1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 33 34 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 35 { 36 switch (type) { 37 case BTRFS_COMPRESS_ZLIB: 38 case BTRFS_COMPRESS_LZO: 39 case BTRFS_COMPRESS_ZSTD: 40 case BTRFS_COMPRESS_NONE: 41 return btrfs_compress_types[type]; 42 default: 43 break; 44 } 45 46 return NULL; 47 } 48 49 bool btrfs_compress_is_valid_type(const char *str, size_t len) 50 { 51 int i; 52 53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 54 size_t comp_len = strlen(btrfs_compress_types[i]); 55 56 if (len < comp_len) 57 continue; 58 59 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 60 return true; 61 } 62 return false; 63 } 64 65 static int compression_compress_pages(int type, struct list_head *ws, 66 struct address_space *mapping, u64 start, struct page **pages, 67 unsigned long *out_pages, unsigned long *total_in, 68 unsigned long *total_out) 69 { 70 switch (type) { 71 case BTRFS_COMPRESS_ZLIB: 72 return zlib_compress_pages(ws, mapping, start, pages, 73 out_pages, total_in, total_out); 74 case BTRFS_COMPRESS_LZO: 75 return lzo_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_ZSTD: 78 return zstd_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_NONE: 81 default: 82 /* 83 * This can't happen, the type is validated several times 84 * before we get here. As a sane fallback, return what the 85 * callers will understand as 'no compression happened'. 86 */ 87 return -E2BIG; 88 } 89 } 90 91 static int compression_decompress_bio(int type, struct list_head *ws, 92 struct compressed_bio *cb) 93 { 94 switch (type) { 95 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 96 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 97 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 98 case BTRFS_COMPRESS_NONE: 99 default: 100 /* 101 * This can't happen, the type is validated several times 102 * before we get here. 103 */ 104 BUG(); 105 } 106 } 107 108 static int compression_decompress(int type, struct list_head *ws, 109 unsigned char *data_in, struct page *dest_page, 110 unsigned long start_byte, size_t srclen, size_t destlen) 111 { 112 switch (type) { 113 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 114 start_byte, srclen, destlen); 115 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 116 start_byte, srclen, destlen); 117 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 118 start_byte, srclen, destlen); 119 case BTRFS_COMPRESS_NONE: 120 default: 121 /* 122 * This can't happen, the type is validated several times 123 * before we get here. 124 */ 125 BUG(); 126 } 127 } 128 129 static int btrfs_decompress_bio(struct compressed_bio *cb); 130 131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 132 unsigned long disk_size) 133 { 134 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 135 136 return sizeof(struct compressed_bio) + 137 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 138 } 139 140 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 141 u64 disk_start) 142 { 143 struct btrfs_fs_info *fs_info = inode->root->fs_info; 144 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 145 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 146 struct page *page; 147 unsigned long i; 148 char *kaddr; 149 u8 csum[BTRFS_CSUM_SIZE]; 150 struct compressed_bio *cb = bio->bi_private; 151 u8 *cb_sum = cb->sums; 152 153 if (inode->flags & BTRFS_INODE_NODATASUM) 154 return 0; 155 156 shash->tfm = fs_info->csum_shash; 157 158 for (i = 0; i < cb->nr_pages; i++) { 159 page = cb->compressed_pages[i]; 160 161 kaddr = kmap_atomic(page); 162 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); 163 kunmap_atomic(kaddr); 164 165 if (memcmp(&csum, cb_sum, csum_size)) { 166 btrfs_print_data_csum_error(inode, disk_start, 167 csum, cb_sum, cb->mirror_num); 168 if (btrfs_io_bio(bio)->device) 169 btrfs_dev_stat_inc_and_print( 170 btrfs_io_bio(bio)->device, 171 BTRFS_DEV_STAT_CORRUPTION_ERRS); 172 return -EIO; 173 } 174 cb_sum += csum_size; 175 } 176 return 0; 177 } 178 179 /* when we finish reading compressed pages from the disk, we 180 * decompress them and then run the bio end_io routines on the 181 * decompressed pages (in the inode address space). 182 * 183 * This allows the checksumming and other IO error handling routines 184 * to work normally 185 * 186 * The compressed pages are freed here, and it must be run 187 * in process context 188 */ 189 static void end_compressed_bio_read(struct bio *bio) 190 { 191 struct compressed_bio *cb = bio->bi_private; 192 struct inode *inode; 193 struct page *page; 194 unsigned long index; 195 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 196 int ret = 0; 197 198 if (bio->bi_status) 199 cb->errors = 1; 200 201 /* if there are more bios still pending for this compressed 202 * extent, just exit 203 */ 204 if (!refcount_dec_and_test(&cb->pending_bios)) 205 goto out; 206 207 /* 208 * Record the correct mirror_num in cb->orig_bio so that 209 * read-repair can work properly. 210 */ 211 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 212 cb->mirror_num = mirror; 213 214 /* 215 * Some IO in this cb have failed, just skip checksum as there 216 * is no way it could be correct. 217 */ 218 if (cb->errors == 1) 219 goto csum_failed; 220 221 inode = cb->inode; 222 ret = check_compressed_csum(BTRFS_I(inode), bio, 223 (u64)bio->bi_iter.bi_sector << 9); 224 if (ret) 225 goto csum_failed; 226 227 /* ok, we're the last bio for this extent, lets start 228 * the decompression. 229 */ 230 ret = btrfs_decompress_bio(cb); 231 232 csum_failed: 233 if (ret) 234 cb->errors = 1; 235 236 /* release the compressed pages */ 237 index = 0; 238 for (index = 0; index < cb->nr_pages; index++) { 239 page = cb->compressed_pages[index]; 240 page->mapping = NULL; 241 put_page(page); 242 } 243 244 /* do io completion on the original bio */ 245 if (cb->errors) { 246 bio_io_error(cb->orig_bio); 247 } else { 248 struct bio_vec *bvec; 249 struct bvec_iter_all iter_all; 250 251 /* 252 * we have verified the checksum already, set page 253 * checked so the end_io handlers know about it 254 */ 255 ASSERT(!bio_flagged(bio, BIO_CLONED)); 256 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 257 SetPageChecked(bvec->bv_page); 258 259 bio_endio(cb->orig_bio); 260 } 261 262 /* finally free the cb struct */ 263 kfree(cb->compressed_pages); 264 kfree(cb); 265 out: 266 bio_put(bio); 267 } 268 269 /* 270 * Clear the writeback bits on all of the file 271 * pages for a compressed write 272 */ 273 static noinline void end_compressed_writeback(struct inode *inode, 274 const struct compressed_bio *cb) 275 { 276 unsigned long index = cb->start >> PAGE_SHIFT; 277 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 278 struct page *pages[16]; 279 unsigned long nr_pages = end_index - index + 1; 280 int i; 281 int ret; 282 283 if (cb->errors) 284 mapping_set_error(inode->i_mapping, -EIO); 285 286 while (nr_pages > 0) { 287 ret = find_get_pages_contig(inode->i_mapping, index, 288 min_t(unsigned long, 289 nr_pages, ARRAY_SIZE(pages)), pages); 290 if (ret == 0) { 291 nr_pages -= 1; 292 index += 1; 293 continue; 294 } 295 for (i = 0; i < ret; i++) { 296 if (cb->errors) 297 SetPageError(pages[i]); 298 end_page_writeback(pages[i]); 299 put_page(pages[i]); 300 } 301 nr_pages -= ret; 302 index += ret; 303 } 304 /* the inode may be gone now */ 305 } 306 307 /* 308 * do the cleanup once all the compressed pages hit the disk. 309 * This will clear writeback on the file pages and free the compressed 310 * pages. 311 * 312 * This also calls the writeback end hooks for the file pages so that 313 * metadata and checksums can be updated in the file. 314 */ 315 static void end_compressed_bio_write(struct bio *bio) 316 { 317 struct compressed_bio *cb = bio->bi_private; 318 struct inode *inode; 319 struct page *page; 320 unsigned long index; 321 322 if (bio->bi_status) 323 cb->errors = 1; 324 325 /* if there are more bios still pending for this compressed 326 * extent, just exit 327 */ 328 if (!refcount_dec_and_test(&cb->pending_bios)) 329 goto out; 330 331 /* ok, we're the last bio for this extent, step one is to 332 * call back into the FS and do all the end_io operations 333 */ 334 inode = cb->inode; 335 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 336 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 337 cb->start, cb->start + cb->len - 1, 338 bio->bi_status == BLK_STS_OK); 339 cb->compressed_pages[0]->mapping = NULL; 340 341 end_compressed_writeback(inode, cb); 342 /* note, our inode could be gone now */ 343 344 /* 345 * release the compressed pages, these came from alloc_page and 346 * are not attached to the inode at all 347 */ 348 index = 0; 349 for (index = 0; index < cb->nr_pages; index++) { 350 page = cb->compressed_pages[index]; 351 page->mapping = NULL; 352 put_page(page); 353 } 354 355 /* finally free the cb struct */ 356 kfree(cb->compressed_pages); 357 kfree(cb); 358 out: 359 bio_put(bio); 360 } 361 362 /* 363 * worker function to build and submit bios for previously compressed pages. 364 * The corresponding pages in the inode should be marked for writeback 365 * and the compressed pages should have a reference on them for dropping 366 * when the IO is complete. 367 * 368 * This also checksums the file bytes and gets things ready for 369 * the end io hooks. 370 */ 371 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 372 unsigned long len, u64 disk_start, 373 unsigned long compressed_len, 374 struct page **compressed_pages, 375 unsigned long nr_pages, 376 unsigned int write_flags, 377 struct cgroup_subsys_state *blkcg_css) 378 { 379 struct btrfs_fs_info *fs_info = inode->root->fs_info; 380 struct bio *bio = NULL; 381 struct compressed_bio *cb; 382 unsigned long bytes_left; 383 int pg_index = 0; 384 struct page *page; 385 u64 first_byte = disk_start; 386 blk_status_t ret; 387 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 388 389 WARN_ON(!PAGE_ALIGNED(start)); 390 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 391 if (!cb) 392 return BLK_STS_RESOURCE; 393 refcount_set(&cb->pending_bios, 0); 394 cb->errors = 0; 395 cb->inode = &inode->vfs_inode; 396 cb->start = start; 397 cb->len = len; 398 cb->mirror_num = 0; 399 cb->compressed_pages = compressed_pages; 400 cb->compressed_len = compressed_len; 401 cb->orig_bio = NULL; 402 cb->nr_pages = nr_pages; 403 404 bio = btrfs_bio_alloc(first_byte); 405 bio->bi_opf = REQ_OP_WRITE | write_flags; 406 bio->bi_private = cb; 407 bio->bi_end_io = end_compressed_bio_write; 408 409 if (blkcg_css) { 410 bio->bi_opf |= REQ_CGROUP_PUNT; 411 kthread_associate_blkcg(blkcg_css); 412 } 413 refcount_set(&cb->pending_bios, 1); 414 415 /* create and submit bios for the compressed pages */ 416 bytes_left = compressed_len; 417 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 418 int submit = 0; 419 420 page = compressed_pages[pg_index]; 421 page->mapping = inode->vfs_inode.i_mapping; 422 if (bio->bi_iter.bi_size) 423 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 424 0); 425 426 page->mapping = NULL; 427 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 428 PAGE_SIZE) { 429 /* 430 * inc the count before we submit the bio so 431 * we know the end IO handler won't happen before 432 * we inc the count. Otherwise, the cb might get 433 * freed before we're done setting it up 434 */ 435 refcount_inc(&cb->pending_bios); 436 ret = btrfs_bio_wq_end_io(fs_info, bio, 437 BTRFS_WQ_ENDIO_DATA); 438 BUG_ON(ret); /* -ENOMEM */ 439 440 if (!skip_sum) { 441 ret = btrfs_csum_one_bio(inode, bio, start, 1); 442 BUG_ON(ret); /* -ENOMEM */ 443 } 444 445 ret = btrfs_map_bio(fs_info, bio, 0); 446 if (ret) { 447 bio->bi_status = ret; 448 bio_endio(bio); 449 } 450 451 bio = btrfs_bio_alloc(first_byte); 452 bio->bi_opf = REQ_OP_WRITE | write_flags; 453 bio->bi_private = cb; 454 bio->bi_end_io = end_compressed_bio_write; 455 if (blkcg_css) 456 bio->bi_opf |= REQ_CGROUP_PUNT; 457 bio_add_page(bio, page, PAGE_SIZE, 0); 458 } 459 if (bytes_left < PAGE_SIZE) { 460 btrfs_info(fs_info, 461 "bytes left %lu compress len %lu nr %lu", 462 bytes_left, cb->compressed_len, cb->nr_pages); 463 } 464 bytes_left -= PAGE_SIZE; 465 first_byte += PAGE_SIZE; 466 cond_resched(); 467 } 468 469 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 470 BUG_ON(ret); /* -ENOMEM */ 471 472 if (!skip_sum) { 473 ret = btrfs_csum_one_bio(inode, bio, start, 1); 474 BUG_ON(ret); /* -ENOMEM */ 475 } 476 477 ret = btrfs_map_bio(fs_info, bio, 0); 478 if (ret) { 479 bio->bi_status = ret; 480 bio_endio(bio); 481 } 482 483 if (blkcg_css) 484 kthread_associate_blkcg(NULL); 485 486 return 0; 487 } 488 489 static u64 bio_end_offset(struct bio *bio) 490 { 491 struct bio_vec *last = bio_last_bvec_all(bio); 492 493 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 494 } 495 496 static noinline int add_ra_bio_pages(struct inode *inode, 497 u64 compressed_end, 498 struct compressed_bio *cb) 499 { 500 unsigned long end_index; 501 unsigned long pg_index; 502 u64 last_offset; 503 u64 isize = i_size_read(inode); 504 int ret; 505 struct page *page; 506 unsigned long nr_pages = 0; 507 struct extent_map *em; 508 struct address_space *mapping = inode->i_mapping; 509 struct extent_map_tree *em_tree; 510 struct extent_io_tree *tree; 511 u64 end; 512 int misses = 0; 513 514 last_offset = bio_end_offset(cb->orig_bio); 515 em_tree = &BTRFS_I(inode)->extent_tree; 516 tree = &BTRFS_I(inode)->io_tree; 517 518 if (isize == 0) 519 return 0; 520 521 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 522 523 while (last_offset < compressed_end) { 524 pg_index = last_offset >> PAGE_SHIFT; 525 526 if (pg_index > end_index) 527 break; 528 529 page = xa_load(&mapping->i_pages, pg_index); 530 if (page && !xa_is_value(page)) { 531 misses++; 532 if (misses > 4) 533 break; 534 goto next; 535 } 536 537 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 538 ~__GFP_FS)); 539 if (!page) 540 break; 541 542 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 543 put_page(page); 544 goto next; 545 } 546 547 end = last_offset + PAGE_SIZE - 1; 548 /* 549 * at this point, we have a locked page in the page cache 550 * for these bytes in the file. But, we have to make 551 * sure they map to this compressed extent on disk. 552 */ 553 set_page_extent_mapped(page); 554 lock_extent(tree, last_offset, end); 555 read_lock(&em_tree->lock); 556 em = lookup_extent_mapping(em_tree, last_offset, 557 PAGE_SIZE); 558 read_unlock(&em_tree->lock); 559 560 if (!em || last_offset < em->start || 561 (last_offset + PAGE_SIZE > extent_map_end(em)) || 562 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 563 free_extent_map(em); 564 unlock_extent(tree, last_offset, end); 565 unlock_page(page); 566 put_page(page); 567 break; 568 } 569 free_extent_map(em); 570 571 if (page->index == end_index) { 572 char *userpage; 573 size_t zero_offset = offset_in_page(isize); 574 575 if (zero_offset) { 576 int zeros; 577 zeros = PAGE_SIZE - zero_offset; 578 userpage = kmap_atomic(page); 579 memset(userpage + zero_offset, 0, zeros); 580 flush_dcache_page(page); 581 kunmap_atomic(userpage); 582 } 583 } 584 585 ret = bio_add_page(cb->orig_bio, page, 586 PAGE_SIZE, 0); 587 588 if (ret == PAGE_SIZE) { 589 nr_pages++; 590 put_page(page); 591 } else { 592 unlock_extent(tree, last_offset, end); 593 unlock_page(page); 594 put_page(page); 595 break; 596 } 597 next: 598 last_offset += PAGE_SIZE; 599 } 600 return 0; 601 } 602 603 /* 604 * for a compressed read, the bio we get passed has all the inode pages 605 * in it. We don't actually do IO on those pages but allocate new ones 606 * to hold the compressed pages on disk. 607 * 608 * bio->bi_iter.bi_sector points to the compressed extent on disk 609 * bio->bi_io_vec points to all of the inode pages 610 * 611 * After the compressed pages are read, we copy the bytes into the 612 * bio we were passed and then call the bio end_io calls 613 */ 614 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 615 int mirror_num, unsigned long bio_flags) 616 { 617 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 618 struct extent_map_tree *em_tree; 619 struct compressed_bio *cb; 620 unsigned long compressed_len; 621 unsigned long nr_pages; 622 unsigned long pg_index; 623 struct page *page; 624 struct bio *comp_bio; 625 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 626 u64 em_len; 627 u64 em_start; 628 struct extent_map *em; 629 blk_status_t ret = BLK_STS_RESOURCE; 630 int faili = 0; 631 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 632 u8 *sums; 633 634 em_tree = &BTRFS_I(inode)->extent_tree; 635 636 /* we need the actual starting offset of this extent in the file */ 637 read_lock(&em_tree->lock); 638 em = lookup_extent_mapping(em_tree, 639 page_offset(bio_first_page_all(bio)), 640 PAGE_SIZE); 641 read_unlock(&em_tree->lock); 642 if (!em) 643 return BLK_STS_IOERR; 644 645 compressed_len = em->block_len; 646 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 647 if (!cb) 648 goto out; 649 650 refcount_set(&cb->pending_bios, 0); 651 cb->errors = 0; 652 cb->inode = inode; 653 cb->mirror_num = mirror_num; 654 sums = cb->sums; 655 656 cb->start = em->orig_start; 657 em_len = em->len; 658 em_start = em->start; 659 660 free_extent_map(em); 661 em = NULL; 662 663 cb->len = bio->bi_iter.bi_size; 664 cb->compressed_len = compressed_len; 665 cb->compress_type = extent_compress_type(bio_flags); 666 cb->orig_bio = bio; 667 668 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 669 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 670 GFP_NOFS); 671 if (!cb->compressed_pages) 672 goto fail1; 673 674 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 675 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 676 __GFP_HIGHMEM); 677 if (!cb->compressed_pages[pg_index]) { 678 faili = pg_index - 1; 679 ret = BLK_STS_RESOURCE; 680 goto fail2; 681 } 682 } 683 faili = nr_pages - 1; 684 cb->nr_pages = nr_pages; 685 686 add_ra_bio_pages(inode, em_start + em_len, cb); 687 688 /* include any pages we added in add_ra-bio_pages */ 689 cb->len = bio->bi_iter.bi_size; 690 691 comp_bio = btrfs_bio_alloc(cur_disk_byte); 692 comp_bio->bi_opf = REQ_OP_READ; 693 comp_bio->bi_private = cb; 694 comp_bio->bi_end_io = end_compressed_bio_read; 695 refcount_set(&cb->pending_bios, 1); 696 697 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 698 int submit = 0; 699 700 page = cb->compressed_pages[pg_index]; 701 page->mapping = inode->i_mapping; 702 page->index = em_start >> PAGE_SHIFT; 703 704 if (comp_bio->bi_iter.bi_size) 705 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 706 comp_bio, 0); 707 708 page->mapping = NULL; 709 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 710 PAGE_SIZE) { 711 unsigned int nr_sectors; 712 713 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 714 BTRFS_WQ_ENDIO_DATA); 715 BUG_ON(ret); /* -ENOMEM */ 716 717 /* 718 * inc the count before we submit the bio so 719 * we know the end IO handler won't happen before 720 * we inc the count. Otherwise, the cb might get 721 * freed before we're done setting it up 722 */ 723 refcount_inc(&cb->pending_bios); 724 725 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 726 ret = btrfs_lookup_bio_sums(inode, comp_bio, 727 (u64)-1, sums); 728 BUG_ON(ret); /* -ENOMEM */ 729 } 730 731 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 732 fs_info->sectorsize); 733 sums += csum_size * nr_sectors; 734 735 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 736 if (ret) { 737 comp_bio->bi_status = ret; 738 bio_endio(comp_bio); 739 } 740 741 comp_bio = btrfs_bio_alloc(cur_disk_byte); 742 comp_bio->bi_opf = REQ_OP_READ; 743 comp_bio->bi_private = cb; 744 comp_bio->bi_end_io = end_compressed_bio_read; 745 746 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 747 } 748 cur_disk_byte += PAGE_SIZE; 749 } 750 751 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 752 BUG_ON(ret); /* -ENOMEM */ 753 754 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 755 ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums); 756 BUG_ON(ret); /* -ENOMEM */ 757 } 758 759 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 760 if (ret) { 761 comp_bio->bi_status = ret; 762 bio_endio(comp_bio); 763 } 764 765 return 0; 766 767 fail2: 768 while (faili >= 0) { 769 __free_page(cb->compressed_pages[faili]); 770 faili--; 771 } 772 773 kfree(cb->compressed_pages); 774 fail1: 775 kfree(cb); 776 out: 777 free_extent_map(em); 778 return ret; 779 } 780 781 /* 782 * Heuristic uses systematic sampling to collect data from the input data 783 * range, the logic can be tuned by the following constants: 784 * 785 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 786 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 787 */ 788 #define SAMPLING_READ_SIZE (16) 789 #define SAMPLING_INTERVAL (256) 790 791 /* 792 * For statistical analysis of the input data we consider bytes that form a 793 * Galois Field of 256 objects. Each object has an attribute count, ie. how 794 * many times the object appeared in the sample. 795 */ 796 #define BUCKET_SIZE (256) 797 798 /* 799 * The size of the sample is based on a statistical sampling rule of thumb. 800 * The common way is to perform sampling tests as long as the number of 801 * elements in each cell is at least 5. 802 * 803 * Instead of 5, we choose 32 to obtain more accurate results. 804 * If the data contain the maximum number of symbols, which is 256, we obtain a 805 * sample size bound by 8192. 806 * 807 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 808 * from up to 512 locations. 809 */ 810 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 811 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 812 813 struct bucket_item { 814 u32 count; 815 }; 816 817 struct heuristic_ws { 818 /* Partial copy of input data */ 819 u8 *sample; 820 u32 sample_size; 821 /* Buckets store counters for each byte value */ 822 struct bucket_item *bucket; 823 /* Sorting buffer */ 824 struct bucket_item *bucket_b; 825 struct list_head list; 826 }; 827 828 static struct workspace_manager heuristic_wsm; 829 830 static void free_heuristic_ws(struct list_head *ws) 831 { 832 struct heuristic_ws *workspace; 833 834 workspace = list_entry(ws, struct heuristic_ws, list); 835 836 kvfree(workspace->sample); 837 kfree(workspace->bucket); 838 kfree(workspace->bucket_b); 839 kfree(workspace); 840 } 841 842 static struct list_head *alloc_heuristic_ws(unsigned int level) 843 { 844 struct heuristic_ws *ws; 845 846 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 847 if (!ws) 848 return ERR_PTR(-ENOMEM); 849 850 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 851 if (!ws->sample) 852 goto fail; 853 854 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 855 if (!ws->bucket) 856 goto fail; 857 858 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 859 if (!ws->bucket_b) 860 goto fail; 861 862 INIT_LIST_HEAD(&ws->list); 863 return &ws->list; 864 fail: 865 free_heuristic_ws(&ws->list); 866 return ERR_PTR(-ENOMEM); 867 } 868 869 const struct btrfs_compress_op btrfs_heuristic_compress = { 870 .workspace_manager = &heuristic_wsm, 871 }; 872 873 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 874 /* The heuristic is represented as compression type 0 */ 875 &btrfs_heuristic_compress, 876 &btrfs_zlib_compress, 877 &btrfs_lzo_compress, 878 &btrfs_zstd_compress, 879 }; 880 881 static struct list_head *alloc_workspace(int type, unsigned int level) 882 { 883 switch (type) { 884 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 885 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 886 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 887 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 888 default: 889 /* 890 * This can't happen, the type is validated several times 891 * before we get here. 892 */ 893 BUG(); 894 } 895 } 896 897 static void free_workspace(int type, struct list_head *ws) 898 { 899 switch (type) { 900 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 901 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 902 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 903 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 904 default: 905 /* 906 * This can't happen, the type is validated several times 907 * before we get here. 908 */ 909 BUG(); 910 } 911 } 912 913 static void btrfs_init_workspace_manager(int type) 914 { 915 struct workspace_manager *wsm; 916 struct list_head *workspace; 917 918 wsm = btrfs_compress_op[type]->workspace_manager; 919 INIT_LIST_HEAD(&wsm->idle_ws); 920 spin_lock_init(&wsm->ws_lock); 921 atomic_set(&wsm->total_ws, 0); 922 init_waitqueue_head(&wsm->ws_wait); 923 924 /* 925 * Preallocate one workspace for each compression type so we can 926 * guarantee forward progress in the worst case 927 */ 928 workspace = alloc_workspace(type, 0); 929 if (IS_ERR(workspace)) { 930 pr_warn( 931 "BTRFS: cannot preallocate compression workspace, will try later\n"); 932 } else { 933 atomic_set(&wsm->total_ws, 1); 934 wsm->free_ws = 1; 935 list_add(workspace, &wsm->idle_ws); 936 } 937 } 938 939 static void btrfs_cleanup_workspace_manager(int type) 940 { 941 struct workspace_manager *wsman; 942 struct list_head *ws; 943 944 wsman = btrfs_compress_op[type]->workspace_manager; 945 while (!list_empty(&wsman->idle_ws)) { 946 ws = wsman->idle_ws.next; 947 list_del(ws); 948 free_workspace(type, ws); 949 atomic_dec(&wsman->total_ws); 950 } 951 } 952 953 /* 954 * This finds an available workspace or allocates a new one. 955 * If it's not possible to allocate a new one, waits until there's one. 956 * Preallocation makes a forward progress guarantees and we do not return 957 * errors. 958 */ 959 struct list_head *btrfs_get_workspace(int type, unsigned int level) 960 { 961 struct workspace_manager *wsm; 962 struct list_head *workspace; 963 int cpus = num_online_cpus(); 964 unsigned nofs_flag; 965 struct list_head *idle_ws; 966 spinlock_t *ws_lock; 967 atomic_t *total_ws; 968 wait_queue_head_t *ws_wait; 969 int *free_ws; 970 971 wsm = btrfs_compress_op[type]->workspace_manager; 972 idle_ws = &wsm->idle_ws; 973 ws_lock = &wsm->ws_lock; 974 total_ws = &wsm->total_ws; 975 ws_wait = &wsm->ws_wait; 976 free_ws = &wsm->free_ws; 977 978 again: 979 spin_lock(ws_lock); 980 if (!list_empty(idle_ws)) { 981 workspace = idle_ws->next; 982 list_del(workspace); 983 (*free_ws)--; 984 spin_unlock(ws_lock); 985 return workspace; 986 987 } 988 if (atomic_read(total_ws) > cpus) { 989 DEFINE_WAIT(wait); 990 991 spin_unlock(ws_lock); 992 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 993 if (atomic_read(total_ws) > cpus && !*free_ws) 994 schedule(); 995 finish_wait(ws_wait, &wait); 996 goto again; 997 } 998 atomic_inc(total_ws); 999 spin_unlock(ws_lock); 1000 1001 /* 1002 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1003 * to turn it off here because we might get called from the restricted 1004 * context of btrfs_compress_bio/btrfs_compress_pages 1005 */ 1006 nofs_flag = memalloc_nofs_save(); 1007 workspace = alloc_workspace(type, level); 1008 memalloc_nofs_restore(nofs_flag); 1009 1010 if (IS_ERR(workspace)) { 1011 atomic_dec(total_ws); 1012 wake_up(ws_wait); 1013 1014 /* 1015 * Do not return the error but go back to waiting. There's a 1016 * workspace preallocated for each type and the compression 1017 * time is bounded so we get to a workspace eventually. This 1018 * makes our caller's life easier. 1019 * 1020 * To prevent silent and low-probability deadlocks (when the 1021 * initial preallocation fails), check if there are any 1022 * workspaces at all. 1023 */ 1024 if (atomic_read(total_ws) == 0) { 1025 static DEFINE_RATELIMIT_STATE(_rs, 1026 /* once per minute */ 60 * HZ, 1027 /* no burst */ 1); 1028 1029 if (__ratelimit(&_rs)) { 1030 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1031 } 1032 } 1033 goto again; 1034 } 1035 return workspace; 1036 } 1037 1038 static struct list_head *get_workspace(int type, int level) 1039 { 1040 switch (type) { 1041 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1042 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1043 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1044 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1045 default: 1046 /* 1047 * This can't happen, the type is validated several times 1048 * before we get here. 1049 */ 1050 BUG(); 1051 } 1052 } 1053 1054 /* 1055 * put a workspace struct back on the list or free it if we have enough 1056 * idle ones sitting around 1057 */ 1058 void btrfs_put_workspace(int type, struct list_head *ws) 1059 { 1060 struct workspace_manager *wsm; 1061 struct list_head *idle_ws; 1062 spinlock_t *ws_lock; 1063 atomic_t *total_ws; 1064 wait_queue_head_t *ws_wait; 1065 int *free_ws; 1066 1067 wsm = btrfs_compress_op[type]->workspace_manager; 1068 idle_ws = &wsm->idle_ws; 1069 ws_lock = &wsm->ws_lock; 1070 total_ws = &wsm->total_ws; 1071 ws_wait = &wsm->ws_wait; 1072 free_ws = &wsm->free_ws; 1073 1074 spin_lock(ws_lock); 1075 if (*free_ws <= num_online_cpus()) { 1076 list_add(ws, idle_ws); 1077 (*free_ws)++; 1078 spin_unlock(ws_lock); 1079 goto wake; 1080 } 1081 spin_unlock(ws_lock); 1082 1083 free_workspace(type, ws); 1084 atomic_dec(total_ws); 1085 wake: 1086 cond_wake_up(ws_wait); 1087 } 1088 1089 static void put_workspace(int type, struct list_head *ws) 1090 { 1091 switch (type) { 1092 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1093 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1094 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1095 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1096 default: 1097 /* 1098 * This can't happen, the type is validated several times 1099 * before we get here. 1100 */ 1101 BUG(); 1102 } 1103 } 1104 1105 /* 1106 * Adjust @level according to the limits of the compression algorithm or 1107 * fallback to default 1108 */ 1109 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1110 { 1111 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1112 1113 if (level == 0) 1114 level = ops->default_level; 1115 else 1116 level = min(level, ops->max_level); 1117 1118 return level; 1119 } 1120 1121 /* 1122 * Given an address space and start and length, compress the bytes into @pages 1123 * that are allocated on demand. 1124 * 1125 * @type_level is encoded algorithm and level, where level 0 means whatever 1126 * default the algorithm chooses and is opaque here; 1127 * - compression algo are 0-3 1128 * - the level are bits 4-7 1129 * 1130 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1131 * and returns number of actually allocated pages 1132 * 1133 * @total_in is used to return the number of bytes actually read. It 1134 * may be smaller than the input length if we had to exit early because we 1135 * ran out of room in the pages array or because we cross the 1136 * max_out threshold. 1137 * 1138 * @total_out is an in/out parameter, must be set to the input length and will 1139 * be also used to return the total number of compressed bytes 1140 * 1141 * @max_out tells us the max number of bytes that we're allowed to 1142 * stuff into pages 1143 */ 1144 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1145 u64 start, struct page **pages, 1146 unsigned long *out_pages, 1147 unsigned long *total_in, 1148 unsigned long *total_out) 1149 { 1150 int type = btrfs_compress_type(type_level); 1151 int level = btrfs_compress_level(type_level); 1152 struct list_head *workspace; 1153 int ret; 1154 1155 level = btrfs_compress_set_level(type, level); 1156 workspace = get_workspace(type, level); 1157 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1158 out_pages, total_in, total_out); 1159 put_workspace(type, workspace); 1160 return ret; 1161 } 1162 1163 /* 1164 * pages_in is an array of pages with compressed data. 1165 * 1166 * disk_start is the starting logical offset of this array in the file 1167 * 1168 * orig_bio contains the pages from the file that we want to decompress into 1169 * 1170 * srclen is the number of bytes in pages_in 1171 * 1172 * The basic idea is that we have a bio that was created by readpages. 1173 * The pages in the bio are for the uncompressed data, and they may not 1174 * be contiguous. They all correspond to the range of bytes covered by 1175 * the compressed extent. 1176 */ 1177 static int btrfs_decompress_bio(struct compressed_bio *cb) 1178 { 1179 struct list_head *workspace; 1180 int ret; 1181 int type = cb->compress_type; 1182 1183 workspace = get_workspace(type, 0); 1184 ret = compression_decompress_bio(type, workspace, cb); 1185 put_workspace(type, workspace); 1186 1187 return ret; 1188 } 1189 1190 /* 1191 * a less complex decompression routine. Our compressed data fits in a 1192 * single page, and we want to read a single page out of it. 1193 * start_byte tells us the offset into the compressed data we're interested in 1194 */ 1195 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1196 unsigned long start_byte, size_t srclen, size_t destlen) 1197 { 1198 struct list_head *workspace; 1199 int ret; 1200 1201 workspace = get_workspace(type, 0); 1202 ret = compression_decompress(type, workspace, data_in, dest_page, 1203 start_byte, srclen, destlen); 1204 put_workspace(type, workspace); 1205 1206 return ret; 1207 } 1208 1209 void __init btrfs_init_compress(void) 1210 { 1211 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1212 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1213 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1214 zstd_init_workspace_manager(); 1215 } 1216 1217 void __cold btrfs_exit_compress(void) 1218 { 1219 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1220 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1221 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1222 zstd_cleanup_workspace_manager(); 1223 } 1224 1225 /* 1226 * Copy uncompressed data from working buffer to pages. 1227 * 1228 * buf_start is the byte offset we're of the start of our workspace buffer. 1229 * 1230 * total_out is the last byte of the buffer 1231 */ 1232 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1233 unsigned long total_out, u64 disk_start, 1234 struct bio *bio) 1235 { 1236 unsigned long buf_offset; 1237 unsigned long current_buf_start; 1238 unsigned long start_byte; 1239 unsigned long prev_start_byte; 1240 unsigned long working_bytes = total_out - buf_start; 1241 unsigned long bytes; 1242 char *kaddr; 1243 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1244 1245 /* 1246 * start byte is the first byte of the page we're currently 1247 * copying into relative to the start of the compressed data. 1248 */ 1249 start_byte = page_offset(bvec.bv_page) - disk_start; 1250 1251 /* we haven't yet hit data corresponding to this page */ 1252 if (total_out <= start_byte) 1253 return 1; 1254 1255 /* 1256 * the start of the data we care about is offset into 1257 * the middle of our working buffer 1258 */ 1259 if (total_out > start_byte && buf_start < start_byte) { 1260 buf_offset = start_byte - buf_start; 1261 working_bytes -= buf_offset; 1262 } else { 1263 buf_offset = 0; 1264 } 1265 current_buf_start = buf_start; 1266 1267 /* copy bytes from the working buffer into the pages */ 1268 while (working_bytes > 0) { 1269 bytes = min_t(unsigned long, bvec.bv_len, 1270 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1271 bytes = min(bytes, working_bytes); 1272 1273 kaddr = kmap_atomic(bvec.bv_page); 1274 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1275 kunmap_atomic(kaddr); 1276 flush_dcache_page(bvec.bv_page); 1277 1278 buf_offset += bytes; 1279 working_bytes -= bytes; 1280 current_buf_start += bytes; 1281 1282 /* check if we need to pick another page */ 1283 bio_advance(bio, bytes); 1284 if (!bio->bi_iter.bi_size) 1285 return 0; 1286 bvec = bio_iter_iovec(bio, bio->bi_iter); 1287 prev_start_byte = start_byte; 1288 start_byte = page_offset(bvec.bv_page) - disk_start; 1289 1290 /* 1291 * We need to make sure we're only adjusting 1292 * our offset into compression working buffer when 1293 * we're switching pages. Otherwise we can incorrectly 1294 * keep copying when we were actually done. 1295 */ 1296 if (start_byte != prev_start_byte) { 1297 /* 1298 * make sure our new page is covered by this 1299 * working buffer 1300 */ 1301 if (total_out <= start_byte) 1302 return 1; 1303 1304 /* 1305 * the next page in the biovec might not be adjacent 1306 * to the last page, but it might still be found 1307 * inside this working buffer. bump our offset pointer 1308 */ 1309 if (total_out > start_byte && 1310 current_buf_start < start_byte) { 1311 buf_offset = start_byte - buf_start; 1312 working_bytes = total_out - start_byte; 1313 current_buf_start = buf_start + buf_offset; 1314 } 1315 } 1316 } 1317 1318 return 1; 1319 } 1320 1321 /* 1322 * Shannon Entropy calculation 1323 * 1324 * Pure byte distribution analysis fails to determine compressibility of data. 1325 * Try calculating entropy to estimate the average minimum number of bits 1326 * needed to encode the sampled data. 1327 * 1328 * For convenience, return the percentage of needed bits, instead of amount of 1329 * bits directly. 1330 * 1331 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1332 * and can be compressible with high probability 1333 * 1334 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1335 * 1336 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1337 */ 1338 #define ENTROPY_LVL_ACEPTABLE (65) 1339 #define ENTROPY_LVL_HIGH (80) 1340 1341 /* 1342 * For increasead precision in shannon_entropy calculation, 1343 * let's do pow(n, M) to save more digits after comma: 1344 * 1345 * - maximum int bit length is 64 1346 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1347 * - 13 * 4 = 52 < 64 -> M = 4 1348 * 1349 * So use pow(n, 4). 1350 */ 1351 static inline u32 ilog2_w(u64 n) 1352 { 1353 return ilog2(n * n * n * n); 1354 } 1355 1356 static u32 shannon_entropy(struct heuristic_ws *ws) 1357 { 1358 const u32 entropy_max = 8 * ilog2_w(2); 1359 u32 entropy_sum = 0; 1360 u32 p, p_base, sz_base; 1361 u32 i; 1362 1363 sz_base = ilog2_w(ws->sample_size); 1364 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1365 p = ws->bucket[i].count; 1366 p_base = ilog2_w(p); 1367 entropy_sum += p * (sz_base - p_base); 1368 } 1369 1370 entropy_sum /= ws->sample_size; 1371 return entropy_sum * 100 / entropy_max; 1372 } 1373 1374 #define RADIX_BASE 4U 1375 #define COUNTERS_SIZE (1U << RADIX_BASE) 1376 1377 static u8 get4bits(u64 num, int shift) { 1378 u8 low4bits; 1379 1380 num >>= shift; 1381 /* Reverse order */ 1382 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1383 return low4bits; 1384 } 1385 1386 /* 1387 * Use 4 bits as radix base 1388 * Use 16 u32 counters for calculating new position in buf array 1389 * 1390 * @array - array that will be sorted 1391 * @array_buf - buffer array to store sorting results 1392 * must be equal in size to @array 1393 * @num - array size 1394 */ 1395 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1396 int num) 1397 { 1398 u64 max_num; 1399 u64 buf_num; 1400 u32 counters[COUNTERS_SIZE]; 1401 u32 new_addr; 1402 u32 addr; 1403 int bitlen; 1404 int shift; 1405 int i; 1406 1407 /* 1408 * Try avoid useless loop iterations for small numbers stored in big 1409 * counters. Example: 48 33 4 ... in 64bit array 1410 */ 1411 max_num = array[0].count; 1412 for (i = 1; i < num; i++) { 1413 buf_num = array[i].count; 1414 if (buf_num > max_num) 1415 max_num = buf_num; 1416 } 1417 1418 buf_num = ilog2(max_num); 1419 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1420 1421 shift = 0; 1422 while (shift < bitlen) { 1423 memset(counters, 0, sizeof(counters)); 1424 1425 for (i = 0; i < num; i++) { 1426 buf_num = array[i].count; 1427 addr = get4bits(buf_num, shift); 1428 counters[addr]++; 1429 } 1430 1431 for (i = 1; i < COUNTERS_SIZE; i++) 1432 counters[i] += counters[i - 1]; 1433 1434 for (i = num - 1; i >= 0; i--) { 1435 buf_num = array[i].count; 1436 addr = get4bits(buf_num, shift); 1437 counters[addr]--; 1438 new_addr = counters[addr]; 1439 array_buf[new_addr] = array[i]; 1440 } 1441 1442 shift += RADIX_BASE; 1443 1444 /* 1445 * Normal radix expects to move data from a temporary array, to 1446 * the main one. But that requires some CPU time. Avoid that 1447 * by doing another sort iteration to original array instead of 1448 * memcpy() 1449 */ 1450 memset(counters, 0, sizeof(counters)); 1451 1452 for (i = 0; i < num; i ++) { 1453 buf_num = array_buf[i].count; 1454 addr = get4bits(buf_num, shift); 1455 counters[addr]++; 1456 } 1457 1458 for (i = 1; i < COUNTERS_SIZE; i++) 1459 counters[i] += counters[i - 1]; 1460 1461 for (i = num - 1; i >= 0; i--) { 1462 buf_num = array_buf[i].count; 1463 addr = get4bits(buf_num, shift); 1464 counters[addr]--; 1465 new_addr = counters[addr]; 1466 array[new_addr] = array_buf[i]; 1467 } 1468 1469 shift += RADIX_BASE; 1470 } 1471 } 1472 1473 /* 1474 * Size of the core byte set - how many bytes cover 90% of the sample 1475 * 1476 * There are several types of structured binary data that use nearly all byte 1477 * values. The distribution can be uniform and counts in all buckets will be 1478 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1479 * 1480 * Other possibility is normal (Gaussian) distribution, where the data could 1481 * be potentially compressible, but we have to take a few more steps to decide 1482 * how much. 1483 * 1484 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1485 * compression algo can easy fix that 1486 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1487 * probability is not compressible 1488 */ 1489 #define BYTE_CORE_SET_LOW (64) 1490 #define BYTE_CORE_SET_HIGH (200) 1491 1492 static int byte_core_set_size(struct heuristic_ws *ws) 1493 { 1494 u32 i; 1495 u32 coreset_sum = 0; 1496 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1497 struct bucket_item *bucket = ws->bucket; 1498 1499 /* Sort in reverse order */ 1500 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1501 1502 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1503 coreset_sum += bucket[i].count; 1504 1505 if (coreset_sum > core_set_threshold) 1506 return i; 1507 1508 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1509 coreset_sum += bucket[i].count; 1510 if (coreset_sum > core_set_threshold) 1511 break; 1512 } 1513 1514 return i; 1515 } 1516 1517 /* 1518 * Count byte values in buckets. 1519 * This heuristic can detect textual data (configs, xml, json, html, etc). 1520 * Because in most text-like data byte set is restricted to limited number of 1521 * possible characters, and that restriction in most cases makes data easy to 1522 * compress. 1523 * 1524 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1525 * less - compressible 1526 * more - need additional analysis 1527 */ 1528 #define BYTE_SET_THRESHOLD (64) 1529 1530 static u32 byte_set_size(const struct heuristic_ws *ws) 1531 { 1532 u32 i; 1533 u32 byte_set_size = 0; 1534 1535 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1536 if (ws->bucket[i].count > 0) 1537 byte_set_size++; 1538 } 1539 1540 /* 1541 * Continue collecting count of byte values in buckets. If the byte 1542 * set size is bigger then the threshold, it's pointless to continue, 1543 * the detection technique would fail for this type of data. 1544 */ 1545 for (; i < BUCKET_SIZE; i++) { 1546 if (ws->bucket[i].count > 0) { 1547 byte_set_size++; 1548 if (byte_set_size > BYTE_SET_THRESHOLD) 1549 return byte_set_size; 1550 } 1551 } 1552 1553 return byte_set_size; 1554 } 1555 1556 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1557 { 1558 const u32 half_of_sample = ws->sample_size / 2; 1559 const u8 *data = ws->sample; 1560 1561 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1562 } 1563 1564 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1565 struct heuristic_ws *ws) 1566 { 1567 struct page *page; 1568 u64 index, index_end; 1569 u32 i, curr_sample_pos; 1570 u8 *in_data; 1571 1572 /* 1573 * Compression handles the input data by chunks of 128KiB 1574 * (defined by BTRFS_MAX_UNCOMPRESSED) 1575 * 1576 * We do the same for the heuristic and loop over the whole range. 1577 * 1578 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1579 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1580 */ 1581 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1582 end = start + BTRFS_MAX_UNCOMPRESSED; 1583 1584 index = start >> PAGE_SHIFT; 1585 index_end = end >> PAGE_SHIFT; 1586 1587 /* Don't miss unaligned end */ 1588 if (!IS_ALIGNED(end, PAGE_SIZE)) 1589 index_end++; 1590 1591 curr_sample_pos = 0; 1592 while (index < index_end) { 1593 page = find_get_page(inode->i_mapping, index); 1594 in_data = kmap(page); 1595 /* Handle case where the start is not aligned to PAGE_SIZE */ 1596 i = start % PAGE_SIZE; 1597 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1598 /* Don't sample any garbage from the last page */ 1599 if (start > end - SAMPLING_READ_SIZE) 1600 break; 1601 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1602 SAMPLING_READ_SIZE); 1603 i += SAMPLING_INTERVAL; 1604 start += SAMPLING_INTERVAL; 1605 curr_sample_pos += SAMPLING_READ_SIZE; 1606 } 1607 kunmap(page); 1608 put_page(page); 1609 1610 index++; 1611 } 1612 1613 ws->sample_size = curr_sample_pos; 1614 } 1615 1616 /* 1617 * Compression heuristic. 1618 * 1619 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1620 * quickly (compared to direct compression) detect data characteristics 1621 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1622 * data. 1623 * 1624 * The following types of analysis can be performed: 1625 * - detect mostly zero data 1626 * - detect data with low "byte set" size (text, etc) 1627 * - detect data with low/high "core byte" set 1628 * 1629 * Return non-zero if the compression should be done, 0 otherwise. 1630 */ 1631 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1632 { 1633 struct list_head *ws_list = get_workspace(0, 0); 1634 struct heuristic_ws *ws; 1635 u32 i; 1636 u8 byte; 1637 int ret = 0; 1638 1639 ws = list_entry(ws_list, struct heuristic_ws, list); 1640 1641 heuristic_collect_sample(inode, start, end, ws); 1642 1643 if (sample_repeated_patterns(ws)) { 1644 ret = 1; 1645 goto out; 1646 } 1647 1648 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1649 1650 for (i = 0; i < ws->sample_size; i++) { 1651 byte = ws->sample[i]; 1652 ws->bucket[byte].count++; 1653 } 1654 1655 i = byte_set_size(ws); 1656 if (i < BYTE_SET_THRESHOLD) { 1657 ret = 2; 1658 goto out; 1659 } 1660 1661 i = byte_core_set_size(ws); 1662 if (i <= BYTE_CORE_SET_LOW) { 1663 ret = 3; 1664 goto out; 1665 } 1666 1667 if (i >= BYTE_CORE_SET_HIGH) { 1668 ret = 0; 1669 goto out; 1670 } 1671 1672 i = shannon_entropy(ws); 1673 if (i <= ENTROPY_LVL_ACEPTABLE) { 1674 ret = 4; 1675 goto out; 1676 } 1677 1678 /* 1679 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1680 * needed to give green light to compression. 1681 * 1682 * For now just assume that compression at that level is not worth the 1683 * resources because: 1684 * 1685 * 1. it is possible to defrag the data later 1686 * 1687 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1688 * values, every bucket has counter at level ~54. The heuristic would 1689 * be confused. This can happen when data have some internal repeated 1690 * patterns like "abbacbbc...". This can be detected by analyzing 1691 * pairs of bytes, which is too costly. 1692 */ 1693 if (i < ENTROPY_LVL_HIGH) { 1694 ret = 5; 1695 goto out; 1696 } else { 1697 ret = 0; 1698 goto out; 1699 } 1700 1701 out: 1702 put_workspace(0, ws_list); 1703 return ret; 1704 } 1705 1706 /* 1707 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1708 * level, unrecognized string will set the default level 1709 */ 1710 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1711 { 1712 unsigned int level = 0; 1713 int ret; 1714 1715 if (!type) 1716 return 0; 1717 1718 if (str[0] == ':') { 1719 ret = kstrtouint(str + 1, 10, &level); 1720 if (ret) 1721 level = 0; 1722 } 1723 1724 level = btrfs_compress_set_level(type, level); 1725 1726 return level; 1727 } 1728