xref: /openbmc/linux/fs/btrfs/compression.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include <linux/sched/mm.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 static int btrfs_decompress_bio(struct compressed_bio *cb);
47 
48 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
49 				      unsigned long disk_size)
50 {
51 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
52 
53 	return sizeof(struct compressed_bio) +
54 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
55 }
56 
57 static int check_compressed_csum(struct btrfs_inode *inode,
58 				 struct compressed_bio *cb,
59 				 u64 disk_start)
60 {
61 	int ret;
62 	struct page *page;
63 	unsigned long i;
64 	char *kaddr;
65 	u32 csum;
66 	u32 *cb_sum = &cb->sums;
67 
68 	if (inode->flags & BTRFS_INODE_NODATASUM)
69 		return 0;
70 
71 	for (i = 0; i < cb->nr_pages; i++) {
72 		page = cb->compressed_pages[i];
73 		csum = ~(u32)0;
74 
75 		kaddr = kmap_atomic(page);
76 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
77 		btrfs_csum_final(csum, (u8 *)&csum);
78 		kunmap_atomic(kaddr);
79 
80 		if (csum != *cb_sum) {
81 			btrfs_print_data_csum_error(inode, disk_start, csum,
82 					*cb_sum, cb->mirror_num);
83 			ret = -EIO;
84 			goto fail;
85 		}
86 		cb_sum++;
87 
88 	}
89 	ret = 0;
90 fail:
91 	return ret;
92 }
93 
94 /* when we finish reading compressed pages from the disk, we
95  * decompress them and then run the bio end_io routines on the
96  * decompressed pages (in the inode address space).
97  *
98  * This allows the checksumming and other IO error handling routines
99  * to work normally
100  *
101  * The compressed pages are freed here, and it must be run
102  * in process context
103  */
104 static void end_compressed_bio_read(struct bio *bio)
105 {
106 	struct compressed_bio *cb = bio->bi_private;
107 	struct inode *inode;
108 	struct page *page;
109 	unsigned long index;
110 	int ret;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	inode = cb->inode;
122 	ret = check_compressed_csum(BTRFS_I(inode), cb,
123 				    (u64)bio->bi_iter.bi_sector << 9);
124 	if (ret)
125 		goto csum_failed;
126 
127 	/* ok, we're the last bio for this extent, lets start
128 	 * the decompression.
129 	 */
130 	ret = btrfs_decompress_bio(cb);
131 
132 csum_failed:
133 	if (ret)
134 		cb->errors = 1;
135 
136 	/* release the compressed pages */
137 	index = 0;
138 	for (index = 0; index < cb->nr_pages; index++) {
139 		page = cb->compressed_pages[index];
140 		page->mapping = NULL;
141 		put_page(page);
142 	}
143 
144 	/* do io completion on the original bio */
145 	if (cb->errors) {
146 		bio_io_error(cb->orig_bio);
147 	} else {
148 		int i;
149 		struct bio_vec *bvec;
150 
151 		/*
152 		 * we have verified the checksum already, set page
153 		 * checked so the end_io handlers know about it
154 		 */
155 		ASSERT(!bio_flagged(bio, BIO_CLONED));
156 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
157 			SetPageChecked(bvec->bv_page);
158 
159 		bio_endio(cb->orig_bio);
160 	}
161 
162 	/* finally free the cb struct */
163 	kfree(cb->compressed_pages);
164 	kfree(cb);
165 out:
166 	bio_put(bio);
167 }
168 
169 /*
170  * Clear the writeback bits on all of the file
171  * pages for a compressed write
172  */
173 static noinline void end_compressed_writeback(struct inode *inode,
174 					      const struct compressed_bio *cb)
175 {
176 	unsigned long index = cb->start >> PAGE_SHIFT;
177 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
178 	struct page *pages[16];
179 	unsigned long nr_pages = end_index - index + 1;
180 	int i;
181 	int ret;
182 
183 	if (cb->errors)
184 		mapping_set_error(inode->i_mapping, -EIO);
185 
186 	while (nr_pages > 0) {
187 		ret = find_get_pages_contig(inode->i_mapping, index,
188 				     min_t(unsigned long,
189 				     nr_pages, ARRAY_SIZE(pages)), pages);
190 		if (ret == 0) {
191 			nr_pages -= 1;
192 			index += 1;
193 			continue;
194 		}
195 		for (i = 0; i < ret; i++) {
196 			if (cb->errors)
197 				SetPageError(pages[i]);
198 			end_page_writeback(pages[i]);
199 			put_page(pages[i]);
200 		}
201 		nr_pages -= ret;
202 		index += ret;
203 	}
204 	/* the inode may be gone now */
205 }
206 
207 /*
208  * do the cleanup once all the compressed pages hit the disk.
209  * This will clear writeback on the file pages and free the compressed
210  * pages.
211  *
212  * This also calls the writeback end hooks for the file pages so that
213  * metadata and checksums can be updated in the file.
214  */
215 static void end_compressed_bio_write(struct bio *bio)
216 {
217 	struct extent_io_tree *tree;
218 	struct compressed_bio *cb = bio->bi_private;
219 	struct inode *inode;
220 	struct page *page;
221 	unsigned long index;
222 
223 	if (bio->bi_status)
224 		cb->errors = 1;
225 
226 	/* if there are more bios still pending for this compressed
227 	 * extent, just exit
228 	 */
229 	if (!refcount_dec_and_test(&cb->pending_bios))
230 		goto out;
231 
232 	/* ok, we're the last bio for this extent, step one is to
233 	 * call back into the FS and do all the end_io operations
234 	 */
235 	inode = cb->inode;
236 	tree = &BTRFS_I(inode)->io_tree;
237 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
238 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
239 					 cb->start,
240 					 cb->start + cb->len - 1,
241 					 NULL,
242 					 bio->bi_status ? 0 : 1);
243 	cb->compressed_pages[0]->mapping = NULL;
244 
245 	end_compressed_writeback(inode, cb);
246 	/* note, our inode could be gone now */
247 
248 	/*
249 	 * release the compressed pages, these came from alloc_page and
250 	 * are not attached to the inode at all
251 	 */
252 	index = 0;
253 	for (index = 0; index < cb->nr_pages; index++) {
254 		page = cb->compressed_pages[index];
255 		page->mapping = NULL;
256 		put_page(page);
257 	}
258 
259 	/* finally free the cb struct */
260 	kfree(cb->compressed_pages);
261 	kfree(cb);
262 out:
263 	bio_put(bio);
264 }
265 
266 /*
267  * worker function to build and submit bios for previously compressed pages.
268  * The corresponding pages in the inode should be marked for writeback
269  * and the compressed pages should have a reference on them for dropping
270  * when the IO is complete.
271  *
272  * This also checksums the file bytes and gets things ready for
273  * the end io hooks.
274  */
275 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
276 				 unsigned long len, u64 disk_start,
277 				 unsigned long compressed_len,
278 				 struct page **compressed_pages,
279 				 unsigned long nr_pages)
280 {
281 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
282 	struct bio *bio = NULL;
283 	struct compressed_bio *cb;
284 	unsigned long bytes_left;
285 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
286 	int pg_index = 0;
287 	struct page *page;
288 	u64 first_byte = disk_start;
289 	struct block_device *bdev;
290 	blk_status_t ret;
291 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
292 
293 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
294 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
295 	if (!cb)
296 		return BLK_STS_RESOURCE;
297 	refcount_set(&cb->pending_bios, 0);
298 	cb->errors = 0;
299 	cb->inode = inode;
300 	cb->start = start;
301 	cb->len = len;
302 	cb->mirror_num = 0;
303 	cb->compressed_pages = compressed_pages;
304 	cb->compressed_len = compressed_len;
305 	cb->orig_bio = NULL;
306 	cb->nr_pages = nr_pages;
307 
308 	bdev = fs_info->fs_devices->latest_bdev;
309 
310 	bio = btrfs_bio_alloc(bdev, first_byte);
311 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
312 	bio->bi_private = cb;
313 	bio->bi_end_io = end_compressed_bio_write;
314 	refcount_set(&cb->pending_bios, 1);
315 
316 	/* create and submit bios for the compressed pages */
317 	bytes_left = compressed_len;
318 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
319 		int submit = 0;
320 
321 		page = compressed_pages[pg_index];
322 		page->mapping = inode->i_mapping;
323 		if (bio->bi_iter.bi_size)
324 			submit = io_tree->ops->merge_bio_hook(page, 0,
325 							   PAGE_SIZE,
326 							   bio, 0);
327 
328 		page->mapping = NULL;
329 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
330 		    PAGE_SIZE) {
331 			bio_get(bio);
332 
333 			/*
334 			 * inc the count before we submit the bio so
335 			 * we know the end IO handler won't happen before
336 			 * we inc the count.  Otherwise, the cb might get
337 			 * freed before we're done setting it up
338 			 */
339 			refcount_inc(&cb->pending_bios);
340 			ret = btrfs_bio_wq_end_io(fs_info, bio,
341 						  BTRFS_WQ_ENDIO_DATA);
342 			BUG_ON(ret); /* -ENOMEM */
343 
344 			if (!skip_sum) {
345 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
346 				BUG_ON(ret); /* -ENOMEM */
347 			}
348 
349 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
350 			if (ret) {
351 				bio->bi_status = ret;
352 				bio_endio(bio);
353 			}
354 
355 			bio_put(bio);
356 
357 			bio = btrfs_bio_alloc(bdev, first_byte);
358 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
359 			bio->bi_private = cb;
360 			bio->bi_end_io = end_compressed_bio_write;
361 			bio_add_page(bio, page, PAGE_SIZE, 0);
362 		}
363 		if (bytes_left < PAGE_SIZE) {
364 			btrfs_info(fs_info,
365 					"bytes left %lu compress len %lu nr %lu",
366 			       bytes_left, cb->compressed_len, cb->nr_pages);
367 		}
368 		bytes_left -= PAGE_SIZE;
369 		first_byte += PAGE_SIZE;
370 		cond_resched();
371 	}
372 	bio_get(bio);
373 
374 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
375 	BUG_ON(ret); /* -ENOMEM */
376 
377 	if (!skip_sum) {
378 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
379 		BUG_ON(ret); /* -ENOMEM */
380 	}
381 
382 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
383 	if (ret) {
384 		bio->bi_status = ret;
385 		bio_endio(bio);
386 	}
387 
388 	bio_put(bio);
389 	return 0;
390 }
391 
392 static u64 bio_end_offset(struct bio *bio)
393 {
394 	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
395 
396 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
397 }
398 
399 static noinline int add_ra_bio_pages(struct inode *inode,
400 				     u64 compressed_end,
401 				     struct compressed_bio *cb)
402 {
403 	unsigned long end_index;
404 	unsigned long pg_index;
405 	u64 last_offset;
406 	u64 isize = i_size_read(inode);
407 	int ret;
408 	struct page *page;
409 	unsigned long nr_pages = 0;
410 	struct extent_map *em;
411 	struct address_space *mapping = inode->i_mapping;
412 	struct extent_map_tree *em_tree;
413 	struct extent_io_tree *tree;
414 	u64 end;
415 	int misses = 0;
416 
417 	last_offset = bio_end_offset(cb->orig_bio);
418 	em_tree = &BTRFS_I(inode)->extent_tree;
419 	tree = &BTRFS_I(inode)->io_tree;
420 
421 	if (isize == 0)
422 		return 0;
423 
424 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
425 
426 	while (last_offset < compressed_end) {
427 		pg_index = last_offset >> PAGE_SHIFT;
428 
429 		if (pg_index > end_index)
430 			break;
431 
432 		rcu_read_lock();
433 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
434 		rcu_read_unlock();
435 		if (page && !radix_tree_exceptional_entry(page)) {
436 			misses++;
437 			if (misses > 4)
438 				break;
439 			goto next;
440 		}
441 
442 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
443 								 ~__GFP_FS));
444 		if (!page)
445 			break;
446 
447 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
448 			put_page(page);
449 			goto next;
450 		}
451 
452 		end = last_offset + PAGE_SIZE - 1;
453 		/*
454 		 * at this point, we have a locked page in the page cache
455 		 * for these bytes in the file.  But, we have to make
456 		 * sure they map to this compressed extent on disk.
457 		 */
458 		set_page_extent_mapped(page);
459 		lock_extent(tree, last_offset, end);
460 		read_lock(&em_tree->lock);
461 		em = lookup_extent_mapping(em_tree, last_offset,
462 					   PAGE_SIZE);
463 		read_unlock(&em_tree->lock);
464 
465 		if (!em || last_offset < em->start ||
466 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
467 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
468 			free_extent_map(em);
469 			unlock_extent(tree, last_offset, end);
470 			unlock_page(page);
471 			put_page(page);
472 			break;
473 		}
474 		free_extent_map(em);
475 
476 		if (page->index == end_index) {
477 			char *userpage;
478 			size_t zero_offset = isize & (PAGE_SIZE - 1);
479 
480 			if (zero_offset) {
481 				int zeros;
482 				zeros = PAGE_SIZE - zero_offset;
483 				userpage = kmap_atomic(page);
484 				memset(userpage + zero_offset, 0, zeros);
485 				flush_dcache_page(page);
486 				kunmap_atomic(userpage);
487 			}
488 		}
489 
490 		ret = bio_add_page(cb->orig_bio, page,
491 				   PAGE_SIZE, 0);
492 
493 		if (ret == PAGE_SIZE) {
494 			nr_pages++;
495 			put_page(page);
496 		} else {
497 			unlock_extent(tree, last_offset, end);
498 			unlock_page(page);
499 			put_page(page);
500 			break;
501 		}
502 next:
503 		last_offset += PAGE_SIZE;
504 	}
505 	return 0;
506 }
507 
508 /*
509  * for a compressed read, the bio we get passed has all the inode pages
510  * in it.  We don't actually do IO on those pages but allocate new ones
511  * to hold the compressed pages on disk.
512  *
513  * bio->bi_iter.bi_sector points to the compressed extent on disk
514  * bio->bi_io_vec points to all of the inode pages
515  *
516  * After the compressed pages are read, we copy the bytes into the
517  * bio we were passed and then call the bio end_io calls
518  */
519 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
520 				 int mirror_num, unsigned long bio_flags)
521 {
522 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
523 	struct extent_io_tree *tree;
524 	struct extent_map_tree *em_tree;
525 	struct compressed_bio *cb;
526 	unsigned long compressed_len;
527 	unsigned long nr_pages;
528 	unsigned long pg_index;
529 	struct page *page;
530 	struct block_device *bdev;
531 	struct bio *comp_bio;
532 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
533 	u64 em_len;
534 	u64 em_start;
535 	struct extent_map *em;
536 	blk_status_t ret = BLK_STS_RESOURCE;
537 	int faili = 0;
538 	u32 *sums;
539 
540 	tree = &BTRFS_I(inode)->io_tree;
541 	em_tree = &BTRFS_I(inode)->extent_tree;
542 
543 	/* we need the actual starting offset of this extent in the file */
544 	read_lock(&em_tree->lock);
545 	em = lookup_extent_mapping(em_tree,
546 				   page_offset(bio->bi_io_vec->bv_page),
547 				   PAGE_SIZE);
548 	read_unlock(&em_tree->lock);
549 	if (!em)
550 		return BLK_STS_IOERR;
551 
552 	compressed_len = em->block_len;
553 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
554 	if (!cb)
555 		goto out;
556 
557 	refcount_set(&cb->pending_bios, 0);
558 	cb->errors = 0;
559 	cb->inode = inode;
560 	cb->mirror_num = mirror_num;
561 	sums = &cb->sums;
562 
563 	cb->start = em->orig_start;
564 	em_len = em->len;
565 	em_start = em->start;
566 
567 	free_extent_map(em);
568 	em = NULL;
569 
570 	cb->len = bio->bi_iter.bi_size;
571 	cb->compressed_len = compressed_len;
572 	cb->compress_type = extent_compress_type(bio_flags);
573 	cb->orig_bio = bio;
574 
575 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
577 				       GFP_NOFS);
578 	if (!cb->compressed_pages)
579 		goto fail1;
580 
581 	bdev = fs_info->fs_devices->latest_bdev;
582 
583 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
585 							      __GFP_HIGHMEM);
586 		if (!cb->compressed_pages[pg_index]) {
587 			faili = pg_index - 1;
588 			ret = BLK_STS_RESOURCE;
589 			goto fail2;
590 		}
591 	}
592 	faili = nr_pages - 1;
593 	cb->nr_pages = nr_pages;
594 
595 	add_ra_bio_pages(inode, em_start + em_len, cb);
596 
597 	/* include any pages we added in add_ra-bio_pages */
598 	cb->len = bio->bi_iter.bi_size;
599 
600 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
601 	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
602 	comp_bio->bi_private = cb;
603 	comp_bio->bi_end_io = end_compressed_bio_read;
604 	refcount_set(&cb->pending_bios, 1);
605 
606 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 		int submit = 0;
608 
609 		page = cb->compressed_pages[pg_index];
610 		page->mapping = inode->i_mapping;
611 		page->index = em_start >> PAGE_SHIFT;
612 
613 		if (comp_bio->bi_iter.bi_size)
614 			submit = tree->ops->merge_bio_hook(page, 0,
615 							PAGE_SIZE,
616 							comp_bio, 0);
617 
618 		page->mapping = NULL;
619 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
620 		    PAGE_SIZE) {
621 			bio_get(comp_bio);
622 
623 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
624 						  BTRFS_WQ_ENDIO_DATA);
625 			BUG_ON(ret); /* -ENOMEM */
626 
627 			/*
628 			 * inc the count before we submit the bio so
629 			 * we know the end IO handler won't happen before
630 			 * we inc the count.  Otherwise, the cb might get
631 			 * freed before we're done setting it up
632 			 */
633 			refcount_inc(&cb->pending_bios);
634 
635 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
636 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
637 							    sums);
638 				BUG_ON(ret); /* -ENOMEM */
639 			}
640 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
641 					     fs_info->sectorsize);
642 
643 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
644 			if (ret) {
645 				comp_bio->bi_status = ret;
646 				bio_endio(comp_bio);
647 			}
648 
649 			bio_put(comp_bio);
650 
651 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
652 			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
653 			comp_bio->bi_private = cb;
654 			comp_bio->bi_end_io = end_compressed_bio_read;
655 
656 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
657 		}
658 		cur_disk_byte += PAGE_SIZE;
659 	}
660 	bio_get(comp_bio);
661 
662 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
663 	BUG_ON(ret); /* -ENOMEM */
664 
665 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
666 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
667 		BUG_ON(ret); /* -ENOMEM */
668 	}
669 
670 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
671 	if (ret) {
672 		comp_bio->bi_status = ret;
673 		bio_endio(comp_bio);
674 	}
675 
676 	bio_put(comp_bio);
677 	return 0;
678 
679 fail2:
680 	while (faili >= 0) {
681 		__free_page(cb->compressed_pages[faili]);
682 		faili--;
683 	}
684 
685 	kfree(cb->compressed_pages);
686 fail1:
687 	kfree(cb);
688 out:
689 	free_extent_map(em);
690 	return ret;
691 }
692 
693 static struct {
694 	struct list_head idle_ws;
695 	spinlock_t ws_lock;
696 	/* Number of free workspaces */
697 	int free_ws;
698 	/* Total number of allocated workspaces */
699 	atomic_t total_ws;
700 	/* Waiters for a free workspace */
701 	wait_queue_head_t ws_wait;
702 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
703 
704 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
705 	&btrfs_zlib_compress,
706 	&btrfs_lzo_compress,
707 	&btrfs_zstd_compress,
708 };
709 
710 void __init btrfs_init_compress(void)
711 {
712 	int i;
713 
714 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
715 		struct list_head *workspace;
716 
717 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
718 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
719 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
720 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
721 
722 		/*
723 		 * Preallocate one workspace for each compression type so
724 		 * we can guarantee forward progress in the worst case
725 		 */
726 		workspace = btrfs_compress_op[i]->alloc_workspace();
727 		if (IS_ERR(workspace)) {
728 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
729 		} else {
730 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
731 			btrfs_comp_ws[i].free_ws = 1;
732 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
733 		}
734 	}
735 }
736 
737 /*
738  * This finds an available workspace or allocates a new one.
739  * If it's not possible to allocate a new one, waits until there's one.
740  * Preallocation makes a forward progress guarantees and we do not return
741  * errors.
742  */
743 static struct list_head *find_workspace(int type)
744 {
745 	struct list_head *workspace;
746 	int cpus = num_online_cpus();
747 	int idx = type - 1;
748 	unsigned nofs_flag;
749 
750 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
751 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
752 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
753 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
754 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
755 again:
756 	spin_lock(ws_lock);
757 	if (!list_empty(idle_ws)) {
758 		workspace = idle_ws->next;
759 		list_del(workspace);
760 		(*free_ws)--;
761 		spin_unlock(ws_lock);
762 		return workspace;
763 
764 	}
765 	if (atomic_read(total_ws) > cpus) {
766 		DEFINE_WAIT(wait);
767 
768 		spin_unlock(ws_lock);
769 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
770 		if (atomic_read(total_ws) > cpus && !*free_ws)
771 			schedule();
772 		finish_wait(ws_wait, &wait);
773 		goto again;
774 	}
775 	atomic_inc(total_ws);
776 	spin_unlock(ws_lock);
777 
778 	/*
779 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
780 	 * to turn it off here because we might get called from the restricted
781 	 * context of btrfs_compress_bio/btrfs_compress_pages
782 	 */
783 	nofs_flag = memalloc_nofs_save();
784 	workspace = btrfs_compress_op[idx]->alloc_workspace();
785 	memalloc_nofs_restore(nofs_flag);
786 
787 	if (IS_ERR(workspace)) {
788 		atomic_dec(total_ws);
789 		wake_up(ws_wait);
790 
791 		/*
792 		 * Do not return the error but go back to waiting. There's a
793 		 * workspace preallocated for each type and the compression
794 		 * time is bounded so we get to a workspace eventually. This
795 		 * makes our caller's life easier.
796 		 *
797 		 * To prevent silent and low-probability deadlocks (when the
798 		 * initial preallocation fails), check if there are any
799 		 * workspaces at all.
800 		 */
801 		if (atomic_read(total_ws) == 0) {
802 			static DEFINE_RATELIMIT_STATE(_rs,
803 					/* once per minute */ 60 * HZ,
804 					/* no burst */ 1);
805 
806 			if (__ratelimit(&_rs)) {
807 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
808 			}
809 		}
810 		goto again;
811 	}
812 	return workspace;
813 }
814 
815 /*
816  * put a workspace struct back on the list or free it if we have enough
817  * idle ones sitting around
818  */
819 static void free_workspace(int type, struct list_head *workspace)
820 {
821 	int idx = type - 1;
822 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
823 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
824 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
825 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
826 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
827 
828 	spin_lock(ws_lock);
829 	if (*free_ws <= num_online_cpus()) {
830 		list_add(workspace, idle_ws);
831 		(*free_ws)++;
832 		spin_unlock(ws_lock);
833 		goto wake;
834 	}
835 	spin_unlock(ws_lock);
836 
837 	btrfs_compress_op[idx]->free_workspace(workspace);
838 	atomic_dec(total_ws);
839 wake:
840 	/*
841 	 * Make sure counter is updated before we wake up waiters.
842 	 */
843 	smp_mb();
844 	if (waitqueue_active(ws_wait))
845 		wake_up(ws_wait);
846 }
847 
848 /*
849  * cleanup function for module exit
850  */
851 static void free_workspaces(void)
852 {
853 	struct list_head *workspace;
854 	int i;
855 
856 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
857 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
858 			workspace = btrfs_comp_ws[i].idle_ws.next;
859 			list_del(workspace);
860 			btrfs_compress_op[i]->free_workspace(workspace);
861 			atomic_dec(&btrfs_comp_ws[i].total_ws);
862 		}
863 	}
864 }
865 
866 /*
867  * Given an address space and start and length, compress the bytes into @pages
868  * that are allocated on demand.
869  *
870  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
871  * and returns number of actually allocated pages
872  *
873  * @total_in is used to return the number of bytes actually read.  It
874  * may be smaller than the input length if we had to exit early because we
875  * ran out of room in the pages array or because we cross the
876  * max_out threshold.
877  *
878  * @total_out is an in/out parameter, must be set to the input length and will
879  * be also used to return the total number of compressed bytes
880  *
881  * @max_out tells us the max number of bytes that we're allowed to
882  * stuff into pages
883  */
884 int btrfs_compress_pages(int type, struct address_space *mapping,
885 			 u64 start, struct page **pages,
886 			 unsigned long *out_pages,
887 			 unsigned long *total_in,
888 			 unsigned long *total_out)
889 {
890 	struct list_head *workspace;
891 	int ret;
892 
893 	workspace = find_workspace(type);
894 
895 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
896 						      start, pages,
897 						      out_pages,
898 						      total_in, total_out);
899 	free_workspace(type, workspace);
900 	return ret;
901 }
902 
903 /*
904  * pages_in is an array of pages with compressed data.
905  *
906  * disk_start is the starting logical offset of this array in the file
907  *
908  * orig_bio contains the pages from the file that we want to decompress into
909  *
910  * srclen is the number of bytes in pages_in
911  *
912  * The basic idea is that we have a bio that was created by readpages.
913  * The pages in the bio are for the uncompressed data, and they may not
914  * be contiguous.  They all correspond to the range of bytes covered by
915  * the compressed extent.
916  */
917 static int btrfs_decompress_bio(struct compressed_bio *cb)
918 {
919 	struct list_head *workspace;
920 	int ret;
921 	int type = cb->compress_type;
922 
923 	workspace = find_workspace(type);
924 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
925 	free_workspace(type, workspace);
926 
927 	return ret;
928 }
929 
930 /*
931  * a less complex decompression routine.  Our compressed data fits in a
932  * single page, and we want to read a single page out of it.
933  * start_byte tells us the offset into the compressed data we're interested in
934  */
935 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
936 		     unsigned long start_byte, size_t srclen, size_t destlen)
937 {
938 	struct list_head *workspace;
939 	int ret;
940 
941 	workspace = find_workspace(type);
942 
943 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
944 						  dest_page, start_byte,
945 						  srclen, destlen);
946 
947 	free_workspace(type, workspace);
948 	return ret;
949 }
950 
951 void btrfs_exit_compress(void)
952 {
953 	free_workspaces();
954 }
955 
956 /*
957  * Copy uncompressed data from working buffer to pages.
958  *
959  * buf_start is the byte offset we're of the start of our workspace buffer.
960  *
961  * total_out is the last byte of the buffer
962  */
963 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
964 			      unsigned long total_out, u64 disk_start,
965 			      struct bio *bio)
966 {
967 	unsigned long buf_offset;
968 	unsigned long current_buf_start;
969 	unsigned long start_byte;
970 	unsigned long prev_start_byte;
971 	unsigned long working_bytes = total_out - buf_start;
972 	unsigned long bytes;
973 	char *kaddr;
974 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
975 
976 	/*
977 	 * start byte is the first byte of the page we're currently
978 	 * copying into relative to the start of the compressed data.
979 	 */
980 	start_byte = page_offset(bvec.bv_page) - disk_start;
981 
982 	/* we haven't yet hit data corresponding to this page */
983 	if (total_out <= start_byte)
984 		return 1;
985 
986 	/*
987 	 * the start of the data we care about is offset into
988 	 * the middle of our working buffer
989 	 */
990 	if (total_out > start_byte && buf_start < start_byte) {
991 		buf_offset = start_byte - buf_start;
992 		working_bytes -= buf_offset;
993 	} else {
994 		buf_offset = 0;
995 	}
996 	current_buf_start = buf_start;
997 
998 	/* copy bytes from the working buffer into the pages */
999 	while (working_bytes > 0) {
1000 		bytes = min_t(unsigned long, bvec.bv_len,
1001 				PAGE_SIZE - buf_offset);
1002 		bytes = min(bytes, working_bytes);
1003 
1004 		kaddr = kmap_atomic(bvec.bv_page);
1005 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1006 		kunmap_atomic(kaddr);
1007 		flush_dcache_page(bvec.bv_page);
1008 
1009 		buf_offset += bytes;
1010 		working_bytes -= bytes;
1011 		current_buf_start += bytes;
1012 
1013 		/* check if we need to pick another page */
1014 		bio_advance(bio, bytes);
1015 		if (!bio->bi_iter.bi_size)
1016 			return 0;
1017 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1018 		prev_start_byte = start_byte;
1019 		start_byte = page_offset(bvec.bv_page) - disk_start;
1020 
1021 		/*
1022 		 * We need to make sure we're only adjusting
1023 		 * our offset into compression working buffer when
1024 		 * we're switching pages.  Otherwise we can incorrectly
1025 		 * keep copying when we were actually done.
1026 		 */
1027 		if (start_byte != prev_start_byte) {
1028 			/*
1029 			 * make sure our new page is covered by this
1030 			 * working buffer
1031 			 */
1032 			if (total_out <= start_byte)
1033 				return 1;
1034 
1035 			/*
1036 			 * the next page in the biovec might not be adjacent
1037 			 * to the last page, but it might still be found
1038 			 * inside this working buffer. bump our offset pointer
1039 			 */
1040 			if (total_out > start_byte &&
1041 			    current_buf_start < start_byte) {
1042 				buf_offset = start_byte - buf_start;
1043 				working_bytes = total_out - start_byte;
1044 				current_buf_start = buf_start + buf_offset;
1045 			}
1046 		}
1047 	}
1048 
1049 	return 1;
1050 }
1051 
1052 /*
1053  * Compression heuristic.
1054  *
1055  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1056  * quickly (compared to direct compression) detect data characteristics
1057  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1058  * data.
1059  *
1060  * The following types of analysis can be performed:
1061  * - detect mostly zero data
1062  * - detect data with low "byte set" size (text, etc)
1063  * - detect data with low/high "core byte" set
1064  *
1065  * Return non-zero if the compression should be done, 0 otherwise.
1066  */
1067 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1068 {
1069 	u64 index = start >> PAGE_SHIFT;
1070 	u64 end_index = end >> PAGE_SHIFT;
1071 	struct page *page;
1072 	int ret = 1;
1073 
1074 	while (index <= end_index) {
1075 		page = find_get_page(inode->i_mapping, index);
1076 		kmap(page);
1077 		kunmap(page);
1078 		put_page(page);
1079 		index++;
1080 	}
1081 
1082 	return ret;
1083 }
1084