1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include <linux/sched/mm.h> 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "ordered-data.h" 42 #include "compression.h" 43 #include "extent_io.h" 44 #include "extent_map.h" 45 46 static int btrfs_decompress_bio(struct compressed_bio *cb); 47 48 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 49 unsigned long disk_size) 50 { 51 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 52 53 return sizeof(struct compressed_bio) + 54 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 55 } 56 57 static int check_compressed_csum(struct btrfs_inode *inode, 58 struct compressed_bio *cb, 59 u64 disk_start) 60 { 61 int ret; 62 struct page *page; 63 unsigned long i; 64 char *kaddr; 65 u32 csum; 66 u32 *cb_sum = &cb->sums; 67 68 if (inode->flags & BTRFS_INODE_NODATASUM) 69 return 0; 70 71 for (i = 0; i < cb->nr_pages; i++) { 72 page = cb->compressed_pages[i]; 73 csum = ~(u32)0; 74 75 kaddr = kmap_atomic(page); 76 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 77 btrfs_csum_final(csum, (u8 *)&csum); 78 kunmap_atomic(kaddr); 79 80 if (csum != *cb_sum) { 81 btrfs_print_data_csum_error(inode, disk_start, csum, 82 *cb_sum, cb->mirror_num); 83 ret = -EIO; 84 goto fail; 85 } 86 cb_sum++; 87 88 } 89 ret = 0; 90 fail: 91 return ret; 92 } 93 94 /* when we finish reading compressed pages from the disk, we 95 * decompress them and then run the bio end_io routines on the 96 * decompressed pages (in the inode address space). 97 * 98 * This allows the checksumming and other IO error handling routines 99 * to work normally 100 * 101 * The compressed pages are freed here, and it must be run 102 * in process context 103 */ 104 static void end_compressed_bio_read(struct bio *bio) 105 { 106 struct compressed_bio *cb = bio->bi_private; 107 struct inode *inode; 108 struct page *page; 109 unsigned long index; 110 int ret; 111 112 if (bio->bi_status) 113 cb->errors = 1; 114 115 /* if there are more bios still pending for this compressed 116 * extent, just exit 117 */ 118 if (!refcount_dec_and_test(&cb->pending_bios)) 119 goto out; 120 121 inode = cb->inode; 122 ret = check_compressed_csum(BTRFS_I(inode), cb, 123 (u64)bio->bi_iter.bi_sector << 9); 124 if (ret) 125 goto csum_failed; 126 127 /* ok, we're the last bio for this extent, lets start 128 * the decompression. 129 */ 130 ret = btrfs_decompress_bio(cb); 131 132 csum_failed: 133 if (ret) 134 cb->errors = 1; 135 136 /* release the compressed pages */ 137 index = 0; 138 for (index = 0; index < cb->nr_pages; index++) { 139 page = cb->compressed_pages[index]; 140 page->mapping = NULL; 141 put_page(page); 142 } 143 144 /* do io completion on the original bio */ 145 if (cb->errors) { 146 bio_io_error(cb->orig_bio); 147 } else { 148 int i; 149 struct bio_vec *bvec; 150 151 /* 152 * we have verified the checksum already, set page 153 * checked so the end_io handlers know about it 154 */ 155 ASSERT(!bio_flagged(bio, BIO_CLONED)); 156 bio_for_each_segment_all(bvec, cb->orig_bio, i) 157 SetPageChecked(bvec->bv_page); 158 159 bio_endio(cb->orig_bio); 160 } 161 162 /* finally free the cb struct */ 163 kfree(cb->compressed_pages); 164 kfree(cb); 165 out: 166 bio_put(bio); 167 } 168 169 /* 170 * Clear the writeback bits on all of the file 171 * pages for a compressed write 172 */ 173 static noinline void end_compressed_writeback(struct inode *inode, 174 const struct compressed_bio *cb) 175 { 176 unsigned long index = cb->start >> PAGE_SHIFT; 177 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 178 struct page *pages[16]; 179 unsigned long nr_pages = end_index - index + 1; 180 int i; 181 int ret; 182 183 if (cb->errors) 184 mapping_set_error(inode->i_mapping, -EIO); 185 186 while (nr_pages > 0) { 187 ret = find_get_pages_contig(inode->i_mapping, index, 188 min_t(unsigned long, 189 nr_pages, ARRAY_SIZE(pages)), pages); 190 if (ret == 0) { 191 nr_pages -= 1; 192 index += 1; 193 continue; 194 } 195 for (i = 0; i < ret; i++) { 196 if (cb->errors) 197 SetPageError(pages[i]); 198 end_page_writeback(pages[i]); 199 put_page(pages[i]); 200 } 201 nr_pages -= ret; 202 index += ret; 203 } 204 /* the inode may be gone now */ 205 } 206 207 /* 208 * do the cleanup once all the compressed pages hit the disk. 209 * This will clear writeback on the file pages and free the compressed 210 * pages. 211 * 212 * This also calls the writeback end hooks for the file pages so that 213 * metadata and checksums can be updated in the file. 214 */ 215 static void end_compressed_bio_write(struct bio *bio) 216 { 217 struct extent_io_tree *tree; 218 struct compressed_bio *cb = bio->bi_private; 219 struct inode *inode; 220 struct page *page; 221 unsigned long index; 222 223 if (bio->bi_status) 224 cb->errors = 1; 225 226 /* if there are more bios still pending for this compressed 227 * extent, just exit 228 */ 229 if (!refcount_dec_and_test(&cb->pending_bios)) 230 goto out; 231 232 /* ok, we're the last bio for this extent, step one is to 233 * call back into the FS and do all the end_io operations 234 */ 235 inode = cb->inode; 236 tree = &BTRFS_I(inode)->io_tree; 237 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 238 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 239 cb->start, 240 cb->start + cb->len - 1, 241 NULL, 242 bio->bi_status ? 0 : 1); 243 cb->compressed_pages[0]->mapping = NULL; 244 245 end_compressed_writeback(inode, cb); 246 /* note, our inode could be gone now */ 247 248 /* 249 * release the compressed pages, these came from alloc_page and 250 * are not attached to the inode at all 251 */ 252 index = 0; 253 for (index = 0; index < cb->nr_pages; index++) { 254 page = cb->compressed_pages[index]; 255 page->mapping = NULL; 256 put_page(page); 257 } 258 259 /* finally free the cb struct */ 260 kfree(cb->compressed_pages); 261 kfree(cb); 262 out: 263 bio_put(bio); 264 } 265 266 /* 267 * worker function to build and submit bios for previously compressed pages. 268 * The corresponding pages in the inode should be marked for writeback 269 * and the compressed pages should have a reference on them for dropping 270 * when the IO is complete. 271 * 272 * This also checksums the file bytes and gets things ready for 273 * the end io hooks. 274 */ 275 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 276 unsigned long len, u64 disk_start, 277 unsigned long compressed_len, 278 struct page **compressed_pages, 279 unsigned long nr_pages) 280 { 281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 282 struct bio *bio = NULL; 283 struct compressed_bio *cb; 284 unsigned long bytes_left; 285 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 286 int pg_index = 0; 287 struct page *page; 288 u64 first_byte = disk_start; 289 struct block_device *bdev; 290 blk_status_t ret; 291 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 292 293 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 294 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 295 if (!cb) 296 return BLK_STS_RESOURCE; 297 refcount_set(&cb->pending_bios, 0); 298 cb->errors = 0; 299 cb->inode = inode; 300 cb->start = start; 301 cb->len = len; 302 cb->mirror_num = 0; 303 cb->compressed_pages = compressed_pages; 304 cb->compressed_len = compressed_len; 305 cb->orig_bio = NULL; 306 cb->nr_pages = nr_pages; 307 308 bdev = fs_info->fs_devices->latest_bdev; 309 310 bio = btrfs_bio_alloc(bdev, first_byte); 311 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 312 bio->bi_private = cb; 313 bio->bi_end_io = end_compressed_bio_write; 314 refcount_set(&cb->pending_bios, 1); 315 316 /* create and submit bios for the compressed pages */ 317 bytes_left = compressed_len; 318 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 319 int submit = 0; 320 321 page = compressed_pages[pg_index]; 322 page->mapping = inode->i_mapping; 323 if (bio->bi_iter.bi_size) 324 submit = io_tree->ops->merge_bio_hook(page, 0, 325 PAGE_SIZE, 326 bio, 0); 327 328 page->mapping = NULL; 329 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 330 PAGE_SIZE) { 331 bio_get(bio); 332 333 /* 334 * inc the count before we submit the bio so 335 * we know the end IO handler won't happen before 336 * we inc the count. Otherwise, the cb might get 337 * freed before we're done setting it up 338 */ 339 refcount_inc(&cb->pending_bios); 340 ret = btrfs_bio_wq_end_io(fs_info, bio, 341 BTRFS_WQ_ENDIO_DATA); 342 BUG_ON(ret); /* -ENOMEM */ 343 344 if (!skip_sum) { 345 ret = btrfs_csum_one_bio(inode, bio, start, 1); 346 BUG_ON(ret); /* -ENOMEM */ 347 } 348 349 ret = btrfs_map_bio(fs_info, bio, 0, 1); 350 if (ret) { 351 bio->bi_status = ret; 352 bio_endio(bio); 353 } 354 355 bio_put(bio); 356 357 bio = btrfs_bio_alloc(bdev, first_byte); 358 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 359 bio->bi_private = cb; 360 bio->bi_end_io = end_compressed_bio_write; 361 bio_add_page(bio, page, PAGE_SIZE, 0); 362 } 363 if (bytes_left < PAGE_SIZE) { 364 btrfs_info(fs_info, 365 "bytes left %lu compress len %lu nr %lu", 366 bytes_left, cb->compressed_len, cb->nr_pages); 367 } 368 bytes_left -= PAGE_SIZE; 369 first_byte += PAGE_SIZE; 370 cond_resched(); 371 } 372 bio_get(bio); 373 374 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 375 BUG_ON(ret); /* -ENOMEM */ 376 377 if (!skip_sum) { 378 ret = btrfs_csum_one_bio(inode, bio, start, 1); 379 BUG_ON(ret); /* -ENOMEM */ 380 } 381 382 ret = btrfs_map_bio(fs_info, bio, 0, 1); 383 if (ret) { 384 bio->bi_status = ret; 385 bio_endio(bio); 386 } 387 388 bio_put(bio); 389 return 0; 390 } 391 392 static u64 bio_end_offset(struct bio *bio) 393 { 394 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1]; 395 396 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 397 } 398 399 static noinline int add_ra_bio_pages(struct inode *inode, 400 u64 compressed_end, 401 struct compressed_bio *cb) 402 { 403 unsigned long end_index; 404 unsigned long pg_index; 405 u64 last_offset; 406 u64 isize = i_size_read(inode); 407 int ret; 408 struct page *page; 409 unsigned long nr_pages = 0; 410 struct extent_map *em; 411 struct address_space *mapping = inode->i_mapping; 412 struct extent_map_tree *em_tree; 413 struct extent_io_tree *tree; 414 u64 end; 415 int misses = 0; 416 417 last_offset = bio_end_offset(cb->orig_bio); 418 em_tree = &BTRFS_I(inode)->extent_tree; 419 tree = &BTRFS_I(inode)->io_tree; 420 421 if (isize == 0) 422 return 0; 423 424 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 425 426 while (last_offset < compressed_end) { 427 pg_index = last_offset >> PAGE_SHIFT; 428 429 if (pg_index > end_index) 430 break; 431 432 rcu_read_lock(); 433 page = radix_tree_lookup(&mapping->page_tree, pg_index); 434 rcu_read_unlock(); 435 if (page && !radix_tree_exceptional_entry(page)) { 436 misses++; 437 if (misses > 4) 438 break; 439 goto next; 440 } 441 442 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 443 ~__GFP_FS)); 444 if (!page) 445 break; 446 447 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 448 put_page(page); 449 goto next; 450 } 451 452 end = last_offset + PAGE_SIZE - 1; 453 /* 454 * at this point, we have a locked page in the page cache 455 * for these bytes in the file. But, we have to make 456 * sure they map to this compressed extent on disk. 457 */ 458 set_page_extent_mapped(page); 459 lock_extent(tree, last_offset, end); 460 read_lock(&em_tree->lock); 461 em = lookup_extent_mapping(em_tree, last_offset, 462 PAGE_SIZE); 463 read_unlock(&em_tree->lock); 464 465 if (!em || last_offset < em->start || 466 (last_offset + PAGE_SIZE > extent_map_end(em)) || 467 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 468 free_extent_map(em); 469 unlock_extent(tree, last_offset, end); 470 unlock_page(page); 471 put_page(page); 472 break; 473 } 474 free_extent_map(em); 475 476 if (page->index == end_index) { 477 char *userpage; 478 size_t zero_offset = isize & (PAGE_SIZE - 1); 479 480 if (zero_offset) { 481 int zeros; 482 zeros = PAGE_SIZE - zero_offset; 483 userpage = kmap_atomic(page); 484 memset(userpage + zero_offset, 0, zeros); 485 flush_dcache_page(page); 486 kunmap_atomic(userpage); 487 } 488 } 489 490 ret = bio_add_page(cb->orig_bio, page, 491 PAGE_SIZE, 0); 492 493 if (ret == PAGE_SIZE) { 494 nr_pages++; 495 put_page(page); 496 } else { 497 unlock_extent(tree, last_offset, end); 498 unlock_page(page); 499 put_page(page); 500 break; 501 } 502 next: 503 last_offset += PAGE_SIZE; 504 } 505 return 0; 506 } 507 508 /* 509 * for a compressed read, the bio we get passed has all the inode pages 510 * in it. We don't actually do IO on those pages but allocate new ones 511 * to hold the compressed pages on disk. 512 * 513 * bio->bi_iter.bi_sector points to the compressed extent on disk 514 * bio->bi_io_vec points to all of the inode pages 515 * 516 * After the compressed pages are read, we copy the bytes into the 517 * bio we were passed and then call the bio end_io calls 518 */ 519 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 520 int mirror_num, unsigned long bio_flags) 521 { 522 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 523 struct extent_io_tree *tree; 524 struct extent_map_tree *em_tree; 525 struct compressed_bio *cb; 526 unsigned long compressed_len; 527 unsigned long nr_pages; 528 unsigned long pg_index; 529 struct page *page; 530 struct block_device *bdev; 531 struct bio *comp_bio; 532 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 533 u64 em_len; 534 u64 em_start; 535 struct extent_map *em; 536 blk_status_t ret = BLK_STS_RESOURCE; 537 int faili = 0; 538 u32 *sums; 539 540 tree = &BTRFS_I(inode)->io_tree; 541 em_tree = &BTRFS_I(inode)->extent_tree; 542 543 /* we need the actual starting offset of this extent in the file */ 544 read_lock(&em_tree->lock); 545 em = lookup_extent_mapping(em_tree, 546 page_offset(bio->bi_io_vec->bv_page), 547 PAGE_SIZE); 548 read_unlock(&em_tree->lock); 549 if (!em) 550 return BLK_STS_IOERR; 551 552 compressed_len = em->block_len; 553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 554 if (!cb) 555 goto out; 556 557 refcount_set(&cb->pending_bios, 0); 558 cb->errors = 0; 559 cb->inode = inode; 560 cb->mirror_num = mirror_num; 561 sums = &cb->sums; 562 563 cb->start = em->orig_start; 564 em_len = em->len; 565 em_start = em->start; 566 567 free_extent_map(em); 568 em = NULL; 569 570 cb->len = bio->bi_iter.bi_size; 571 cb->compressed_len = compressed_len; 572 cb->compress_type = extent_compress_type(bio_flags); 573 cb->orig_bio = bio; 574 575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 577 GFP_NOFS); 578 if (!cb->compressed_pages) 579 goto fail1; 580 581 bdev = fs_info->fs_devices->latest_bdev; 582 583 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 585 __GFP_HIGHMEM); 586 if (!cb->compressed_pages[pg_index]) { 587 faili = pg_index - 1; 588 ret = BLK_STS_RESOURCE; 589 goto fail2; 590 } 591 } 592 faili = nr_pages - 1; 593 cb->nr_pages = nr_pages; 594 595 add_ra_bio_pages(inode, em_start + em_len, cb); 596 597 /* include any pages we added in add_ra-bio_pages */ 598 cb->len = bio->bi_iter.bi_size; 599 600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 601 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0); 602 comp_bio->bi_private = cb; 603 comp_bio->bi_end_io = end_compressed_bio_read; 604 refcount_set(&cb->pending_bios, 1); 605 606 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 607 int submit = 0; 608 609 page = cb->compressed_pages[pg_index]; 610 page->mapping = inode->i_mapping; 611 page->index = em_start >> PAGE_SHIFT; 612 613 if (comp_bio->bi_iter.bi_size) 614 submit = tree->ops->merge_bio_hook(page, 0, 615 PAGE_SIZE, 616 comp_bio, 0); 617 618 page->mapping = NULL; 619 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 620 PAGE_SIZE) { 621 bio_get(comp_bio); 622 623 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 624 BTRFS_WQ_ENDIO_DATA); 625 BUG_ON(ret); /* -ENOMEM */ 626 627 /* 628 * inc the count before we submit the bio so 629 * we know the end IO handler won't happen before 630 * we inc the count. Otherwise, the cb might get 631 * freed before we're done setting it up 632 */ 633 refcount_inc(&cb->pending_bios); 634 635 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 636 ret = btrfs_lookup_bio_sums(inode, comp_bio, 637 sums); 638 BUG_ON(ret); /* -ENOMEM */ 639 } 640 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 641 fs_info->sectorsize); 642 643 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 644 if (ret) { 645 comp_bio->bi_status = ret; 646 bio_endio(comp_bio); 647 } 648 649 bio_put(comp_bio); 650 651 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 652 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0); 653 comp_bio->bi_private = cb; 654 comp_bio->bi_end_io = end_compressed_bio_read; 655 656 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 657 } 658 cur_disk_byte += PAGE_SIZE; 659 } 660 bio_get(comp_bio); 661 662 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 663 BUG_ON(ret); /* -ENOMEM */ 664 665 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 666 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 667 BUG_ON(ret); /* -ENOMEM */ 668 } 669 670 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 671 if (ret) { 672 comp_bio->bi_status = ret; 673 bio_endio(comp_bio); 674 } 675 676 bio_put(comp_bio); 677 return 0; 678 679 fail2: 680 while (faili >= 0) { 681 __free_page(cb->compressed_pages[faili]); 682 faili--; 683 } 684 685 kfree(cb->compressed_pages); 686 fail1: 687 kfree(cb); 688 out: 689 free_extent_map(em); 690 return ret; 691 } 692 693 static struct { 694 struct list_head idle_ws; 695 spinlock_t ws_lock; 696 /* Number of free workspaces */ 697 int free_ws; 698 /* Total number of allocated workspaces */ 699 atomic_t total_ws; 700 /* Waiters for a free workspace */ 701 wait_queue_head_t ws_wait; 702 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 703 704 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 705 &btrfs_zlib_compress, 706 &btrfs_lzo_compress, 707 &btrfs_zstd_compress, 708 }; 709 710 void __init btrfs_init_compress(void) 711 { 712 int i; 713 714 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 715 struct list_head *workspace; 716 717 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 718 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 719 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 720 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 721 722 /* 723 * Preallocate one workspace for each compression type so 724 * we can guarantee forward progress in the worst case 725 */ 726 workspace = btrfs_compress_op[i]->alloc_workspace(); 727 if (IS_ERR(workspace)) { 728 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 729 } else { 730 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 731 btrfs_comp_ws[i].free_ws = 1; 732 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 733 } 734 } 735 } 736 737 /* 738 * This finds an available workspace or allocates a new one. 739 * If it's not possible to allocate a new one, waits until there's one. 740 * Preallocation makes a forward progress guarantees and we do not return 741 * errors. 742 */ 743 static struct list_head *find_workspace(int type) 744 { 745 struct list_head *workspace; 746 int cpus = num_online_cpus(); 747 int idx = type - 1; 748 unsigned nofs_flag; 749 750 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 751 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 752 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 753 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 754 int *free_ws = &btrfs_comp_ws[idx].free_ws; 755 again: 756 spin_lock(ws_lock); 757 if (!list_empty(idle_ws)) { 758 workspace = idle_ws->next; 759 list_del(workspace); 760 (*free_ws)--; 761 spin_unlock(ws_lock); 762 return workspace; 763 764 } 765 if (atomic_read(total_ws) > cpus) { 766 DEFINE_WAIT(wait); 767 768 spin_unlock(ws_lock); 769 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 770 if (atomic_read(total_ws) > cpus && !*free_ws) 771 schedule(); 772 finish_wait(ws_wait, &wait); 773 goto again; 774 } 775 atomic_inc(total_ws); 776 spin_unlock(ws_lock); 777 778 /* 779 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 780 * to turn it off here because we might get called from the restricted 781 * context of btrfs_compress_bio/btrfs_compress_pages 782 */ 783 nofs_flag = memalloc_nofs_save(); 784 workspace = btrfs_compress_op[idx]->alloc_workspace(); 785 memalloc_nofs_restore(nofs_flag); 786 787 if (IS_ERR(workspace)) { 788 atomic_dec(total_ws); 789 wake_up(ws_wait); 790 791 /* 792 * Do not return the error but go back to waiting. There's a 793 * workspace preallocated for each type and the compression 794 * time is bounded so we get to a workspace eventually. This 795 * makes our caller's life easier. 796 * 797 * To prevent silent and low-probability deadlocks (when the 798 * initial preallocation fails), check if there are any 799 * workspaces at all. 800 */ 801 if (atomic_read(total_ws) == 0) { 802 static DEFINE_RATELIMIT_STATE(_rs, 803 /* once per minute */ 60 * HZ, 804 /* no burst */ 1); 805 806 if (__ratelimit(&_rs)) { 807 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 808 } 809 } 810 goto again; 811 } 812 return workspace; 813 } 814 815 /* 816 * put a workspace struct back on the list or free it if we have enough 817 * idle ones sitting around 818 */ 819 static void free_workspace(int type, struct list_head *workspace) 820 { 821 int idx = type - 1; 822 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 823 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 824 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 825 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 826 int *free_ws = &btrfs_comp_ws[idx].free_ws; 827 828 spin_lock(ws_lock); 829 if (*free_ws <= num_online_cpus()) { 830 list_add(workspace, idle_ws); 831 (*free_ws)++; 832 spin_unlock(ws_lock); 833 goto wake; 834 } 835 spin_unlock(ws_lock); 836 837 btrfs_compress_op[idx]->free_workspace(workspace); 838 atomic_dec(total_ws); 839 wake: 840 /* 841 * Make sure counter is updated before we wake up waiters. 842 */ 843 smp_mb(); 844 if (waitqueue_active(ws_wait)) 845 wake_up(ws_wait); 846 } 847 848 /* 849 * cleanup function for module exit 850 */ 851 static void free_workspaces(void) 852 { 853 struct list_head *workspace; 854 int i; 855 856 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 857 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 858 workspace = btrfs_comp_ws[i].idle_ws.next; 859 list_del(workspace); 860 btrfs_compress_op[i]->free_workspace(workspace); 861 atomic_dec(&btrfs_comp_ws[i].total_ws); 862 } 863 } 864 } 865 866 /* 867 * Given an address space and start and length, compress the bytes into @pages 868 * that are allocated on demand. 869 * 870 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 871 * and returns number of actually allocated pages 872 * 873 * @total_in is used to return the number of bytes actually read. It 874 * may be smaller than the input length if we had to exit early because we 875 * ran out of room in the pages array or because we cross the 876 * max_out threshold. 877 * 878 * @total_out is an in/out parameter, must be set to the input length and will 879 * be also used to return the total number of compressed bytes 880 * 881 * @max_out tells us the max number of bytes that we're allowed to 882 * stuff into pages 883 */ 884 int btrfs_compress_pages(int type, struct address_space *mapping, 885 u64 start, struct page **pages, 886 unsigned long *out_pages, 887 unsigned long *total_in, 888 unsigned long *total_out) 889 { 890 struct list_head *workspace; 891 int ret; 892 893 workspace = find_workspace(type); 894 895 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 896 start, pages, 897 out_pages, 898 total_in, total_out); 899 free_workspace(type, workspace); 900 return ret; 901 } 902 903 /* 904 * pages_in is an array of pages with compressed data. 905 * 906 * disk_start is the starting logical offset of this array in the file 907 * 908 * orig_bio contains the pages from the file that we want to decompress into 909 * 910 * srclen is the number of bytes in pages_in 911 * 912 * The basic idea is that we have a bio that was created by readpages. 913 * The pages in the bio are for the uncompressed data, and they may not 914 * be contiguous. They all correspond to the range of bytes covered by 915 * the compressed extent. 916 */ 917 static int btrfs_decompress_bio(struct compressed_bio *cb) 918 { 919 struct list_head *workspace; 920 int ret; 921 int type = cb->compress_type; 922 923 workspace = find_workspace(type); 924 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 925 free_workspace(type, workspace); 926 927 return ret; 928 } 929 930 /* 931 * a less complex decompression routine. Our compressed data fits in a 932 * single page, and we want to read a single page out of it. 933 * start_byte tells us the offset into the compressed data we're interested in 934 */ 935 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 936 unsigned long start_byte, size_t srclen, size_t destlen) 937 { 938 struct list_head *workspace; 939 int ret; 940 941 workspace = find_workspace(type); 942 943 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 944 dest_page, start_byte, 945 srclen, destlen); 946 947 free_workspace(type, workspace); 948 return ret; 949 } 950 951 void btrfs_exit_compress(void) 952 { 953 free_workspaces(); 954 } 955 956 /* 957 * Copy uncompressed data from working buffer to pages. 958 * 959 * buf_start is the byte offset we're of the start of our workspace buffer. 960 * 961 * total_out is the last byte of the buffer 962 */ 963 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 964 unsigned long total_out, u64 disk_start, 965 struct bio *bio) 966 { 967 unsigned long buf_offset; 968 unsigned long current_buf_start; 969 unsigned long start_byte; 970 unsigned long prev_start_byte; 971 unsigned long working_bytes = total_out - buf_start; 972 unsigned long bytes; 973 char *kaddr; 974 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 975 976 /* 977 * start byte is the first byte of the page we're currently 978 * copying into relative to the start of the compressed data. 979 */ 980 start_byte = page_offset(bvec.bv_page) - disk_start; 981 982 /* we haven't yet hit data corresponding to this page */ 983 if (total_out <= start_byte) 984 return 1; 985 986 /* 987 * the start of the data we care about is offset into 988 * the middle of our working buffer 989 */ 990 if (total_out > start_byte && buf_start < start_byte) { 991 buf_offset = start_byte - buf_start; 992 working_bytes -= buf_offset; 993 } else { 994 buf_offset = 0; 995 } 996 current_buf_start = buf_start; 997 998 /* copy bytes from the working buffer into the pages */ 999 while (working_bytes > 0) { 1000 bytes = min_t(unsigned long, bvec.bv_len, 1001 PAGE_SIZE - buf_offset); 1002 bytes = min(bytes, working_bytes); 1003 1004 kaddr = kmap_atomic(bvec.bv_page); 1005 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1006 kunmap_atomic(kaddr); 1007 flush_dcache_page(bvec.bv_page); 1008 1009 buf_offset += bytes; 1010 working_bytes -= bytes; 1011 current_buf_start += bytes; 1012 1013 /* check if we need to pick another page */ 1014 bio_advance(bio, bytes); 1015 if (!bio->bi_iter.bi_size) 1016 return 0; 1017 bvec = bio_iter_iovec(bio, bio->bi_iter); 1018 prev_start_byte = start_byte; 1019 start_byte = page_offset(bvec.bv_page) - disk_start; 1020 1021 /* 1022 * We need to make sure we're only adjusting 1023 * our offset into compression working buffer when 1024 * we're switching pages. Otherwise we can incorrectly 1025 * keep copying when we were actually done. 1026 */ 1027 if (start_byte != prev_start_byte) { 1028 /* 1029 * make sure our new page is covered by this 1030 * working buffer 1031 */ 1032 if (total_out <= start_byte) 1033 return 1; 1034 1035 /* 1036 * the next page in the biovec might not be adjacent 1037 * to the last page, but it might still be found 1038 * inside this working buffer. bump our offset pointer 1039 */ 1040 if (total_out > start_byte && 1041 current_buf_start < start_byte) { 1042 buf_offset = start_byte - buf_start; 1043 working_bytes = total_out - start_byte; 1044 current_buf_start = buf_start + buf_offset; 1045 } 1046 } 1047 } 1048 1049 return 1; 1050 } 1051 1052 /* 1053 * Compression heuristic. 1054 * 1055 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1056 * quickly (compared to direct compression) detect data characteristics 1057 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1058 * data. 1059 * 1060 * The following types of analysis can be performed: 1061 * - detect mostly zero data 1062 * - detect data with low "byte set" size (text, etc) 1063 * - detect data with low/high "core byte" set 1064 * 1065 * Return non-zero if the compression should be done, 0 otherwise. 1066 */ 1067 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1068 { 1069 u64 index = start >> PAGE_SHIFT; 1070 u64 end_index = end >> PAGE_SHIFT; 1071 struct page *page; 1072 int ret = 1; 1073 1074 while (index <= end_index) { 1075 page = find_get_page(inode->i_mapping, index); 1076 kmap(page); 1077 kunmap(page); 1078 put_page(page); 1079 index++; 1080 } 1081 1082 return ret; 1083 } 1084