1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <crypto/hash.h> 24 #include "misc.h" 25 #include "ctree.h" 26 #include "fs.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "btrfs_inode.h" 30 #include "bio.h" 31 #include "ordered-data.h" 32 #include "compression.h" 33 #include "extent_io.h" 34 #include "extent_map.h" 35 #include "subpage.h" 36 #include "zoned.h" 37 #include "file-item.h" 38 #include "super.h" 39 40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 41 42 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 43 { 44 switch (type) { 45 case BTRFS_COMPRESS_ZLIB: 46 case BTRFS_COMPRESS_LZO: 47 case BTRFS_COMPRESS_ZSTD: 48 case BTRFS_COMPRESS_NONE: 49 return btrfs_compress_types[type]; 50 default: 51 break; 52 } 53 54 return NULL; 55 } 56 57 bool btrfs_compress_is_valid_type(const char *str, size_t len) 58 { 59 int i; 60 61 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 62 size_t comp_len = strlen(btrfs_compress_types[i]); 63 64 if (len < comp_len) 65 continue; 66 67 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 68 return true; 69 } 70 return false; 71 } 72 73 static int compression_compress_pages(int type, struct list_head *ws, 74 struct address_space *mapping, u64 start, struct page **pages, 75 unsigned long *out_pages, unsigned long *total_in, 76 unsigned long *total_out) 77 { 78 switch (type) { 79 case BTRFS_COMPRESS_ZLIB: 80 return zlib_compress_pages(ws, mapping, start, pages, 81 out_pages, total_in, total_out); 82 case BTRFS_COMPRESS_LZO: 83 return lzo_compress_pages(ws, mapping, start, pages, 84 out_pages, total_in, total_out); 85 case BTRFS_COMPRESS_ZSTD: 86 return zstd_compress_pages(ws, mapping, start, pages, 87 out_pages, total_in, total_out); 88 case BTRFS_COMPRESS_NONE: 89 default: 90 /* 91 * This can happen when compression races with remount setting 92 * it to 'no compress', while caller doesn't call 93 * inode_need_compress() to check if we really need to 94 * compress. 95 * 96 * Not a big deal, just need to inform caller that we 97 * haven't allocated any pages yet. 98 */ 99 *out_pages = 0; 100 return -E2BIG; 101 } 102 } 103 104 static int compression_decompress_bio(struct list_head *ws, 105 struct compressed_bio *cb) 106 { 107 switch (cb->compress_type) { 108 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 109 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 110 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 111 case BTRFS_COMPRESS_NONE: 112 default: 113 /* 114 * This can't happen, the type is validated several times 115 * before we get here. 116 */ 117 BUG(); 118 } 119 } 120 121 static int compression_decompress(int type, struct list_head *ws, 122 const u8 *data_in, struct page *dest_page, 123 unsigned long start_byte, size_t srclen, size_t destlen) 124 { 125 switch (type) { 126 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 127 start_byte, srclen, destlen); 128 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 129 start_byte, srclen, destlen); 130 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 131 start_byte, srclen, destlen); 132 case BTRFS_COMPRESS_NONE: 133 default: 134 /* 135 * This can't happen, the type is validated several times 136 * before we get here. 137 */ 138 BUG(); 139 } 140 } 141 142 static int btrfs_decompress_bio(struct compressed_bio *cb); 143 144 static void end_compressed_bio_read(struct btrfs_bio *bbio) 145 { 146 struct compressed_bio *cb = bbio->private; 147 unsigned int index; 148 struct page *page; 149 150 if (bbio->bio.bi_status) 151 cb->status = bbio->bio.bi_status; 152 else 153 cb->status = errno_to_blk_status(btrfs_decompress_bio(cb)); 154 155 /* Release the compressed pages */ 156 for (index = 0; index < cb->nr_pages; index++) { 157 page = cb->compressed_pages[index]; 158 page->mapping = NULL; 159 put_page(page); 160 } 161 162 /* Do io completion on the original bio */ 163 btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status); 164 165 /* Finally free the cb struct */ 166 kfree(cb->compressed_pages); 167 kfree(cb); 168 bio_put(&bbio->bio); 169 } 170 171 /* 172 * Clear the writeback bits on all of the file 173 * pages for a compressed write 174 */ 175 static noinline void end_compressed_writeback(struct inode *inode, 176 const struct compressed_bio *cb) 177 { 178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 179 unsigned long index = cb->start >> PAGE_SHIFT; 180 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 181 struct folio_batch fbatch; 182 const int errno = blk_status_to_errno(cb->status); 183 int i; 184 int ret; 185 186 if (errno) 187 mapping_set_error(inode->i_mapping, errno); 188 189 folio_batch_init(&fbatch); 190 while (index <= end_index) { 191 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 192 &fbatch); 193 194 if (ret == 0) 195 return; 196 197 for (i = 0; i < ret; i++) { 198 struct folio *folio = fbatch.folios[i]; 199 200 if (errno) 201 folio_set_error(folio); 202 btrfs_page_clamp_clear_writeback(fs_info, &folio->page, 203 cb->start, cb->len); 204 } 205 folio_batch_release(&fbatch); 206 } 207 /* the inode may be gone now */ 208 } 209 210 static void finish_compressed_bio_write(struct compressed_bio *cb) 211 { 212 struct inode *inode = cb->inode; 213 unsigned int index; 214 215 /* 216 * Ok, we're the last bio for this extent, step one is to call back 217 * into the FS and do all the end_io operations. 218 */ 219 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 220 cb->start, cb->start + cb->len - 1, 221 cb->status == BLK_STS_OK); 222 223 if (cb->writeback) 224 end_compressed_writeback(inode, cb); 225 /* Note, our inode could be gone now */ 226 227 /* 228 * Release the compressed pages, these came from alloc_page and 229 * are not attached to the inode at all 230 */ 231 for (index = 0; index < cb->nr_pages; index++) { 232 struct page *page = cb->compressed_pages[index]; 233 234 page->mapping = NULL; 235 put_page(page); 236 } 237 238 /* Finally free the cb struct */ 239 kfree(cb->compressed_pages); 240 kfree(cb); 241 } 242 243 static void btrfs_finish_compressed_write_work(struct work_struct *work) 244 { 245 struct compressed_bio *cb = 246 container_of(work, struct compressed_bio, write_end_work); 247 248 finish_compressed_bio_write(cb); 249 } 250 251 /* 252 * Do the cleanup once all the compressed pages hit the disk. This will clear 253 * writeback on the file pages and free the compressed pages. 254 * 255 * This also calls the writeback end hooks for the file pages so that metadata 256 * and checksums can be updated in the file. 257 */ 258 static void end_compressed_bio_write(struct btrfs_bio *bbio) 259 { 260 struct compressed_bio *cb = bbio->private; 261 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 262 263 cb->status = bbio->bio.bi_status; 264 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 265 266 bio_put(&bbio->bio); 267 } 268 269 /* 270 * worker function to build and submit bios for previously compressed pages. 271 * The corresponding pages in the inode should be marked for writeback 272 * and the compressed pages should have a reference on them for dropping 273 * when the IO is complete. 274 * 275 * This also checksums the file bytes and gets things ready for 276 * the end io hooks. 277 */ 278 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 279 unsigned int len, u64 disk_start, 280 unsigned int compressed_len, 281 struct page **compressed_pages, 282 unsigned int nr_pages, 283 blk_opf_t write_flags, 284 struct cgroup_subsys_state *blkcg_css, 285 bool writeback) 286 { 287 struct btrfs_fs_info *fs_info = inode->root->fs_info; 288 struct bio *bio = NULL; 289 struct compressed_bio *cb; 290 u64 cur_disk_bytenr = disk_start; 291 blk_status_t ret = BLK_STS_OK; 292 293 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 294 IS_ALIGNED(len, fs_info->sectorsize)); 295 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 296 if (!cb) 297 return BLK_STS_RESOURCE; 298 cb->status = BLK_STS_OK; 299 cb->inode = &inode->vfs_inode; 300 cb->start = start; 301 cb->len = len; 302 cb->compressed_pages = compressed_pages; 303 cb->compressed_len = compressed_len; 304 cb->writeback = writeback; 305 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 306 cb->nr_pages = nr_pages; 307 308 if (blkcg_css) { 309 kthread_associate_blkcg(blkcg_css); 310 write_flags |= REQ_CGROUP_PUNT; 311 } 312 313 write_flags |= REQ_BTRFS_ONE_ORDERED; 314 bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_WRITE | write_flags, 315 BTRFS_I(cb->inode), end_compressed_bio_write, cb); 316 bio->bi_iter.bi_sector = cur_disk_bytenr >> SECTOR_SHIFT; 317 btrfs_bio(bio)->file_offset = start; 318 319 while (cur_disk_bytenr < disk_start + compressed_len) { 320 u64 offset = cur_disk_bytenr - disk_start; 321 unsigned int index = offset >> PAGE_SHIFT; 322 unsigned int real_size; 323 unsigned int added; 324 struct page *page = compressed_pages[index]; 325 326 /* 327 * We have various limits on the real read size: 328 * - page boundary 329 * - compressed length boundary 330 */ 331 real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset)); 332 real_size = min_t(u64, real_size, compressed_len - offset); 333 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 334 335 added = bio_add_page(bio, page, real_size, offset_in_page(offset)); 336 /* 337 * Maximum compressed extent is smaller than bio size limit, 338 * thus bio_add_page() should always success. 339 */ 340 ASSERT(added == real_size); 341 cur_disk_bytenr += added; 342 } 343 344 /* Finished the range. */ 345 ASSERT(bio->bi_iter.bi_size); 346 btrfs_submit_bio(bio, 0); 347 if (blkcg_css) 348 kthread_associate_blkcg(NULL); 349 return ret; 350 } 351 352 static u64 bio_end_offset(struct bio *bio) 353 { 354 struct bio_vec *last = bio_last_bvec_all(bio); 355 356 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 357 } 358 359 /* 360 * Add extra pages in the same compressed file extent so that we don't need to 361 * re-read the same extent again and again. 362 * 363 * NOTE: this won't work well for subpage, as for subpage read, we lock the 364 * full page then submit bio for each compressed/regular extents. 365 * 366 * This means, if we have several sectors in the same page points to the same 367 * on-disk compressed data, we will re-read the same extent many times and 368 * this function can only help for the next page. 369 */ 370 static noinline int add_ra_bio_pages(struct inode *inode, 371 u64 compressed_end, 372 struct compressed_bio *cb, 373 int *memstall, unsigned long *pflags) 374 { 375 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 376 unsigned long end_index; 377 u64 cur = bio_end_offset(cb->orig_bio); 378 u64 isize = i_size_read(inode); 379 int ret; 380 struct page *page; 381 struct extent_map *em; 382 struct address_space *mapping = inode->i_mapping; 383 struct extent_map_tree *em_tree; 384 struct extent_io_tree *tree; 385 int sectors_missed = 0; 386 387 em_tree = &BTRFS_I(inode)->extent_tree; 388 tree = &BTRFS_I(inode)->io_tree; 389 390 if (isize == 0) 391 return 0; 392 393 /* 394 * For current subpage support, we only support 64K page size, 395 * which means maximum compressed extent size (128K) is just 2x page 396 * size. 397 * This makes readahead less effective, so here disable readahead for 398 * subpage for now, until full compressed write is supported. 399 */ 400 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 401 return 0; 402 403 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 404 405 while (cur < compressed_end) { 406 u64 page_end; 407 u64 pg_index = cur >> PAGE_SHIFT; 408 u32 add_size; 409 410 if (pg_index > end_index) 411 break; 412 413 page = xa_load(&mapping->i_pages, pg_index); 414 if (page && !xa_is_value(page)) { 415 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 416 fs_info->sectorsize_bits; 417 418 /* Beyond threshold, no need to continue */ 419 if (sectors_missed > 4) 420 break; 421 422 /* 423 * Jump to next page start as we already have page for 424 * current offset. 425 */ 426 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 427 continue; 428 } 429 430 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 431 ~__GFP_FS)); 432 if (!page) 433 break; 434 435 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 436 put_page(page); 437 /* There is already a page, skip to page end */ 438 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 439 continue; 440 } 441 442 if (!*memstall && PageWorkingset(page)) { 443 psi_memstall_enter(pflags); 444 *memstall = 1; 445 } 446 447 ret = set_page_extent_mapped(page); 448 if (ret < 0) { 449 unlock_page(page); 450 put_page(page); 451 break; 452 } 453 454 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 455 lock_extent(tree, cur, page_end, NULL); 456 read_lock(&em_tree->lock); 457 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 458 read_unlock(&em_tree->lock); 459 460 /* 461 * At this point, we have a locked page in the page cache for 462 * these bytes in the file. But, we have to make sure they map 463 * to this compressed extent on disk. 464 */ 465 if (!em || cur < em->start || 466 (cur + fs_info->sectorsize > extent_map_end(em)) || 467 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 468 free_extent_map(em); 469 unlock_extent(tree, cur, page_end, NULL); 470 unlock_page(page); 471 put_page(page); 472 break; 473 } 474 free_extent_map(em); 475 476 if (page->index == end_index) { 477 size_t zero_offset = offset_in_page(isize); 478 479 if (zero_offset) { 480 int zeros; 481 zeros = PAGE_SIZE - zero_offset; 482 memzero_page(page, zero_offset, zeros); 483 } 484 } 485 486 add_size = min(em->start + em->len, page_end + 1) - cur; 487 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur)); 488 if (ret != add_size) { 489 unlock_extent(tree, cur, page_end, NULL); 490 unlock_page(page); 491 put_page(page); 492 break; 493 } 494 /* 495 * If it's subpage, we also need to increase its 496 * subpage::readers number, as at endio we will decrease 497 * subpage::readers and to unlock the page. 498 */ 499 if (fs_info->sectorsize < PAGE_SIZE) 500 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 501 put_page(page); 502 cur += add_size; 503 } 504 return 0; 505 } 506 507 /* 508 * for a compressed read, the bio we get passed has all the inode pages 509 * in it. We don't actually do IO on those pages but allocate new ones 510 * to hold the compressed pages on disk. 511 * 512 * bio->bi_iter.bi_sector points to the compressed extent on disk 513 * bio->bi_io_vec points to all of the inode pages 514 * 515 * After the compressed pages are read, we copy the bytes into the 516 * bio we were passed and then call the bio end_io calls 517 */ 518 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 519 int mirror_num) 520 { 521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 522 struct extent_map_tree *em_tree; 523 struct compressed_bio *cb; 524 unsigned int compressed_len; 525 struct bio *comp_bio; 526 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 527 u64 cur_disk_byte = disk_bytenr; 528 u64 file_offset; 529 u64 em_len; 530 u64 em_start; 531 struct extent_map *em; 532 unsigned long pflags; 533 int memstall = 0; 534 blk_status_t ret; 535 int ret2; 536 int i; 537 538 em_tree = &BTRFS_I(inode)->extent_tree; 539 540 file_offset = bio_first_bvec_all(bio)->bv_offset + 541 page_offset(bio_first_page_all(bio)); 542 543 /* we need the actual starting offset of this extent in the file */ 544 read_lock(&em_tree->lock); 545 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 546 read_unlock(&em_tree->lock); 547 if (!em) { 548 ret = BLK_STS_IOERR; 549 goto out; 550 } 551 552 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 553 compressed_len = em->block_len; 554 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 555 if (!cb) { 556 ret = BLK_STS_RESOURCE; 557 goto out; 558 } 559 560 cb->status = BLK_STS_OK; 561 cb->inode = inode; 562 563 cb->start = em->orig_start; 564 em_len = em->len; 565 em_start = em->start; 566 567 cb->len = bio->bi_iter.bi_size; 568 cb->compressed_len = compressed_len; 569 cb->compress_type = em->compress_type; 570 cb->orig_bio = bio; 571 572 free_extent_map(em); 573 em = NULL; 574 575 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 576 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 577 if (!cb->compressed_pages) { 578 ret = BLK_STS_RESOURCE; 579 goto fail; 580 } 581 582 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages); 583 if (ret2) { 584 ret = BLK_STS_RESOURCE; 585 goto fail; 586 } 587 588 add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags); 589 590 /* include any pages we added in add_ra-bio_pages */ 591 cb->len = bio->bi_iter.bi_size; 592 593 comp_bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, BTRFS_I(cb->inode), 594 end_compressed_bio_read, cb); 595 comp_bio->bi_iter.bi_sector = (cur_disk_byte >> SECTOR_SHIFT); 596 597 while (cur_disk_byte < disk_bytenr + compressed_len) { 598 u64 offset = cur_disk_byte - disk_bytenr; 599 unsigned int index = offset >> PAGE_SHIFT; 600 unsigned int real_size; 601 unsigned int added; 602 struct page *page = cb->compressed_pages[index]; 603 604 /* 605 * We have various limit on the real read size: 606 * - page boundary 607 * - compressed length boundary 608 */ 609 real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset)); 610 real_size = min_t(u64, real_size, compressed_len - offset); 611 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 612 613 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset)); 614 /* 615 * Maximum compressed extent is smaller than bio size limit, 616 * thus bio_add_page() should always success. 617 */ 618 ASSERT(added == real_size); 619 cur_disk_byte += added; 620 } 621 622 if (memstall) 623 psi_memstall_leave(&pflags); 624 625 /* 626 * Stash the initial offset of this chunk, as there is no direct 627 * correlation between compressed pages and the original file offset. 628 * The field is only used for printing error messages anyway. 629 */ 630 btrfs_bio(comp_bio)->file_offset = file_offset; 631 632 ASSERT(comp_bio->bi_iter.bi_size); 633 btrfs_submit_bio(comp_bio, mirror_num); 634 return; 635 636 fail: 637 if (cb->compressed_pages) { 638 for (i = 0; i < cb->nr_pages; i++) { 639 if (cb->compressed_pages[i]) 640 __free_page(cb->compressed_pages[i]); 641 } 642 } 643 644 kfree(cb->compressed_pages); 645 kfree(cb); 646 out: 647 free_extent_map(em); 648 btrfs_bio_end_io(btrfs_bio(bio), ret); 649 return; 650 } 651 652 /* 653 * Heuristic uses systematic sampling to collect data from the input data 654 * range, the logic can be tuned by the following constants: 655 * 656 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 657 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 658 */ 659 #define SAMPLING_READ_SIZE (16) 660 #define SAMPLING_INTERVAL (256) 661 662 /* 663 * For statistical analysis of the input data we consider bytes that form a 664 * Galois Field of 256 objects. Each object has an attribute count, ie. how 665 * many times the object appeared in the sample. 666 */ 667 #define BUCKET_SIZE (256) 668 669 /* 670 * The size of the sample is based on a statistical sampling rule of thumb. 671 * The common way is to perform sampling tests as long as the number of 672 * elements in each cell is at least 5. 673 * 674 * Instead of 5, we choose 32 to obtain more accurate results. 675 * If the data contain the maximum number of symbols, which is 256, we obtain a 676 * sample size bound by 8192. 677 * 678 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 679 * from up to 512 locations. 680 */ 681 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 682 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 683 684 struct bucket_item { 685 u32 count; 686 }; 687 688 struct heuristic_ws { 689 /* Partial copy of input data */ 690 u8 *sample; 691 u32 sample_size; 692 /* Buckets store counters for each byte value */ 693 struct bucket_item *bucket; 694 /* Sorting buffer */ 695 struct bucket_item *bucket_b; 696 struct list_head list; 697 }; 698 699 static struct workspace_manager heuristic_wsm; 700 701 static void free_heuristic_ws(struct list_head *ws) 702 { 703 struct heuristic_ws *workspace; 704 705 workspace = list_entry(ws, struct heuristic_ws, list); 706 707 kvfree(workspace->sample); 708 kfree(workspace->bucket); 709 kfree(workspace->bucket_b); 710 kfree(workspace); 711 } 712 713 static struct list_head *alloc_heuristic_ws(unsigned int level) 714 { 715 struct heuristic_ws *ws; 716 717 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 718 if (!ws) 719 return ERR_PTR(-ENOMEM); 720 721 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 722 if (!ws->sample) 723 goto fail; 724 725 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 726 if (!ws->bucket) 727 goto fail; 728 729 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 730 if (!ws->bucket_b) 731 goto fail; 732 733 INIT_LIST_HEAD(&ws->list); 734 return &ws->list; 735 fail: 736 free_heuristic_ws(&ws->list); 737 return ERR_PTR(-ENOMEM); 738 } 739 740 const struct btrfs_compress_op btrfs_heuristic_compress = { 741 .workspace_manager = &heuristic_wsm, 742 }; 743 744 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 745 /* The heuristic is represented as compression type 0 */ 746 &btrfs_heuristic_compress, 747 &btrfs_zlib_compress, 748 &btrfs_lzo_compress, 749 &btrfs_zstd_compress, 750 }; 751 752 static struct list_head *alloc_workspace(int type, unsigned int level) 753 { 754 switch (type) { 755 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 756 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 757 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 758 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 759 default: 760 /* 761 * This can't happen, the type is validated several times 762 * before we get here. 763 */ 764 BUG(); 765 } 766 } 767 768 static void free_workspace(int type, struct list_head *ws) 769 { 770 switch (type) { 771 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 772 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 773 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 774 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 775 default: 776 /* 777 * This can't happen, the type is validated several times 778 * before we get here. 779 */ 780 BUG(); 781 } 782 } 783 784 static void btrfs_init_workspace_manager(int type) 785 { 786 struct workspace_manager *wsm; 787 struct list_head *workspace; 788 789 wsm = btrfs_compress_op[type]->workspace_manager; 790 INIT_LIST_HEAD(&wsm->idle_ws); 791 spin_lock_init(&wsm->ws_lock); 792 atomic_set(&wsm->total_ws, 0); 793 init_waitqueue_head(&wsm->ws_wait); 794 795 /* 796 * Preallocate one workspace for each compression type so we can 797 * guarantee forward progress in the worst case 798 */ 799 workspace = alloc_workspace(type, 0); 800 if (IS_ERR(workspace)) { 801 pr_warn( 802 "BTRFS: cannot preallocate compression workspace, will try later\n"); 803 } else { 804 atomic_set(&wsm->total_ws, 1); 805 wsm->free_ws = 1; 806 list_add(workspace, &wsm->idle_ws); 807 } 808 } 809 810 static void btrfs_cleanup_workspace_manager(int type) 811 { 812 struct workspace_manager *wsman; 813 struct list_head *ws; 814 815 wsman = btrfs_compress_op[type]->workspace_manager; 816 while (!list_empty(&wsman->idle_ws)) { 817 ws = wsman->idle_ws.next; 818 list_del(ws); 819 free_workspace(type, ws); 820 atomic_dec(&wsman->total_ws); 821 } 822 } 823 824 /* 825 * This finds an available workspace or allocates a new one. 826 * If it's not possible to allocate a new one, waits until there's one. 827 * Preallocation makes a forward progress guarantees and we do not return 828 * errors. 829 */ 830 struct list_head *btrfs_get_workspace(int type, unsigned int level) 831 { 832 struct workspace_manager *wsm; 833 struct list_head *workspace; 834 int cpus = num_online_cpus(); 835 unsigned nofs_flag; 836 struct list_head *idle_ws; 837 spinlock_t *ws_lock; 838 atomic_t *total_ws; 839 wait_queue_head_t *ws_wait; 840 int *free_ws; 841 842 wsm = btrfs_compress_op[type]->workspace_manager; 843 idle_ws = &wsm->idle_ws; 844 ws_lock = &wsm->ws_lock; 845 total_ws = &wsm->total_ws; 846 ws_wait = &wsm->ws_wait; 847 free_ws = &wsm->free_ws; 848 849 again: 850 spin_lock(ws_lock); 851 if (!list_empty(idle_ws)) { 852 workspace = idle_ws->next; 853 list_del(workspace); 854 (*free_ws)--; 855 spin_unlock(ws_lock); 856 return workspace; 857 858 } 859 if (atomic_read(total_ws) > cpus) { 860 DEFINE_WAIT(wait); 861 862 spin_unlock(ws_lock); 863 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 864 if (atomic_read(total_ws) > cpus && !*free_ws) 865 schedule(); 866 finish_wait(ws_wait, &wait); 867 goto again; 868 } 869 atomic_inc(total_ws); 870 spin_unlock(ws_lock); 871 872 /* 873 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 874 * to turn it off here because we might get called from the restricted 875 * context of btrfs_compress_bio/btrfs_compress_pages 876 */ 877 nofs_flag = memalloc_nofs_save(); 878 workspace = alloc_workspace(type, level); 879 memalloc_nofs_restore(nofs_flag); 880 881 if (IS_ERR(workspace)) { 882 atomic_dec(total_ws); 883 wake_up(ws_wait); 884 885 /* 886 * Do not return the error but go back to waiting. There's a 887 * workspace preallocated for each type and the compression 888 * time is bounded so we get to a workspace eventually. This 889 * makes our caller's life easier. 890 * 891 * To prevent silent and low-probability deadlocks (when the 892 * initial preallocation fails), check if there are any 893 * workspaces at all. 894 */ 895 if (atomic_read(total_ws) == 0) { 896 static DEFINE_RATELIMIT_STATE(_rs, 897 /* once per minute */ 60 * HZ, 898 /* no burst */ 1); 899 900 if (__ratelimit(&_rs)) { 901 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 902 } 903 } 904 goto again; 905 } 906 return workspace; 907 } 908 909 static struct list_head *get_workspace(int type, int level) 910 { 911 switch (type) { 912 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 913 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 914 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 915 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 916 default: 917 /* 918 * This can't happen, the type is validated several times 919 * before we get here. 920 */ 921 BUG(); 922 } 923 } 924 925 /* 926 * put a workspace struct back on the list or free it if we have enough 927 * idle ones sitting around 928 */ 929 void btrfs_put_workspace(int type, struct list_head *ws) 930 { 931 struct workspace_manager *wsm; 932 struct list_head *idle_ws; 933 spinlock_t *ws_lock; 934 atomic_t *total_ws; 935 wait_queue_head_t *ws_wait; 936 int *free_ws; 937 938 wsm = btrfs_compress_op[type]->workspace_manager; 939 idle_ws = &wsm->idle_ws; 940 ws_lock = &wsm->ws_lock; 941 total_ws = &wsm->total_ws; 942 ws_wait = &wsm->ws_wait; 943 free_ws = &wsm->free_ws; 944 945 spin_lock(ws_lock); 946 if (*free_ws <= num_online_cpus()) { 947 list_add(ws, idle_ws); 948 (*free_ws)++; 949 spin_unlock(ws_lock); 950 goto wake; 951 } 952 spin_unlock(ws_lock); 953 954 free_workspace(type, ws); 955 atomic_dec(total_ws); 956 wake: 957 cond_wake_up(ws_wait); 958 } 959 960 static void put_workspace(int type, struct list_head *ws) 961 { 962 switch (type) { 963 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 964 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 965 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 966 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 967 default: 968 /* 969 * This can't happen, the type is validated several times 970 * before we get here. 971 */ 972 BUG(); 973 } 974 } 975 976 /* 977 * Adjust @level according to the limits of the compression algorithm or 978 * fallback to default 979 */ 980 static unsigned int btrfs_compress_set_level(int type, unsigned level) 981 { 982 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 983 984 if (level == 0) 985 level = ops->default_level; 986 else 987 level = min(level, ops->max_level); 988 989 return level; 990 } 991 992 /* 993 * Given an address space and start and length, compress the bytes into @pages 994 * that are allocated on demand. 995 * 996 * @type_level is encoded algorithm and level, where level 0 means whatever 997 * default the algorithm chooses and is opaque here; 998 * - compression algo are 0-3 999 * - the level are bits 4-7 1000 * 1001 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1002 * and returns number of actually allocated pages 1003 * 1004 * @total_in is used to return the number of bytes actually read. It 1005 * may be smaller than the input length if we had to exit early because we 1006 * ran out of room in the pages array or because we cross the 1007 * max_out threshold. 1008 * 1009 * @total_out is an in/out parameter, must be set to the input length and will 1010 * be also used to return the total number of compressed bytes 1011 */ 1012 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1013 u64 start, struct page **pages, 1014 unsigned long *out_pages, 1015 unsigned long *total_in, 1016 unsigned long *total_out) 1017 { 1018 int type = btrfs_compress_type(type_level); 1019 int level = btrfs_compress_level(type_level); 1020 struct list_head *workspace; 1021 int ret; 1022 1023 level = btrfs_compress_set_level(type, level); 1024 workspace = get_workspace(type, level); 1025 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1026 out_pages, total_in, total_out); 1027 put_workspace(type, workspace); 1028 return ret; 1029 } 1030 1031 static int btrfs_decompress_bio(struct compressed_bio *cb) 1032 { 1033 struct list_head *workspace; 1034 int ret; 1035 int type = cb->compress_type; 1036 1037 workspace = get_workspace(type, 0); 1038 ret = compression_decompress_bio(workspace, cb); 1039 put_workspace(type, workspace); 1040 1041 return ret; 1042 } 1043 1044 /* 1045 * a less complex decompression routine. Our compressed data fits in a 1046 * single page, and we want to read a single page out of it. 1047 * start_byte tells us the offset into the compressed data we're interested in 1048 */ 1049 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page, 1050 unsigned long start_byte, size_t srclen, size_t destlen) 1051 { 1052 struct list_head *workspace; 1053 int ret; 1054 1055 workspace = get_workspace(type, 0); 1056 ret = compression_decompress(type, workspace, data_in, dest_page, 1057 start_byte, srclen, destlen); 1058 put_workspace(type, workspace); 1059 1060 return ret; 1061 } 1062 1063 int __init btrfs_init_compress(void) 1064 { 1065 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1066 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1067 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1068 zstd_init_workspace_manager(); 1069 return 0; 1070 } 1071 1072 void __cold btrfs_exit_compress(void) 1073 { 1074 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1075 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1076 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1077 zstd_cleanup_workspace_manager(); 1078 } 1079 1080 /* 1081 * Copy decompressed data from working buffer to pages. 1082 * 1083 * @buf: The decompressed data buffer 1084 * @buf_len: The decompressed data length 1085 * @decompressed: Number of bytes that are already decompressed inside the 1086 * compressed extent 1087 * @cb: The compressed extent descriptor 1088 * @orig_bio: The original bio that the caller wants to read for 1089 * 1090 * An easier to understand graph is like below: 1091 * 1092 * |<- orig_bio ->| |<- orig_bio->| 1093 * |<------- full decompressed extent ----->| 1094 * |<----------- @cb range ---->| 1095 * | |<-- @buf_len -->| 1096 * |<--- @decompressed --->| 1097 * 1098 * Note that, @cb can be a subpage of the full decompressed extent, but 1099 * @cb->start always has the same as the orig_file_offset value of the full 1100 * decompressed extent. 1101 * 1102 * When reading compressed extent, we have to read the full compressed extent, 1103 * while @orig_bio may only want part of the range. 1104 * Thus this function will ensure only data covered by @orig_bio will be copied 1105 * to. 1106 * 1107 * Return 0 if we have copied all needed contents for @orig_bio. 1108 * Return >0 if we need continue decompress. 1109 */ 1110 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1111 struct compressed_bio *cb, u32 decompressed) 1112 { 1113 struct bio *orig_bio = cb->orig_bio; 1114 /* Offset inside the full decompressed extent */ 1115 u32 cur_offset; 1116 1117 cur_offset = decompressed; 1118 /* The main loop to do the copy */ 1119 while (cur_offset < decompressed + buf_len) { 1120 struct bio_vec bvec; 1121 size_t copy_len; 1122 u32 copy_start; 1123 /* Offset inside the full decompressed extent */ 1124 u32 bvec_offset; 1125 1126 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1127 /* 1128 * cb->start may underflow, but subtracting that value can still 1129 * give us correct offset inside the full decompressed extent. 1130 */ 1131 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1132 1133 /* Haven't reached the bvec range, exit */ 1134 if (decompressed + buf_len <= bvec_offset) 1135 return 1; 1136 1137 copy_start = max(cur_offset, bvec_offset); 1138 copy_len = min(bvec_offset + bvec.bv_len, 1139 decompressed + buf_len) - copy_start; 1140 ASSERT(copy_len); 1141 1142 /* 1143 * Extra range check to ensure we didn't go beyond 1144 * @buf + @buf_len. 1145 */ 1146 ASSERT(copy_start - decompressed < buf_len); 1147 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1148 buf + copy_start - decompressed, copy_len); 1149 cur_offset += copy_len; 1150 1151 bio_advance(orig_bio, copy_len); 1152 /* Finished the bio */ 1153 if (!orig_bio->bi_iter.bi_size) 1154 return 0; 1155 } 1156 return 1; 1157 } 1158 1159 /* 1160 * Shannon Entropy calculation 1161 * 1162 * Pure byte distribution analysis fails to determine compressibility of data. 1163 * Try calculating entropy to estimate the average minimum number of bits 1164 * needed to encode the sampled data. 1165 * 1166 * For convenience, return the percentage of needed bits, instead of amount of 1167 * bits directly. 1168 * 1169 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1170 * and can be compressible with high probability 1171 * 1172 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1173 * 1174 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1175 */ 1176 #define ENTROPY_LVL_ACEPTABLE (65) 1177 #define ENTROPY_LVL_HIGH (80) 1178 1179 /* 1180 * For increasead precision in shannon_entropy calculation, 1181 * let's do pow(n, M) to save more digits after comma: 1182 * 1183 * - maximum int bit length is 64 1184 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1185 * - 13 * 4 = 52 < 64 -> M = 4 1186 * 1187 * So use pow(n, 4). 1188 */ 1189 static inline u32 ilog2_w(u64 n) 1190 { 1191 return ilog2(n * n * n * n); 1192 } 1193 1194 static u32 shannon_entropy(struct heuristic_ws *ws) 1195 { 1196 const u32 entropy_max = 8 * ilog2_w(2); 1197 u32 entropy_sum = 0; 1198 u32 p, p_base, sz_base; 1199 u32 i; 1200 1201 sz_base = ilog2_w(ws->sample_size); 1202 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1203 p = ws->bucket[i].count; 1204 p_base = ilog2_w(p); 1205 entropy_sum += p * (sz_base - p_base); 1206 } 1207 1208 entropy_sum /= ws->sample_size; 1209 return entropy_sum * 100 / entropy_max; 1210 } 1211 1212 #define RADIX_BASE 4U 1213 #define COUNTERS_SIZE (1U << RADIX_BASE) 1214 1215 static u8 get4bits(u64 num, int shift) { 1216 u8 low4bits; 1217 1218 num >>= shift; 1219 /* Reverse order */ 1220 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1221 return low4bits; 1222 } 1223 1224 /* 1225 * Use 4 bits as radix base 1226 * Use 16 u32 counters for calculating new position in buf array 1227 * 1228 * @array - array that will be sorted 1229 * @array_buf - buffer array to store sorting results 1230 * must be equal in size to @array 1231 * @num - array size 1232 */ 1233 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1234 int num) 1235 { 1236 u64 max_num; 1237 u64 buf_num; 1238 u32 counters[COUNTERS_SIZE]; 1239 u32 new_addr; 1240 u32 addr; 1241 int bitlen; 1242 int shift; 1243 int i; 1244 1245 /* 1246 * Try avoid useless loop iterations for small numbers stored in big 1247 * counters. Example: 48 33 4 ... in 64bit array 1248 */ 1249 max_num = array[0].count; 1250 for (i = 1; i < num; i++) { 1251 buf_num = array[i].count; 1252 if (buf_num > max_num) 1253 max_num = buf_num; 1254 } 1255 1256 buf_num = ilog2(max_num); 1257 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1258 1259 shift = 0; 1260 while (shift < bitlen) { 1261 memset(counters, 0, sizeof(counters)); 1262 1263 for (i = 0; i < num; i++) { 1264 buf_num = array[i].count; 1265 addr = get4bits(buf_num, shift); 1266 counters[addr]++; 1267 } 1268 1269 for (i = 1; i < COUNTERS_SIZE; i++) 1270 counters[i] += counters[i - 1]; 1271 1272 for (i = num - 1; i >= 0; i--) { 1273 buf_num = array[i].count; 1274 addr = get4bits(buf_num, shift); 1275 counters[addr]--; 1276 new_addr = counters[addr]; 1277 array_buf[new_addr] = array[i]; 1278 } 1279 1280 shift += RADIX_BASE; 1281 1282 /* 1283 * Normal radix expects to move data from a temporary array, to 1284 * the main one. But that requires some CPU time. Avoid that 1285 * by doing another sort iteration to original array instead of 1286 * memcpy() 1287 */ 1288 memset(counters, 0, sizeof(counters)); 1289 1290 for (i = 0; i < num; i ++) { 1291 buf_num = array_buf[i].count; 1292 addr = get4bits(buf_num, shift); 1293 counters[addr]++; 1294 } 1295 1296 for (i = 1; i < COUNTERS_SIZE; i++) 1297 counters[i] += counters[i - 1]; 1298 1299 for (i = num - 1; i >= 0; i--) { 1300 buf_num = array_buf[i].count; 1301 addr = get4bits(buf_num, shift); 1302 counters[addr]--; 1303 new_addr = counters[addr]; 1304 array[new_addr] = array_buf[i]; 1305 } 1306 1307 shift += RADIX_BASE; 1308 } 1309 } 1310 1311 /* 1312 * Size of the core byte set - how many bytes cover 90% of the sample 1313 * 1314 * There are several types of structured binary data that use nearly all byte 1315 * values. The distribution can be uniform and counts in all buckets will be 1316 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1317 * 1318 * Other possibility is normal (Gaussian) distribution, where the data could 1319 * be potentially compressible, but we have to take a few more steps to decide 1320 * how much. 1321 * 1322 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1323 * compression algo can easy fix that 1324 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1325 * probability is not compressible 1326 */ 1327 #define BYTE_CORE_SET_LOW (64) 1328 #define BYTE_CORE_SET_HIGH (200) 1329 1330 static int byte_core_set_size(struct heuristic_ws *ws) 1331 { 1332 u32 i; 1333 u32 coreset_sum = 0; 1334 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1335 struct bucket_item *bucket = ws->bucket; 1336 1337 /* Sort in reverse order */ 1338 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1339 1340 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1341 coreset_sum += bucket[i].count; 1342 1343 if (coreset_sum > core_set_threshold) 1344 return i; 1345 1346 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1347 coreset_sum += bucket[i].count; 1348 if (coreset_sum > core_set_threshold) 1349 break; 1350 } 1351 1352 return i; 1353 } 1354 1355 /* 1356 * Count byte values in buckets. 1357 * This heuristic can detect textual data (configs, xml, json, html, etc). 1358 * Because in most text-like data byte set is restricted to limited number of 1359 * possible characters, and that restriction in most cases makes data easy to 1360 * compress. 1361 * 1362 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1363 * less - compressible 1364 * more - need additional analysis 1365 */ 1366 #define BYTE_SET_THRESHOLD (64) 1367 1368 static u32 byte_set_size(const struct heuristic_ws *ws) 1369 { 1370 u32 i; 1371 u32 byte_set_size = 0; 1372 1373 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1374 if (ws->bucket[i].count > 0) 1375 byte_set_size++; 1376 } 1377 1378 /* 1379 * Continue collecting count of byte values in buckets. If the byte 1380 * set size is bigger then the threshold, it's pointless to continue, 1381 * the detection technique would fail for this type of data. 1382 */ 1383 for (; i < BUCKET_SIZE; i++) { 1384 if (ws->bucket[i].count > 0) { 1385 byte_set_size++; 1386 if (byte_set_size > BYTE_SET_THRESHOLD) 1387 return byte_set_size; 1388 } 1389 } 1390 1391 return byte_set_size; 1392 } 1393 1394 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1395 { 1396 const u32 half_of_sample = ws->sample_size / 2; 1397 const u8 *data = ws->sample; 1398 1399 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1400 } 1401 1402 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1403 struct heuristic_ws *ws) 1404 { 1405 struct page *page; 1406 u64 index, index_end; 1407 u32 i, curr_sample_pos; 1408 u8 *in_data; 1409 1410 /* 1411 * Compression handles the input data by chunks of 128KiB 1412 * (defined by BTRFS_MAX_UNCOMPRESSED) 1413 * 1414 * We do the same for the heuristic and loop over the whole range. 1415 * 1416 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1417 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1418 */ 1419 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1420 end = start + BTRFS_MAX_UNCOMPRESSED; 1421 1422 index = start >> PAGE_SHIFT; 1423 index_end = end >> PAGE_SHIFT; 1424 1425 /* Don't miss unaligned end */ 1426 if (!PAGE_ALIGNED(end)) 1427 index_end++; 1428 1429 curr_sample_pos = 0; 1430 while (index < index_end) { 1431 page = find_get_page(inode->i_mapping, index); 1432 in_data = kmap_local_page(page); 1433 /* Handle case where the start is not aligned to PAGE_SIZE */ 1434 i = start % PAGE_SIZE; 1435 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1436 /* Don't sample any garbage from the last page */ 1437 if (start > end - SAMPLING_READ_SIZE) 1438 break; 1439 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1440 SAMPLING_READ_SIZE); 1441 i += SAMPLING_INTERVAL; 1442 start += SAMPLING_INTERVAL; 1443 curr_sample_pos += SAMPLING_READ_SIZE; 1444 } 1445 kunmap_local(in_data); 1446 put_page(page); 1447 1448 index++; 1449 } 1450 1451 ws->sample_size = curr_sample_pos; 1452 } 1453 1454 /* 1455 * Compression heuristic. 1456 * 1457 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1458 * quickly (compared to direct compression) detect data characteristics 1459 * (compressible/incompressible) to avoid wasting CPU time on incompressible 1460 * data. 1461 * 1462 * The following types of analysis can be performed: 1463 * - detect mostly zero data 1464 * - detect data with low "byte set" size (text, etc) 1465 * - detect data with low/high "core byte" set 1466 * 1467 * Return non-zero if the compression should be done, 0 otherwise. 1468 */ 1469 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1470 { 1471 struct list_head *ws_list = get_workspace(0, 0); 1472 struct heuristic_ws *ws; 1473 u32 i; 1474 u8 byte; 1475 int ret = 0; 1476 1477 ws = list_entry(ws_list, struct heuristic_ws, list); 1478 1479 heuristic_collect_sample(inode, start, end, ws); 1480 1481 if (sample_repeated_patterns(ws)) { 1482 ret = 1; 1483 goto out; 1484 } 1485 1486 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1487 1488 for (i = 0; i < ws->sample_size; i++) { 1489 byte = ws->sample[i]; 1490 ws->bucket[byte].count++; 1491 } 1492 1493 i = byte_set_size(ws); 1494 if (i < BYTE_SET_THRESHOLD) { 1495 ret = 2; 1496 goto out; 1497 } 1498 1499 i = byte_core_set_size(ws); 1500 if (i <= BYTE_CORE_SET_LOW) { 1501 ret = 3; 1502 goto out; 1503 } 1504 1505 if (i >= BYTE_CORE_SET_HIGH) { 1506 ret = 0; 1507 goto out; 1508 } 1509 1510 i = shannon_entropy(ws); 1511 if (i <= ENTROPY_LVL_ACEPTABLE) { 1512 ret = 4; 1513 goto out; 1514 } 1515 1516 /* 1517 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1518 * needed to give green light to compression. 1519 * 1520 * For now just assume that compression at that level is not worth the 1521 * resources because: 1522 * 1523 * 1. it is possible to defrag the data later 1524 * 1525 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1526 * values, every bucket has counter at level ~54. The heuristic would 1527 * be confused. This can happen when data have some internal repeated 1528 * patterns like "abbacbbc...". This can be detected by analyzing 1529 * pairs of bytes, which is too costly. 1530 */ 1531 if (i < ENTROPY_LVL_HIGH) { 1532 ret = 5; 1533 goto out; 1534 } else { 1535 ret = 0; 1536 goto out; 1537 } 1538 1539 out: 1540 put_workspace(0, ws_list); 1541 return ret; 1542 } 1543 1544 /* 1545 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1546 * level, unrecognized string will set the default level 1547 */ 1548 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1549 { 1550 unsigned int level = 0; 1551 int ret; 1552 1553 if (!type) 1554 return 0; 1555 1556 if (str[0] == ':') { 1557 ret = kstrtouint(str + 1, 10, &level); 1558 if (ret) 1559 level = 0; 1560 } 1561 1562 level = btrfs_compress_set_level(type, level); 1563 1564 return level; 1565 } 1566