1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "ordered-data.h" 41 #include "compression.h" 42 #include "extent_io.h" 43 #include "extent_map.h" 44 45 struct compressed_bio { 46 /* number of bios pending for this compressed extent */ 47 atomic_t pending_bios; 48 49 /* the pages with the compressed data on them */ 50 struct page **compressed_pages; 51 52 /* inode that owns this data */ 53 struct inode *inode; 54 55 /* starting offset in the inode for our pages */ 56 u64 start; 57 58 /* number of bytes in the inode we're working on */ 59 unsigned long len; 60 61 /* number of bytes on disk */ 62 unsigned long compressed_len; 63 64 /* the compression algorithm for this bio */ 65 int compress_type; 66 67 /* number of compressed pages in the array */ 68 unsigned long nr_pages; 69 70 /* IO errors */ 71 int errors; 72 int mirror_num; 73 74 /* for reads, this is the bio we are copying the data into */ 75 struct bio *orig_bio; 76 77 /* 78 * the start of a variable length array of checksums only 79 * used by reads 80 */ 81 u32 sums; 82 }; 83 84 static int btrfs_decompress_biovec(int type, struct page **pages_in, 85 u64 disk_start, struct bio_vec *bvec, 86 int vcnt, size_t srclen); 87 88 static inline int compressed_bio_size(struct btrfs_root *root, 89 unsigned long disk_size) 90 { 91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 92 93 return sizeof(struct compressed_bio) + 94 ((disk_size + root->sectorsize - 1) / root->sectorsize) * 95 csum_size; 96 } 97 98 static struct bio *compressed_bio_alloc(struct block_device *bdev, 99 u64 first_byte, gfp_t gfp_flags) 100 { 101 int nr_vecs; 102 103 nr_vecs = bio_get_nr_vecs(bdev); 104 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); 105 } 106 107 static int check_compressed_csum(struct inode *inode, 108 struct compressed_bio *cb, 109 u64 disk_start) 110 { 111 int ret; 112 struct page *page; 113 unsigned long i; 114 char *kaddr; 115 u32 csum; 116 u32 *cb_sum = &cb->sums; 117 118 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 119 return 0; 120 121 for (i = 0; i < cb->nr_pages; i++) { 122 page = cb->compressed_pages[i]; 123 csum = ~(u32)0; 124 125 kaddr = kmap_atomic(page); 126 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); 127 btrfs_csum_final(csum, (char *)&csum); 128 kunmap_atomic(kaddr); 129 130 if (csum != *cb_sum) { 131 btrfs_info(BTRFS_I(inode)->root->fs_info, 132 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d", 133 btrfs_ino(inode), disk_start, csum, *cb_sum, 134 cb->mirror_num); 135 ret = -EIO; 136 goto fail; 137 } 138 cb_sum++; 139 140 } 141 ret = 0; 142 fail: 143 return ret; 144 } 145 146 /* when we finish reading compressed pages from the disk, we 147 * decompress them and then run the bio end_io routines on the 148 * decompressed pages (in the inode address space). 149 * 150 * This allows the checksumming and other IO error handling routines 151 * to work normally 152 * 153 * The compressed pages are freed here, and it must be run 154 * in process context 155 */ 156 static void end_compressed_bio_read(struct bio *bio, int err) 157 { 158 struct compressed_bio *cb = bio->bi_private; 159 struct inode *inode; 160 struct page *page; 161 unsigned long index; 162 int ret; 163 164 if (err) 165 cb->errors = 1; 166 167 /* if there are more bios still pending for this compressed 168 * extent, just exit 169 */ 170 if (!atomic_dec_and_test(&cb->pending_bios)) 171 goto out; 172 173 inode = cb->inode; 174 ret = check_compressed_csum(inode, cb, 175 (u64)bio->bi_iter.bi_sector << 9); 176 if (ret) 177 goto csum_failed; 178 179 /* ok, we're the last bio for this extent, lets start 180 * the decompression. 181 */ 182 ret = btrfs_decompress_biovec(cb->compress_type, 183 cb->compressed_pages, 184 cb->start, 185 cb->orig_bio->bi_io_vec, 186 cb->orig_bio->bi_vcnt, 187 cb->compressed_len); 188 csum_failed: 189 if (ret) 190 cb->errors = 1; 191 192 /* release the compressed pages */ 193 index = 0; 194 for (index = 0; index < cb->nr_pages; index++) { 195 page = cb->compressed_pages[index]; 196 page->mapping = NULL; 197 page_cache_release(page); 198 } 199 200 /* do io completion on the original bio */ 201 if (cb->errors) { 202 bio_io_error(cb->orig_bio); 203 } else { 204 int i; 205 struct bio_vec *bvec; 206 207 /* 208 * we have verified the checksum already, set page 209 * checked so the end_io handlers know about it 210 */ 211 bio_for_each_segment_all(bvec, cb->orig_bio, i) 212 SetPageChecked(bvec->bv_page); 213 214 bio_endio(cb->orig_bio, 0); 215 } 216 217 /* finally free the cb struct */ 218 kfree(cb->compressed_pages); 219 kfree(cb); 220 out: 221 bio_put(bio); 222 } 223 224 /* 225 * Clear the writeback bits on all of the file 226 * pages for a compressed write 227 */ 228 static noinline void end_compressed_writeback(struct inode *inode, u64 start, 229 unsigned long ram_size) 230 { 231 unsigned long index = start >> PAGE_CACHE_SHIFT; 232 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT; 233 struct page *pages[16]; 234 unsigned long nr_pages = end_index - index + 1; 235 int i; 236 int ret; 237 238 while (nr_pages > 0) { 239 ret = find_get_pages_contig(inode->i_mapping, index, 240 min_t(unsigned long, 241 nr_pages, ARRAY_SIZE(pages)), pages); 242 if (ret == 0) { 243 nr_pages -= 1; 244 index += 1; 245 continue; 246 } 247 for (i = 0; i < ret; i++) { 248 end_page_writeback(pages[i]); 249 page_cache_release(pages[i]); 250 } 251 nr_pages -= ret; 252 index += ret; 253 } 254 /* the inode may be gone now */ 255 } 256 257 /* 258 * do the cleanup once all the compressed pages hit the disk. 259 * This will clear writeback on the file pages and free the compressed 260 * pages. 261 * 262 * This also calls the writeback end hooks for the file pages so that 263 * metadata and checksums can be updated in the file. 264 */ 265 static void end_compressed_bio_write(struct bio *bio, int err) 266 { 267 struct extent_io_tree *tree; 268 struct compressed_bio *cb = bio->bi_private; 269 struct inode *inode; 270 struct page *page; 271 unsigned long index; 272 273 if (err) 274 cb->errors = 1; 275 276 /* if there are more bios still pending for this compressed 277 * extent, just exit 278 */ 279 if (!atomic_dec_and_test(&cb->pending_bios)) 280 goto out; 281 282 /* ok, we're the last bio for this extent, step one is to 283 * call back into the FS and do all the end_io operations 284 */ 285 inode = cb->inode; 286 tree = &BTRFS_I(inode)->io_tree; 287 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 288 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 289 cb->start, 290 cb->start + cb->len - 1, 291 NULL, 1); 292 cb->compressed_pages[0]->mapping = NULL; 293 294 end_compressed_writeback(inode, cb->start, cb->len); 295 /* note, our inode could be gone now */ 296 297 /* 298 * release the compressed pages, these came from alloc_page and 299 * are not attached to the inode at all 300 */ 301 index = 0; 302 for (index = 0; index < cb->nr_pages; index++) { 303 page = cb->compressed_pages[index]; 304 page->mapping = NULL; 305 page_cache_release(page); 306 } 307 308 /* finally free the cb struct */ 309 kfree(cb->compressed_pages); 310 kfree(cb); 311 out: 312 bio_put(bio); 313 } 314 315 /* 316 * worker function to build and submit bios for previously compressed pages. 317 * The corresponding pages in the inode should be marked for writeback 318 * and the compressed pages should have a reference on them for dropping 319 * when the IO is complete. 320 * 321 * This also checksums the file bytes and gets things ready for 322 * the end io hooks. 323 */ 324 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 325 unsigned long len, u64 disk_start, 326 unsigned long compressed_len, 327 struct page **compressed_pages, 328 unsigned long nr_pages) 329 { 330 struct bio *bio = NULL; 331 struct btrfs_root *root = BTRFS_I(inode)->root; 332 struct compressed_bio *cb; 333 unsigned long bytes_left; 334 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 335 int pg_index = 0; 336 struct page *page; 337 u64 first_byte = disk_start; 338 struct block_device *bdev; 339 int ret; 340 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 341 342 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); 343 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 344 if (!cb) 345 return -ENOMEM; 346 atomic_set(&cb->pending_bios, 0); 347 cb->errors = 0; 348 cb->inode = inode; 349 cb->start = start; 350 cb->len = len; 351 cb->mirror_num = 0; 352 cb->compressed_pages = compressed_pages; 353 cb->compressed_len = compressed_len; 354 cb->orig_bio = NULL; 355 cb->nr_pages = nr_pages; 356 357 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 358 359 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 360 if (!bio) { 361 kfree(cb); 362 return -ENOMEM; 363 } 364 bio->bi_private = cb; 365 bio->bi_end_io = end_compressed_bio_write; 366 atomic_inc(&cb->pending_bios); 367 368 /* create and submit bios for the compressed pages */ 369 bytes_left = compressed_len; 370 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 371 page = compressed_pages[pg_index]; 372 page->mapping = inode->i_mapping; 373 if (bio->bi_iter.bi_size) 374 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, 375 PAGE_CACHE_SIZE, 376 bio, 0); 377 else 378 ret = 0; 379 380 page->mapping = NULL; 381 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < 382 PAGE_CACHE_SIZE) { 383 bio_get(bio); 384 385 /* 386 * inc the count before we submit the bio so 387 * we know the end IO handler won't happen before 388 * we inc the count. Otherwise, the cb might get 389 * freed before we're done setting it up 390 */ 391 atomic_inc(&cb->pending_bios); 392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 393 BUG_ON(ret); /* -ENOMEM */ 394 395 if (!skip_sum) { 396 ret = btrfs_csum_one_bio(root, inode, bio, 397 start, 1); 398 BUG_ON(ret); /* -ENOMEM */ 399 } 400 401 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 402 BUG_ON(ret); /* -ENOMEM */ 403 404 bio_put(bio); 405 406 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 407 BUG_ON(!bio); 408 bio->bi_private = cb; 409 bio->bi_end_io = end_compressed_bio_write; 410 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 411 } 412 if (bytes_left < PAGE_CACHE_SIZE) { 413 btrfs_info(BTRFS_I(inode)->root->fs_info, 414 "bytes left %lu compress len %lu nr %lu", 415 bytes_left, cb->compressed_len, cb->nr_pages); 416 } 417 bytes_left -= PAGE_CACHE_SIZE; 418 first_byte += PAGE_CACHE_SIZE; 419 cond_resched(); 420 } 421 bio_get(bio); 422 423 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 424 BUG_ON(ret); /* -ENOMEM */ 425 426 if (!skip_sum) { 427 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 428 BUG_ON(ret); /* -ENOMEM */ 429 } 430 431 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 432 BUG_ON(ret); /* -ENOMEM */ 433 434 bio_put(bio); 435 return 0; 436 } 437 438 static noinline int add_ra_bio_pages(struct inode *inode, 439 u64 compressed_end, 440 struct compressed_bio *cb) 441 { 442 unsigned long end_index; 443 unsigned long pg_index; 444 u64 last_offset; 445 u64 isize = i_size_read(inode); 446 int ret; 447 struct page *page; 448 unsigned long nr_pages = 0; 449 struct extent_map *em; 450 struct address_space *mapping = inode->i_mapping; 451 struct extent_map_tree *em_tree; 452 struct extent_io_tree *tree; 453 u64 end; 454 int misses = 0; 455 456 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 457 last_offset = (page_offset(page) + PAGE_CACHE_SIZE); 458 em_tree = &BTRFS_I(inode)->extent_tree; 459 tree = &BTRFS_I(inode)->io_tree; 460 461 if (isize == 0) 462 return 0; 463 464 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 465 466 while (last_offset < compressed_end) { 467 pg_index = last_offset >> PAGE_CACHE_SHIFT; 468 469 if (pg_index > end_index) 470 break; 471 472 rcu_read_lock(); 473 page = radix_tree_lookup(&mapping->page_tree, pg_index); 474 rcu_read_unlock(); 475 if (page && !radix_tree_exceptional_entry(page)) { 476 misses++; 477 if (misses > 4) 478 break; 479 goto next; 480 } 481 482 page = __page_cache_alloc(mapping_gfp_mask(mapping) & 483 ~__GFP_FS); 484 if (!page) 485 break; 486 487 if (add_to_page_cache_lru(page, mapping, pg_index, 488 GFP_NOFS)) { 489 page_cache_release(page); 490 goto next; 491 } 492 493 end = last_offset + PAGE_CACHE_SIZE - 1; 494 /* 495 * at this point, we have a locked page in the page cache 496 * for these bytes in the file. But, we have to make 497 * sure they map to this compressed extent on disk. 498 */ 499 set_page_extent_mapped(page); 500 lock_extent(tree, last_offset, end); 501 read_lock(&em_tree->lock); 502 em = lookup_extent_mapping(em_tree, last_offset, 503 PAGE_CACHE_SIZE); 504 read_unlock(&em_tree->lock); 505 506 if (!em || last_offset < em->start || 507 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || 508 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 509 free_extent_map(em); 510 unlock_extent(tree, last_offset, end); 511 unlock_page(page); 512 page_cache_release(page); 513 break; 514 } 515 free_extent_map(em); 516 517 if (page->index == end_index) { 518 char *userpage; 519 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); 520 521 if (zero_offset) { 522 int zeros; 523 zeros = PAGE_CACHE_SIZE - zero_offset; 524 userpage = kmap_atomic(page); 525 memset(userpage + zero_offset, 0, zeros); 526 flush_dcache_page(page); 527 kunmap_atomic(userpage); 528 } 529 } 530 531 ret = bio_add_page(cb->orig_bio, page, 532 PAGE_CACHE_SIZE, 0); 533 534 if (ret == PAGE_CACHE_SIZE) { 535 nr_pages++; 536 page_cache_release(page); 537 } else { 538 unlock_extent(tree, last_offset, end); 539 unlock_page(page); 540 page_cache_release(page); 541 break; 542 } 543 next: 544 last_offset += PAGE_CACHE_SIZE; 545 } 546 return 0; 547 } 548 549 /* 550 * for a compressed read, the bio we get passed has all the inode pages 551 * in it. We don't actually do IO on those pages but allocate new ones 552 * to hold the compressed pages on disk. 553 * 554 * bio->bi_iter.bi_sector points to the compressed extent on disk 555 * bio->bi_io_vec points to all of the inode pages 556 * bio->bi_vcnt is a count of pages 557 * 558 * After the compressed pages are read, we copy the bytes into the 559 * bio we were passed and then call the bio end_io calls 560 */ 561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 562 int mirror_num, unsigned long bio_flags) 563 { 564 struct extent_io_tree *tree; 565 struct extent_map_tree *em_tree; 566 struct compressed_bio *cb; 567 struct btrfs_root *root = BTRFS_I(inode)->root; 568 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 569 unsigned long compressed_len; 570 unsigned long nr_pages; 571 unsigned long pg_index; 572 struct page *page; 573 struct block_device *bdev; 574 struct bio *comp_bio; 575 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 576 u64 em_len; 577 u64 em_start; 578 struct extent_map *em; 579 int ret = -ENOMEM; 580 int faili = 0; 581 u32 *sums; 582 583 tree = &BTRFS_I(inode)->io_tree; 584 em_tree = &BTRFS_I(inode)->extent_tree; 585 586 /* we need the actual starting offset of this extent in the file */ 587 read_lock(&em_tree->lock); 588 em = lookup_extent_mapping(em_tree, 589 page_offset(bio->bi_io_vec->bv_page), 590 PAGE_CACHE_SIZE); 591 read_unlock(&em_tree->lock); 592 if (!em) 593 return -EIO; 594 595 compressed_len = em->block_len; 596 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 597 if (!cb) 598 goto out; 599 600 atomic_set(&cb->pending_bios, 0); 601 cb->errors = 0; 602 cb->inode = inode; 603 cb->mirror_num = mirror_num; 604 sums = &cb->sums; 605 606 cb->start = em->orig_start; 607 em_len = em->len; 608 em_start = em->start; 609 610 free_extent_map(em); 611 em = NULL; 612 613 cb->len = uncompressed_len; 614 cb->compressed_len = compressed_len; 615 cb->compress_type = extent_compress_type(bio_flags); 616 cb->orig_bio = bio; 617 618 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) / 619 PAGE_CACHE_SIZE; 620 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages, 621 GFP_NOFS); 622 if (!cb->compressed_pages) 623 goto fail1; 624 625 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 626 627 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 628 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 629 __GFP_HIGHMEM); 630 if (!cb->compressed_pages[pg_index]) { 631 faili = pg_index - 1; 632 ret = -ENOMEM; 633 goto fail2; 634 } 635 } 636 faili = nr_pages - 1; 637 cb->nr_pages = nr_pages; 638 639 /* In the parent-locked case, we only locked the range we are 640 * interested in. In all other cases, we can opportunistically 641 * cache decompressed data that goes beyond the requested range. */ 642 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) 643 add_ra_bio_pages(inode, em_start + em_len, cb); 644 645 /* include any pages we added in add_ra-bio_pages */ 646 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 647 cb->len = uncompressed_len; 648 649 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 650 if (!comp_bio) 651 goto fail2; 652 comp_bio->bi_private = cb; 653 comp_bio->bi_end_io = end_compressed_bio_read; 654 atomic_inc(&cb->pending_bios); 655 656 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 657 page = cb->compressed_pages[pg_index]; 658 page->mapping = inode->i_mapping; 659 page->index = em_start >> PAGE_CACHE_SHIFT; 660 661 if (comp_bio->bi_iter.bi_size) 662 ret = tree->ops->merge_bio_hook(READ, page, 0, 663 PAGE_CACHE_SIZE, 664 comp_bio, 0); 665 else 666 ret = 0; 667 668 page->mapping = NULL; 669 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < 670 PAGE_CACHE_SIZE) { 671 bio_get(comp_bio); 672 673 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 674 BUG_ON(ret); /* -ENOMEM */ 675 676 /* 677 * inc the count before we submit the bio so 678 * we know the end IO handler won't happen before 679 * we inc the count. Otherwise, the cb might get 680 * freed before we're done setting it up 681 */ 682 atomic_inc(&cb->pending_bios); 683 684 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 685 ret = btrfs_lookup_bio_sums(root, inode, 686 comp_bio, sums); 687 BUG_ON(ret); /* -ENOMEM */ 688 } 689 sums += (comp_bio->bi_iter.bi_size + 690 root->sectorsize - 1) / root->sectorsize; 691 692 ret = btrfs_map_bio(root, READ, comp_bio, 693 mirror_num, 0); 694 if (ret) 695 bio_endio(comp_bio, ret); 696 697 bio_put(comp_bio); 698 699 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 700 GFP_NOFS); 701 BUG_ON(!comp_bio); 702 comp_bio->bi_private = cb; 703 comp_bio->bi_end_io = end_compressed_bio_read; 704 705 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); 706 } 707 cur_disk_byte += PAGE_CACHE_SIZE; 708 } 709 bio_get(comp_bio); 710 711 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 712 BUG_ON(ret); /* -ENOMEM */ 713 714 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 715 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 716 BUG_ON(ret); /* -ENOMEM */ 717 } 718 719 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); 720 if (ret) 721 bio_endio(comp_bio, ret); 722 723 bio_put(comp_bio); 724 return 0; 725 726 fail2: 727 while (faili >= 0) { 728 __free_page(cb->compressed_pages[faili]); 729 faili--; 730 } 731 732 kfree(cb->compressed_pages); 733 fail1: 734 kfree(cb); 735 out: 736 free_extent_map(em); 737 return ret; 738 } 739 740 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; 741 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; 742 static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; 743 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; 744 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; 745 746 static struct btrfs_compress_op *btrfs_compress_op[] = { 747 &btrfs_zlib_compress, 748 &btrfs_lzo_compress, 749 }; 750 751 void __init btrfs_init_compress(void) 752 { 753 int i; 754 755 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 756 INIT_LIST_HEAD(&comp_idle_workspace[i]); 757 spin_lock_init(&comp_workspace_lock[i]); 758 atomic_set(&comp_alloc_workspace[i], 0); 759 init_waitqueue_head(&comp_workspace_wait[i]); 760 } 761 } 762 763 /* 764 * this finds an available workspace or allocates a new one 765 * ERR_PTR is returned if things go bad. 766 */ 767 static struct list_head *find_workspace(int type) 768 { 769 struct list_head *workspace; 770 int cpus = num_online_cpus(); 771 int idx = type - 1; 772 773 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 774 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 775 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 776 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 777 int *num_workspace = &comp_num_workspace[idx]; 778 again: 779 spin_lock(workspace_lock); 780 if (!list_empty(idle_workspace)) { 781 workspace = idle_workspace->next; 782 list_del(workspace); 783 (*num_workspace)--; 784 spin_unlock(workspace_lock); 785 return workspace; 786 787 } 788 if (atomic_read(alloc_workspace) > cpus) { 789 DEFINE_WAIT(wait); 790 791 spin_unlock(workspace_lock); 792 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); 793 if (atomic_read(alloc_workspace) > cpus && !*num_workspace) 794 schedule(); 795 finish_wait(workspace_wait, &wait); 796 goto again; 797 } 798 atomic_inc(alloc_workspace); 799 spin_unlock(workspace_lock); 800 801 workspace = btrfs_compress_op[idx]->alloc_workspace(); 802 if (IS_ERR(workspace)) { 803 atomic_dec(alloc_workspace); 804 wake_up(workspace_wait); 805 } 806 return workspace; 807 } 808 809 /* 810 * put a workspace struct back on the list or free it if we have enough 811 * idle ones sitting around 812 */ 813 static void free_workspace(int type, struct list_head *workspace) 814 { 815 int idx = type - 1; 816 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 817 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 818 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 819 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 820 int *num_workspace = &comp_num_workspace[idx]; 821 822 spin_lock(workspace_lock); 823 if (*num_workspace < num_online_cpus()) { 824 list_add_tail(workspace, idle_workspace); 825 (*num_workspace)++; 826 spin_unlock(workspace_lock); 827 goto wake; 828 } 829 spin_unlock(workspace_lock); 830 831 btrfs_compress_op[idx]->free_workspace(workspace); 832 atomic_dec(alloc_workspace); 833 wake: 834 smp_mb(); 835 if (waitqueue_active(workspace_wait)) 836 wake_up(workspace_wait); 837 } 838 839 /* 840 * cleanup function for module exit 841 */ 842 static void free_workspaces(void) 843 { 844 struct list_head *workspace; 845 int i; 846 847 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 848 while (!list_empty(&comp_idle_workspace[i])) { 849 workspace = comp_idle_workspace[i].next; 850 list_del(workspace); 851 btrfs_compress_op[i]->free_workspace(workspace); 852 atomic_dec(&comp_alloc_workspace[i]); 853 } 854 } 855 } 856 857 /* 858 * given an address space and start/len, compress the bytes. 859 * 860 * pages are allocated to hold the compressed result and stored 861 * in 'pages' 862 * 863 * out_pages is used to return the number of pages allocated. There 864 * may be pages allocated even if we return an error 865 * 866 * total_in is used to return the number of bytes actually read. It 867 * may be smaller then len if we had to exit early because we 868 * ran out of room in the pages array or because we cross the 869 * max_out threshold. 870 * 871 * total_out is used to return the total number of compressed bytes 872 * 873 * max_out tells us the max number of bytes that we're allowed to 874 * stuff into pages 875 */ 876 int btrfs_compress_pages(int type, struct address_space *mapping, 877 u64 start, unsigned long len, 878 struct page **pages, 879 unsigned long nr_dest_pages, 880 unsigned long *out_pages, 881 unsigned long *total_in, 882 unsigned long *total_out, 883 unsigned long max_out) 884 { 885 struct list_head *workspace; 886 int ret; 887 888 workspace = find_workspace(type); 889 if (IS_ERR(workspace)) 890 return PTR_ERR(workspace); 891 892 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 893 start, len, pages, 894 nr_dest_pages, out_pages, 895 total_in, total_out, 896 max_out); 897 free_workspace(type, workspace); 898 return ret; 899 } 900 901 /* 902 * pages_in is an array of pages with compressed data. 903 * 904 * disk_start is the starting logical offset of this array in the file 905 * 906 * bvec is a bio_vec of pages from the file that we want to decompress into 907 * 908 * vcnt is the count of pages in the biovec 909 * 910 * srclen is the number of bytes in pages_in 911 * 912 * The basic idea is that we have a bio that was created by readpages. 913 * The pages in the bio are for the uncompressed data, and they may not 914 * be contiguous. They all correspond to the range of bytes covered by 915 * the compressed extent. 916 */ 917 static int btrfs_decompress_biovec(int type, struct page **pages_in, 918 u64 disk_start, struct bio_vec *bvec, 919 int vcnt, size_t srclen) 920 { 921 struct list_head *workspace; 922 int ret; 923 924 workspace = find_workspace(type); 925 if (IS_ERR(workspace)) 926 return PTR_ERR(workspace); 927 928 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 929 disk_start, 930 bvec, vcnt, srclen); 931 free_workspace(type, workspace); 932 return ret; 933 } 934 935 /* 936 * a less complex decompression routine. Our compressed data fits in a 937 * single page, and we want to read a single page out of it. 938 * start_byte tells us the offset into the compressed data we're interested in 939 */ 940 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 941 unsigned long start_byte, size_t srclen, size_t destlen) 942 { 943 struct list_head *workspace; 944 int ret; 945 946 workspace = find_workspace(type); 947 if (IS_ERR(workspace)) 948 return PTR_ERR(workspace); 949 950 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 951 dest_page, start_byte, 952 srclen, destlen); 953 954 free_workspace(type, workspace); 955 return ret; 956 } 957 958 void btrfs_exit_compress(void) 959 { 960 free_workspaces(); 961 } 962 963 /* 964 * Copy uncompressed data from working buffer to pages. 965 * 966 * buf_start is the byte offset we're of the start of our workspace buffer. 967 * 968 * total_out is the last byte of the buffer 969 */ 970 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 971 unsigned long total_out, u64 disk_start, 972 struct bio_vec *bvec, int vcnt, 973 unsigned long *pg_index, 974 unsigned long *pg_offset) 975 { 976 unsigned long buf_offset; 977 unsigned long current_buf_start; 978 unsigned long start_byte; 979 unsigned long working_bytes = total_out - buf_start; 980 unsigned long bytes; 981 char *kaddr; 982 struct page *page_out = bvec[*pg_index].bv_page; 983 984 /* 985 * start byte is the first byte of the page we're currently 986 * copying into relative to the start of the compressed data. 987 */ 988 start_byte = page_offset(page_out) - disk_start; 989 990 /* we haven't yet hit data corresponding to this page */ 991 if (total_out <= start_byte) 992 return 1; 993 994 /* 995 * the start of the data we care about is offset into 996 * the middle of our working buffer 997 */ 998 if (total_out > start_byte && buf_start < start_byte) { 999 buf_offset = start_byte - buf_start; 1000 working_bytes -= buf_offset; 1001 } else { 1002 buf_offset = 0; 1003 } 1004 current_buf_start = buf_start; 1005 1006 /* copy bytes from the working buffer into the pages */ 1007 while (working_bytes > 0) { 1008 bytes = min(PAGE_CACHE_SIZE - *pg_offset, 1009 PAGE_CACHE_SIZE - buf_offset); 1010 bytes = min(bytes, working_bytes); 1011 kaddr = kmap_atomic(page_out); 1012 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 1013 if (*pg_index == (vcnt - 1) && *pg_offset == 0) 1014 memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes); 1015 kunmap_atomic(kaddr); 1016 flush_dcache_page(page_out); 1017 1018 *pg_offset += bytes; 1019 buf_offset += bytes; 1020 working_bytes -= bytes; 1021 current_buf_start += bytes; 1022 1023 /* check if we need to pick another page */ 1024 if (*pg_offset == PAGE_CACHE_SIZE) { 1025 (*pg_index)++; 1026 if (*pg_index >= vcnt) 1027 return 0; 1028 1029 page_out = bvec[*pg_index].bv_page; 1030 *pg_offset = 0; 1031 start_byte = page_offset(page_out) - disk_start; 1032 1033 /* 1034 * make sure our new page is covered by this 1035 * working buffer 1036 */ 1037 if (total_out <= start_byte) 1038 return 1; 1039 1040 /* 1041 * the next page in the biovec might not be adjacent 1042 * to the last page, but it might still be found 1043 * inside this working buffer. bump our offset pointer 1044 */ 1045 if (total_out > start_byte && 1046 current_buf_start < start_byte) { 1047 buf_offset = start_byte - buf_start; 1048 working_bytes = total_out - start_byte; 1049 current_buf_start = buf_start + buf_offset; 1050 } 1051 } 1052 } 1053 1054 return 1; 1055 } 1056