1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/kthread.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sched/mm.h> 20 #include <linux/log2.h> 21 #include <crypto/hash.h> 22 #include "misc.h" 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "ordered-data.h" 29 #include "compression.h" 30 #include "extent_io.h" 31 #include "extent_map.h" 32 #include "subpage.h" 33 #include "zoned.h" 34 35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 36 37 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 38 { 39 switch (type) { 40 case BTRFS_COMPRESS_ZLIB: 41 case BTRFS_COMPRESS_LZO: 42 case BTRFS_COMPRESS_ZSTD: 43 case BTRFS_COMPRESS_NONE: 44 return btrfs_compress_types[type]; 45 default: 46 break; 47 } 48 49 return NULL; 50 } 51 52 bool btrfs_compress_is_valid_type(const char *str, size_t len) 53 { 54 int i; 55 56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 57 size_t comp_len = strlen(btrfs_compress_types[i]); 58 59 if (len < comp_len) 60 continue; 61 62 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 63 return true; 64 } 65 return false; 66 } 67 68 static int compression_compress_pages(int type, struct list_head *ws, 69 struct address_space *mapping, u64 start, struct page **pages, 70 unsigned long *out_pages, unsigned long *total_in, 71 unsigned long *total_out) 72 { 73 switch (type) { 74 case BTRFS_COMPRESS_ZLIB: 75 return zlib_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_LZO: 78 return lzo_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_ZSTD: 81 return zstd_compress_pages(ws, mapping, start, pages, 82 out_pages, total_in, total_out); 83 case BTRFS_COMPRESS_NONE: 84 default: 85 /* 86 * This can happen when compression races with remount setting 87 * it to 'no compress', while caller doesn't call 88 * inode_need_compress() to check if we really need to 89 * compress. 90 * 91 * Not a big deal, just need to inform caller that we 92 * haven't allocated any pages yet. 93 */ 94 *out_pages = 0; 95 return -E2BIG; 96 } 97 } 98 99 static int compression_decompress_bio(struct list_head *ws, 100 struct compressed_bio *cb) 101 { 102 switch (cb->compress_type) { 103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 106 case BTRFS_COMPRESS_NONE: 107 default: 108 /* 109 * This can't happen, the type is validated several times 110 * before we get here. 111 */ 112 BUG(); 113 } 114 } 115 116 static int compression_decompress(int type, struct list_head *ws, 117 unsigned char *data_in, struct page *dest_page, 118 unsigned long start_byte, size_t srclen, size_t destlen) 119 { 120 switch (type) { 121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 126 start_byte, srclen, destlen); 127 case BTRFS_COMPRESS_NONE: 128 default: 129 /* 130 * This can't happen, the type is validated several times 131 * before we get here. 132 */ 133 BUG(); 134 } 135 } 136 137 static int btrfs_decompress_bio(struct compressed_bio *cb); 138 139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 140 unsigned long disk_size) 141 { 142 return sizeof(struct compressed_bio) + 143 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 144 } 145 146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 147 u64 disk_start) 148 { 149 struct btrfs_fs_info *fs_info = inode->root->fs_info; 150 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 151 const u32 csum_size = fs_info->csum_size; 152 const u32 sectorsize = fs_info->sectorsize; 153 struct page *page; 154 unsigned int i; 155 char *kaddr; 156 u8 csum[BTRFS_CSUM_SIZE]; 157 struct compressed_bio *cb = bio->bi_private; 158 u8 *cb_sum = cb->sums; 159 160 if ((inode->flags & BTRFS_INODE_NODATASUM) || 161 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 162 return 0; 163 164 shash->tfm = fs_info->csum_shash; 165 166 for (i = 0; i < cb->nr_pages; i++) { 167 u32 pg_offset; 168 u32 bytes_left = PAGE_SIZE; 169 page = cb->compressed_pages[i]; 170 171 /* Determine the remaining bytes inside the page first */ 172 if (i == cb->nr_pages - 1) 173 bytes_left = cb->compressed_len - i * PAGE_SIZE; 174 175 /* Hash through the page sector by sector */ 176 for (pg_offset = 0; pg_offset < bytes_left; 177 pg_offset += sectorsize) { 178 kaddr = kmap_atomic(page); 179 crypto_shash_digest(shash, kaddr + pg_offset, 180 sectorsize, csum); 181 kunmap_atomic(kaddr); 182 183 if (memcmp(&csum, cb_sum, csum_size) != 0) { 184 btrfs_print_data_csum_error(inode, disk_start, 185 csum, cb_sum, cb->mirror_num); 186 if (btrfs_bio(bio)->device) 187 btrfs_dev_stat_inc_and_print( 188 btrfs_bio(bio)->device, 189 BTRFS_DEV_STAT_CORRUPTION_ERRS); 190 return -EIO; 191 } 192 cb_sum += csum_size; 193 disk_start += sectorsize; 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * Reduce bio and io accounting for a compressed_bio with its corresponding bio. 201 * 202 * Return true if there is no pending bio nor io. 203 * Return false otherwise. 204 */ 205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio) 206 { 207 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 208 unsigned int bi_size = 0; 209 bool last_io = false; 210 struct bio_vec *bvec; 211 struct bvec_iter_all iter_all; 212 213 /* 214 * At endio time, bi_iter.bi_size doesn't represent the real bio size. 215 * Thus here we have to iterate through all segments to grab correct 216 * bio size. 217 */ 218 bio_for_each_segment_all(bvec, bio, iter_all) 219 bi_size += bvec->bv_len; 220 221 if (bio->bi_status) 222 cb->status = bio->bi_status; 223 224 ASSERT(bi_size && bi_size <= cb->compressed_len); 225 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits, 226 &cb->pending_sectors); 227 /* 228 * Here we must wake up the possible error handler after all other 229 * operations on @cb finished, or we can race with 230 * finish_compressed_bio_*() which may free @cb. 231 */ 232 wake_up_var(cb); 233 234 return last_io; 235 } 236 237 static void finish_compressed_bio_read(struct compressed_bio *cb) 238 { 239 unsigned int index; 240 struct page *page; 241 242 /* Release the compressed pages */ 243 for (index = 0; index < cb->nr_pages; index++) { 244 page = cb->compressed_pages[index]; 245 page->mapping = NULL; 246 put_page(page); 247 } 248 249 /* Do io completion on the original bio */ 250 if (cb->status != BLK_STS_OK) { 251 cb->orig_bio->bi_status = cb->status; 252 bio_endio(cb->orig_bio); 253 } else { 254 struct bio_vec *bvec; 255 struct bvec_iter_all iter_all; 256 257 /* 258 * We have verified the checksum already, set page checked so 259 * the end_io handlers know about it 260 */ 261 ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED)); 262 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) { 263 u64 bvec_start = page_offset(bvec->bv_page) + 264 bvec->bv_offset; 265 266 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb), 267 bvec->bv_page, bvec_start, 268 bvec->bv_len); 269 } 270 271 bio_endio(cb->orig_bio); 272 } 273 274 /* Finally free the cb struct */ 275 kfree(cb->compressed_pages); 276 kfree(cb); 277 } 278 279 /* when we finish reading compressed pages from the disk, we 280 * decompress them and then run the bio end_io routines on the 281 * decompressed pages (in the inode address space). 282 * 283 * This allows the checksumming and other IO error handling routines 284 * to work normally 285 * 286 * The compressed pages are freed here, and it must be run 287 * in process context 288 */ 289 static void end_compressed_bio_read(struct bio *bio) 290 { 291 struct compressed_bio *cb = bio->bi_private; 292 struct inode *inode; 293 unsigned int mirror = btrfs_bio(bio)->mirror_num; 294 int ret = 0; 295 296 if (!dec_and_test_compressed_bio(cb, bio)) 297 goto out; 298 299 /* 300 * Record the correct mirror_num in cb->orig_bio so that 301 * read-repair can work properly. 302 */ 303 btrfs_bio(cb->orig_bio)->mirror_num = mirror; 304 cb->mirror_num = mirror; 305 306 /* 307 * Some IO in this cb have failed, just skip checksum as there 308 * is no way it could be correct. 309 */ 310 if (cb->status != BLK_STS_OK) 311 goto csum_failed; 312 313 inode = cb->inode; 314 ret = check_compressed_csum(BTRFS_I(inode), bio, 315 bio->bi_iter.bi_sector << 9); 316 if (ret) 317 goto csum_failed; 318 319 /* ok, we're the last bio for this extent, lets start 320 * the decompression. 321 */ 322 ret = btrfs_decompress_bio(cb); 323 324 csum_failed: 325 if (ret) 326 cb->status = errno_to_blk_status(ret); 327 finish_compressed_bio_read(cb); 328 out: 329 bio_put(bio); 330 } 331 332 /* 333 * Clear the writeback bits on all of the file 334 * pages for a compressed write 335 */ 336 static noinline void end_compressed_writeback(struct inode *inode, 337 const struct compressed_bio *cb) 338 { 339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 340 unsigned long index = cb->start >> PAGE_SHIFT; 341 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 342 struct page *pages[16]; 343 unsigned long nr_pages = end_index - index + 1; 344 const int errno = blk_status_to_errno(cb->status); 345 int i; 346 int ret; 347 348 if (errno) 349 mapping_set_error(inode->i_mapping, errno); 350 351 while (nr_pages > 0) { 352 ret = find_get_pages_contig(inode->i_mapping, index, 353 min_t(unsigned long, 354 nr_pages, ARRAY_SIZE(pages)), pages); 355 if (ret == 0) { 356 nr_pages -= 1; 357 index += 1; 358 continue; 359 } 360 for (i = 0; i < ret; i++) { 361 if (errno) 362 SetPageError(pages[i]); 363 btrfs_page_clamp_clear_writeback(fs_info, pages[i], 364 cb->start, cb->len); 365 put_page(pages[i]); 366 } 367 nr_pages -= ret; 368 index += ret; 369 } 370 /* the inode may be gone now */ 371 } 372 373 static void finish_compressed_bio_write(struct compressed_bio *cb) 374 { 375 struct inode *inode = cb->inode; 376 unsigned int index; 377 378 /* 379 * Ok, we're the last bio for this extent, step one is to call back 380 * into the FS and do all the end_io operations. 381 */ 382 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 383 cb->start, cb->start + cb->len - 1, 384 cb->status == BLK_STS_OK); 385 386 if (cb->writeback) 387 end_compressed_writeback(inode, cb); 388 /* Note, our inode could be gone now */ 389 390 /* 391 * Release the compressed pages, these came from alloc_page and 392 * are not attached to the inode at all 393 */ 394 for (index = 0; index < cb->nr_pages; index++) { 395 struct page *page = cb->compressed_pages[index]; 396 397 page->mapping = NULL; 398 put_page(page); 399 } 400 401 /* Finally free the cb struct */ 402 kfree(cb->compressed_pages); 403 kfree(cb); 404 } 405 406 /* 407 * Do the cleanup once all the compressed pages hit the disk. This will clear 408 * writeback on the file pages and free the compressed pages. 409 * 410 * This also calls the writeback end hooks for the file pages so that metadata 411 * and checksums can be updated in the file. 412 */ 413 static void end_compressed_bio_write(struct bio *bio) 414 { 415 struct compressed_bio *cb = bio->bi_private; 416 417 if (!dec_and_test_compressed_bio(cb, bio)) 418 goto out; 419 420 btrfs_record_physical_zoned(cb->inode, cb->start, bio); 421 422 finish_compressed_bio_write(cb); 423 out: 424 bio_put(bio); 425 } 426 427 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info, 428 struct bio *bio, int mirror_num) 429 { 430 blk_status_t ret; 431 432 ASSERT(bio->bi_iter.bi_size); 433 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 434 if (ret) 435 return ret; 436 ret = btrfs_map_bio(fs_info, bio, mirror_num); 437 return ret; 438 } 439 440 /* 441 * Allocate a compressed_bio, which will be used to read/write on-disk 442 * (aka, compressed) * data. 443 * 444 * @cb: The compressed_bio structure, which records all the needed 445 * information to bind the compressed data to the uncompressed 446 * page cache. 447 * @disk_byten: The logical bytenr where the compressed data will be read 448 * from or written to. 449 * @endio_func: The endio function to call after the IO for compressed data 450 * is finished. 451 * @next_stripe_start: Return value of logical bytenr of where next stripe starts. 452 * Let the caller know to only fill the bio up to the stripe 453 * boundary. 454 */ 455 456 457 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr, 458 unsigned int opf, bio_end_io_t endio_func, 459 u64 *next_stripe_start) 460 { 461 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 462 struct btrfs_io_geometry geom; 463 struct extent_map *em; 464 struct bio *bio; 465 int ret; 466 467 bio = btrfs_bio_alloc(BIO_MAX_VECS); 468 469 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 470 bio->bi_opf = opf; 471 bio->bi_private = cb; 472 bio->bi_end_io = endio_func; 473 474 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize); 475 if (IS_ERR(em)) { 476 bio_put(bio); 477 return ERR_CAST(em); 478 } 479 480 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 481 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev); 482 483 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom); 484 free_extent_map(em); 485 if (ret < 0) { 486 bio_put(bio); 487 return ERR_PTR(ret); 488 } 489 *next_stripe_start = disk_bytenr + geom.len; 490 491 return bio; 492 } 493 494 /* 495 * worker function to build and submit bios for previously compressed pages. 496 * The corresponding pages in the inode should be marked for writeback 497 * and the compressed pages should have a reference on them for dropping 498 * when the IO is complete. 499 * 500 * This also checksums the file bytes and gets things ready for 501 * the end io hooks. 502 */ 503 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 504 unsigned int len, u64 disk_start, 505 unsigned int compressed_len, 506 struct page **compressed_pages, 507 unsigned int nr_pages, 508 unsigned int write_flags, 509 struct cgroup_subsys_state *blkcg_css, 510 bool writeback) 511 { 512 struct btrfs_fs_info *fs_info = inode->root->fs_info; 513 struct bio *bio = NULL; 514 struct compressed_bio *cb; 515 u64 cur_disk_bytenr = disk_start; 516 u64 next_stripe_start; 517 blk_status_t ret; 518 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 519 const bool use_append = btrfs_use_zone_append(inode, disk_start); 520 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 521 522 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 523 IS_ALIGNED(len, fs_info->sectorsize)); 524 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 525 if (!cb) 526 return BLK_STS_RESOURCE; 527 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits); 528 cb->status = BLK_STS_OK; 529 cb->inode = &inode->vfs_inode; 530 cb->start = start; 531 cb->len = len; 532 cb->mirror_num = 0; 533 cb->compressed_pages = compressed_pages; 534 cb->compressed_len = compressed_len; 535 cb->writeback = writeback; 536 cb->orig_bio = NULL; 537 cb->nr_pages = nr_pages; 538 539 if (blkcg_css) 540 kthread_associate_blkcg(blkcg_css); 541 542 while (cur_disk_bytenr < disk_start + compressed_len) { 543 u64 offset = cur_disk_bytenr - disk_start; 544 unsigned int index = offset >> PAGE_SHIFT; 545 unsigned int real_size; 546 unsigned int added; 547 struct page *page = compressed_pages[index]; 548 bool submit = false; 549 550 /* Allocate new bio if submitted or not yet allocated */ 551 if (!bio) { 552 bio = alloc_compressed_bio(cb, cur_disk_bytenr, 553 bio_op | write_flags, end_compressed_bio_write, 554 &next_stripe_start); 555 if (IS_ERR(bio)) { 556 ret = errno_to_blk_status(PTR_ERR(bio)); 557 bio = NULL; 558 goto finish_cb; 559 } 560 if (blkcg_css) 561 bio->bi_opf |= REQ_CGROUP_PUNT; 562 } 563 /* 564 * We should never reach next_stripe_start start as we will 565 * submit comp_bio when reach the boundary immediately. 566 */ 567 ASSERT(cur_disk_bytenr != next_stripe_start); 568 569 /* 570 * We have various limits on the real read size: 571 * - stripe boundary 572 * - page boundary 573 * - compressed length boundary 574 */ 575 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr); 576 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 577 real_size = min_t(u64, real_size, compressed_len - offset); 578 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 579 580 if (use_append) 581 added = bio_add_zone_append_page(bio, page, real_size, 582 offset_in_page(offset)); 583 else 584 added = bio_add_page(bio, page, real_size, 585 offset_in_page(offset)); 586 /* Reached zoned boundary */ 587 if (added == 0) 588 submit = true; 589 590 cur_disk_bytenr += added; 591 /* Reached stripe boundary */ 592 if (cur_disk_bytenr == next_stripe_start) 593 submit = true; 594 595 /* Finished the range */ 596 if (cur_disk_bytenr == disk_start + compressed_len) 597 submit = true; 598 599 if (submit) { 600 if (!skip_sum) { 601 ret = btrfs_csum_one_bio(inode, bio, start, true); 602 if (ret) 603 goto finish_cb; 604 } 605 606 ret = submit_compressed_bio(fs_info, bio, 0); 607 if (ret) 608 goto finish_cb; 609 bio = NULL; 610 } 611 cond_resched(); 612 } 613 if (blkcg_css) 614 kthread_associate_blkcg(NULL); 615 616 return 0; 617 618 finish_cb: 619 if (blkcg_css) 620 kthread_associate_blkcg(NULL); 621 622 if (bio) { 623 bio->bi_status = ret; 624 bio_endio(bio); 625 } 626 /* Last byte of @cb is submitted, endio will free @cb */ 627 if (cur_disk_bytenr == disk_start + compressed_len) 628 return ret; 629 630 wait_var_event(cb, refcount_read(&cb->pending_sectors) == 631 (disk_start + compressed_len - cur_disk_bytenr) >> 632 fs_info->sectorsize_bits); 633 /* 634 * Even with previous bio ended, we should still have io not yet 635 * submitted, thus need to finish manually. 636 */ 637 ASSERT(refcount_read(&cb->pending_sectors)); 638 /* Now we are the only one referring @cb, can finish it safely. */ 639 finish_compressed_bio_write(cb); 640 return ret; 641 } 642 643 static u64 bio_end_offset(struct bio *bio) 644 { 645 struct bio_vec *last = bio_last_bvec_all(bio); 646 647 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 648 } 649 650 /* 651 * Add extra pages in the same compressed file extent so that we don't need to 652 * re-read the same extent again and again. 653 * 654 * NOTE: this won't work well for subpage, as for subpage read, we lock the 655 * full page then submit bio for each compressed/regular extents. 656 * 657 * This means, if we have several sectors in the same page points to the same 658 * on-disk compressed data, we will re-read the same extent many times and 659 * this function can only help for the next page. 660 */ 661 static noinline int add_ra_bio_pages(struct inode *inode, 662 u64 compressed_end, 663 struct compressed_bio *cb) 664 { 665 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 666 unsigned long end_index; 667 u64 cur = bio_end_offset(cb->orig_bio); 668 u64 isize = i_size_read(inode); 669 int ret; 670 struct page *page; 671 struct extent_map *em; 672 struct address_space *mapping = inode->i_mapping; 673 struct extent_map_tree *em_tree; 674 struct extent_io_tree *tree; 675 int sectors_missed = 0; 676 677 em_tree = &BTRFS_I(inode)->extent_tree; 678 tree = &BTRFS_I(inode)->io_tree; 679 680 if (isize == 0) 681 return 0; 682 683 /* 684 * For current subpage support, we only support 64K page size, 685 * which means maximum compressed extent size (128K) is just 2x page 686 * size. 687 * This makes readahead less effective, so here disable readahead for 688 * subpage for now, until full compressed write is supported. 689 */ 690 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 691 return 0; 692 693 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 694 695 while (cur < compressed_end) { 696 u64 page_end; 697 u64 pg_index = cur >> PAGE_SHIFT; 698 u32 add_size; 699 700 if (pg_index > end_index) 701 break; 702 703 page = xa_load(&mapping->i_pages, pg_index); 704 if (page && !xa_is_value(page)) { 705 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 706 fs_info->sectorsize_bits; 707 708 /* Beyond threshold, no need to continue */ 709 if (sectors_missed > 4) 710 break; 711 712 /* 713 * Jump to next page start as we already have page for 714 * current offset. 715 */ 716 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 717 continue; 718 } 719 720 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 721 ~__GFP_FS)); 722 if (!page) 723 break; 724 725 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 726 put_page(page); 727 /* There is already a page, skip to page end */ 728 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 729 continue; 730 } 731 732 ret = set_page_extent_mapped(page); 733 if (ret < 0) { 734 unlock_page(page); 735 put_page(page); 736 break; 737 } 738 739 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 740 lock_extent(tree, cur, page_end); 741 read_lock(&em_tree->lock); 742 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 743 read_unlock(&em_tree->lock); 744 745 /* 746 * At this point, we have a locked page in the page cache for 747 * these bytes in the file. But, we have to make sure they map 748 * to this compressed extent on disk. 749 */ 750 if (!em || cur < em->start || 751 (cur + fs_info->sectorsize > extent_map_end(em)) || 752 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 753 free_extent_map(em); 754 unlock_extent(tree, cur, page_end); 755 unlock_page(page); 756 put_page(page); 757 break; 758 } 759 free_extent_map(em); 760 761 if (page->index == end_index) { 762 size_t zero_offset = offset_in_page(isize); 763 764 if (zero_offset) { 765 int zeros; 766 zeros = PAGE_SIZE - zero_offset; 767 memzero_page(page, zero_offset, zeros); 768 flush_dcache_page(page); 769 } 770 } 771 772 add_size = min(em->start + em->len, page_end + 1) - cur; 773 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur)); 774 if (ret != add_size) { 775 unlock_extent(tree, cur, page_end); 776 unlock_page(page); 777 put_page(page); 778 break; 779 } 780 /* 781 * If it's subpage, we also need to increase its 782 * subpage::readers number, as at endio we will decrease 783 * subpage::readers and to unlock the page. 784 */ 785 if (fs_info->sectorsize < PAGE_SIZE) 786 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 787 put_page(page); 788 cur += add_size; 789 } 790 return 0; 791 } 792 793 /* 794 * for a compressed read, the bio we get passed has all the inode pages 795 * in it. We don't actually do IO on those pages but allocate new ones 796 * to hold the compressed pages on disk. 797 * 798 * bio->bi_iter.bi_sector points to the compressed extent on disk 799 * bio->bi_io_vec points to all of the inode pages 800 * 801 * After the compressed pages are read, we copy the bytes into the 802 * bio we were passed and then call the bio end_io calls 803 */ 804 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 805 int mirror_num) 806 { 807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 808 struct extent_map_tree *em_tree; 809 struct compressed_bio *cb; 810 unsigned int compressed_len; 811 struct bio *comp_bio = NULL; 812 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 813 u64 cur_disk_byte = disk_bytenr; 814 u64 next_stripe_start; 815 u64 file_offset; 816 u64 em_len; 817 u64 em_start; 818 struct extent_map *em; 819 blk_status_t ret; 820 int ret2; 821 int i; 822 u8 *sums; 823 824 em_tree = &BTRFS_I(inode)->extent_tree; 825 826 file_offset = bio_first_bvec_all(bio)->bv_offset + 827 page_offset(bio_first_page_all(bio)); 828 829 /* we need the actual starting offset of this extent in the file */ 830 read_lock(&em_tree->lock); 831 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 832 read_unlock(&em_tree->lock); 833 if (!em) { 834 ret = BLK_STS_IOERR; 835 goto out; 836 } 837 838 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 839 compressed_len = em->block_len; 840 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 841 if (!cb) { 842 ret = BLK_STS_RESOURCE; 843 goto out; 844 } 845 846 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits); 847 cb->status = BLK_STS_OK; 848 cb->inode = inode; 849 cb->mirror_num = mirror_num; 850 sums = cb->sums; 851 852 cb->start = em->orig_start; 853 em_len = em->len; 854 em_start = em->start; 855 856 cb->len = bio->bi_iter.bi_size; 857 cb->compressed_len = compressed_len; 858 cb->compress_type = em->compress_type; 859 cb->orig_bio = bio; 860 861 free_extent_map(em); 862 em = NULL; 863 864 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 865 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 866 if (!cb->compressed_pages) { 867 ret = BLK_STS_RESOURCE; 868 goto fail; 869 } 870 871 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages); 872 if (ret2) { 873 ret = BLK_STS_RESOURCE; 874 goto fail; 875 } 876 877 add_ra_bio_pages(inode, em_start + em_len, cb); 878 879 /* include any pages we added in add_ra-bio_pages */ 880 cb->len = bio->bi_iter.bi_size; 881 882 while (cur_disk_byte < disk_bytenr + compressed_len) { 883 u64 offset = cur_disk_byte - disk_bytenr; 884 unsigned int index = offset >> PAGE_SHIFT; 885 unsigned int real_size; 886 unsigned int added; 887 struct page *page = cb->compressed_pages[index]; 888 bool submit = false; 889 890 /* Allocate new bio if submitted or not yet allocated */ 891 if (!comp_bio) { 892 comp_bio = alloc_compressed_bio(cb, cur_disk_byte, 893 REQ_OP_READ, end_compressed_bio_read, 894 &next_stripe_start); 895 if (IS_ERR(comp_bio)) { 896 ret = errno_to_blk_status(PTR_ERR(comp_bio)); 897 comp_bio = NULL; 898 goto finish_cb; 899 } 900 } 901 /* 902 * We should never reach next_stripe_start start as we will 903 * submit comp_bio when reach the boundary immediately. 904 */ 905 ASSERT(cur_disk_byte != next_stripe_start); 906 /* 907 * We have various limit on the real read size: 908 * - stripe boundary 909 * - page boundary 910 * - compressed length boundary 911 */ 912 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte); 913 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 914 real_size = min_t(u64, real_size, compressed_len - offset); 915 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 916 917 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset)); 918 /* 919 * Maximum compressed extent is smaller than bio size limit, 920 * thus bio_add_page() should always success. 921 */ 922 ASSERT(added == real_size); 923 cur_disk_byte += added; 924 925 /* Reached stripe boundary, need to submit */ 926 if (cur_disk_byte == next_stripe_start) 927 submit = true; 928 929 /* Has finished the range, need to submit */ 930 if (cur_disk_byte == disk_bytenr + compressed_len) 931 submit = true; 932 933 if (submit) { 934 unsigned int nr_sectors; 935 936 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 937 if (ret) 938 goto finish_cb; 939 940 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 941 fs_info->sectorsize); 942 sums += fs_info->csum_size * nr_sectors; 943 944 ret = submit_compressed_bio(fs_info, comp_bio, mirror_num); 945 if (ret) 946 goto finish_cb; 947 comp_bio = NULL; 948 } 949 } 950 return; 951 952 fail: 953 if (cb->compressed_pages) { 954 for (i = 0; i < cb->nr_pages; i++) { 955 if (cb->compressed_pages[i]) 956 __free_page(cb->compressed_pages[i]); 957 } 958 } 959 960 kfree(cb->compressed_pages); 961 kfree(cb); 962 out: 963 free_extent_map(em); 964 bio->bi_status = ret; 965 bio_endio(bio); 966 return; 967 finish_cb: 968 if (comp_bio) { 969 comp_bio->bi_status = ret; 970 bio_endio(comp_bio); 971 } 972 /* All bytes of @cb is submitted, endio will free @cb */ 973 if (cur_disk_byte == disk_bytenr + compressed_len) 974 return; 975 976 wait_var_event(cb, refcount_read(&cb->pending_sectors) == 977 (disk_bytenr + compressed_len - cur_disk_byte) >> 978 fs_info->sectorsize_bits); 979 /* 980 * Even with previous bio ended, we should still have io not yet 981 * submitted, thus need to finish @cb manually. 982 */ 983 ASSERT(refcount_read(&cb->pending_sectors)); 984 /* Now we are the only one referring @cb, can finish it safely. */ 985 finish_compressed_bio_read(cb); 986 } 987 988 /* 989 * Heuristic uses systematic sampling to collect data from the input data 990 * range, the logic can be tuned by the following constants: 991 * 992 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 993 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 994 */ 995 #define SAMPLING_READ_SIZE (16) 996 #define SAMPLING_INTERVAL (256) 997 998 /* 999 * For statistical analysis of the input data we consider bytes that form a 1000 * Galois Field of 256 objects. Each object has an attribute count, ie. how 1001 * many times the object appeared in the sample. 1002 */ 1003 #define BUCKET_SIZE (256) 1004 1005 /* 1006 * The size of the sample is based on a statistical sampling rule of thumb. 1007 * The common way is to perform sampling tests as long as the number of 1008 * elements in each cell is at least 5. 1009 * 1010 * Instead of 5, we choose 32 to obtain more accurate results. 1011 * If the data contain the maximum number of symbols, which is 256, we obtain a 1012 * sample size bound by 8192. 1013 * 1014 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 1015 * from up to 512 locations. 1016 */ 1017 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 1018 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 1019 1020 struct bucket_item { 1021 u32 count; 1022 }; 1023 1024 struct heuristic_ws { 1025 /* Partial copy of input data */ 1026 u8 *sample; 1027 u32 sample_size; 1028 /* Buckets store counters for each byte value */ 1029 struct bucket_item *bucket; 1030 /* Sorting buffer */ 1031 struct bucket_item *bucket_b; 1032 struct list_head list; 1033 }; 1034 1035 static struct workspace_manager heuristic_wsm; 1036 1037 static void free_heuristic_ws(struct list_head *ws) 1038 { 1039 struct heuristic_ws *workspace; 1040 1041 workspace = list_entry(ws, struct heuristic_ws, list); 1042 1043 kvfree(workspace->sample); 1044 kfree(workspace->bucket); 1045 kfree(workspace->bucket_b); 1046 kfree(workspace); 1047 } 1048 1049 static struct list_head *alloc_heuristic_ws(unsigned int level) 1050 { 1051 struct heuristic_ws *ws; 1052 1053 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 1054 if (!ws) 1055 return ERR_PTR(-ENOMEM); 1056 1057 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 1058 if (!ws->sample) 1059 goto fail; 1060 1061 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 1062 if (!ws->bucket) 1063 goto fail; 1064 1065 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 1066 if (!ws->bucket_b) 1067 goto fail; 1068 1069 INIT_LIST_HEAD(&ws->list); 1070 return &ws->list; 1071 fail: 1072 free_heuristic_ws(&ws->list); 1073 return ERR_PTR(-ENOMEM); 1074 } 1075 1076 const struct btrfs_compress_op btrfs_heuristic_compress = { 1077 .workspace_manager = &heuristic_wsm, 1078 }; 1079 1080 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 1081 /* The heuristic is represented as compression type 0 */ 1082 &btrfs_heuristic_compress, 1083 &btrfs_zlib_compress, 1084 &btrfs_lzo_compress, 1085 &btrfs_zstd_compress, 1086 }; 1087 1088 static struct list_head *alloc_workspace(int type, unsigned int level) 1089 { 1090 switch (type) { 1091 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 1092 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 1093 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 1094 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 1095 default: 1096 /* 1097 * This can't happen, the type is validated several times 1098 * before we get here. 1099 */ 1100 BUG(); 1101 } 1102 } 1103 1104 static void free_workspace(int type, struct list_head *ws) 1105 { 1106 switch (type) { 1107 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 1108 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 1109 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 1110 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 1111 default: 1112 /* 1113 * This can't happen, the type is validated several times 1114 * before we get here. 1115 */ 1116 BUG(); 1117 } 1118 } 1119 1120 static void btrfs_init_workspace_manager(int type) 1121 { 1122 struct workspace_manager *wsm; 1123 struct list_head *workspace; 1124 1125 wsm = btrfs_compress_op[type]->workspace_manager; 1126 INIT_LIST_HEAD(&wsm->idle_ws); 1127 spin_lock_init(&wsm->ws_lock); 1128 atomic_set(&wsm->total_ws, 0); 1129 init_waitqueue_head(&wsm->ws_wait); 1130 1131 /* 1132 * Preallocate one workspace for each compression type so we can 1133 * guarantee forward progress in the worst case 1134 */ 1135 workspace = alloc_workspace(type, 0); 1136 if (IS_ERR(workspace)) { 1137 pr_warn( 1138 "BTRFS: cannot preallocate compression workspace, will try later\n"); 1139 } else { 1140 atomic_set(&wsm->total_ws, 1); 1141 wsm->free_ws = 1; 1142 list_add(workspace, &wsm->idle_ws); 1143 } 1144 } 1145 1146 static void btrfs_cleanup_workspace_manager(int type) 1147 { 1148 struct workspace_manager *wsman; 1149 struct list_head *ws; 1150 1151 wsman = btrfs_compress_op[type]->workspace_manager; 1152 while (!list_empty(&wsman->idle_ws)) { 1153 ws = wsman->idle_ws.next; 1154 list_del(ws); 1155 free_workspace(type, ws); 1156 atomic_dec(&wsman->total_ws); 1157 } 1158 } 1159 1160 /* 1161 * This finds an available workspace or allocates a new one. 1162 * If it's not possible to allocate a new one, waits until there's one. 1163 * Preallocation makes a forward progress guarantees and we do not return 1164 * errors. 1165 */ 1166 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1167 { 1168 struct workspace_manager *wsm; 1169 struct list_head *workspace; 1170 int cpus = num_online_cpus(); 1171 unsigned nofs_flag; 1172 struct list_head *idle_ws; 1173 spinlock_t *ws_lock; 1174 atomic_t *total_ws; 1175 wait_queue_head_t *ws_wait; 1176 int *free_ws; 1177 1178 wsm = btrfs_compress_op[type]->workspace_manager; 1179 idle_ws = &wsm->idle_ws; 1180 ws_lock = &wsm->ws_lock; 1181 total_ws = &wsm->total_ws; 1182 ws_wait = &wsm->ws_wait; 1183 free_ws = &wsm->free_ws; 1184 1185 again: 1186 spin_lock(ws_lock); 1187 if (!list_empty(idle_ws)) { 1188 workspace = idle_ws->next; 1189 list_del(workspace); 1190 (*free_ws)--; 1191 spin_unlock(ws_lock); 1192 return workspace; 1193 1194 } 1195 if (atomic_read(total_ws) > cpus) { 1196 DEFINE_WAIT(wait); 1197 1198 spin_unlock(ws_lock); 1199 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1200 if (atomic_read(total_ws) > cpus && !*free_ws) 1201 schedule(); 1202 finish_wait(ws_wait, &wait); 1203 goto again; 1204 } 1205 atomic_inc(total_ws); 1206 spin_unlock(ws_lock); 1207 1208 /* 1209 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1210 * to turn it off here because we might get called from the restricted 1211 * context of btrfs_compress_bio/btrfs_compress_pages 1212 */ 1213 nofs_flag = memalloc_nofs_save(); 1214 workspace = alloc_workspace(type, level); 1215 memalloc_nofs_restore(nofs_flag); 1216 1217 if (IS_ERR(workspace)) { 1218 atomic_dec(total_ws); 1219 wake_up(ws_wait); 1220 1221 /* 1222 * Do not return the error but go back to waiting. There's a 1223 * workspace preallocated for each type and the compression 1224 * time is bounded so we get to a workspace eventually. This 1225 * makes our caller's life easier. 1226 * 1227 * To prevent silent and low-probability deadlocks (when the 1228 * initial preallocation fails), check if there are any 1229 * workspaces at all. 1230 */ 1231 if (atomic_read(total_ws) == 0) { 1232 static DEFINE_RATELIMIT_STATE(_rs, 1233 /* once per minute */ 60 * HZ, 1234 /* no burst */ 1); 1235 1236 if (__ratelimit(&_rs)) { 1237 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1238 } 1239 } 1240 goto again; 1241 } 1242 return workspace; 1243 } 1244 1245 static struct list_head *get_workspace(int type, int level) 1246 { 1247 switch (type) { 1248 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1249 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1250 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1251 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1252 default: 1253 /* 1254 * This can't happen, the type is validated several times 1255 * before we get here. 1256 */ 1257 BUG(); 1258 } 1259 } 1260 1261 /* 1262 * put a workspace struct back on the list or free it if we have enough 1263 * idle ones sitting around 1264 */ 1265 void btrfs_put_workspace(int type, struct list_head *ws) 1266 { 1267 struct workspace_manager *wsm; 1268 struct list_head *idle_ws; 1269 spinlock_t *ws_lock; 1270 atomic_t *total_ws; 1271 wait_queue_head_t *ws_wait; 1272 int *free_ws; 1273 1274 wsm = btrfs_compress_op[type]->workspace_manager; 1275 idle_ws = &wsm->idle_ws; 1276 ws_lock = &wsm->ws_lock; 1277 total_ws = &wsm->total_ws; 1278 ws_wait = &wsm->ws_wait; 1279 free_ws = &wsm->free_ws; 1280 1281 spin_lock(ws_lock); 1282 if (*free_ws <= num_online_cpus()) { 1283 list_add(ws, idle_ws); 1284 (*free_ws)++; 1285 spin_unlock(ws_lock); 1286 goto wake; 1287 } 1288 spin_unlock(ws_lock); 1289 1290 free_workspace(type, ws); 1291 atomic_dec(total_ws); 1292 wake: 1293 cond_wake_up(ws_wait); 1294 } 1295 1296 static void put_workspace(int type, struct list_head *ws) 1297 { 1298 switch (type) { 1299 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1300 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1301 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1302 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1303 default: 1304 /* 1305 * This can't happen, the type is validated several times 1306 * before we get here. 1307 */ 1308 BUG(); 1309 } 1310 } 1311 1312 /* 1313 * Adjust @level according to the limits of the compression algorithm or 1314 * fallback to default 1315 */ 1316 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1317 { 1318 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1319 1320 if (level == 0) 1321 level = ops->default_level; 1322 else 1323 level = min(level, ops->max_level); 1324 1325 return level; 1326 } 1327 1328 /* 1329 * Given an address space and start and length, compress the bytes into @pages 1330 * that are allocated on demand. 1331 * 1332 * @type_level is encoded algorithm and level, where level 0 means whatever 1333 * default the algorithm chooses and is opaque here; 1334 * - compression algo are 0-3 1335 * - the level are bits 4-7 1336 * 1337 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1338 * and returns number of actually allocated pages 1339 * 1340 * @total_in is used to return the number of bytes actually read. It 1341 * may be smaller than the input length if we had to exit early because we 1342 * ran out of room in the pages array or because we cross the 1343 * max_out threshold. 1344 * 1345 * @total_out is an in/out parameter, must be set to the input length and will 1346 * be also used to return the total number of compressed bytes 1347 */ 1348 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1349 u64 start, struct page **pages, 1350 unsigned long *out_pages, 1351 unsigned long *total_in, 1352 unsigned long *total_out) 1353 { 1354 int type = btrfs_compress_type(type_level); 1355 int level = btrfs_compress_level(type_level); 1356 struct list_head *workspace; 1357 int ret; 1358 1359 level = btrfs_compress_set_level(type, level); 1360 workspace = get_workspace(type, level); 1361 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1362 out_pages, total_in, total_out); 1363 put_workspace(type, workspace); 1364 return ret; 1365 } 1366 1367 static int btrfs_decompress_bio(struct compressed_bio *cb) 1368 { 1369 struct list_head *workspace; 1370 int ret; 1371 int type = cb->compress_type; 1372 1373 workspace = get_workspace(type, 0); 1374 ret = compression_decompress_bio(workspace, cb); 1375 put_workspace(type, workspace); 1376 1377 return ret; 1378 } 1379 1380 /* 1381 * a less complex decompression routine. Our compressed data fits in a 1382 * single page, and we want to read a single page out of it. 1383 * start_byte tells us the offset into the compressed data we're interested in 1384 */ 1385 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1386 unsigned long start_byte, size_t srclen, size_t destlen) 1387 { 1388 struct list_head *workspace; 1389 int ret; 1390 1391 workspace = get_workspace(type, 0); 1392 ret = compression_decompress(type, workspace, data_in, dest_page, 1393 start_byte, srclen, destlen); 1394 put_workspace(type, workspace); 1395 1396 return ret; 1397 } 1398 1399 void __init btrfs_init_compress(void) 1400 { 1401 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1402 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1403 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1404 zstd_init_workspace_manager(); 1405 } 1406 1407 void __cold btrfs_exit_compress(void) 1408 { 1409 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1410 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1411 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1412 zstd_cleanup_workspace_manager(); 1413 } 1414 1415 /* 1416 * Copy decompressed data from working buffer to pages. 1417 * 1418 * @buf: The decompressed data buffer 1419 * @buf_len: The decompressed data length 1420 * @decompressed: Number of bytes that are already decompressed inside the 1421 * compressed extent 1422 * @cb: The compressed extent descriptor 1423 * @orig_bio: The original bio that the caller wants to read for 1424 * 1425 * An easier to understand graph is like below: 1426 * 1427 * |<- orig_bio ->| |<- orig_bio->| 1428 * |<------- full decompressed extent ----->| 1429 * |<----------- @cb range ---->| 1430 * | |<-- @buf_len -->| 1431 * |<--- @decompressed --->| 1432 * 1433 * Note that, @cb can be a subpage of the full decompressed extent, but 1434 * @cb->start always has the same as the orig_file_offset value of the full 1435 * decompressed extent. 1436 * 1437 * When reading compressed extent, we have to read the full compressed extent, 1438 * while @orig_bio may only want part of the range. 1439 * Thus this function will ensure only data covered by @orig_bio will be copied 1440 * to. 1441 * 1442 * Return 0 if we have copied all needed contents for @orig_bio. 1443 * Return >0 if we need continue decompress. 1444 */ 1445 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1446 struct compressed_bio *cb, u32 decompressed) 1447 { 1448 struct bio *orig_bio = cb->orig_bio; 1449 /* Offset inside the full decompressed extent */ 1450 u32 cur_offset; 1451 1452 cur_offset = decompressed; 1453 /* The main loop to do the copy */ 1454 while (cur_offset < decompressed + buf_len) { 1455 struct bio_vec bvec; 1456 size_t copy_len; 1457 u32 copy_start; 1458 /* Offset inside the full decompressed extent */ 1459 u32 bvec_offset; 1460 1461 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1462 /* 1463 * cb->start may underflow, but subtracting that value can still 1464 * give us correct offset inside the full decompressed extent. 1465 */ 1466 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1467 1468 /* Haven't reached the bvec range, exit */ 1469 if (decompressed + buf_len <= bvec_offset) 1470 return 1; 1471 1472 copy_start = max(cur_offset, bvec_offset); 1473 copy_len = min(bvec_offset + bvec.bv_len, 1474 decompressed + buf_len) - copy_start; 1475 ASSERT(copy_len); 1476 1477 /* 1478 * Extra range check to ensure we didn't go beyond 1479 * @buf + @buf_len. 1480 */ 1481 ASSERT(copy_start - decompressed < buf_len); 1482 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1483 buf + copy_start - decompressed, copy_len); 1484 flush_dcache_page(bvec.bv_page); 1485 cur_offset += copy_len; 1486 1487 bio_advance(orig_bio, copy_len); 1488 /* Finished the bio */ 1489 if (!orig_bio->bi_iter.bi_size) 1490 return 0; 1491 } 1492 return 1; 1493 } 1494 1495 /* 1496 * Shannon Entropy calculation 1497 * 1498 * Pure byte distribution analysis fails to determine compressibility of data. 1499 * Try calculating entropy to estimate the average minimum number of bits 1500 * needed to encode the sampled data. 1501 * 1502 * For convenience, return the percentage of needed bits, instead of amount of 1503 * bits directly. 1504 * 1505 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1506 * and can be compressible with high probability 1507 * 1508 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1509 * 1510 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1511 */ 1512 #define ENTROPY_LVL_ACEPTABLE (65) 1513 #define ENTROPY_LVL_HIGH (80) 1514 1515 /* 1516 * For increasead precision in shannon_entropy calculation, 1517 * let's do pow(n, M) to save more digits after comma: 1518 * 1519 * - maximum int bit length is 64 1520 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1521 * - 13 * 4 = 52 < 64 -> M = 4 1522 * 1523 * So use pow(n, 4). 1524 */ 1525 static inline u32 ilog2_w(u64 n) 1526 { 1527 return ilog2(n * n * n * n); 1528 } 1529 1530 static u32 shannon_entropy(struct heuristic_ws *ws) 1531 { 1532 const u32 entropy_max = 8 * ilog2_w(2); 1533 u32 entropy_sum = 0; 1534 u32 p, p_base, sz_base; 1535 u32 i; 1536 1537 sz_base = ilog2_w(ws->sample_size); 1538 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1539 p = ws->bucket[i].count; 1540 p_base = ilog2_w(p); 1541 entropy_sum += p * (sz_base - p_base); 1542 } 1543 1544 entropy_sum /= ws->sample_size; 1545 return entropy_sum * 100 / entropy_max; 1546 } 1547 1548 #define RADIX_BASE 4U 1549 #define COUNTERS_SIZE (1U << RADIX_BASE) 1550 1551 static u8 get4bits(u64 num, int shift) { 1552 u8 low4bits; 1553 1554 num >>= shift; 1555 /* Reverse order */ 1556 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1557 return low4bits; 1558 } 1559 1560 /* 1561 * Use 4 bits as radix base 1562 * Use 16 u32 counters for calculating new position in buf array 1563 * 1564 * @array - array that will be sorted 1565 * @array_buf - buffer array to store sorting results 1566 * must be equal in size to @array 1567 * @num - array size 1568 */ 1569 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1570 int num) 1571 { 1572 u64 max_num; 1573 u64 buf_num; 1574 u32 counters[COUNTERS_SIZE]; 1575 u32 new_addr; 1576 u32 addr; 1577 int bitlen; 1578 int shift; 1579 int i; 1580 1581 /* 1582 * Try avoid useless loop iterations for small numbers stored in big 1583 * counters. Example: 48 33 4 ... in 64bit array 1584 */ 1585 max_num = array[0].count; 1586 for (i = 1; i < num; i++) { 1587 buf_num = array[i].count; 1588 if (buf_num > max_num) 1589 max_num = buf_num; 1590 } 1591 1592 buf_num = ilog2(max_num); 1593 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1594 1595 shift = 0; 1596 while (shift < bitlen) { 1597 memset(counters, 0, sizeof(counters)); 1598 1599 for (i = 0; i < num; i++) { 1600 buf_num = array[i].count; 1601 addr = get4bits(buf_num, shift); 1602 counters[addr]++; 1603 } 1604 1605 for (i = 1; i < COUNTERS_SIZE; i++) 1606 counters[i] += counters[i - 1]; 1607 1608 for (i = num - 1; i >= 0; i--) { 1609 buf_num = array[i].count; 1610 addr = get4bits(buf_num, shift); 1611 counters[addr]--; 1612 new_addr = counters[addr]; 1613 array_buf[new_addr] = array[i]; 1614 } 1615 1616 shift += RADIX_BASE; 1617 1618 /* 1619 * Normal radix expects to move data from a temporary array, to 1620 * the main one. But that requires some CPU time. Avoid that 1621 * by doing another sort iteration to original array instead of 1622 * memcpy() 1623 */ 1624 memset(counters, 0, sizeof(counters)); 1625 1626 for (i = 0; i < num; i ++) { 1627 buf_num = array_buf[i].count; 1628 addr = get4bits(buf_num, shift); 1629 counters[addr]++; 1630 } 1631 1632 for (i = 1; i < COUNTERS_SIZE; i++) 1633 counters[i] += counters[i - 1]; 1634 1635 for (i = num - 1; i >= 0; i--) { 1636 buf_num = array_buf[i].count; 1637 addr = get4bits(buf_num, shift); 1638 counters[addr]--; 1639 new_addr = counters[addr]; 1640 array[new_addr] = array_buf[i]; 1641 } 1642 1643 shift += RADIX_BASE; 1644 } 1645 } 1646 1647 /* 1648 * Size of the core byte set - how many bytes cover 90% of the sample 1649 * 1650 * There are several types of structured binary data that use nearly all byte 1651 * values. The distribution can be uniform and counts in all buckets will be 1652 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1653 * 1654 * Other possibility is normal (Gaussian) distribution, where the data could 1655 * be potentially compressible, but we have to take a few more steps to decide 1656 * how much. 1657 * 1658 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1659 * compression algo can easy fix that 1660 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1661 * probability is not compressible 1662 */ 1663 #define BYTE_CORE_SET_LOW (64) 1664 #define BYTE_CORE_SET_HIGH (200) 1665 1666 static int byte_core_set_size(struct heuristic_ws *ws) 1667 { 1668 u32 i; 1669 u32 coreset_sum = 0; 1670 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1671 struct bucket_item *bucket = ws->bucket; 1672 1673 /* Sort in reverse order */ 1674 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1675 1676 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1677 coreset_sum += bucket[i].count; 1678 1679 if (coreset_sum > core_set_threshold) 1680 return i; 1681 1682 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1683 coreset_sum += bucket[i].count; 1684 if (coreset_sum > core_set_threshold) 1685 break; 1686 } 1687 1688 return i; 1689 } 1690 1691 /* 1692 * Count byte values in buckets. 1693 * This heuristic can detect textual data (configs, xml, json, html, etc). 1694 * Because in most text-like data byte set is restricted to limited number of 1695 * possible characters, and that restriction in most cases makes data easy to 1696 * compress. 1697 * 1698 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1699 * less - compressible 1700 * more - need additional analysis 1701 */ 1702 #define BYTE_SET_THRESHOLD (64) 1703 1704 static u32 byte_set_size(const struct heuristic_ws *ws) 1705 { 1706 u32 i; 1707 u32 byte_set_size = 0; 1708 1709 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1710 if (ws->bucket[i].count > 0) 1711 byte_set_size++; 1712 } 1713 1714 /* 1715 * Continue collecting count of byte values in buckets. If the byte 1716 * set size is bigger then the threshold, it's pointless to continue, 1717 * the detection technique would fail for this type of data. 1718 */ 1719 for (; i < BUCKET_SIZE; i++) { 1720 if (ws->bucket[i].count > 0) { 1721 byte_set_size++; 1722 if (byte_set_size > BYTE_SET_THRESHOLD) 1723 return byte_set_size; 1724 } 1725 } 1726 1727 return byte_set_size; 1728 } 1729 1730 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1731 { 1732 const u32 half_of_sample = ws->sample_size / 2; 1733 const u8 *data = ws->sample; 1734 1735 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1736 } 1737 1738 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1739 struct heuristic_ws *ws) 1740 { 1741 struct page *page; 1742 u64 index, index_end; 1743 u32 i, curr_sample_pos; 1744 u8 *in_data; 1745 1746 /* 1747 * Compression handles the input data by chunks of 128KiB 1748 * (defined by BTRFS_MAX_UNCOMPRESSED) 1749 * 1750 * We do the same for the heuristic and loop over the whole range. 1751 * 1752 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1753 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1754 */ 1755 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1756 end = start + BTRFS_MAX_UNCOMPRESSED; 1757 1758 index = start >> PAGE_SHIFT; 1759 index_end = end >> PAGE_SHIFT; 1760 1761 /* Don't miss unaligned end */ 1762 if (!IS_ALIGNED(end, PAGE_SIZE)) 1763 index_end++; 1764 1765 curr_sample_pos = 0; 1766 while (index < index_end) { 1767 page = find_get_page(inode->i_mapping, index); 1768 in_data = kmap_local_page(page); 1769 /* Handle case where the start is not aligned to PAGE_SIZE */ 1770 i = start % PAGE_SIZE; 1771 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1772 /* Don't sample any garbage from the last page */ 1773 if (start > end - SAMPLING_READ_SIZE) 1774 break; 1775 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1776 SAMPLING_READ_SIZE); 1777 i += SAMPLING_INTERVAL; 1778 start += SAMPLING_INTERVAL; 1779 curr_sample_pos += SAMPLING_READ_SIZE; 1780 } 1781 kunmap_local(in_data); 1782 put_page(page); 1783 1784 index++; 1785 } 1786 1787 ws->sample_size = curr_sample_pos; 1788 } 1789 1790 /* 1791 * Compression heuristic. 1792 * 1793 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1794 * quickly (compared to direct compression) detect data characteristics 1795 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1796 * data. 1797 * 1798 * The following types of analysis can be performed: 1799 * - detect mostly zero data 1800 * - detect data with low "byte set" size (text, etc) 1801 * - detect data with low/high "core byte" set 1802 * 1803 * Return non-zero if the compression should be done, 0 otherwise. 1804 */ 1805 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1806 { 1807 struct list_head *ws_list = get_workspace(0, 0); 1808 struct heuristic_ws *ws; 1809 u32 i; 1810 u8 byte; 1811 int ret = 0; 1812 1813 ws = list_entry(ws_list, struct heuristic_ws, list); 1814 1815 heuristic_collect_sample(inode, start, end, ws); 1816 1817 if (sample_repeated_patterns(ws)) { 1818 ret = 1; 1819 goto out; 1820 } 1821 1822 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1823 1824 for (i = 0; i < ws->sample_size; i++) { 1825 byte = ws->sample[i]; 1826 ws->bucket[byte].count++; 1827 } 1828 1829 i = byte_set_size(ws); 1830 if (i < BYTE_SET_THRESHOLD) { 1831 ret = 2; 1832 goto out; 1833 } 1834 1835 i = byte_core_set_size(ws); 1836 if (i <= BYTE_CORE_SET_LOW) { 1837 ret = 3; 1838 goto out; 1839 } 1840 1841 if (i >= BYTE_CORE_SET_HIGH) { 1842 ret = 0; 1843 goto out; 1844 } 1845 1846 i = shannon_entropy(ws); 1847 if (i <= ENTROPY_LVL_ACEPTABLE) { 1848 ret = 4; 1849 goto out; 1850 } 1851 1852 /* 1853 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1854 * needed to give green light to compression. 1855 * 1856 * For now just assume that compression at that level is not worth the 1857 * resources because: 1858 * 1859 * 1. it is possible to defrag the data later 1860 * 1861 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1862 * values, every bucket has counter at level ~54. The heuristic would 1863 * be confused. This can happen when data have some internal repeated 1864 * patterns like "abbacbbc...". This can be detected by analyzing 1865 * pairs of bytes, which is too costly. 1866 */ 1867 if (i < ENTROPY_LVL_HIGH) { 1868 ret = 5; 1869 goto out; 1870 } else { 1871 ret = 0; 1872 goto out; 1873 } 1874 1875 out: 1876 put_workspace(0, ws_list); 1877 return ret; 1878 } 1879 1880 /* 1881 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1882 * level, unrecognized string will set the default level 1883 */ 1884 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1885 { 1886 unsigned int level = 0; 1887 int ret; 1888 1889 if (!type) 1890 return 0; 1891 1892 if (str[0] == ':') { 1893 ret = kstrtouint(str + 1, 10, &level); 1894 if (ret) 1895 level = 0; 1896 } 1897 1898 level = btrfs_compress_set_level(type, level); 1899 1900 return level; 1901 } 1902