xref: /openbmc/linux/fs/btrfs/compression.c (revision 206204a1)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44 
45 struct compressed_bio {
46 	/* number of bios pending for this compressed extent */
47 	atomic_t pending_bios;
48 
49 	/* the pages with the compressed data on them */
50 	struct page **compressed_pages;
51 
52 	/* inode that owns this data */
53 	struct inode *inode;
54 
55 	/* starting offset in the inode for our pages */
56 	u64 start;
57 
58 	/* number of bytes in the inode we're working on */
59 	unsigned long len;
60 
61 	/* number of bytes on disk */
62 	unsigned long compressed_len;
63 
64 	/* the compression algorithm for this bio */
65 	int compress_type;
66 
67 	/* number of compressed pages in the array */
68 	unsigned long nr_pages;
69 
70 	/* IO errors */
71 	int errors;
72 	int mirror_num;
73 
74 	/* for reads, this is the bio we are copying the data into */
75 	struct bio *orig_bio;
76 
77 	/*
78 	 * the start of a variable length array of checksums only
79 	 * used by reads
80 	 */
81 	u32 sums;
82 };
83 
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 				   u64 disk_start, struct bio_vec *bvec,
86 				   int vcnt, size_t srclen);
87 
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 				      unsigned long disk_size)
90 {
91 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92 
93 	return sizeof(struct compressed_bio) +
94 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
95 		csum_size;
96 }
97 
98 static struct bio *compressed_bio_alloc(struct block_device *bdev,
99 					u64 first_byte, gfp_t gfp_flags)
100 {
101 	int nr_vecs;
102 
103 	nr_vecs = bio_get_nr_vecs(bdev);
104 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
105 }
106 
107 static int check_compressed_csum(struct inode *inode,
108 				 struct compressed_bio *cb,
109 				 u64 disk_start)
110 {
111 	int ret;
112 	struct page *page;
113 	unsigned long i;
114 	char *kaddr;
115 	u32 csum;
116 	u32 *cb_sum = &cb->sums;
117 
118 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
119 		return 0;
120 
121 	for (i = 0; i < cb->nr_pages; i++) {
122 		page = cb->compressed_pages[i];
123 		csum = ~(u32)0;
124 
125 		kaddr = kmap_atomic(page);
126 		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
127 		btrfs_csum_final(csum, (char *)&csum);
128 		kunmap_atomic(kaddr);
129 
130 		if (csum != *cb_sum) {
131 			btrfs_info(BTRFS_I(inode)->root->fs_info,
132 			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
133 			   btrfs_ino(inode), disk_start, csum, *cb_sum,
134 			   cb->mirror_num);
135 			ret = -EIO;
136 			goto fail;
137 		}
138 		cb_sum++;
139 
140 	}
141 	ret = 0;
142 fail:
143 	return ret;
144 }
145 
146 /* when we finish reading compressed pages from the disk, we
147  * decompress them and then run the bio end_io routines on the
148  * decompressed pages (in the inode address space).
149  *
150  * This allows the checksumming and other IO error handling routines
151  * to work normally
152  *
153  * The compressed pages are freed here, and it must be run
154  * in process context
155  */
156 static void end_compressed_bio_read(struct bio *bio, int err)
157 {
158 	struct compressed_bio *cb = bio->bi_private;
159 	struct inode *inode;
160 	struct page *page;
161 	unsigned long index;
162 	int ret;
163 
164 	if (err)
165 		cb->errors = 1;
166 
167 	/* if there are more bios still pending for this compressed
168 	 * extent, just exit
169 	 */
170 	if (!atomic_dec_and_test(&cb->pending_bios))
171 		goto out;
172 
173 	inode = cb->inode;
174 	ret = check_compressed_csum(inode, cb,
175 				    (u64)bio->bi_iter.bi_sector << 9);
176 	if (ret)
177 		goto csum_failed;
178 
179 	/* ok, we're the last bio for this extent, lets start
180 	 * the decompression.
181 	 */
182 	ret = btrfs_decompress_biovec(cb->compress_type,
183 				      cb->compressed_pages,
184 				      cb->start,
185 				      cb->orig_bio->bi_io_vec,
186 				      cb->orig_bio->bi_vcnt,
187 				      cb->compressed_len);
188 csum_failed:
189 	if (ret)
190 		cb->errors = 1;
191 
192 	/* release the compressed pages */
193 	index = 0;
194 	for (index = 0; index < cb->nr_pages; index++) {
195 		page = cb->compressed_pages[index];
196 		page->mapping = NULL;
197 		page_cache_release(page);
198 	}
199 
200 	/* do io completion on the original bio */
201 	if (cb->errors) {
202 		bio_io_error(cb->orig_bio);
203 	} else {
204 		int i;
205 		struct bio_vec *bvec;
206 
207 		/*
208 		 * we have verified the checksum already, set page
209 		 * checked so the end_io handlers know about it
210 		 */
211 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
212 			SetPageChecked(bvec->bv_page);
213 
214 		bio_endio(cb->orig_bio, 0);
215 	}
216 
217 	/* finally free the cb struct */
218 	kfree(cb->compressed_pages);
219 	kfree(cb);
220 out:
221 	bio_put(bio);
222 }
223 
224 /*
225  * Clear the writeback bits on all of the file
226  * pages for a compressed write
227  */
228 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
229 					      unsigned long ram_size)
230 {
231 	unsigned long index = start >> PAGE_CACHE_SHIFT;
232 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
233 	struct page *pages[16];
234 	unsigned long nr_pages = end_index - index + 1;
235 	int i;
236 	int ret;
237 
238 	while (nr_pages > 0) {
239 		ret = find_get_pages_contig(inode->i_mapping, index,
240 				     min_t(unsigned long,
241 				     nr_pages, ARRAY_SIZE(pages)), pages);
242 		if (ret == 0) {
243 			nr_pages -= 1;
244 			index += 1;
245 			continue;
246 		}
247 		for (i = 0; i < ret; i++) {
248 			end_page_writeback(pages[i]);
249 			page_cache_release(pages[i]);
250 		}
251 		nr_pages -= ret;
252 		index += ret;
253 	}
254 	/* the inode may be gone now */
255 }
256 
257 /*
258  * do the cleanup once all the compressed pages hit the disk.
259  * This will clear writeback on the file pages and free the compressed
260  * pages.
261  *
262  * This also calls the writeback end hooks for the file pages so that
263  * metadata and checksums can be updated in the file.
264  */
265 static void end_compressed_bio_write(struct bio *bio, int err)
266 {
267 	struct extent_io_tree *tree;
268 	struct compressed_bio *cb = bio->bi_private;
269 	struct inode *inode;
270 	struct page *page;
271 	unsigned long index;
272 
273 	if (err)
274 		cb->errors = 1;
275 
276 	/* if there are more bios still pending for this compressed
277 	 * extent, just exit
278 	 */
279 	if (!atomic_dec_and_test(&cb->pending_bios))
280 		goto out;
281 
282 	/* ok, we're the last bio for this extent, step one is to
283 	 * call back into the FS and do all the end_io operations
284 	 */
285 	inode = cb->inode;
286 	tree = &BTRFS_I(inode)->io_tree;
287 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
288 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289 					 cb->start,
290 					 cb->start + cb->len - 1,
291 					 NULL, 1);
292 	cb->compressed_pages[0]->mapping = NULL;
293 
294 	end_compressed_writeback(inode, cb->start, cb->len);
295 	/* note, our inode could be gone now */
296 
297 	/*
298 	 * release the compressed pages, these came from alloc_page and
299 	 * are not attached to the inode at all
300 	 */
301 	index = 0;
302 	for (index = 0; index < cb->nr_pages; index++) {
303 		page = cb->compressed_pages[index];
304 		page->mapping = NULL;
305 		page_cache_release(page);
306 	}
307 
308 	/* finally free the cb struct */
309 	kfree(cb->compressed_pages);
310 	kfree(cb);
311 out:
312 	bio_put(bio);
313 }
314 
315 /*
316  * worker function to build and submit bios for previously compressed pages.
317  * The corresponding pages in the inode should be marked for writeback
318  * and the compressed pages should have a reference on them for dropping
319  * when the IO is complete.
320  *
321  * This also checksums the file bytes and gets things ready for
322  * the end io hooks.
323  */
324 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
325 				 unsigned long len, u64 disk_start,
326 				 unsigned long compressed_len,
327 				 struct page **compressed_pages,
328 				 unsigned long nr_pages)
329 {
330 	struct bio *bio = NULL;
331 	struct btrfs_root *root = BTRFS_I(inode)->root;
332 	struct compressed_bio *cb;
333 	unsigned long bytes_left;
334 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
335 	int pg_index = 0;
336 	struct page *page;
337 	u64 first_byte = disk_start;
338 	struct block_device *bdev;
339 	int ret;
340 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
341 
342 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
343 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
344 	if (!cb)
345 		return -ENOMEM;
346 	atomic_set(&cb->pending_bios, 0);
347 	cb->errors = 0;
348 	cb->inode = inode;
349 	cb->start = start;
350 	cb->len = len;
351 	cb->mirror_num = 0;
352 	cb->compressed_pages = compressed_pages;
353 	cb->compressed_len = compressed_len;
354 	cb->orig_bio = NULL;
355 	cb->nr_pages = nr_pages;
356 
357 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
358 
359 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
360 	if (!bio) {
361 		kfree(cb);
362 		return -ENOMEM;
363 	}
364 	bio->bi_private = cb;
365 	bio->bi_end_io = end_compressed_bio_write;
366 	atomic_inc(&cb->pending_bios);
367 
368 	/* create and submit bios for the compressed pages */
369 	bytes_left = compressed_len;
370 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371 		page = compressed_pages[pg_index];
372 		page->mapping = inode->i_mapping;
373 		if (bio->bi_iter.bi_size)
374 			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
375 							   PAGE_CACHE_SIZE,
376 							   bio, 0);
377 		else
378 			ret = 0;
379 
380 		page->mapping = NULL;
381 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
382 		    PAGE_CACHE_SIZE) {
383 			bio_get(bio);
384 
385 			/*
386 			 * inc the count before we submit the bio so
387 			 * we know the end IO handler won't happen before
388 			 * we inc the count.  Otherwise, the cb might get
389 			 * freed before we're done setting it up
390 			 */
391 			atomic_inc(&cb->pending_bios);
392 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 			BUG_ON(ret); /* -ENOMEM */
394 
395 			if (!skip_sum) {
396 				ret = btrfs_csum_one_bio(root, inode, bio,
397 							 start, 1);
398 				BUG_ON(ret); /* -ENOMEM */
399 			}
400 
401 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
402 			BUG_ON(ret); /* -ENOMEM */
403 
404 			bio_put(bio);
405 
406 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
407 			BUG_ON(!bio);
408 			bio->bi_private = cb;
409 			bio->bi_end_io = end_compressed_bio_write;
410 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
411 		}
412 		if (bytes_left < PAGE_CACHE_SIZE) {
413 			btrfs_info(BTRFS_I(inode)->root->fs_info,
414 					"bytes left %lu compress len %lu nr %lu",
415 			       bytes_left, cb->compressed_len, cb->nr_pages);
416 		}
417 		bytes_left -= PAGE_CACHE_SIZE;
418 		first_byte += PAGE_CACHE_SIZE;
419 		cond_resched();
420 	}
421 	bio_get(bio);
422 
423 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
424 	BUG_ON(ret); /* -ENOMEM */
425 
426 	if (!skip_sum) {
427 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428 		BUG_ON(ret); /* -ENOMEM */
429 	}
430 
431 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432 	BUG_ON(ret); /* -ENOMEM */
433 
434 	bio_put(bio);
435 	return 0;
436 }
437 
438 static noinline int add_ra_bio_pages(struct inode *inode,
439 				     u64 compressed_end,
440 				     struct compressed_bio *cb)
441 {
442 	unsigned long end_index;
443 	unsigned long pg_index;
444 	u64 last_offset;
445 	u64 isize = i_size_read(inode);
446 	int ret;
447 	struct page *page;
448 	unsigned long nr_pages = 0;
449 	struct extent_map *em;
450 	struct address_space *mapping = inode->i_mapping;
451 	struct extent_map_tree *em_tree;
452 	struct extent_io_tree *tree;
453 	u64 end;
454 	int misses = 0;
455 
456 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458 	em_tree = &BTRFS_I(inode)->extent_tree;
459 	tree = &BTRFS_I(inode)->io_tree;
460 
461 	if (isize == 0)
462 		return 0;
463 
464 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
465 
466 	while (last_offset < compressed_end) {
467 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
468 
469 		if (pg_index > end_index)
470 			break;
471 
472 		rcu_read_lock();
473 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
474 		rcu_read_unlock();
475 		if (page && !radix_tree_exceptional_entry(page)) {
476 			misses++;
477 			if (misses > 4)
478 				break;
479 			goto next;
480 		}
481 
482 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483 								~__GFP_FS);
484 		if (!page)
485 			break;
486 
487 		if (add_to_page_cache_lru(page, mapping, pg_index,
488 								GFP_NOFS)) {
489 			page_cache_release(page);
490 			goto next;
491 		}
492 
493 		end = last_offset + PAGE_CACHE_SIZE - 1;
494 		/*
495 		 * at this point, we have a locked page in the page cache
496 		 * for these bytes in the file.  But, we have to make
497 		 * sure they map to this compressed extent on disk.
498 		 */
499 		set_page_extent_mapped(page);
500 		lock_extent(tree, last_offset, end);
501 		read_lock(&em_tree->lock);
502 		em = lookup_extent_mapping(em_tree, last_offset,
503 					   PAGE_CACHE_SIZE);
504 		read_unlock(&em_tree->lock);
505 
506 		if (!em || last_offset < em->start ||
507 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
509 			free_extent_map(em);
510 			unlock_extent(tree, last_offset, end);
511 			unlock_page(page);
512 			page_cache_release(page);
513 			break;
514 		}
515 		free_extent_map(em);
516 
517 		if (page->index == end_index) {
518 			char *userpage;
519 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
520 
521 			if (zero_offset) {
522 				int zeros;
523 				zeros = PAGE_CACHE_SIZE - zero_offset;
524 				userpage = kmap_atomic(page);
525 				memset(userpage + zero_offset, 0, zeros);
526 				flush_dcache_page(page);
527 				kunmap_atomic(userpage);
528 			}
529 		}
530 
531 		ret = bio_add_page(cb->orig_bio, page,
532 				   PAGE_CACHE_SIZE, 0);
533 
534 		if (ret == PAGE_CACHE_SIZE) {
535 			nr_pages++;
536 			page_cache_release(page);
537 		} else {
538 			unlock_extent(tree, last_offset, end);
539 			unlock_page(page);
540 			page_cache_release(page);
541 			break;
542 		}
543 next:
544 		last_offset += PAGE_CACHE_SIZE;
545 	}
546 	return 0;
547 }
548 
549 /*
550  * for a compressed read, the bio we get passed has all the inode pages
551  * in it.  We don't actually do IO on those pages but allocate new ones
552  * to hold the compressed pages on disk.
553  *
554  * bio->bi_iter.bi_sector points to the compressed extent on disk
555  * bio->bi_io_vec points to all of the inode pages
556  * bio->bi_vcnt is a count of pages
557  *
558  * After the compressed pages are read, we copy the bytes into the
559  * bio we were passed and then call the bio end_io calls
560  */
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562 				 int mirror_num, unsigned long bio_flags)
563 {
564 	struct extent_io_tree *tree;
565 	struct extent_map_tree *em_tree;
566 	struct compressed_bio *cb;
567 	struct btrfs_root *root = BTRFS_I(inode)->root;
568 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569 	unsigned long compressed_len;
570 	unsigned long nr_pages;
571 	unsigned long pg_index;
572 	struct page *page;
573 	struct block_device *bdev;
574 	struct bio *comp_bio;
575 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
576 	u64 em_len;
577 	u64 em_start;
578 	struct extent_map *em;
579 	int ret = -ENOMEM;
580 	int faili = 0;
581 	u32 *sums;
582 
583 	tree = &BTRFS_I(inode)->io_tree;
584 	em_tree = &BTRFS_I(inode)->extent_tree;
585 
586 	/* we need the actual starting offset of this extent in the file */
587 	read_lock(&em_tree->lock);
588 	em = lookup_extent_mapping(em_tree,
589 				   page_offset(bio->bi_io_vec->bv_page),
590 				   PAGE_CACHE_SIZE);
591 	read_unlock(&em_tree->lock);
592 	if (!em)
593 		return -EIO;
594 
595 	compressed_len = em->block_len;
596 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
597 	if (!cb)
598 		goto out;
599 
600 	atomic_set(&cb->pending_bios, 0);
601 	cb->errors = 0;
602 	cb->inode = inode;
603 	cb->mirror_num = mirror_num;
604 	sums = &cb->sums;
605 
606 	cb->start = em->orig_start;
607 	em_len = em->len;
608 	em_start = em->start;
609 
610 	free_extent_map(em);
611 	em = NULL;
612 
613 	cb->len = uncompressed_len;
614 	cb->compressed_len = compressed_len;
615 	cb->compress_type = extent_compress_type(bio_flags);
616 	cb->orig_bio = bio;
617 
618 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
619 				 PAGE_CACHE_SIZE;
620 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
621 				       GFP_NOFS);
622 	if (!cb->compressed_pages)
623 		goto fail1;
624 
625 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
626 
627 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
628 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
629 							      __GFP_HIGHMEM);
630 		if (!cb->compressed_pages[pg_index]) {
631 			faili = pg_index - 1;
632 			ret = -ENOMEM;
633 			goto fail2;
634 		}
635 	}
636 	faili = nr_pages - 1;
637 	cb->nr_pages = nr_pages;
638 
639 	/* In the parent-locked case, we only locked the range we are
640 	 * interested in.  In all other cases, we can opportunistically
641 	 * cache decompressed data that goes beyond the requested range. */
642 	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
643 		add_ra_bio_pages(inode, em_start + em_len, cb);
644 
645 	/* include any pages we added in add_ra-bio_pages */
646 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
647 	cb->len = uncompressed_len;
648 
649 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
650 	if (!comp_bio)
651 		goto fail2;
652 	comp_bio->bi_private = cb;
653 	comp_bio->bi_end_io = end_compressed_bio_read;
654 	atomic_inc(&cb->pending_bios);
655 
656 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
657 		page = cb->compressed_pages[pg_index];
658 		page->mapping = inode->i_mapping;
659 		page->index = em_start >> PAGE_CACHE_SHIFT;
660 
661 		if (comp_bio->bi_iter.bi_size)
662 			ret = tree->ops->merge_bio_hook(READ, page, 0,
663 							PAGE_CACHE_SIZE,
664 							comp_bio, 0);
665 		else
666 			ret = 0;
667 
668 		page->mapping = NULL;
669 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
670 		    PAGE_CACHE_SIZE) {
671 			bio_get(comp_bio);
672 
673 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
674 			BUG_ON(ret); /* -ENOMEM */
675 
676 			/*
677 			 * inc the count before we submit the bio so
678 			 * we know the end IO handler won't happen before
679 			 * we inc the count.  Otherwise, the cb might get
680 			 * freed before we're done setting it up
681 			 */
682 			atomic_inc(&cb->pending_bios);
683 
684 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
685 				ret = btrfs_lookup_bio_sums(root, inode,
686 							comp_bio, sums);
687 				BUG_ON(ret); /* -ENOMEM */
688 			}
689 			sums += (comp_bio->bi_iter.bi_size +
690 				 root->sectorsize - 1) / root->sectorsize;
691 
692 			ret = btrfs_map_bio(root, READ, comp_bio,
693 					    mirror_num, 0);
694 			if (ret)
695 				bio_endio(comp_bio, ret);
696 
697 			bio_put(comp_bio);
698 
699 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
700 							GFP_NOFS);
701 			BUG_ON(!comp_bio);
702 			comp_bio->bi_private = cb;
703 			comp_bio->bi_end_io = end_compressed_bio_read;
704 
705 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
706 		}
707 		cur_disk_byte += PAGE_CACHE_SIZE;
708 	}
709 	bio_get(comp_bio);
710 
711 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
712 	BUG_ON(ret); /* -ENOMEM */
713 
714 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
715 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
716 		BUG_ON(ret); /* -ENOMEM */
717 	}
718 
719 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
720 	if (ret)
721 		bio_endio(comp_bio, ret);
722 
723 	bio_put(comp_bio);
724 	return 0;
725 
726 fail2:
727 	while (faili >= 0) {
728 		__free_page(cb->compressed_pages[faili]);
729 		faili--;
730 	}
731 
732 	kfree(cb->compressed_pages);
733 fail1:
734 	kfree(cb);
735 out:
736 	free_extent_map(em);
737 	return ret;
738 }
739 
740 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
741 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
742 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
743 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
744 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
745 
746 static struct btrfs_compress_op *btrfs_compress_op[] = {
747 	&btrfs_zlib_compress,
748 	&btrfs_lzo_compress,
749 };
750 
751 void __init btrfs_init_compress(void)
752 {
753 	int i;
754 
755 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
756 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
757 		spin_lock_init(&comp_workspace_lock[i]);
758 		atomic_set(&comp_alloc_workspace[i], 0);
759 		init_waitqueue_head(&comp_workspace_wait[i]);
760 	}
761 }
762 
763 /*
764  * this finds an available workspace or allocates a new one
765  * ERR_PTR is returned if things go bad.
766  */
767 static struct list_head *find_workspace(int type)
768 {
769 	struct list_head *workspace;
770 	int cpus = num_online_cpus();
771 	int idx = type - 1;
772 
773 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
774 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
775 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
776 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
777 	int *num_workspace			= &comp_num_workspace[idx];
778 again:
779 	spin_lock(workspace_lock);
780 	if (!list_empty(idle_workspace)) {
781 		workspace = idle_workspace->next;
782 		list_del(workspace);
783 		(*num_workspace)--;
784 		spin_unlock(workspace_lock);
785 		return workspace;
786 
787 	}
788 	if (atomic_read(alloc_workspace) > cpus) {
789 		DEFINE_WAIT(wait);
790 
791 		spin_unlock(workspace_lock);
792 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
793 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
794 			schedule();
795 		finish_wait(workspace_wait, &wait);
796 		goto again;
797 	}
798 	atomic_inc(alloc_workspace);
799 	spin_unlock(workspace_lock);
800 
801 	workspace = btrfs_compress_op[idx]->alloc_workspace();
802 	if (IS_ERR(workspace)) {
803 		atomic_dec(alloc_workspace);
804 		wake_up(workspace_wait);
805 	}
806 	return workspace;
807 }
808 
809 /*
810  * put a workspace struct back on the list or free it if we have enough
811  * idle ones sitting around
812  */
813 static void free_workspace(int type, struct list_head *workspace)
814 {
815 	int idx = type - 1;
816 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
817 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
818 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
819 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
820 	int *num_workspace			= &comp_num_workspace[idx];
821 
822 	spin_lock(workspace_lock);
823 	if (*num_workspace < num_online_cpus()) {
824 		list_add_tail(workspace, idle_workspace);
825 		(*num_workspace)++;
826 		spin_unlock(workspace_lock);
827 		goto wake;
828 	}
829 	spin_unlock(workspace_lock);
830 
831 	btrfs_compress_op[idx]->free_workspace(workspace);
832 	atomic_dec(alloc_workspace);
833 wake:
834 	smp_mb();
835 	if (waitqueue_active(workspace_wait))
836 		wake_up(workspace_wait);
837 }
838 
839 /*
840  * cleanup function for module exit
841  */
842 static void free_workspaces(void)
843 {
844 	struct list_head *workspace;
845 	int i;
846 
847 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
848 		while (!list_empty(&comp_idle_workspace[i])) {
849 			workspace = comp_idle_workspace[i].next;
850 			list_del(workspace);
851 			btrfs_compress_op[i]->free_workspace(workspace);
852 			atomic_dec(&comp_alloc_workspace[i]);
853 		}
854 	}
855 }
856 
857 /*
858  * given an address space and start/len, compress the bytes.
859  *
860  * pages are allocated to hold the compressed result and stored
861  * in 'pages'
862  *
863  * out_pages is used to return the number of pages allocated.  There
864  * may be pages allocated even if we return an error
865  *
866  * total_in is used to return the number of bytes actually read.  It
867  * may be smaller then len if we had to exit early because we
868  * ran out of room in the pages array or because we cross the
869  * max_out threshold.
870  *
871  * total_out is used to return the total number of compressed bytes
872  *
873  * max_out tells us the max number of bytes that we're allowed to
874  * stuff into pages
875  */
876 int btrfs_compress_pages(int type, struct address_space *mapping,
877 			 u64 start, unsigned long len,
878 			 struct page **pages,
879 			 unsigned long nr_dest_pages,
880 			 unsigned long *out_pages,
881 			 unsigned long *total_in,
882 			 unsigned long *total_out,
883 			 unsigned long max_out)
884 {
885 	struct list_head *workspace;
886 	int ret;
887 
888 	workspace = find_workspace(type);
889 	if (IS_ERR(workspace))
890 		return PTR_ERR(workspace);
891 
892 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
893 						      start, len, pages,
894 						      nr_dest_pages, out_pages,
895 						      total_in, total_out,
896 						      max_out);
897 	free_workspace(type, workspace);
898 	return ret;
899 }
900 
901 /*
902  * pages_in is an array of pages with compressed data.
903  *
904  * disk_start is the starting logical offset of this array in the file
905  *
906  * bvec is a bio_vec of pages from the file that we want to decompress into
907  *
908  * vcnt is the count of pages in the biovec
909  *
910  * srclen is the number of bytes in pages_in
911  *
912  * The basic idea is that we have a bio that was created by readpages.
913  * The pages in the bio are for the uncompressed data, and they may not
914  * be contiguous.  They all correspond to the range of bytes covered by
915  * the compressed extent.
916  */
917 static int btrfs_decompress_biovec(int type, struct page **pages_in,
918 				   u64 disk_start, struct bio_vec *bvec,
919 				   int vcnt, size_t srclen)
920 {
921 	struct list_head *workspace;
922 	int ret;
923 
924 	workspace = find_workspace(type);
925 	if (IS_ERR(workspace))
926 		return PTR_ERR(workspace);
927 
928 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
929 							 disk_start,
930 							 bvec, vcnt, srclen);
931 	free_workspace(type, workspace);
932 	return ret;
933 }
934 
935 /*
936  * a less complex decompression routine.  Our compressed data fits in a
937  * single page, and we want to read a single page out of it.
938  * start_byte tells us the offset into the compressed data we're interested in
939  */
940 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
941 		     unsigned long start_byte, size_t srclen, size_t destlen)
942 {
943 	struct list_head *workspace;
944 	int ret;
945 
946 	workspace = find_workspace(type);
947 	if (IS_ERR(workspace))
948 		return PTR_ERR(workspace);
949 
950 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
951 						  dest_page, start_byte,
952 						  srclen, destlen);
953 
954 	free_workspace(type, workspace);
955 	return ret;
956 }
957 
958 void btrfs_exit_compress(void)
959 {
960 	free_workspaces();
961 }
962 
963 /*
964  * Copy uncompressed data from working buffer to pages.
965  *
966  * buf_start is the byte offset we're of the start of our workspace buffer.
967  *
968  * total_out is the last byte of the buffer
969  */
970 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
971 			      unsigned long total_out, u64 disk_start,
972 			      struct bio_vec *bvec, int vcnt,
973 			      unsigned long *pg_index,
974 			      unsigned long *pg_offset)
975 {
976 	unsigned long buf_offset;
977 	unsigned long current_buf_start;
978 	unsigned long start_byte;
979 	unsigned long working_bytes = total_out - buf_start;
980 	unsigned long bytes;
981 	char *kaddr;
982 	struct page *page_out = bvec[*pg_index].bv_page;
983 
984 	/*
985 	 * start byte is the first byte of the page we're currently
986 	 * copying into relative to the start of the compressed data.
987 	 */
988 	start_byte = page_offset(page_out) - disk_start;
989 
990 	/* we haven't yet hit data corresponding to this page */
991 	if (total_out <= start_byte)
992 		return 1;
993 
994 	/*
995 	 * the start of the data we care about is offset into
996 	 * the middle of our working buffer
997 	 */
998 	if (total_out > start_byte && buf_start < start_byte) {
999 		buf_offset = start_byte - buf_start;
1000 		working_bytes -= buf_offset;
1001 	} else {
1002 		buf_offset = 0;
1003 	}
1004 	current_buf_start = buf_start;
1005 
1006 	/* copy bytes from the working buffer into the pages */
1007 	while (working_bytes > 0) {
1008 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1009 			    PAGE_CACHE_SIZE - buf_offset);
1010 		bytes = min(bytes, working_bytes);
1011 		kaddr = kmap_atomic(page_out);
1012 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1013 		if (*pg_index == (vcnt - 1) && *pg_offset == 0)
1014 			memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
1015 		kunmap_atomic(kaddr);
1016 		flush_dcache_page(page_out);
1017 
1018 		*pg_offset += bytes;
1019 		buf_offset += bytes;
1020 		working_bytes -= bytes;
1021 		current_buf_start += bytes;
1022 
1023 		/* check if we need to pick another page */
1024 		if (*pg_offset == PAGE_CACHE_SIZE) {
1025 			(*pg_index)++;
1026 			if (*pg_index >= vcnt)
1027 				return 0;
1028 
1029 			page_out = bvec[*pg_index].bv_page;
1030 			*pg_offset = 0;
1031 			start_byte = page_offset(page_out) - disk_start;
1032 
1033 			/*
1034 			 * make sure our new page is covered by this
1035 			 * working buffer
1036 			 */
1037 			if (total_out <= start_byte)
1038 				return 1;
1039 
1040 			/*
1041 			 * the next page in the biovec might not be adjacent
1042 			 * to the last page, but it might still be found
1043 			 * inside this working buffer. bump our offset pointer
1044 			 */
1045 			if (total_out > start_byte &&
1046 			    current_buf_start < start_byte) {
1047 				buf_offset = start_byte - buf_start;
1048 				working_bytes = total_out - start_byte;
1049 				current_buf_start = buf_start + buf_offset;
1050 			}
1051 		}
1052 	}
1053 
1054 	return 1;
1055 }
1056