xref: /openbmc/linux/fs/btrfs/compression.c (revision 2359ccdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/log2.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "btrfs_inode.h"
28 #include "volumes.h"
29 #include "ordered-data.h"
30 #include "compression.h"
31 #include "extent_io.h"
32 #include "extent_map.h"
33 
34 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
35 
36 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37 {
38 	switch (type) {
39 	case BTRFS_COMPRESS_ZLIB:
40 	case BTRFS_COMPRESS_LZO:
41 	case BTRFS_COMPRESS_ZSTD:
42 	case BTRFS_COMPRESS_NONE:
43 		return btrfs_compress_types[type];
44 	}
45 
46 	return NULL;
47 }
48 
49 static int btrfs_decompress_bio(struct compressed_bio *cb);
50 
51 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
52 				      unsigned long disk_size)
53 {
54 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
55 
56 	return sizeof(struct compressed_bio) +
57 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
58 }
59 
60 static int check_compressed_csum(struct btrfs_inode *inode,
61 				 struct compressed_bio *cb,
62 				 u64 disk_start)
63 {
64 	int ret;
65 	struct page *page;
66 	unsigned long i;
67 	char *kaddr;
68 	u32 csum;
69 	u32 *cb_sum = &cb->sums;
70 
71 	if (inode->flags & BTRFS_INODE_NODATASUM)
72 		return 0;
73 
74 	for (i = 0; i < cb->nr_pages; i++) {
75 		page = cb->compressed_pages[i];
76 		csum = ~(u32)0;
77 
78 		kaddr = kmap_atomic(page);
79 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
80 		btrfs_csum_final(csum, (u8 *)&csum);
81 		kunmap_atomic(kaddr);
82 
83 		if (csum != *cb_sum) {
84 			btrfs_print_data_csum_error(inode, disk_start, csum,
85 					*cb_sum, cb->mirror_num);
86 			ret = -EIO;
87 			goto fail;
88 		}
89 		cb_sum++;
90 
91 	}
92 	ret = 0;
93 fail:
94 	return ret;
95 }
96 
97 /* when we finish reading compressed pages from the disk, we
98  * decompress them and then run the bio end_io routines on the
99  * decompressed pages (in the inode address space).
100  *
101  * This allows the checksumming and other IO error handling routines
102  * to work normally
103  *
104  * The compressed pages are freed here, and it must be run
105  * in process context
106  */
107 static void end_compressed_bio_read(struct bio *bio)
108 {
109 	struct compressed_bio *cb = bio->bi_private;
110 	struct inode *inode;
111 	struct page *page;
112 	unsigned long index;
113 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
114 	int ret = 0;
115 
116 	if (bio->bi_status)
117 		cb->errors = 1;
118 
119 	/* if there are more bios still pending for this compressed
120 	 * extent, just exit
121 	 */
122 	if (!refcount_dec_and_test(&cb->pending_bios))
123 		goto out;
124 
125 	/*
126 	 * Record the correct mirror_num in cb->orig_bio so that
127 	 * read-repair can work properly.
128 	 */
129 	ASSERT(btrfs_io_bio(cb->orig_bio));
130 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
131 	cb->mirror_num = mirror;
132 
133 	/*
134 	 * Some IO in this cb have failed, just skip checksum as there
135 	 * is no way it could be correct.
136 	 */
137 	if (cb->errors == 1)
138 		goto csum_failed;
139 
140 	inode = cb->inode;
141 	ret = check_compressed_csum(BTRFS_I(inode), cb,
142 				    (u64)bio->bi_iter.bi_sector << 9);
143 	if (ret)
144 		goto csum_failed;
145 
146 	/* ok, we're the last bio for this extent, lets start
147 	 * the decompression.
148 	 */
149 	ret = btrfs_decompress_bio(cb);
150 
151 csum_failed:
152 	if (ret)
153 		cb->errors = 1;
154 
155 	/* release the compressed pages */
156 	index = 0;
157 	for (index = 0; index < cb->nr_pages; index++) {
158 		page = cb->compressed_pages[index];
159 		page->mapping = NULL;
160 		put_page(page);
161 	}
162 
163 	/* do io completion on the original bio */
164 	if (cb->errors) {
165 		bio_io_error(cb->orig_bio);
166 	} else {
167 		int i;
168 		struct bio_vec *bvec;
169 
170 		/*
171 		 * we have verified the checksum already, set page
172 		 * checked so the end_io handlers know about it
173 		 */
174 		ASSERT(!bio_flagged(bio, BIO_CLONED));
175 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
176 			SetPageChecked(bvec->bv_page);
177 
178 		bio_endio(cb->orig_bio);
179 	}
180 
181 	/* finally free the cb struct */
182 	kfree(cb->compressed_pages);
183 	kfree(cb);
184 out:
185 	bio_put(bio);
186 }
187 
188 /*
189  * Clear the writeback bits on all of the file
190  * pages for a compressed write
191  */
192 static noinline void end_compressed_writeback(struct inode *inode,
193 					      const struct compressed_bio *cb)
194 {
195 	unsigned long index = cb->start >> PAGE_SHIFT;
196 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
197 	struct page *pages[16];
198 	unsigned long nr_pages = end_index - index + 1;
199 	int i;
200 	int ret;
201 
202 	if (cb->errors)
203 		mapping_set_error(inode->i_mapping, -EIO);
204 
205 	while (nr_pages > 0) {
206 		ret = find_get_pages_contig(inode->i_mapping, index,
207 				     min_t(unsigned long,
208 				     nr_pages, ARRAY_SIZE(pages)), pages);
209 		if (ret == 0) {
210 			nr_pages -= 1;
211 			index += 1;
212 			continue;
213 		}
214 		for (i = 0; i < ret; i++) {
215 			if (cb->errors)
216 				SetPageError(pages[i]);
217 			end_page_writeback(pages[i]);
218 			put_page(pages[i]);
219 		}
220 		nr_pages -= ret;
221 		index += ret;
222 	}
223 	/* the inode may be gone now */
224 }
225 
226 /*
227  * do the cleanup once all the compressed pages hit the disk.
228  * This will clear writeback on the file pages and free the compressed
229  * pages.
230  *
231  * This also calls the writeback end hooks for the file pages so that
232  * metadata and checksums can be updated in the file.
233  */
234 static void end_compressed_bio_write(struct bio *bio)
235 {
236 	struct extent_io_tree *tree;
237 	struct compressed_bio *cb = bio->bi_private;
238 	struct inode *inode;
239 	struct page *page;
240 	unsigned long index;
241 
242 	if (bio->bi_status)
243 		cb->errors = 1;
244 
245 	/* if there are more bios still pending for this compressed
246 	 * extent, just exit
247 	 */
248 	if (!refcount_dec_and_test(&cb->pending_bios))
249 		goto out;
250 
251 	/* ok, we're the last bio for this extent, step one is to
252 	 * call back into the FS and do all the end_io operations
253 	 */
254 	inode = cb->inode;
255 	tree = &BTRFS_I(inode)->io_tree;
256 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
257 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
258 					 cb->start,
259 					 cb->start + cb->len - 1,
260 					 NULL,
261 					 bio->bi_status ?
262 					 BLK_STS_OK : BLK_STS_NOTSUPP);
263 	cb->compressed_pages[0]->mapping = NULL;
264 
265 	end_compressed_writeback(inode, cb);
266 	/* note, our inode could be gone now */
267 
268 	/*
269 	 * release the compressed pages, these came from alloc_page and
270 	 * are not attached to the inode at all
271 	 */
272 	index = 0;
273 	for (index = 0; index < cb->nr_pages; index++) {
274 		page = cb->compressed_pages[index];
275 		page->mapping = NULL;
276 		put_page(page);
277 	}
278 
279 	/* finally free the cb struct */
280 	kfree(cb->compressed_pages);
281 	kfree(cb);
282 out:
283 	bio_put(bio);
284 }
285 
286 /*
287  * worker function to build and submit bios for previously compressed pages.
288  * The corresponding pages in the inode should be marked for writeback
289  * and the compressed pages should have a reference on them for dropping
290  * when the IO is complete.
291  *
292  * This also checksums the file bytes and gets things ready for
293  * the end io hooks.
294  */
295 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
296 				 unsigned long len, u64 disk_start,
297 				 unsigned long compressed_len,
298 				 struct page **compressed_pages,
299 				 unsigned long nr_pages,
300 				 unsigned int write_flags)
301 {
302 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 	struct bio *bio = NULL;
304 	struct compressed_bio *cb;
305 	unsigned long bytes_left;
306 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
307 	int pg_index = 0;
308 	struct page *page;
309 	u64 first_byte = disk_start;
310 	struct block_device *bdev;
311 	blk_status_t ret;
312 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
313 
314 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
315 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
316 	if (!cb)
317 		return BLK_STS_RESOURCE;
318 	refcount_set(&cb->pending_bios, 0);
319 	cb->errors = 0;
320 	cb->inode = inode;
321 	cb->start = start;
322 	cb->len = len;
323 	cb->mirror_num = 0;
324 	cb->compressed_pages = compressed_pages;
325 	cb->compressed_len = compressed_len;
326 	cb->orig_bio = NULL;
327 	cb->nr_pages = nr_pages;
328 
329 	bdev = fs_info->fs_devices->latest_bdev;
330 
331 	bio = btrfs_bio_alloc(bdev, first_byte);
332 	bio->bi_opf = REQ_OP_WRITE | write_flags;
333 	bio->bi_private = cb;
334 	bio->bi_end_io = end_compressed_bio_write;
335 	refcount_set(&cb->pending_bios, 1);
336 
337 	/* create and submit bios for the compressed pages */
338 	bytes_left = compressed_len;
339 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
340 		int submit = 0;
341 
342 		page = compressed_pages[pg_index];
343 		page->mapping = inode->i_mapping;
344 		if (bio->bi_iter.bi_size)
345 			submit = io_tree->ops->merge_bio_hook(page, 0,
346 							   PAGE_SIZE,
347 							   bio, 0);
348 
349 		page->mapping = NULL;
350 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
351 		    PAGE_SIZE) {
352 			/*
353 			 * inc the count before we submit the bio so
354 			 * we know the end IO handler won't happen before
355 			 * we inc the count.  Otherwise, the cb might get
356 			 * freed before we're done setting it up
357 			 */
358 			refcount_inc(&cb->pending_bios);
359 			ret = btrfs_bio_wq_end_io(fs_info, bio,
360 						  BTRFS_WQ_ENDIO_DATA);
361 			BUG_ON(ret); /* -ENOMEM */
362 
363 			if (!skip_sum) {
364 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
365 				BUG_ON(ret); /* -ENOMEM */
366 			}
367 
368 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
369 			if (ret) {
370 				bio->bi_status = ret;
371 				bio_endio(bio);
372 			}
373 
374 			bio = btrfs_bio_alloc(bdev, first_byte);
375 			bio->bi_opf = REQ_OP_WRITE | write_flags;
376 			bio->bi_private = cb;
377 			bio->bi_end_io = end_compressed_bio_write;
378 			bio_add_page(bio, page, PAGE_SIZE, 0);
379 		}
380 		if (bytes_left < PAGE_SIZE) {
381 			btrfs_info(fs_info,
382 					"bytes left %lu compress len %lu nr %lu",
383 			       bytes_left, cb->compressed_len, cb->nr_pages);
384 		}
385 		bytes_left -= PAGE_SIZE;
386 		first_byte += PAGE_SIZE;
387 		cond_resched();
388 	}
389 
390 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
391 	BUG_ON(ret); /* -ENOMEM */
392 
393 	if (!skip_sum) {
394 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
395 		BUG_ON(ret); /* -ENOMEM */
396 	}
397 
398 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
399 	if (ret) {
400 		bio->bi_status = ret;
401 		bio_endio(bio);
402 	}
403 
404 	return 0;
405 }
406 
407 static u64 bio_end_offset(struct bio *bio)
408 {
409 	struct bio_vec *last = bio_last_bvec_all(bio);
410 
411 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
412 }
413 
414 static noinline int add_ra_bio_pages(struct inode *inode,
415 				     u64 compressed_end,
416 				     struct compressed_bio *cb)
417 {
418 	unsigned long end_index;
419 	unsigned long pg_index;
420 	u64 last_offset;
421 	u64 isize = i_size_read(inode);
422 	int ret;
423 	struct page *page;
424 	unsigned long nr_pages = 0;
425 	struct extent_map *em;
426 	struct address_space *mapping = inode->i_mapping;
427 	struct extent_map_tree *em_tree;
428 	struct extent_io_tree *tree;
429 	u64 end;
430 	int misses = 0;
431 
432 	last_offset = bio_end_offset(cb->orig_bio);
433 	em_tree = &BTRFS_I(inode)->extent_tree;
434 	tree = &BTRFS_I(inode)->io_tree;
435 
436 	if (isize == 0)
437 		return 0;
438 
439 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
440 
441 	while (last_offset < compressed_end) {
442 		pg_index = last_offset >> PAGE_SHIFT;
443 
444 		if (pg_index > end_index)
445 			break;
446 
447 		rcu_read_lock();
448 		page = radix_tree_lookup(&mapping->i_pages, pg_index);
449 		rcu_read_unlock();
450 		if (page && !radix_tree_exceptional_entry(page)) {
451 			misses++;
452 			if (misses > 4)
453 				break;
454 			goto next;
455 		}
456 
457 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
458 								 ~__GFP_FS));
459 		if (!page)
460 			break;
461 
462 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
463 			put_page(page);
464 			goto next;
465 		}
466 
467 		end = last_offset + PAGE_SIZE - 1;
468 		/*
469 		 * at this point, we have a locked page in the page cache
470 		 * for these bytes in the file.  But, we have to make
471 		 * sure they map to this compressed extent on disk.
472 		 */
473 		set_page_extent_mapped(page);
474 		lock_extent(tree, last_offset, end);
475 		read_lock(&em_tree->lock);
476 		em = lookup_extent_mapping(em_tree, last_offset,
477 					   PAGE_SIZE);
478 		read_unlock(&em_tree->lock);
479 
480 		if (!em || last_offset < em->start ||
481 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
482 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
483 			free_extent_map(em);
484 			unlock_extent(tree, last_offset, end);
485 			unlock_page(page);
486 			put_page(page);
487 			break;
488 		}
489 		free_extent_map(em);
490 
491 		if (page->index == end_index) {
492 			char *userpage;
493 			size_t zero_offset = isize & (PAGE_SIZE - 1);
494 
495 			if (zero_offset) {
496 				int zeros;
497 				zeros = PAGE_SIZE - zero_offset;
498 				userpage = kmap_atomic(page);
499 				memset(userpage + zero_offset, 0, zeros);
500 				flush_dcache_page(page);
501 				kunmap_atomic(userpage);
502 			}
503 		}
504 
505 		ret = bio_add_page(cb->orig_bio, page,
506 				   PAGE_SIZE, 0);
507 
508 		if (ret == PAGE_SIZE) {
509 			nr_pages++;
510 			put_page(page);
511 		} else {
512 			unlock_extent(tree, last_offset, end);
513 			unlock_page(page);
514 			put_page(page);
515 			break;
516 		}
517 next:
518 		last_offset += PAGE_SIZE;
519 	}
520 	return 0;
521 }
522 
523 /*
524  * for a compressed read, the bio we get passed has all the inode pages
525  * in it.  We don't actually do IO on those pages but allocate new ones
526  * to hold the compressed pages on disk.
527  *
528  * bio->bi_iter.bi_sector points to the compressed extent on disk
529  * bio->bi_io_vec points to all of the inode pages
530  *
531  * After the compressed pages are read, we copy the bytes into the
532  * bio we were passed and then call the bio end_io calls
533  */
534 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
535 				 int mirror_num, unsigned long bio_flags)
536 {
537 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
538 	struct extent_io_tree *tree;
539 	struct extent_map_tree *em_tree;
540 	struct compressed_bio *cb;
541 	unsigned long compressed_len;
542 	unsigned long nr_pages;
543 	unsigned long pg_index;
544 	struct page *page;
545 	struct block_device *bdev;
546 	struct bio *comp_bio;
547 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
548 	u64 em_len;
549 	u64 em_start;
550 	struct extent_map *em;
551 	blk_status_t ret = BLK_STS_RESOURCE;
552 	int faili = 0;
553 	u32 *sums;
554 
555 	tree = &BTRFS_I(inode)->io_tree;
556 	em_tree = &BTRFS_I(inode)->extent_tree;
557 
558 	/* we need the actual starting offset of this extent in the file */
559 	read_lock(&em_tree->lock);
560 	em = lookup_extent_mapping(em_tree,
561 				   page_offset(bio_first_page_all(bio)),
562 				   PAGE_SIZE);
563 	read_unlock(&em_tree->lock);
564 	if (!em)
565 		return BLK_STS_IOERR;
566 
567 	compressed_len = em->block_len;
568 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
569 	if (!cb)
570 		goto out;
571 
572 	refcount_set(&cb->pending_bios, 0);
573 	cb->errors = 0;
574 	cb->inode = inode;
575 	cb->mirror_num = mirror_num;
576 	sums = &cb->sums;
577 
578 	cb->start = em->orig_start;
579 	em_len = em->len;
580 	em_start = em->start;
581 
582 	free_extent_map(em);
583 	em = NULL;
584 
585 	cb->len = bio->bi_iter.bi_size;
586 	cb->compressed_len = compressed_len;
587 	cb->compress_type = extent_compress_type(bio_flags);
588 	cb->orig_bio = bio;
589 
590 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
591 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
592 				       GFP_NOFS);
593 	if (!cb->compressed_pages)
594 		goto fail1;
595 
596 	bdev = fs_info->fs_devices->latest_bdev;
597 
598 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
599 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
600 							      __GFP_HIGHMEM);
601 		if (!cb->compressed_pages[pg_index]) {
602 			faili = pg_index - 1;
603 			ret = BLK_STS_RESOURCE;
604 			goto fail2;
605 		}
606 	}
607 	faili = nr_pages - 1;
608 	cb->nr_pages = nr_pages;
609 
610 	add_ra_bio_pages(inode, em_start + em_len, cb);
611 
612 	/* include any pages we added in add_ra-bio_pages */
613 	cb->len = bio->bi_iter.bi_size;
614 
615 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
616 	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
617 	comp_bio->bi_private = cb;
618 	comp_bio->bi_end_io = end_compressed_bio_read;
619 	refcount_set(&cb->pending_bios, 1);
620 
621 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
622 		int submit = 0;
623 
624 		page = cb->compressed_pages[pg_index];
625 		page->mapping = inode->i_mapping;
626 		page->index = em_start >> PAGE_SHIFT;
627 
628 		if (comp_bio->bi_iter.bi_size)
629 			submit = tree->ops->merge_bio_hook(page, 0,
630 							PAGE_SIZE,
631 							comp_bio, 0);
632 
633 		page->mapping = NULL;
634 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
635 		    PAGE_SIZE) {
636 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
637 						  BTRFS_WQ_ENDIO_DATA);
638 			BUG_ON(ret); /* -ENOMEM */
639 
640 			/*
641 			 * inc the count before we submit the bio so
642 			 * we know the end IO handler won't happen before
643 			 * we inc the count.  Otherwise, the cb might get
644 			 * freed before we're done setting it up
645 			 */
646 			refcount_inc(&cb->pending_bios);
647 
648 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
649 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
650 							    sums);
651 				BUG_ON(ret); /* -ENOMEM */
652 			}
653 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
654 					     fs_info->sectorsize);
655 
656 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
657 			if (ret) {
658 				comp_bio->bi_status = ret;
659 				bio_endio(comp_bio);
660 			}
661 
662 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
663 			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
664 			comp_bio->bi_private = cb;
665 			comp_bio->bi_end_io = end_compressed_bio_read;
666 
667 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
668 		}
669 		cur_disk_byte += PAGE_SIZE;
670 	}
671 
672 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
673 	BUG_ON(ret); /* -ENOMEM */
674 
675 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
676 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
677 		BUG_ON(ret); /* -ENOMEM */
678 	}
679 
680 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
681 	if (ret) {
682 		comp_bio->bi_status = ret;
683 		bio_endio(comp_bio);
684 	}
685 
686 	return 0;
687 
688 fail2:
689 	while (faili >= 0) {
690 		__free_page(cb->compressed_pages[faili]);
691 		faili--;
692 	}
693 
694 	kfree(cb->compressed_pages);
695 fail1:
696 	kfree(cb);
697 out:
698 	free_extent_map(em);
699 	return ret;
700 }
701 
702 /*
703  * Heuristic uses systematic sampling to collect data from the input data
704  * range, the logic can be tuned by the following constants:
705  *
706  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
707  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
708  */
709 #define SAMPLING_READ_SIZE	(16)
710 #define SAMPLING_INTERVAL	(256)
711 
712 /*
713  * For statistical analysis of the input data we consider bytes that form a
714  * Galois Field of 256 objects. Each object has an attribute count, ie. how
715  * many times the object appeared in the sample.
716  */
717 #define BUCKET_SIZE		(256)
718 
719 /*
720  * The size of the sample is based on a statistical sampling rule of thumb.
721  * The common way is to perform sampling tests as long as the number of
722  * elements in each cell is at least 5.
723  *
724  * Instead of 5, we choose 32 to obtain more accurate results.
725  * If the data contain the maximum number of symbols, which is 256, we obtain a
726  * sample size bound by 8192.
727  *
728  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
729  * from up to 512 locations.
730  */
731 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
732 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
733 
734 struct bucket_item {
735 	u32 count;
736 };
737 
738 struct heuristic_ws {
739 	/* Partial copy of input data */
740 	u8 *sample;
741 	u32 sample_size;
742 	/* Buckets store counters for each byte value */
743 	struct bucket_item *bucket;
744 	/* Sorting buffer */
745 	struct bucket_item *bucket_b;
746 	struct list_head list;
747 };
748 
749 static void free_heuristic_ws(struct list_head *ws)
750 {
751 	struct heuristic_ws *workspace;
752 
753 	workspace = list_entry(ws, struct heuristic_ws, list);
754 
755 	kvfree(workspace->sample);
756 	kfree(workspace->bucket);
757 	kfree(workspace->bucket_b);
758 	kfree(workspace);
759 }
760 
761 static struct list_head *alloc_heuristic_ws(void)
762 {
763 	struct heuristic_ws *ws;
764 
765 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
766 	if (!ws)
767 		return ERR_PTR(-ENOMEM);
768 
769 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
770 	if (!ws->sample)
771 		goto fail;
772 
773 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
774 	if (!ws->bucket)
775 		goto fail;
776 
777 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
778 	if (!ws->bucket_b)
779 		goto fail;
780 
781 	INIT_LIST_HEAD(&ws->list);
782 	return &ws->list;
783 fail:
784 	free_heuristic_ws(&ws->list);
785 	return ERR_PTR(-ENOMEM);
786 }
787 
788 struct workspaces_list {
789 	struct list_head idle_ws;
790 	spinlock_t ws_lock;
791 	/* Number of free workspaces */
792 	int free_ws;
793 	/* Total number of allocated workspaces */
794 	atomic_t total_ws;
795 	/* Waiters for a free workspace */
796 	wait_queue_head_t ws_wait;
797 };
798 
799 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
800 
801 static struct workspaces_list btrfs_heuristic_ws;
802 
803 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
804 	&btrfs_zlib_compress,
805 	&btrfs_lzo_compress,
806 	&btrfs_zstd_compress,
807 };
808 
809 void __init btrfs_init_compress(void)
810 {
811 	struct list_head *workspace;
812 	int i;
813 
814 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
815 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
816 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
817 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
818 
819 	workspace = alloc_heuristic_ws();
820 	if (IS_ERR(workspace)) {
821 		pr_warn(
822 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
823 	} else {
824 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
825 		btrfs_heuristic_ws.free_ws = 1;
826 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
827 	}
828 
829 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
830 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
831 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
832 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
833 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
834 
835 		/*
836 		 * Preallocate one workspace for each compression type so
837 		 * we can guarantee forward progress in the worst case
838 		 */
839 		workspace = btrfs_compress_op[i]->alloc_workspace();
840 		if (IS_ERR(workspace)) {
841 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
842 		} else {
843 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
844 			btrfs_comp_ws[i].free_ws = 1;
845 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
846 		}
847 	}
848 }
849 
850 /*
851  * This finds an available workspace or allocates a new one.
852  * If it's not possible to allocate a new one, waits until there's one.
853  * Preallocation makes a forward progress guarantees and we do not return
854  * errors.
855  */
856 static struct list_head *__find_workspace(int type, bool heuristic)
857 {
858 	struct list_head *workspace;
859 	int cpus = num_online_cpus();
860 	int idx = type - 1;
861 	unsigned nofs_flag;
862 	struct list_head *idle_ws;
863 	spinlock_t *ws_lock;
864 	atomic_t *total_ws;
865 	wait_queue_head_t *ws_wait;
866 	int *free_ws;
867 
868 	if (heuristic) {
869 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
870 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
871 		total_ws = &btrfs_heuristic_ws.total_ws;
872 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
873 		free_ws	 = &btrfs_heuristic_ws.free_ws;
874 	} else {
875 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
876 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
877 		total_ws = &btrfs_comp_ws[idx].total_ws;
878 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
879 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
880 	}
881 
882 again:
883 	spin_lock(ws_lock);
884 	if (!list_empty(idle_ws)) {
885 		workspace = idle_ws->next;
886 		list_del(workspace);
887 		(*free_ws)--;
888 		spin_unlock(ws_lock);
889 		return workspace;
890 
891 	}
892 	if (atomic_read(total_ws) > cpus) {
893 		DEFINE_WAIT(wait);
894 
895 		spin_unlock(ws_lock);
896 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
897 		if (atomic_read(total_ws) > cpus && !*free_ws)
898 			schedule();
899 		finish_wait(ws_wait, &wait);
900 		goto again;
901 	}
902 	atomic_inc(total_ws);
903 	spin_unlock(ws_lock);
904 
905 	/*
906 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
907 	 * to turn it off here because we might get called from the restricted
908 	 * context of btrfs_compress_bio/btrfs_compress_pages
909 	 */
910 	nofs_flag = memalloc_nofs_save();
911 	if (heuristic)
912 		workspace = alloc_heuristic_ws();
913 	else
914 		workspace = btrfs_compress_op[idx]->alloc_workspace();
915 	memalloc_nofs_restore(nofs_flag);
916 
917 	if (IS_ERR(workspace)) {
918 		atomic_dec(total_ws);
919 		wake_up(ws_wait);
920 
921 		/*
922 		 * Do not return the error but go back to waiting. There's a
923 		 * workspace preallocated for each type and the compression
924 		 * time is bounded so we get to a workspace eventually. This
925 		 * makes our caller's life easier.
926 		 *
927 		 * To prevent silent and low-probability deadlocks (when the
928 		 * initial preallocation fails), check if there are any
929 		 * workspaces at all.
930 		 */
931 		if (atomic_read(total_ws) == 0) {
932 			static DEFINE_RATELIMIT_STATE(_rs,
933 					/* once per minute */ 60 * HZ,
934 					/* no burst */ 1);
935 
936 			if (__ratelimit(&_rs)) {
937 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
938 			}
939 		}
940 		goto again;
941 	}
942 	return workspace;
943 }
944 
945 static struct list_head *find_workspace(int type)
946 {
947 	return __find_workspace(type, false);
948 }
949 
950 /*
951  * put a workspace struct back on the list or free it if we have enough
952  * idle ones sitting around
953  */
954 static void __free_workspace(int type, struct list_head *workspace,
955 			     bool heuristic)
956 {
957 	int idx = type - 1;
958 	struct list_head *idle_ws;
959 	spinlock_t *ws_lock;
960 	atomic_t *total_ws;
961 	wait_queue_head_t *ws_wait;
962 	int *free_ws;
963 
964 	if (heuristic) {
965 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
966 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
967 		total_ws = &btrfs_heuristic_ws.total_ws;
968 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
969 		free_ws	 = &btrfs_heuristic_ws.free_ws;
970 	} else {
971 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
972 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
973 		total_ws = &btrfs_comp_ws[idx].total_ws;
974 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
975 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
976 	}
977 
978 	spin_lock(ws_lock);
979 	if (*free_ws <= num_online_cpus()) {
980 		list_add(workspace, idle_ws);
981 		(*free_ws)++;
982 		spin_unlock(ws_lock);
983 		goto wake;
984 	}
985 	spin_unlock(ws_lock);
986 
987 	if (heuristic)
988 		free_heuristic_ws(workspace);
989 	else
990 		btrfs_compress_op[idx]->free_workspace(workspace);
991 	atomic_dec(total_ws);
992 wake:
993 	/*
994 	 * Make sure counter is updated before we wake up waiters.
995 	 */
996 	smp_mb();
997 	if (waitqueue_active(ws_wait))
998 		wake_up(ws_wait);
999 }
1000 
1001 static void free_workspace(int type, struct list_head *ws)
1002 {
1003 	return __free_workspace(type, ws, false);
1004 }
1005 
1006 /*
1007  * cleanup function for module exit
1008  */
1009 static void free_workspaces(void)
1010 {
1011 	struct list_head *workspace;
1012 	int i;
1013 
1014 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1015 		workspace = btrfs_heuristic_ws.idle_ws.next;
1016 		list_del(workspace);
1017 		free_heuristic_ws(workspace);
1018 		atomic_dec(&btrfs_heuristic_ws.total_ws);
1019 	}
1020 
1021 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1022 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1023 			workspace = btrfs_comp_ws[i].idle_ws.next;
1024 			list_del(workspace);
1025 			btrfs_compress_op[i]->free_workspace(workspace);
1026 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1027 		}
1028 	}
1029 }
1030 
1031 /*
1032  * Given an address space and start and length, compress the bytes into @pages
1033  * that are allocated on demand.
1034  *
1035  * @type_level is encoded algorithm and level, where level 0 means whatever
1036  * default the algorithm chooses and is opaque here;
1037  * - compression algo are 0-3
1038  * - the level are bits 4-7
1039  *
1040  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1041  * and returns number of actually allocated pages
1042  *
1043  * @total_in is used to return the number of bytes actually read.  It
1044  * may be smaller than the input length if we had to exit early because we
1045  * ran out of room in the pages array or because we cross the
1046  * max_out threshold.
1047  *
1048  * @total_out is an in/out parameter, must be set to the input length and will
1049  * be also used to return the total number of compressed bytes
1050  *
1051  * @max_out tells us the max number of bytes that we're allowed to
1052  * stuff into pages
1053  */
1054 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1055 			 u64 start, struct page **pages,
1056 			 unsigned long *out_pages,
1057 			 unsigned long *total_in,
1058 			 unsigned long *total_out)
1059 {
1060 	struct list_head *workspace;
1061 	int ret;
1062 	int type = type_level & 0xF;
1063 
1064 	workspace = find_workspace(type);
1065 
1066 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1067 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1068 						      start, pages,
1069 						      out_pages,
1070 						      total_in, total_out);
1071 	free_workspace(type, workspace);
1072 	return ret;
1073 }
1074 
1075 /*
1076  * pages_in is an array of pages with compressed data.
1077  *
1078  * disk_start is the starting logical offset of this array in the file
1079  *
1080  * orig_bio contains the pages from the file that we want to decompress into
1081  *
1082  * srclen is the number of bytes in pages_in
1083  *
1084  * The basic idea is that we have a bio that was created by readpages.
1085  * The pages in the bio are for the uncompressed data, and they may not
1086  * be contiguous.  They all correspond to the range of bytes covered by
1087  * the compressed extent.
1088  */
1089 static int btrfs_decompress_bio(struct compressed_bio *cb)
1090 {
1091 	struct list_head *workspace;
1092 	int ret;
1093 	int type = cb->compress_type;
1094 
1095 	workspace = find_workspace(type);
1096 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1097 	free_workspace(type, workspace);
1098 
1099 	return ret;
1100 }
1101 
1102 /*
1103  * a less complex decompression routine.  Our compressed data fits in a
1104  * single page, and we want to read a single page out of it.
1105  * start_byte tells us the offset into the compressed data we're interested in
1106  */
1107 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1108 		     unsigned long start_byte, size_t srclen, size_t destlen)
1109 {
1110 	struct list_head *workspace;
1111 	int ret;
1112 
1113 	workspace = find_workspace(type);
1114 
1115 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1116 						  dest_page, start_byte,
1117 						  srclen, destlen);
1118 
1119 	free_workspace(type, workspace);
1120 	return ret;
1121 }
1122 
1123 void __cold btrfs_exit_compress(void)
1124 {
1125 	free_workspaces();
1126 }
1127 
1128 /*
1129  * Copy uncompressed data from working buffer to pages.
1130  *
1131  * buf_start is the byte offset we're of the start of our workspace buffer.
1132  *
1133  * total_out is the last byte of the buffer
1134  */
1135 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1136 			      unsigned long total_out, u64 disk_start,
1137 			      struct bio *bio)
1138 {
1139 	unsigned long buf_offset;
1140 	unsigned long current_buf_start;
1141 	unsigned long start_byte;
1142 	unsigned long prev_start_byte;
1143 	unsigned long working_bytes = total_out - buf_start;
1144 	unsigned long bytes;
1145 	char *kaddr;
1146 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1147 
1148 	/*
1149 	 * start byte is the first byte of the page we're currently
1150 	 * copying into relative to the start of the compressed data.
1151 	 */
1152 	start_byte = page_offset(bvec.bv_page) - disk_start;
1153 
1154 	/* we haven't yet hit data corresponding to this page */
1155 	if (total_out <= start_byte)
1156 		return 1;
1157 
1158 	/*
1159 	 * the start of the data we care about is offset into
1160 	 * the middle of our working buffer
1161 	 */
1162 	if (total_out > start_byte && buf_start < start_byte) {
1163 		buf_offset = start_byte - buf_start;
1164 		working_bytes -= buf_offset;
1165 	} else {
1166 		buf_offset = 0;
1167 	}
1168 	current_buf_start = buf_start;
1169 
1170 	/* copy bytes from the working buffer into the pages */
1171 	while (working_bytes > 0) {
1172 		bytes = min_t(unsigned long, bvec.bv_len,
1173 				PAGE_SIZE - buf_offset);
1174 		bytes = min(bytes, working_bytes);
1175 
1176 		kaddr = kmap_atomic(bvec.bv_page);
1177 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1178 		kunmap_atomic(kaddr);
1179 		flush_dcache_page(bvec.bv_page);
1180 
1181 		buf_offset += bytes;
1182 		working_bytes -= bytes;
1183 		current_buf_start += bytes;
1184 
1185 		/* check if we need to pick another page */
1186 		bio_advance(bio, bytes);
1187 		if (!bio->bi_iter.bi_size)
1188 			return 0;
1189 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1190 		prev_start_byte = start_byte;
1191 		start_byte = page_offset(bvec.bv_page) - disk_start;
1192 
1193 		/*
1194 		 * We need to make sure we're only adjusting
1195 		 * our offset into compression working buffer when
1196 		 * we're switching pages.  Otherwise we can incorrectly
1197 		 * keep copying when we were actually done.
1198 		 */
1199 		if (start_byte != prev_start_byte) {
1200 			/*
1201 			 * make sure our new page is covered by this
1202 			 * working buffer
1203 			 */
1204 			if (total_out <= start_byte)
1205 				return 1;
1206 
1207 			/*
1208 			 * the next page in the biovec might not be adjacent
1209 			 * to the last page, but it might still be found
1210 			 * inside this working buffer. bump our offset pointer
1211 			 */
1212 			if (total_out > start_byte &&
1213 			    current_buf_start < start_byte) {
1214 				buf_offset = start_byte - buf_start;
1215 				working_bytes = total_out - start_byte;
1216 				current_buf_start = buf_start + buf_offset;
1217 			}
1218 		}
1219 	}
1220 
1221 	return 1;
1222 }
1223 
1224 /*
1225  * Shannon Entropy calculation
1226  *
1227  * Pure byte distribution analysis fails to determine compressiability of data.
1228  * Try calculating entropy to estimate the average minimum number of bits
1229  * needed to encode the sampled data.
1230  *
1231  * For convenience, return the percentage of needed bits, instead of amount of
1232  * bits directly.
1233  *
1234  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1235  *			    and can be compressible with high probability
1236  *
1237  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1238  *
1239  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1240  */
1241 #define ENTROPY_LVL_ACEPTABLE		(65)
1242 #define ENTROPY_LVL_HIGH		(80)
1243 
1244 /*
1245  * For increasead precision in shannon_entropy calculation,
1246  * let's do pow(n, M) to save more digits after comma:
1247  *
1248  * - maximum int bit length is 64
1249  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1250  * - 13 * 4 = 52 < 64		-> M = 4
1251  *
1252  * So use pow(n, 4).
1253  */
1254 static inline u32 ilog2_w(u64 n)
1255 {
1256 	return ilog2(n * n * n * n);
1257 }
1258 
1259 static u32 shannon_entropy(struct heuristic_ws *ws)
1260 {
1261 	const u32 entropy_max = 8 * ilog2_w(2);
1262 	u32 entropy_sum = 0;
1263 	u32 p, p_base, sz_base;
1264 	u32 i;
1265 
1266 	sz_base = ilog2_w(ws->sample_size);
1267 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1268 		p = ws->bucket[i].count;
1269 		p_base = ilog2_w(p);
1270 		entropy_sum += p * (sz_base - p_base);
1271 	}
1272 
1273 	entropy_sum /= ws->sample_size;
1274 	return entropy_sum * 100 / entropy_max;
1275 }
1276 
1277 #define RADIX_BASE		4U
1278 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1279 
1280 static u8 get4bits(u64 num, int shift) {
1281 	u8 low4bits;
1282 
1283 	num >>= shift;
1284 	/* Reverse order */
1285 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1286 	return low4bits;
1287 }
1288 
1289 /*
1290  * Use 4 bits as radix base
1291  * Use 16 u32 counters for calculating new possition in buf array
1292  *
1293  * @array     - array that will be sorted
1294  * @array_buf - buffer array to store sorting results
1295  *              must be equal in size to @array
1296  * @num       - array size
1297  */
1298 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1299 		       int num)
1300 {
1301 	u64 max_num;
1302 	u64 buf_num;
1303 	u32 counters[COUNTERS_SIZE];
1304 	u32 new_addr;
1305 	u32 addr;
1306 	int bitlen;
1307 	int shift;
1308 	int i;
1309 
1310 	/*
1311 	 * Try avoid useless loop iterations for small numbers stored in big
1312 	 * counters.  Example: 48 33 4 ... in 64bit array
1313 	 */
1314 	max_num = array[0].count;
1315 	for (i = 1; i < num; i++) {
1316 		buf_num = array[i].count;
1317 		if (buf_num > max_num)
1318 			max_num = buf_num;
1319 	}
1320 
1321 	buf_num = ilog2(max_num);
1322 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1323 
1324 	shift = 0;
1325 	while (shift < bitlen) {
1326 		memset(counters, 0, sizeof(counters));
1327 
1328 		for (i = 0; i < num; i++) {
1329 			buf_num = array[i].count;
1330 			addr = get4bits(buf_num, shift);
1331 			counters[addr]++;
1332 		}
1333 
1334 		for (i = 1; i < COUNTERS_SIZE; i++)
1335 			counters[i] += counters[i - 1];
1336 
1337 		for (i = num - 1; i >= 0; i--) {
1338 			buf_num = array[i].count;
1339 			addr = get4bits(buf_num, shift);
1340 			counters[addr]--;
1341 			new_addr = counters[addr];
1342 			array_buf[new_addr] = array[i];
1343 		}
1344 
1345 		shift += RADIX_BASE;
1346 
1347 		/*
1348 		 * Normal radix expects to move data from a temporary array, to
1349 		 * the main one.  But that requires some CPU time. Avoid that
1350 		 * by doing another sort iteration to original array instead of
1351 		 * memcpy()
1352 		 */
1353 		memset(counters, 0, sizeof(counters));
1354 
1355 		for (i = 0; i < num; i ++) {
1356 			buf_num = array_buf[i].count;
1357 			addr = get4bits(buf_num, shift);
1358 			counters[addr]++;
1359 		}
1360 
1361 		for (i = 1; i < COUNTERS_SIZE; i++)
1362 			counters[i] += counters[i - 1];
1363 
1364 		for (i = num - 1; i >= 0; i--) {
1365 			buf_num = array_buf[i].count;
1366 			addr = get4bits(buf_num, shift);
1367 			counters[addr]--;
1368 			new_addr = counters[addr];
1369 			array[new_addr] = array_buf[i];
1370 		}
1371 
1372 		shift += RADIX_BASE;
1373 	}
1374 }
1375 
1376 /*
1377  * Size of the core byte set - how many bytes cover 90% of the sample
1378  *
1379  * There are several types of structured binary data that use nearly all byte
1380  * values. The distribution can be uniform and counts in all buckets will be
1381  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1382  *
1383  * Other possibility is normal (Gaussian) distribution, where the data could
1384  * be potentially compressible, but we have to take a few more steps to decide
1385  * how much.
1386  *
1387  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1388  *                       compression algo can easy fix that
1389  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1390  *                       probability is not compressible
1391  */
1392 #define BYTE_CORE_SET_LOW		(64)
1393 #define BYTE_CORE_SET_HIGH		(200)
1394 
1395 static int byte_core_set_size(struct heuristic_ws *ws)
1396 {
1397 	u32 i;
1398 	u32 coreset_sum = 0;
1399 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1400 	struct bucket_item *bucket = ws->bucket;
1401 
1402 	/* Sort in reverse order */
1403 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1404 
1405 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1406 		coreset_sum += bucket[i].count;
1407 
1408 	if (coreset_sum > core_set_threshold)
1409 		return i;
1410 
1411 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1412 		coreset_sum += bucket[i].count;
1413 		if (coreset_sum > core_set_threshold)
1414 			break;
1415 	}
1416 
1417 	return i;
1418 }
1419 
1420 /*
1421  * Count byte values in buckets.
1422  * This heuristic can detect textual data (configs, xml, json, html, etc).
1423  * Because in most text-like data byte set is restricted to limited number of
1424  * possible characters, and that restriction in most cases makes data easy to
1425  * compress.
1426  *
1427  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1428  *	less - compressible
1429  *	more - need additional analysis
1430  */
1431 #define BYTE_SET_THRESHOLD		(64)
1432 
1433 static u32 byte_set_size(const struct heuristic_ws *ws)
1434 {
1435 	u32 i;
1436 	u32 byte_set_size = 0;
1437 
1438 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1439 		if (ws->bucket[i].count > 0)
1440 			byte_set_size++;
1441 	}
1442 
1443 	/*
1444 	 * Continue collecting count of byte values in buckets.  If the byte
1445 	 * set size is bigger then the threshold, it's pointless to continue,
1446 	 * the detection technique would fail for this type of data.
1447 	 */
1448 	for (; i < BUCKET_SIZE; i++) {
1449 		if (ws->bucket[i].count > 0) {
1450 			byte_set_size++;
1451 			if (byte_set_size > BYTE_SET_THRESHOLD)
1452 				return byte_set_size;
1453 		}
1454 	}
1455 
1456 	return byte_set_size;
1457 }
1458 
1459 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1460 {
1461 	const u32 half_of_sample = ws->sample_size / 2;
1462 	const u8 *data = ws->sample;
1463 
1464 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1465 }
1466 
1467 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1468 				     struct heuristic_ws *ws)
1469 {
1470 	struct page *page;
1471 	u64 index, index_end;
1472 	u32 i, curr_sample_pos;
1473 	u8 *in_data;
1474 
1475 	/*
1476 	 * Compression handles the input data by chunks of 128KiB
1477 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1478 	 *
1479 	 * We do the same for the heuristic and loop over the whole range.
1480 	 *
1481 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1482 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1483 	 */
1484 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1485 		end = start + BTRFS_MAX_UNCOMPRESSED;
1486 
1487 	index = start >> PAGE_SHIFT;
1488 	index_end = end >> PAGE_SHIFT;
1489 
1490 	/* Don't miss unaligned end */
1491 	if (!IS_ALIGNED(end, PAGE_SIZE))
1492 		index_end++;
1493 
1494 	curr_sample_pos = 0;
1495 	while (index < index_end) {
1496 		page = find_get_page(inode->i_mapping, index);
1497 		in_data = kmap(page);
1498 		/* Handle case where the start is not aligned to PAGE_SIZE */
1499 		i = start % PAGE_SIZE;
1500 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1501 			/* Don't sample any garbage from the last page */
1502 			if (start > end - SAMPLING_READ_SIZE)
1503 				break;
1504 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1505 					SAMPLING_READ_SIZE);
1506 			i += SAMPLING_INTERVAL;
1507 			start += SAMPLING_INTERVAL;
1508 			curr_sample_pos += SAMPLING_READ_SIZE;
1509 		}
1510 		kunmap(page);
1511 		put_page(page);
1512 
1513 		index++;
1514 	}
1515 
1516 	ws->sample_size = curr_sample_pos;
1517 }
1518 
1519 /*
1520  * Compression heuristic.
1521  *
1522  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1523  * quickly (compared to direct compression) detect data characteristics
1524  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1525  * data.
1526  *
1527  * The following types of analysis can be performed:
1528  * - detect mostly zero data
1529  * - detect data with low "byte set" size (text, etc)
1530  * - detect data with low/high "core byte" set
1531  *
1532  * Return non-zero if the compression should be done, 0 otherwise.
1533  */
1534 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1535 {
1536 	struct list_head *ws_list = __find_workspace(0, true);
1537 	struct heuristic_ws *ws;
1538 	u32 i;
1539 	u8 byte;
1540 	int ret = 0;
1541 
1542 	ws = list_entry(ws_list, struct heuristic_ws, list);
1543 
1544 	heuristic_collect_sample(inode, start, end, ws);
1545 
1546 	if (sample_repeated_patterns(ws)) {
1547 		ret = 1;
1548 		goto out;
1549 	}
1550 
1551 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1552 
1553 	for (i = 0; i < ws->sample_size; i++) {
1554 		byte = ws->sample[i];
1555 		ws->bucket[byte].count++;
1556 	}
1557 
1558 	i = byte_set_size(ws);
1559 	if (i < BYTE_SET_THRESHOLD) {
1560 		ret = 2;
1561 		goto out;
1562 	}
1563 
1564 	i = byte_core_set_size(ws);
1565 	if (i <= BYTE_CORE_SET_LOW) {
1566 		ret = 3;
1567 		goto out;
1568 	}
1569 
1570 	if (i >= BYTE_CORE_SET_HIGH) {
1571 		ret = 0;
1572 		goto out;
1573 	}
1574 
1575 	i = shannon_entropy(ws);
1576 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1577 		ret = 4;
1578 		goto out;
1579 	}
1580 
1581 	/*
1582 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1583 	 * needed to give green light to compression.
1584 	 *
1585 	 * For now just assume that compression at that level is not worth the
1586 	 * resources because:
1587 	 *
1588 	 * 1. it is possible to defrag the data later
1589 	 *
1590 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1591 	 * values, every bucket has counter at level ~54. The heuristic would
1592 	 * be confused. This can happen when data have some internal repeated
1593 	 * patterns like "abbacbbc...". This can be detected by analyzing
1594 	 * pairs of bytes, which is too costly.
1595 	 */
1596 	if (i < ENTROPY_LVL_HIGH) {
1597 		ret = 5;
1598 		goto out;
1599 	} else {
1600 		ret = 0;
1601 		goto out;
1602 	}
1603 
1604 out:
1605 	__free_workspace(0, ws_list, true);
1606 	return ret;
1607 }
1608 
1609 unsigned int btrfs_compress_str2level(const char *str)
1610 {
1611 	if (strncmp(str, "zlib", 4) != 0)
1612 		return 0;
1613 
1614 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1615 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1616 		return str[5] - '0';
1617 
1618 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1619 }
1620