ws); 1674 if (i < BYTE_SET_THRESHOLD) { 1675 ret = 2; 1676 goto out; 1677 } 1678 1679 i = byte_core_set_size(ws); 1680 if (i <= BYTE_CORE_SET_LOW) { 1681 ret = 3; 1682 goto out; 1683 } 1684 1685 if (i >= BYTE_CORE_SET_HIGH) { 1686 ret = 0; 1687 goto out; 1688 } 1689 1690 i = shannon_entropy(ws); 1691 if (i <= ENTROPY_LVL_ACEPTABLE) { 1692 ret = 4; 1693 goto out; 1694 } 1695 1696 /* 1697 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1698 * needed to give green light to compression. 1699 * 1700 * For now just assume that compression at that level is not worth the 1701 * resources because: 1702 * 1703 * 1. it is possible to defrag the data later 1704 * 1705 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1706 * values, every bucket has counter at level ~54. The heuristic would 1707 * be confused. This can happen when data have some internal repeated 1708 * patterns like "abbacbbc...". This can be detected by analyzing 1709 * pairs of bytes, which is too costly. 1710 */ 1711 if (i < ENTROPY_LVL_HIGH) { 1712 ret = 5; 1713 goto out; 1714 } else { 1715 ret = 0; 1716 goto out; 1717 } 1718 1719 out: 1720 put_workspace(0, ws_list); 1721 return ret; 1722 } 1723 1724 /* 1725 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1726 * level, unrecognized string will set the default level 1727 */ 1728 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1729 { 1730 unsigned int level = 0; 1731 int ret; 1732 1733 if (!type) 1734 return 0; 1735 1736 if (str[0] == ':') { 1737 ret = kstrtouint(str + 1, 10, &level); 1738 if (ret) 1739 level = 0; 1740 } 1741 1742 level = btrfs_compress_set_level(type, level); 1743 1744 return level; 1745 } 1746 1747 /* 1748 * Adjust @level according to the limits of the compression algorithm or 1749 * fallback to default 1750 */ 1751 unsigned int btrfs_compress_set_level(int type, unsigned level) 1752 { 1753 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1754 1755 if (level == 0) 1756 level = ops->default_level; 1757 else 1758 level = min(level, ops->max_level); 1759 1760 return level; 1761 } 1762