1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "volumes.h" 25 #include "ordered-data.h" 26 #include "compression.h" 27 #include "extent_io.h" 28 #include "extent_map.h" 29 30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 31 32 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 33 { 34 switch (type) { 35 case BTRFS_COMPRESS_ZLIB: 36 case BTRFS_COMPRESS_LZO: 37 case BTRFS_COMPRESS_ZSTD: 38 case BTRFS_COMPRESS_NONE: 39 return btrfs_compress_types[type]; 40 } 41 42 return NULL; 43 } 44 45 static int btrfs_decompress_bio(struct compressed_bio *cb); 46 47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 48 unsigned long disk_size) 49 { 50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 51 52 return sizeof(struct compressed_bio) + 53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 54 } 55 56 static int check_compressed_csum(struct btrfs_inode *inode, 57 struct compressed_bio *cb, 58 u64 disk_start) 59 { 60 int ret; 61 struct page *page; 62 unsigned long i; 63 char *kaddr; 64 u32 csum; 65 u32 *cb_sum = &cb->sums; 66 67 if (inode->flags & BTRFS_INODE_NODATASUM) 68 return 0; 69 70 for (i = 0; i < cb->nr_pages; i++) { 71 page = cb->compressed_pages[i]; 72 csum = ~(u32)0; 73 74 kaddr = kmap_atomic(page); 75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 76 btrfs_csum_final(csum, (u8 *)&csum); 77 kunmap_atomic(kaddr); 78 79 if (csum != *cb_sum) { 80 btrfs_print_data_csum_error(inode, disk_start, csum, 81 *cb_sum, cb->mirror_num); 82 ret = -EIO; 83 goto fail; 84 } 85 cb_sum++; 86 87 } 88 ret = 0; 89 fail: 90 return ret; 91 } 92 93 /* when we finish reading compressed pages from the disk, we 94 * decompress them and then run the bio end_io routines on the 95 * decompressed pages (in the inode address space). 96 * 97 * This allows the checksumming and other IO error handling routines 98 * to work normally 99 * 100 * The compressed pages are freed here, and it must be run 101 * in process context 102 */ 103 static void end_compressed_bio_read(struct bio *bio) 104 { 105 struct compressed_bio *cb = bio->bi_private; 106 struct inode *inode; 107 struct page *page; 108 unsigned long index; 109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 110 int ret = 0; 111 112 if (bio->bi_status) 113 cb->errors = 1; 114 115 /* if there are more bios still pending for this compressed 116 * extent, just exit 117 */ 118 if (!refcount_dec_and_test(&cb->pending_bios)) 119 goto out; 120 121 /* 122 * Record the correct mirror_num in cb->orig_bio so that 123 * read-repair can work properly. 124 */ 125 ASSERT(btrfs_io_bio(cb->orig_bio)); 126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 127 cb->mirror_num = mirror; 128 129 /* 130 * Some IO in this cb have failed, just skip checksum as there 131 * is no way it could be correct. 132 */ 133 if (cb->errors == 1) 134 goto csum_failed; 135 136 inode = cb->inode; 137 ret = check_compressed_csum(BTRFS_I(inode), cb, 138 (u64)bio->bi_iter.bi_sector << 9); 139 if (ret) 140 goto csum_failed; 141 142 /* ok, we're the last bio for this extent, lets start 143 * the decompression. 144 */ 145 ret = btrfs_decompress_bio(cb); 146 147 csum_failed: 148 if (ret) 149 cb->errors = 1; 150 151 /* release the compressed pages */ 152 index = 0; 153 for (index = 0; index < cb->nr_pages; index++) { 154 page = cb->compressed_pages[index]; 155 page->mapping = NULL; 156 put_page(page); 157 } 158 159 /* do io completion on the original bio */ 160 if (cb->errors) { 161 bio_io_error(cb->orig_bio); 162 } else { 163 int i; 164 struct bio_vec *bvec; 165 166 /* 167 * we have verified the checksum already, set page 168 * checked so the end_io handlers know about it 169 */ 170 ASSERT(!bio_flagged(bio, BIO_CLONED)); 171 bio_for_each_segment_all(bvec, cb->orig_bio, i) 172 SetPageChecked(bvec->bv_page); 173 174 bio_endio(cb->orig_bio); 175 } 176 177 /* finally free the cb struct */ 178 kfree(cb->compressed_pages); 179 kfree(cb); 180 out: 181 bio_put(bio); 182 } 183 184 /* 185 * Clear the writeback bits on all of the file 186 * pages for a compressed write 187 */ 188 static noinline void end_compressed_writeback(struct inode *inode, 189 const struct compressed_bio *cb) 190 { 191 unsigned long index = cb->start >> PAGE_SHIFT; 192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 193 struct page *pages[16]; 194 unsigned long nr_pages = end_index - index + 1; 195 int i; 196 int ret; 197 198 if (cb->errors) 199 mapping_set_error(inode->i_mapping, -EIO); 200 201 while (nr_pages > 0) { 202 ret = find_get_pages_contig(inode->i_mapping, index, 203 min_t(unsigned long, 204 nr_pages, ARRAY_SIZE(pages)), pages); 205 if (ret == 0) { 206 nr_pages -= 1; 207 index += 1; 208 continue; 209 } 210 for (i = 0; i < ret; i++) { 211 if (cb->errors) 212 SetPageError(pages[i]); 213 end_page_writeback(pages[i]); 214 put_page(pages[i]); 215 } 216 nr_pages -= ret; 217 index += ret; 218 } 219 /* the inode may be gone now */ 220 } 221 222 /* 223 * do the cleanup once all the compressed pages hit the disk. 224 * This will clear writeback on the file pages and free the compressed 225 * pages. 226 * 227 * This also calls the writeback end hooks for the file pages so that 228 * metadata and checksums can be updated in the file. 229 */ 230 static void end_compressed_bio_write(struct bio *bio) 231 { 232 struct compressed_bio *cb = bio->bi_private; 233 struct inode *inode; 234 struct page *page; 235 unsigned long index; 236 237 if (bio->bi_status) 238 cb->errors = 1; 239 240 /* if there are more bios still pending for this compressed 241 * extent, just exit 242 */ 243 if (!refcount_dec_and_test(&cb->pending_bios)) 244 goto out; 245 246 /* ok, we're the last bio for this extent, step one is to 247 * call back into the FS and do all the end_io operations 248 */ 249 inode = cb->inode; 250 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 251 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 252 cb->start, cb->start + cb->len - 1, 253 bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP); 254 cb->compressed_pages[0]->mapping = NULL; 255 256 end_compressed_writeback(inode, cb); 257 /* note, our inode could be gone now */ 258 259 /* 260 * release the compressed pages, these came from alloc_page and 261 * are not attached to the inode at all 262 */ 263 index = 0; 264 for (index = 0; index < cb->nr_pages; index++) { 265 page = cb->compressed_pages[index]; 266 page->mapping = NULL; 267 put_page(page); 268 } 269 270 /* finally free the cb struct */ 271 kfree(cb->compressed_pages); 272 kfree(cb); 273 out: 274 bio_put(bio); 275 } 276 277 /* 278 * worker function to build and submit bios for previously compressed pages. 279 * The corresponding pages in the inode should be marked for writeback 280 * and the compressed pages should have a reference on them for dropping 281 * when the IO is complete. 282 * 283 * This also checksums the file bytes and gets things ready for 284 * the end io hooks. 285 */ 286 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 287 unsigned long len, u64 disk_start, 288 unsigned long compressed_len, 289 struct page **compressed_pages, 290 unsigned long nr_pages, 291 unsigned int write_flags) 292 { 293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 294 struct bio *bio = NULL; 295 struct compressed_bio *cb; 296 unsigned long bytes_left; 297 int pg_index = 0; 298 struct page *page; 299 u64 first_byte = disk_start; 300 struct block_device *bdev; 301 blk_status_t ret; 302 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 303 304 WARN_ON(!PAGE_ALIGNED(start)); 305 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 306 if (!cb) 307 return BLK_STS_RESOURCE; 308 refcount_set(&cb->pending_bios, 0); 309 cb->errors = 0; 310 cb->inode = inode; 311 cb->start = start; 312 cb->len = len; 313 cb->mirror_num = 0; 314 cb->compressed_pages = compressed_pages; 315 cb->compressed_len = compressed_len; 316 cb->orig_bio = NULL; 317 cb->nr_pages = nr_pages; 318 319 bdev = fs_info->fs_devices->latest_bdev; 320 321 bio = btrfs_bio_alloc(bdev, first_byte); 322 bio->bi_opf = REQ_OP_WRITE | write_flags; 323 bio->bi_private = cb; 324 bio->bi_end_io = end_compressed_bio_write; 325 refcount_set(&cb->pending_bios, 1); 326 327 /* create and submit bios for the compressed pages */ 328 bytes_left = compressed_len; 329 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 330 int submit = 0; 331 332 page = compressed_pages[pg_index]; 333 page->mapping = inode->i_mapping; 334 if (bio->bi_iter.bi_size) 335 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 336 0); 337 338 page->mapping = NULL; 339 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 340 PAGE_SIZE) { 341 /* 342 * inc the count before we submit the bio so 343 * we know the end IO handler won't happen before 344 * we inc the count. Otherwise, the cb might get 345 * freed before we're done setting it up 346 */ 347 refcount_inc(&cb->pending_bios); 348 ret = btrfs_bio_wq_end_io(fs_info, bio, 349 BTRFS_WQ_ENDIO_DATA); 350 BUG_ON(ret); /* -ENOMEM */ 351 352 if (!skip_sum) { 353 ret = btrfs_csum_one_bio(inode, bio, start, 1); 354 BUG_ON(ret); /* -ENOMEM */ 355 } 356 357 ret = btrfs_map_bio(fs_info, bio, 0, 1); 358 if (ret) { 359 bio->bi_status = ret; 360 bio_endio(bio); 361 } 362 363 bio = btrfs_bio_alloc(bdev, first_byte); 364 bio->bi_opf = REQ_OP_WRITE | write_flags; 365 bio->bi_private = cb; 366 bio->bi_end_io = end_compressed_bio_write; 367 bio_add_page(bio, page, PAGE_SIZE, 0); 368 } 369 if (bytes_left < PAGE_SIZE) { 370 btrfs_info(fs_info, 371 "bytes left %lu compress len %lu nr %lu", 372 bytes_left, cb->compressed_len, cb->nr_pages); 373 } 374 bytes_left -= PAGE_SIZE; 375 first_byte += PAGE_SIZE; 376 cond_resched(); 377 } 378 379 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 380 BUG_ON(ret); /* -ENOMEM */ 381 382 if (!skip_sum) { 383 ret = btrfs_csum_one_bio(inode, bio, start, 1); 384 BUG_ON(ret); /* -ENOMEM */ 385 } 386 387 ret = btrfs_map_bio(fs_info, bio, 0, 1); 388 if (ret) { 389 bio->bi_status = ret; 390 bio_endio(bio); 391 } 392 393 return 0; 394 } 395 396 static u64 bio_end_offset(struct bio *bio) 397 { 398 struct bio_vec *last = bio_last_bvec_all(bio); 399 400 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 401 } 402 403 static noinline int add_ra_bio_pages(struct inode *inode, 404 u64 compressed_end, 405 struct compressed_bio *cb) 406 { 407 unsigned long end_index; 408 unsigned long pg_index; 409 u64 last_offset; 410 u64 isize = i_size_read(inode); 411 int ret; 412 struct page *page; 413 unsigned long nr_pages = 0; 414 struct extent_map *em; 415 struct address_space *mapping = inode->i_mapping; 416 struct extent_map_tree *em_tree; 417 struct extent_io_tree *tree; 418 u64 end; 419 int misses = 0; 420 421 last_offset = bio_end_offset(cb->orig_bio); 422 em_tree = &BTRFS_I(inode)->extent_tree; 423 tree = &BTRFS_I(inode)->io_tree; 424 425 if (isize == 0) 426 return 0; 427 428 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 429 430 while (last_offset < compressed_end) { 431 pg_index = last_offset >> PAGE_SHIFT; 432 433 if (pg_index > end_index) 434 break; 435 436 page = xa_load(&mapping->i_pages, pg_index); 437 if (page && !xa_is_value(page)) { 438 misses++; 439 if (misses > 4) 440 break; 441 goto next; 442 } 443 444 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 445 ~__GFP_FS)); 446 if (!page) 447 break; 448 449 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 450 put_page(page); 451 goto next; 452 } 453 454 end = last_offset + PAGE_SIZE - 1; 455 /* 456 * at this point, we have a locked page in the page cache 457 * for these bytes in the file. But, we have to make 458 * sure they map to this compressed extent on disk. 459 */ 460 set_page_extent_mapped(page); 461 lock_extent(tree, last_offset, end); 462 read_lock(&em_tree->lock); 463 em = lookup_extent_mapping(em_tree, last_offset, 464 PAGE_SIZE); 465 read_unlock(&em_tree->lock); 466 467 if (!em || last_offset < em->start || 468 (last_offset + PAGE_SIZE > extent_map_end(em)) || 469 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 470 free_extent_map(em); 471 unlock_extent(tree, last_offset, end); 472 unlock_page(page); 473 put_page(page); 474 break; 475 } 476 free_extent_map(em); 477 478 if (page->index == end_index) { 479 char *userpage; 480 size_t zero_offset = offset_in_page(isize); 481 482 if (zero_offset) { 483 int zeros; 484 zeros = PAGE_SIZE - zero_offset; 485 userpage = kmap_atomic(page); 486 memset(userpage + zero_offset, 0, zeros); 487 flush_dcache_page(page); 488 kunmap_atomic(userpage); 489 } 490 } 491 492 ret = bio_add_page(cb->orig_bio, page, 493 PAGE_SIZE, 0); 494 495 if (ret == PAGE_SIZE) { 496 nr_pages++; 497 put_page(page); 498 } else { 499 unlock_extent(tree, last_offset, end); 500 unlock_page(page); 501 put_page(page); 502 break; 503 } 504 next: 505 last_offset += PAGE_SIZE; 506 } 507 return 0; 508 } 509 510 /* 511 * for a compressed read, the bio we get passed has all the inode pages 512 * in it. We don't actually do IO on those pages but allocate new ones 513 * to hold the compressed pages on disk. 514 * 515 * bio->bi_iter.bi_sector points to the compressed extent on disk 516 * bio->bi_io_vec points to all of the inode pages 517 * 518 * After the compressed pages are read, we copy the bytes into the 519 * bio we were passed and then call the bio end_io calls 520 */ 521 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 522 int mirror_num, unsigned long bio_flags) 523 { 524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 525 struct extent_map_tree *em_tree; 526 struct compressed_bio *cb; 527 unsigned long compressed_len; 528 unsigned long nr_pages; 529 unsigned long pg_index; 530 struct page *page; 531 struct block_device *bdev; 532 struct bio *comp_bio; 533 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 534 u64 em_len; 535 u64 em_start; 536 struct extent_map *em; 537 blk_status_t ret = BLK_STS_RESOURCE; 538 int faili = 0; 539 u32 *sums; 540 541 em_tree = &BTRFS_I(inode)->extent_tree; 542 543 /* we need the actual starting offset of this extent in the file */ 544 read_lock(&em_tree->lock); 545 em = lookup_extent_mapping(em_tree, 546 page_offset(bio_first_page_all(bio)), 547 PAGE_SIZE); 548 read_unlock(&em_tree->lock); 549 if (!em) 550 return BLK_STS_IOERR; 551 552 compressed_len = em->block_len; 553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 554 if (!cb) 555 goto out; 556 557 refcount_set(&cb->pending_bios, 0); 558 cb->errors = 0; 559 cb->inode = inode; 560 cb->mirror_num = mirror_num; 561 sums = &cb->sums; 562 563 cb->start = em->orig_start; 564 em_len = em->len; 565 em_start = em->start; 566 567 free_extent_map(em); 568 em = NULL; 569 570 cb->len = bio->bi_iter.bi_size; 571 cb->compressed_len = compressed_len; 572 cb->compress_type = extent_compress_type(bio_flags); 573 cb->orig_bio = bio; 574 575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 577 GFP_NOFS); 578 if (!cb->compressed_pages) 579 goto fail1; 580 581 bdev = fs_info->fs_devices->latest_bdev; 582 583 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 585 __GFP_HIGHMEM); 586 if (!cb->compressed_pages[pg_index]) { 587 faili = pg_index - 1; 588 ret = BLK_STS_RESOURCE; 589 goto fail2; 590 } 591 } 592 faili = nr_pages - 1; 593 cb->nr_pages = nr_pages; 594 595 add_ra_bio_pages(inode, em_start + em_len, cb); 596 597 /* include any pages we added in add_ra-bio_pages */ 598 cb->len = bio->bi_iter.bi_size; 599 600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 601 comp_bio->bi_opf = REQ_OP_READ; 602 comp_bio->bi_private = cb; 603 comp_bio->bi_end_io = end_compressed_bio_read; 604 refcount_set(&cb->pending_bios, 1); 605 606 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 607 int submit = 0; 608 609 page = cb->compressed_pages[pg_index]; 610 page->mapping = inode->i_mapping; 611 page->index = em_start >> PAGE_SHIFT; 612 613 if (comp_bio->bi_iter.bi_size) 614 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 615 comp_bio, 0); 616 617 page->mapping = NULL; 618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 619 PAGE_SIZE) { 620 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 621 BTRFS_WQ_ENDIO_DATA); 622 BUG_ON(ret); /* -ENOMEM */ 623 624 /* 625 * inc the count before we submit the bio so 626 * we know the end IO handler won't happen before 627 * we inc the count. Otherwise, the cb might get 628 * freed before we're done setting it up 629 */ 630 refcount_inc(&cb->pending_bios); 631 632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 633 ret = btrfs_lookup_bio_sums(inode, comp_bio, 634 sums); 635 BUG_ON(ret); /* -ENOMEM */ 636 } 637 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 638 fs_info->sectorsize); 639 640 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 641 if (ret) { 642 comp_bio->bi_status = ret; 643 bio_endio(comp_bio); 644 } 645 646 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 647 comp_bio->bi_opf = REQ_OP_READ; 648 comp_bio->bi_private = cb; 649 comp_bio->bi_end_io = end_compressed_bio_read; 650 651 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 652 } 653 cur_disk_byte += PAGE_SIZE; 654 } 655 656 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 657 BUG_ON(ret); /* -ENOMEM */ 658 659 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 660 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 661 BUG_ON(ret); /* -ENOMEM */ 662 } 663 664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 665 if (ret) { 666 comp_bio->bi_status = ret; 667 bio_endio(comp_bio); 668 } 669 670 return 0; 671 672 fail2: 673 while (faili >= 0) { 674 __free_page(cb->compressed_pages[faili]); 675 faili--; 676 } 677 678 kfree(cb->compressed_pages); 679 fail1: 680 kfree(cb); 681 out: 682 free_extent_map(em); 683 return ret; 684 } 685 686 /* 687 * Heuristic uses systematic sampling to collect data from the input data 688 * range, the logic can be tuned by the following constants: 689 * 690 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 691 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 692 */ 693 #define SAMPLING_READ_SIZE (16) 694 #define SAMPLING_INTERVAL (256) 695 696 /* 697 * For statistical analysis of the input data we consider bytes that form a 698 * Galois Field of 256 objects. Each object has an attribute count, ie. how 699 * many times the object appeared in the sample. 700 */ 701 #define BUCKET_SIZE (256) 702 703 /* 704 * The size of the sample is based on a statistical sampling rule of thumb. 705 * The common way is to perform sampling tests as long as the number of 706 * elements in each cell is at least 5. 707 * 708 * Instead of 5, we choose 32 to obtain more accurate results. 709 * If the data contain the maximum number of symbols, which is 256, we obtain a 710 * sample size bound by 8192. 711 * 712 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 713 * from up to 512 locations. 714 */ 715 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 716 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 717 718 struct bucket_item { 719 u32 count; 720 }; 721 722 struct heuristic_ws { 723 /* Partial copy of input data */ 724 u8 *sample; 725 u32 sample_size; 726 /* Buckets store counters for each byte value */ 727 struct bucket_item *bucket; 728 /* Sorting buffer */ 729 struct bucket_item *bucket_b; 730 struct list_head list; 731 }; 732 733 static void free_heuristic_ws(struct list_head *ws) 734 { 735 struct heuristic_ws *workspace; 736 737 workspace = list_entry(ws, struct heuristic_ws, list); 738 739 kvfree(workspace->sample); 740 kfree(workspace->bucket); 741 kfree(workspace->bucket_b); 742 kfree(workspace); 743 } 744 745 static struct list_head *alloc_heuristic_ws(void) 746 { 747 struct heuristic_ws *ws; 748 749 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 750 if (!ws) 751 return ERR_PTR(-ENOMEM); 752 753 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 754 if (!ws->sample) 755 goto fail; 756 757 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 758 if (!ws->bucket) 759 goto fail; 760 761 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 762 if (!ws->bucket_b) 763 goto fail; 764 765 INIT_LIST_HEAD(&ws->list); 766 return &ws->list; 767 fail: 768 free_heuristic_ws(&ws->list); 769 return ERR_PTR(-ENOMEM); 770 } 771 772 struct workspaces_list { 773 struct list_head idle_ws; 774 spinlock_t ws_lock; 775 /* Number of free workspaces */ 776 int free_ws; 777 /* Total number of allocated workspaces */ 778 atomic_t total_ws; 779 /* Waiters for a free workspace */ 780 wait_queue_head_t ws_wait; 781 }; 782 783 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 784 785 static struct workspaces_list btrfs_heuristic_ws; 786 787 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 788 &btrfs_zlib_compress, 789 &btrfs_lzo_compress, 790 &btrfs_zstd_compress, 791 }; 792 793 void __init btrfs_init_compress(void) 794 { 795 struct list_head *workspace; 796 int i; 797 798 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws); 799 spin_lock_init(&btrfs_heuristic_ws.ws_lock); 800 atomic_set(&btrfs_heuristic_ws.total_ws, 0); 801 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait); 802 803 workspace = alloc_heuristic_ws(); 804 if (IS_ERR(workspace)) { 805 pr_warn( 806 "BTRFS: cannot preallocate heuristic workspace, will try later\n"); 807 } else { 808 atomic_set(&btrfs_heuristic_ws.total_ws, 1); 809 btrfs_heuristic_ws.free_ws = 1; 810 list_add(workspace, &btrfs_heuristic_ws.idle_ws); 811 } 812 813 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 814 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 815 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 816 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 817 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 818 819 /* 820 * Preallocate one workspace for each compression type so 821 * we can guarantee forward progress in the worst case 822 */ 823 workspace = btrfs_compress_op[i]->alloc_workspace(); 824 if (IS_ERR(workspace)) { 825 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 826 } else { 827 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 828 btrfs_comp_ws[i].free_ws = 1; 829 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 830 } 831 } 832 } 833 834 /* 835 * This finds an available workspace or allocates a new one. 836 * If it's not possible to allocate a new one, waits until there's one. 837 * Preallocation makes a forward progress guarantees and we do not return 838 * errors. 839 */ 840 static struct list_head *__find_workspace(int type, bool heuristic) 841 { 842 struct list_head *workspace; 843 int cpus = num_online_cpus(); 844 int idx = type - 1; 845 unsigned nofs_flag; 846 struct list_head *idle_ws; 847 spinlock_t *ws_lock; 848 atomic_t *total_ws; 849 wait_queue_head_t *ws_wait; 850 int *free_ws; 851 852 if (heuristic) { 853 idle_ws = &btrfs_heuristic_ws.idle_ws; 854 ws_lock = &btrfs_heuristic_ws.ws_lock; 855 total_ws = &btrfs_heuristic_ws.total_ws; 856 ws_wait = &btrfs_heuristic_ws.ws_wait; 857 free_ws = &btrfs_heuristic_ws.free_ws; 858 } else { 859 idle_ws = &btrfs_comp_ws[idx].idle_ws; 860 ws_lock = &btrfs_comp_ws[idx].ws_lock; 861 total_ws = &btrfs_comp_ws[idx].total_ws; 862 ws_wait = &btrfs_comp_ws[idx].ws_wait; 863 free_ws = &btrfs_comp_ws[idx].free_ws; 864 } 865 866 again: 867 spin_lock(ws_lock); 868 if (!list_empty(idle_ws)) { 869 workspace = idle_ws->next; 870 list_del(workspace); 871 (*free_ws)--; 872 spin_unlock(ws_lock); 873 return workspace; 874 875 } 876 if (atomic_read(total_ws) > cpus) { 877 DEFINE_WAIT(wait); 878 879 spin_unlock(ws_lock); 880 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 881 if (atomic_read(total_ws) > cpus && !*free_ws) 882 schedule(); 883 finish_wait(ws_wait, &wait); 884 goto again; 885 } 886 atomic_inc(total_ws); 887 spin_unlock(ws_lock); 888 889 /* 890 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 891 * to turn it off here because we might get called from the restricted 892 * context of btrfs_compress_bio/btrfs_compress_pages 893 */ 894 nofs_flag = memalloc_nofs_save(); 895 if (heuristic) 896 workspace = alloc_heuristic_ws(); 897 else 898 workspace = btrfs_compress_op[idx]->alloc_workspace(); 899 memalloc_nofs_restore(nofs_flag); 900 901 if (IS_ERR(workspace)) { 902 atomic_dec(total_ws); 903 wake_up(ws_wait); 904 905 /* 906 * Do not return the error but go back to waiting. There's a 907 * workspace preallocated for each type and the compression 908 * time is bounded so we get to a workspace eventually. This 909 * makes our caller's life easier. 910 * 911 * To prevent silent and low-probability deadlocks (when the 912 * initial preallocation fails), check if there are any 913 * workspaces at all. 914 */ 915 if (atomic_read(total_ws) == 0) { 916 static DEFINE_RATELIMIT_STATE(_rs, 917 /* once per minute */ 60 * HZ, 918 /* no burst */ 1); 919 920 if (__ratelimit(&_rs)) { 921 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 922 } 923 } 924 goto again; 925 } 926 return workspace; 927 } 928 929 static struct list_head *find_workspace(int type) 930 { 931 return __find_workspace(type, false); 932 } 933 934 /* 935 * put a workspace struct back on the list or free it if we have enough 936 * idle ones sitting around 937 */ 938 static void __free_workspace(int type, struct list_head *workspace, 939 bool heuristic) 940 { 941 int idx = type - 1; 942 struct list_head *idle_ws; 943 spinlock_t *ws_lock; 944 atomic_t *total_ws; 945 wait_queue_head_t *ws_wait; 946 int *free_ws; 947 948 if (heuristic) { 949 idle_ws = &btrfs_heuristic_ws.idle_ws; 950 ws_lock = &btrfs_heuristic_ws.ws_lock; 951 total_ws = &btrfs_heuristic_ws.total_ws; 952 ws_wait = &btrfs_heuristic_ws.ws_wait; 953 free_ws = &btrfs_heuristic_ws.free_ws; 954 } else { 955 idle_ws = &btrfs_comp_ws[idx].idle_ws; 956 ws_lock = &btrfs_comp_ws[idx].ws_lock; 957 total_ws = &btrfs_comp_ws[idx].total_ws; 958 ws_wait = &btrfs_comp_ws[idx].ws_wait; 959 free_ws = &btrfs_comp_ws[idx].free_ws; 960 } 961 962 spin_lock(ws_lock); 963 if (*free_ws <= num_online_cpus()) { 964 list_add(workspace, idle_ws); 965 (*free_ws)++; 966 spin_unlock(ws_lock); 967 goto wake; 968 } 969 spin_unlock(ws_lock); 970 971 if (heuristic) 972 free_heuristic_ws(workspace); 973 else 974 btrfs_compress_op[idx]->free_workspace(workspace); 975 atomic_dec(total_ws); 976 wake: 977 cond_wake_up(ws_wait); 978 } 979 980 static void free_workspace(int type, struct list_head *ws) 981 { 982 return __free_workspace(type, ws, false); 983 } 984 985 /* 986 * cleanup function for module exit 987 */ 988 static void free_workspaces(void) 989 { 990 struct list_head *workspace; 991 int i; 992 993 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) { 994 workspace = btrfs_heuristic_ws.idle_ws.next; 995 list_del(workspace); 996 free_heuristic_ws(workspace); 997 atomic_dec(&btrfs_heuristic_ws.total_ws); 998 } 999 1000 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 1001 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 1002 workspace = btrfs_comp_ws[i].idle_ws.next; 1003 list_del(workspace); 1004 btrfs_compress_op[i]->free_workspace(workspace); 1005 atomic_dec(&btrfs_comp_ws[i].total_ws); 1006 } 1007 } 1008 } 1009 1010 /* 1011 * Given an address space and start and length, compress the bytes into @pages 1012 * that are allocated on demand. 1013 * 1014 * @type_level is encoded algorithm and level, where level 0 means whatever 1015 * default the algorithm chooses and is opaque here; 1016 * - compression algo are 0-3 1017 * - the level are bits 4-7 1018 * 1019 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1020 * and returns number of actually allocated pages 1021 * 1022 * @total_in is used to return the number of bytes actually read. It 1023 * may be smaller than the input length if we had to exit early because we 1024 * ran out of room in the pages array or because we cross the 1025 * max_out threshold. 1026 * 1027 * @total_out is an in/out parameter, must be set to the input length and will 1028 * be also used to return the total number of compressed bytes 1029 * 1030 * @max_out tells us the max number of bytes that we're allowed to 1031 * stuff into pages 1032 */ 1033 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1034 u64 start, struct page **pages, 1035 unsigned long *out_pages, 1036 unsigned long *total_in, 1037 unsigned long *total_out) 1038 { 1039 struct list_head *workspace; 1040 int ret; 1041 int type = type_level & 0xF; 1042 1043 workspace = find_workspace(type); 1044 1045 btrfs_compress_op[type - 1]->set_level(workspace, type_level); 1046 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 1047 start, pages, 1048 out_pages, 1049 total_in, total_out); 1050 free_workspace(type, workspace); 1051 return ret; 1052 } 1053 1054 /* 1055 * pages_in is an array of pages with compressed data. 1056 * 1057 * disk_start is the starting logical offset of this array in the file 1058 * 1059 * orig_bio contains the pages from the file that we want to decompress into 1060 * 1061 * srclen is the number of bytes in pages_in 1062 * 1063 * The basic idea is that we have a bio that was created by readpages. 1064 * The pages in the bio are for the uncompressed data, and they may not 1065 * be contiguous. They all correspond to the range of bytes covered by 1066 * the compressed extent. 1067 */ 1068 static int btrfs_decompress_bio(struct compressed_bio *cb) 1069 { 1070 struct list_head *workspace; 1071 int ret; 1072 int type = cb->compress_type; 1073 1074 workspace = find_workspace(type); 1075 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 1076 free_workspace(type, workspace); 1077 1078 return ret; 1079 } 1080 1081 /* 1082 * a less complex decompression routine. Our compressed data fits in a 1083 * single page, and we want to read a single page out of it. 1084 * start_byte tells us the offset into the compressed data we're interested in 1085 */ 1086 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1087 unsigned long start_byte, size_t srclen, size_t destlen) 1088 { 1089 struct list_head *workspace; 1090 int ret; 1091 1092 workspace = find_workspace(type); 1093 1094 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 1095 dest_page, start_byte, 1096 srclen, destlen); 1097 1098 free_workspace(type, workspace); 1099 return ret; 1100 } 1101 1102 void __cold btrfs_exit_compress(void) 1103 { 1104 free_workspaces(); 1105 } 1106 1107 /* 1108 * Copy uncompressed data from working buffer to pages. 1109 * 1110 * buf_start is the byte offset we're of the start of our workspace buffer. 1111 * 1112 * total_out is the last byte of the buffer 1113 */ 1114 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1115 unsigned long total_out, u64 disk_start, 1116 struct bio *bio) 1117 { 1118 unsigned long buf_offset; 1119 unsigned long current_buf_start; 1120 unsigned long start_byte; 1121 unsigned long prev_start_byte; 1122 unsigned long working_bytes = total_out - buf_start; 1123 unsigned long bytes; 1124 char *kaddr; 1125 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1126 1127 /* 1128 * start byte is the first byte of the page we're currently 1129 * copying into relative to the start of the compressed data. 1130 */ 1131 start_byte = page_offset(bvec.bv_page) - disk_start; 1132 1133 /* we haven't yet hit data corresponding to this page */ 1134 if (total_out <= start_byte) 1135 return 1; 1136 1137 /* 1138 * the start of the data we care about is offset into 1139 * the middle of our working buffer 1140 */ 1141 if (total_out > start_byte && buf_start < start_byte) { 1142 buf_offset = start_byte - buf_start; 1143 working_bytes -= buf_offset; 1144 } else { 1145 buf_offset = 0; 1146 } 1147 current_buf_start = buf_start; 1148 1149 /* copy bytes from the working buffer into the pages */ 1150 while (working_bytes > 0) { 1151 bytes = min_t(unsigned long, bvec.bv_len, 1152 PAGE_SIZE - buf_offset); 1153 bytes = min(bytes, working_bytes); 1154 1155 kaddr = kmap_atomic(bvec.bv_page); 1156 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1157 kunmap_atomic(kaddr); 1158 flush_dcache_page(bvec.bv_page); 1159 1160 buf_offset += bytes; 1161 working_bytes -= bytes; 1162 current_buf_start += bytes; 1163 1164 /* check if we need to pick another page */ 1165 bio_advance(bio, bytes); 1166 if (!bio->bi_iter.bi_size) 1167 return 0; 1168 bvec = bio_iter_iovec(bio, bio->bi_iter); 1169 prev_start_byte = start_byte; 1170 start_byte = page_offset(bvec.bv_page) - disk_start; 1171 1172 /* 1173 * We need to make sure we're only adjusting 1174 * our offset into compression working buffer when 1175 * we're switching pages. Otherwise we can incorrectly 1176 * keep copying when we were actually done. 1177 */ 1178 if (start_byte != prev_start_byte) { 1179 /* 1180 * make sure our new page is covered by this 1181 * working buffer 1182 */ 1183 if (total_out <= start_byte) 1184 return 1; 1185 1186 /* 1187 * the next page in the biovec might not be adjacent 1188 * to the last page, but it might still be found 1189 * inside this working buffer. bump our offset pointer 1190 */ 1191 if (total_out > start_byte && 1192 current_buf_start < start_byte) { 1193 buf_offset = start_byte - buf_start; 1194 working_bytes = total_out - start_byte; 1195 current_buf_start = buf_start + buf_offset; 1196 } 1197 } 1198 } 1199 1200 return 1; 1201 } 1202 1203 /* 1204 * Shannon Entropy calculation 1205 * 1206 * Pure byte distribution analysis fails to determine compressibility of data. 1207 * Try calculating entropy to estimate the average minimum number of bits 1208 * needed to encode the sampled data. 1209 * 1210 * For convenience, return the percentage of needed bits, instead of amount of 1211 * bits directly. 1212 * 1213 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1214 * and can be compressible with high probability 1215 * 1216 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1217 * 1218 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1219 */ 1220 #define ENTROPY_LVL_ACEPTABLE (65) 1221 #define ENTROPY_LVL_HIGH (80) 1222 1223 /* 1224 * For increasead precision in shannon_entropy calculation, 1225 * let's do pow(n, M) to save more digits after comma: 1226 * 1227 * - maximum int bit length is 64 1228 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1229 * - 13 * 4 = 52 < 64 -> M = 4 1230 * 1231 * So use pow(n, 4). 1232 */ 1233 static inline u32 ilog2_w(u64 n) 1234 { 1235 return ilog2(n * n * n * n); 1236 } 1237 1238 static u32 shannon_entropy(struct heuristic_ws *ws) 1239 { 1240 const u32 entropy_max = 8 * ilog2_w(2); 1241 u32 entropy_sum = 0; 1242 u32 p, p_base, sz_base; 1243 u32 i; 1244 1245 sz_base = ilog2_w(ws->sample_size); 1246 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1247 p = ws->bucket[i].count; 1248 p_base = ilog2_w(p); 1249 entropy_sum += p * (sz_base - p_base); 1250 } 1251 1252 entropy_sum /= ws->sample_size; 1253 return entropy_sum * 100 / entropy_max; 1254 } 1255 1256 #define RADIX_BASE 4U 1257 #define COUNTERS_SIZE (1U << RADIX_BASE) 1258 1259 static u8 get4bits(u64 num, int shift) { 1260 u8 low4bits; 1261 1262 num >>= shift; 1263 /* Reverse order */ 1264 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1265 return low4bits; 1266 } 1267 1268 /* 1269 * Use 4 bits as radix base 1270 * Use 16 u32 counters for calculating new position in buf array 1271 * 1272 * @array - array that will be sorted 1273 * @array_buf - buffer array to store sorting results 1274 * must be equal in size to @array 1275 * @num - array size 1276 */ 1277 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1278 int num) 1279 { 1280 u64 max_num; 1281 u64 buf_num; 1282 u32 counters[COUNTERS_SIZE]; 1283 u32 new_addr; 1284 u32 addr; 1285 int bitlen; 1286 int shift; 1287 int i; 1288 1289 /* 1290 * Try avoid useless loop iterations for small numbers stored in big 1291 * counters. Example: 48 33 4 ... in 64bit array 1292 */ 1293 max_num = array[0].count; 1294 for (i = 1; i < num; i++) { 1295 buf_num = array[i].count; 1296 if (buf_num > max_num) 1297 max_num = buf_num; 1298 } 1299 1300 buf_num = ilog2(max_num); 1301 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1302 1303 shift = 0; 1304 while (shift < bitlen) { 1305 memset(counters, 0, sizeof(counters)); 1306 1307 for (i = 0; i < num; i++) { 1308 buf_num = array[i].count; 1309 addr = get4bits(buf_num, shift); 1310 counters[addr]++; 1311 } 1312 1313 for (i = 1; i < COUNTERS_SIZE; i++) 1314 counters[i] += counters[i - 1]; 1315 1316 for (i = num - 1; i >= 0; i--) { 1317 buf_num = array[i].count; 1318 addr = get4bits(buf_num, shift); 1319 counters[addr]--; 1320 new_addr = counters[addr]; 1321 array_buf[new_addr] = array[i]; 1322 } 1323 1324 shift += RADIX_BASE; 1325 1326 /* 1327 * Normal radix expects to move data from a temporary array, to 1328 * the main one. But that requires some CPU time. Avoid that 1329 * by doing another sort iteration to original array instead of 1330 * memcpy() 1331 */ 1332 memset(counters, 0, sizeof(counters)); 1333 1334 for (i = 0; i < num; i ++) { 1335 buf_num = array_buf[i].count; 1336 addr = get4bits(buf_num, shift); 1337 counters[addr]++; 1338 } 1339 1340 for (i = 1; i < COUNTERS_SIZE; i++) 1341 counters[i] += counters[i - 1]; 1342 1343 for (i = num - 1; i >= 0; i--) { 1344 buf_num = array_buf[i].count; 1345 addr = get4bits(buf_num, shift); 1346 counters[addr]--; 1347 new_addr = counters[addr]; 1348 array[new_addr] = array_buf[i]; 1349 } 1350 1351 shift += RADIX_BASE; 1352 } 1353 } 1354 1355 /* 1356 * Size of the core byte set - how many bytes cover 90% of the sample 1357 * 1358 * There are several types of structured binary data that use nearly all byte 1359 * values. The distribution can be uniform and counts in all buckets will be 1360 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1361 * 1362 * Other possibility is normal (Gaussian) distribution, where the data could 1363 * be potentially compressible, but we have to take a few more steps to decide 1364 * how much. 1365 * 1366 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1367 * compression algo can easy fix that 1368 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1369 * probability is not compressible 1370 */ 1371 #define BYTE_CORE_SET_LOW (64) 1372 #define BYTE_CORE_SET_HIGH (200) 1373 1374 static int byte_core_set_size(struct heuristic_ws *ws) 1375 { 1376 u32 i; 1377 u32 coreset_sum = 0; 1378 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1379 struct bucket_item *bucket = ws->bucket; 1380 1381 /* Sort in reverse order */ 1382 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1383 1384 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1385 coreset_sum += bucket[i].count; 1386 1387 if (coreset_sum > core_set_threshold) 1388 return i; 1389 1390 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1391 coreset_sum += bucket[i].count; 1392 if (coreset_sum > core_set_threshold) 1393 break; 1394 } 1395 1396 return i; 1397 } 1398 1399 /* 1400 * Count byte values in buckets. 1401 * This heuristic can detect textual data (configs, xml, json, html, etc). 1402 * Because in most text-like data byte set is restricted to limited number of 1403 * possible characters, and that restriction in most cases makes data easy to 1404 * compress. 1405 * 1406 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1407 * less - compressible 1408 * more - need additional analysis 1409 */ 1410 #define BYTE_SET_THRESHOLD (64) 1411 1412 static u32 byte_set_size(const struct heuristic_ws *ws) 1413 { 1414 u32 i; 1415 u32 byte_set_size = 0; 1416 1417 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1418 if (ws->bucket[i].count > 0) 1419 byte_set_size++; 1420 } 1421 1422 /* 1423 * Continue collecting count of byte values in buckets. If the byte 1424 * set size is bigger then the threshold, it's pointless to continue, 1425 * the detection technique would fail for this type of data. 1426 */ 1427 for (; i < BUCKET_SIZE; i++) { 1428 if (ws->bucket[i].count > 0) { 1429 byte_set_size++; 1430 if (byte_set_size > BYTE_SET_THRESHOLD) 1431 return byte_set_size; 1432 } 1433 } 1434 1435 return byte_set_size; 1436 } 1437 1438 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1439 { 1440 const u32 half_of_sample = ws->sample_size / 2; 1441 const u8 *data = ws->sample; 1442 1443 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1444 } 1445 1446 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1447 struct heuristic_ws *ws) 1448 { 1449 struct page *page; 1450 u64 index, index_end; 1451 u32 i, curr_sample_pos; 1452 u8 *in_data; 1453 1454 /* 1455 * Compression handles the input data by chunks of 128KiB 1456 * (defined by BTRFS_MAX_UNCOMPRESSED) 1457 * 1458 * We do the same for the heuristic and loop over the whole range. 1459 * 1460 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1461 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1462 */ 1463 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1464 end = start + BTRFS_MAX_UNCOMPRESSED; 1465 1466 index = start >> PAGE_SHIFT; 1467 index_end = end >> PAGE_SHIFT; 1468 1469 /* Don't miss unaligned end */ 1470 if (!IS_ALIGNED(end, PAGE_SIZE)) 1471 index_end++; 1472 1473 curr_sample_pos = 0; 1474 while (index < index_end) { 1475 page = find_get_page(inode->i_mapping, index); 1476 in_data = kmap(page); 1477 /* Handle case where the start is not aligned to PAGE_SIZE */ 1478 i = start % PAGE_SIZE; 1479 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1480 /* Don't sample any garbage from the last page */ 1481 if (start > end - SAMPLING_READ_SIZE) 1482 break; 1483 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1484 SAMPLING_READ_SIZE); 1485 i += SAMPLING_INTERVAL; 1486 start += SAMPLING_INTERVAL; 1487 curr_sample_pos += SAMPLING_READ_SIZE; 1488 } 1489 kunmap(page); 1490 put_page(page); 1491 1492 index++; 1493 } 1494 1495 ws->sample_size = curr_sample_pos; 1496 } 1497 1498 /* 1499 * Compression heuristic. 1500 * 1501 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1502 * quickly (compared to direct compression) detect data characteristics 1503 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1504 * data. 1505 * 1506 * The following types of analysis can be performed: 1507 * - detect mostly zero data 1508 * - detect data with low "byte set" size (text, etc) 1509 * - detect data with low/high "core byte" set 1510 * 1511 * Return non-zero if the compression should be done, 0 otherwise. 1512 */ 1513 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1514 { 1515 struct list_head *ws_list = __find_workspace(0, true); 1516 struct heuristic_ws *ws; 1517 u32 i; 1518 u8 byte; 1519 int ret = 0; 1520 1521 ws = list_entry(ws_list, struct heuristic_ws, list); 1522 1523 heuristic_collect_sample(inode, start, end, ws); 1524 1525 if (sample_repeated_patterns(ws)) { 1526 ret = 1; 1527 goto out; 1528 } 1529 1530 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1531 1532 for (i = 0; i < ws->sample_size; i++) { 1533 byte = ws->sample[i]; 1534 ws->bucket[byte].count++; 1535 } 1536 1537 i = byte_set_size(ws); 1538 if (i < BYTE_SET_THRESHOLD) { 1539 ret = 2; 1540 goto out; 1541 } 1542 1543 i = byte_core_set_size(ws); 1544 if (i <= BYTE_CORE_SET_LOW) { 1545 ret = 3; 1546 goto out; 1547 } 1548 1549 if (i >= BYTE_CORE_SET_HIGH) { 1550 ret = 0; 1551 goto out; 1552 } 1553 1554 i = shannon_entropy(ws); 1555 if (i <= ENTROPY_LVL_ACEPTABLE) { 1556 ret = 4; 1557 goto out; 1558 } 1559 1560 /* 1561 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1562 * needed to give green light to compression. 1563 * 1564 * For now just assume that compression at that level is not worth the 1565 * resources because: 1566 * 1567 * 1. it is possible to defrag the data later 1568 * 1569 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1570 * values, every bucket has counter at level ~54. The heuristic would 1571 * be confused. This can happen when data have some internal repeated 1572 * patterns like "abbacbbc...". This can be detected by analyzing 1573 * pairs of bytes, which is too costly. 1574 */ 1575 if (i < ENTROPY_LVL_HIGH) { 1576 ret = 5; 1577 goto out; 1578 } else { 1579 ret = 0; 1580 goto out; 1581 } 1582 1583 out: 1584 __free_workspace(0, ws_list, true); 1585 return ret; 1586 } 1587 1588 unsigned int btrfs_compress_str2level(const char *str) 1589 { 1590 if (strncmp(str, "zlib", 4) != 0) 1591 return 0; 1592 1593 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */ 1594 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0) 1595 return str[5] - '0'; 1596 1597 return BTRFS_ZLIB_DEFAULT_LEVEL; 1598 } 1599