1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sort.h> 37 #include <linux/log2.h> 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "volumes.h" 43 #include "ordered-data.h" 44 #include "compression.h" 45 #include "extent_io.h" 46 #include "extent_map.h" 47 48 static int btrfs_decompress_bio(struct compressed_bio *cb); 49 50 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 51 unsigned long disk_size) 52 { 53 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 54 55 return sizeof(struct compressed_bio) + 56 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 57 } 58 59 static int check_compressed_csum(struct btrfs_inode *inode, 60 struct compressed_bio *cb, 61 u64 disk_start) 62 { 63 int ret; 64 struct page *page; 65 unsigned long i; 66 char *kaddr; 67 u32 csum; 68 u32 *cb_sum = &cb->sums; 69 70 if (inode->flags & BTRFS_INODE_NODATASUM) 71 return 0; 72 73 for (i = 0; i < cb->nr_pages; i++) { 74 page = cb->compressed_pages[i]; 75 csum = ~(u32)0; 76 77 kaddr = kmap_atomic(page); 78 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 79 btrfs_csum_final(csum, (u8 *)&csum); 80 kunmap_atomic(kaddr); 81 82 if (csum != *cb_sum) { 83 btrfs_print_data_csum_error(inode, disk_start, csum, 84 *cb_sum, cb->mirror_num); 85 ret = -EIO; 86 goto fail; 87 } 88 cb_sum++; 89 90 } 91 ret = 0; 92 fail: 93 return ret; 94 } 95 96 /* when we finish reading compressed pages from the disk, we 97 * decompress them and then run the bio end_io routines on the 98 * decompressed pages (in the inode address space). 99 * 100 * This allows the checksumming and other IO error handling routines 101 * to work normally 102 * 103 * The compressed pages are freed here, and it must be run 104 * in process context 105 */ 106 static void end_compressed_bio_read(struct bio *bio) 107 { 108 struct compressed_bio *cb = bio->bi_private; 109 struct inode *inode; 110 struct page *page; 111 unsigned long index; 112 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 113 int ret = 0; 114 115 if (bio->bi_status) 116 cb->errors = 1; 117 118 /* if there are more bios still pending for this compressed 119 * extent, just exit 120 */ 121 if (!refcount_dec_and_test(&cb->pending_bios)) 122 goto out; 123 124 /* 125 * Record the correct mirror_num in cb->orig_bio so that 126 * read-repair can work properly. 127 */ 128 ASSERT(btrfs_io_bio(cb->orig_bio)); 129 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 130 cb->mirror_num = mirror; 131 132 /* 133 * Some IO in this cb have failed, just skip checksum as there 134 * is no way it could be correct. 135 */ 136 if (cb->errors == 1) 137 goto csum_failed; 138 139 inode = cb->inode; 140 ret = check_compressed_csum(BTRFS_I(inode), cb, 141 (u64)bio->bi_iter.bi_sector << 9); 142 if (ret) 143 goto csum_failed; 144 145 /* ok, we're the last bio for this extent, lets start 146 * the decompression. 147 */ 148 ret = btrfs_decompress_bio(cb); 149 150 csum_failed: 151 if (ret) 152 cb->errors = 1; 153 154 /* release the compressed pages */ 155 index = 0; 156 for (index = 0; index < cb->nr_pages; index++) { 157 page = cb->compressed_pages[index]; 158 page->mapping = NULL; 159 put_page(page); 160 } 161 162 /* do io completion on the original bio */ 163 if (cb->errors) { 164 bio_io_error(cb->orig_bio); 165 } else { 166 int i; 167 struct bio_vec *bvec; 168 169 /* 170 * we have verified the checksum already, set page 171 * checked so the end_io handlers know about it 172 */ 173 ASSERT(!bio_flagged(bio, BIO_CLONED)); 174 bio_for_each_segment_all(bvec, cb->orig_bio, i) 175 SetPageChecked(bvec->bv_page); 176 177 bio_endio(cb->orig_bio); 178 } 179 180 /* finally free the cb struct */ 181 kfree(cb->compressed_pages); 182 kfree(cb); 183 out: 184 bio_put(bio); 185 } 186 187 /* 188 * Clear the writeback bits on all of the file 189 * pages for a compressed write 190 */ 191 static noinline void end_compressed_writeback(struct inode *inode, 192 const struct compressed_bio *cb) 193 { 194 unsigned long index = cb->start >> PAGE_SHIFT; 195 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 196 struct page *pages[16]; 197 unsigned long nr_pages = end_index - index + 1; 198 int i; 199 int ret; 200 201 if (cb->errors) 202 mapping_set_error(inode->i_mapping, -EIO); 203 204 while (nr_pages > 0) { 205 ret = find_get_pages_contig(inode->i_mapping, index, 206 min_t(unsigned long, 207 nr_pages, ARRAY_SIZE(pages)), pages); 208 if (ret == 0) { 209 nr_pages -= 1; 210 index += 1; 211 continue; 212 } 213 for (i = 0; i < ret; i++) { 214 if (cb->errors) 215 SetPageError(pages[i]); 216 end_page_writeback(pages[i]); 217 put_page(pages[i]); 218 } 219 nr_pages -= ret; 220 index += ret; 221 } 222 /* the inode may be gone now */ 223 } 224 225 /* 226 * do the cleanup once all the compressed pages hit the disk. 227 * This will clear writeback on the file pages and free the compressed 228 * pages. 229 * 230 * This also calls the writeback end hooks for the file pages so that 231 * metadata and checksums can be updated in the file. 232 */ 233 static void end_compressed_bio_write(struct bio *bio) 234 { 235 struct extent_io_tree *tree; 236 struct compressed_bio *cb = bio->bi_private; 237 struct inode *inode; 238 struct page *page; 239 unsigned long index; 240 241 if (bio->bi_status) 242 cb->errors = 1; 243 244 /* if there are more bios still pending for this compressed 245 * extent, just exit 246 */ 247 if (!refcount_dec_and_test(&cb->pending_bios)) 248 goto out; 249 250 /* ok, we're the last bio for this extent, step one is to 251 * call back into the FS and do all the end_io operations 252 */ 253 inode = cb->inode; 254 tree = &BTRFS_I(inode)->io_tree; 255 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 256 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 257 cb->start, 258 cb->start + cb->len - 1, 259 NULL, 260 bio->bi_status ? 261 BLK_STS_OK : BLK_STS_NOTSUPP); 262 cb->compressed_pages[0]->mapping = NULL; 263 264 end_compressed_writeback(inode, cb); 265 /* note, our inode could be gone now */ 266 267 /* 268 * release the compressed pages, these came from alloc_page and 269 * are not attached to the inode at all 270 */ 271 index = 0; 272 for (index = 0; index < cb->nr_pages; index++) { 273 page = cb->compressed_pages[index]; 274 page->mapping = NULL; 275 put_page(page); 276 } 277 278 /* finally free the cb struct */ 279 kfree(cb->compressed_pages); 280 kfree(cb); 281 out: 282 bio_put(bio); 283 } 284 285 /* 286 * worker function to build and submit bios for previously compressed pages. 287 * The corresponding pages in the inode should be marked for writeback 288 * and the compressed pages should have a reference on them for dropping 289 * when the IO is complete. 290 * 291 * This also checksums the file bytes and gets things ready for 292 * the end io hooks. 293 */ 294 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 295 unsigned long len, u64 disk_start, 296 unsigned long compressed_len, 297 struct page **compressed_pages, 298 unsigned long nr_pages, 299 unsigned int write_flags) 300 { 301 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 302 struct bio *bio = NULL; 303 struct compressed_bio *cb; 304 unsigned long bytes_left; 305 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 306 int pg_index = 0; 307 struct page *page; 308 u64 first_byte = disk_start; 309 struct block_device *bdev; 310 blk_status_t ret; 311 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 312 313 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 314 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 315 if (!cb) 316 return BLK_STS_RESOURCE; 317 refcount_set(&cb->pending_bios, 0); 318 cb->errors = 0; 319 cb->inode = inode; 320 cb->start = start; 321 cb->len = len; 322 cb->mirror_num = 0; 323 cb->compressed_pages = compressed_pages; 324 cb->compressed_len = compressed_len; 325 cb->orig_bio = NULL; 326 cb->nr_pages = nr_pages; 327 328 bdev = fs_info->fs_devices->latest_bdev; 329 330 bio = btrfs_bio_alloc(bdev, first_byte); 331 bio->bi_opf = REQ_OP_WRITE | write_flags; 332 bio->bi_private = cb; 333 bio->bi_end_io = end_compressed_bio_write; 334 refcount_set(&cb->pending_bios, 1); 335 336 /* create and submit bios for the compressed pages */ 337 bytes_left = compressed_len; 338 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 339 int submit = 0; 340 341 page = compressed_pages[pg_index]; 342 page->mapping = inode->i_mapping; 343 if (bio->bi_iter.bi_size) 344 submit = io_tree->ops->merge_bio_hook(page, 0, 345 PAGE_SIZE, 346 bio, 0); 347 348 page->mapping = NULL; 349 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 350 PAGE_SIZE) { 351 bio_get(bio); 352 353 /* 354 * inc the count before we submit the bio so 355 * we know the end IO handler won't happen before 356 * we inc the count. Otherwise, the cb might get 357 * freed before we're done setting it up 358 */ 359 refcount_inc(&cb->pending_bios); 360 ret = btrfs_bio_wq_end_io(fs_info, bio, 361 BTRFS_WQ_ENDIO_DATA); 362 BUG_ON(ret); /* -ENOMEM */ 363 364 if (!skip_sum) { 365 ret = btrfs_csum_one_bio(inode, bio, start, 1); 366 BUG_ON(ret); /* -ENOMEM */ 367 } 368 369 ret = btrfs_map_bio(fs_info, bio, 0, 1); 370 if (ret) { 371 bio->bi_status = ret; 372 bio_endio(bio); 373 } 374 375 bio_put(bio); 376 377 bio = btrfs_bio_alloc(bdev, first_byte); 378 bio->bi_opf = REQ_OP_WRITE | write_flags; 379 bio->bi_private = cb; 380 bio->bi_end_io = end_compressed_bio_write; 381 bio_add_page(bio, page, PAGE_SIZE, 0); 382 } 383 if (bytes_left < PAGE_SIZE) { 384 btrfs_info(fs_info, 385 "bytes left %lu compress len %lu nr %lu", 386 bytes_left, cb->compressed_len, cb->nr_pages); 387 } 388 bytes_left -= PAGE_SIZE; 389 first_byte += PAGE_SIZE; 390 cond_resched(); 391 } 392 bio_get(bio); 393 394 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 395 BUG_ON(ret); /* -ENOMEM */ 396 397 if (!skip_sum) { 398 ret = btrfs_csum_one_bio(inode, bio, start, 1); 399 BUG_ON(ret); /* -ENOMEM */ 400 } 401 402 ret = btrfs_map_bio(fs_info, bio, 0, 1); 403 if (ret) { 404 bio->bi_status = ret; 405 bio_endio(bio); 406 } 407 408 bio_put(bio); 409 return 0; 410 } 411 412 static u64 bio_end_offset(struct bio *bio) 413 { 414 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1]; 415 416 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 417 } 418 419 static noinline int add_ra_bio_pages(struct inode *inode, 420 u64 compressed_end, 421 struct compressed_bio *cb) 422 { 423 unsigned long end_index; 424 unsigned long pg_index; 425 u64 last_offset; 426 u64 isize = i_size_read(inode); 427 int ret; 428 struct page *page; 429 unsigned long nr_pages = 0; 430 struct extent_map *em; 431 struct address_space *mapping = inode->i_mapping; 432 struct extent_map_tree *em_tree; 433 struct extent_io_tree *tree; 434 u64 end; 435 int misses = 0; 436 437 last_offset = bio_end_offset(cb->orig_bio); 438 em_tree = &BTRFS_I(inode)->extent_tree; 439 tree = &BTRFS_I(inode)->io_tree; 440 441 if (isize == 0) 442 return 0; 443 444 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 445 446 while (last_offset < compressed_end) { 447 pg_index = last_offset >> PAGE_SHIFT; 448 449 if (pg_index > end_index) 450 break; 451 452 rcu_read_lock(); 453 page = radix_tree_lookup(&mapping->page_tree, pg_index); 454 rcu_read_unlock(); 455 if (page && !radix_tree_exceptional_entry(page)) { 456 misses++; 457 if (misses > 4) 458 break; 459 goto next; 460 } 461 462 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 463 ~__GFP_FS)); 464 if (!page) 465 break; 466 467 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 468 put_page(page); 469 goto next; 470 } 471 472 end = last_offset + PAGE_SIZE - 1; 473 /* 474 * at this point, we have a locked page in the page cache 475 * for these bytes in the file. But, we have to make 476 * sure they map to this compressed extent on disk. 477 */ 478 set_page_extent_mapped(page); 479 lock_extent(tree, last_offset, end); 480 read_lock(&em_tree->lock); 481 em = lookup_extent_mapping(em_tree, last_offset, 482 PAGE_SIZE); 483 read_unlock(&em_tree->lock); 484 485 if (!em || last_offset < em->start || 486 (last_offset + PAGE_SIZE > extent_map_end(em)) || 487 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 488 free_extent_map(em); 489 unlock_extent(tree, last_offset, end); 490 unlock_page(page); 491 put_page(page); 492 break; 493 } 494 free_extent_map(em); 495 496 if (page->index == end_index) { 497 char *userpage; 498 size_t zero_offset = isize & (PAGE_SIZE - 1); 499 500 if (zero_offset) { 501 int zeros; 502 zeros = PAGE_SIZE - zero_offset; 503 userpage = kmap_atomic(page); 504 memset(userpage + zero_offset, 0, zeros); 505 flush_dcache_page(page); 506 kunmap_atomic(userpage); 507 } 508 } 509 510 ret = bio_add_page(cb->orig_bio, page, 511 PAGE_SIZE, 0); 512 513 if (ret == PAGE_SIZE) { 514 nr_pages++; 515 put_page(page); 516 } else { 517 unlock_extent(tree, last_offset, end); 518 unlock_page(page); 519 put_page(page); 520 break; 521 } 522 next: 523 last_offset += PAGE_SIZE; 524 } 525 return 0; 526 } 527 528 /* 529 * for a compressed read, the bio we get passed has all the inode pages 530 * in it. We don't actually do IO on those pages but allocate new ones 531 * to hold the compressed pages on disk. 532 * 533 * bio->bi_iter.bi_sector points to the compressed extent on disk 534 * bio->bi_io_vec points to all of the inode pages 535 * 536 * After the compressed pages are read, we copy the bytes into the 537 * bio we were passed and then call the bio end_io calls 538 */ 539 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 540 int mirror_num, unsigned long bio_flags) 541 { 542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 543 struct extent_io_tree *tree; 544 struct extent_map_tree *em_tree; 545 struct compressed_bio *cb; 546 unsigned long compressed_len; 547 unsigned long nr_pages; 548 unsigned long pg_index; 549 struct page *page; 550 struct block_device *bdev; 551 struct bio *comp_bio; 552 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 553 u64 em_len; 554 u64 em_start; 555 struct extent_map *em; 556 blk_status_t ret = BLK_STS_RESOURCE; 557 int faili = 0; 558 u32 *sums; 559 560 tree = &BTRFS_I(inode)->io_tree; 561 em_tree = &BTRFS_I(inode)->extent_tree; 562 563 /* we need the actual starting offset of this extent in the file */ 564 read_lock(&em_tree->lock); 565 em = lookup_extent_mapping(em_tree, 566 page_offset(bio->bi_io_vec->bv_page), 567 PAGE_SIZE); 568 read_unlock(&em_tree->lock); 569 if (!em) 570 return BLK_STS_IOERR; 571 572 compressed_len = em->block_len; 573 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 574 if (!cb) 575 goto out; 576 577 refcount_set(&cb->pending_bios, 0); 578 cb->errors = 0; 579 cb->inode = inode; 580 cb->mirror_num = mirror_num; 581 sums = &cb->sums; 582 583 cb->start = em->orig_start; 584 em_len = em->len; 585 em_start = em->start; 586 587 free_extent_map(em); 588 em = NULL; 589 590 cb->len = bio->bi_iter.bi_size; 591 cb->compressed_len = compressed_len; 592 cb->compress_type = extent_compress_type(bio_flags); 593 cb->orig_bio = bio; 594 595 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 596 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 597 GFP_NOFS); 598 if (!cb->compressed_pages) 599 goto fail1; 600 601 bdev = fs_info->fs_devices->latest_bdev; 602 603 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 604 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 605 __GFP_HIGHMEM); 606 if (!cb->compressed_pages[pg_index]) { 607 faili = pg_index - 1; 608 ret = BLK_STS_RESOURCE; 609 goto fail2; 610 } 611 } 612 faili = nr_pages - 1; 613 cb->nr_pages = nr_pages; 614 615 add_ra_bio_pages(inode, em_start + em_len, cb); 616 617 /* include any pages we added in add_ra-bio_pages */ 618 cb->len = bio->bi_iter.bi_size; 619 620 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 621 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0); 622 comp_bio->bi_private = cb; 623 comp_bio->bi_end_io = end_compressed_bio_read; 624 refcount_set(&cb->pending_bios, 1); 625 626 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 627 int submit = 0; 628 629 page = cb->compressed_pages[pg_index]; 630 page->mapping = inode->i_mapping; 631 page->index = em_start >> PAGE_SHIFT; 632 633 if (comp_bio->bi_iter.bi_size) 634 submit = tree->ops->merge_bio_hook(page, 0, 635 PAGE_SIZE, 636 comp_bio, 0); 637 638 page->mapping = NULL; 639 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 640 PAGE_SIZE) { 641 bio_get(comp_bio); 642 643 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 644 BTRFS_WQ_ENDIO_DATA); 645 BUG_ON(ret); /* -ENOMEM */ 646 647 /* 648 * inc the count before we submit the bio so 649 * we know the end IO handler won't happen before 650 * we inc the count. Otherwise, the cb might get 651 * freed before we're done setting it up 652 */ 653 refcount_inc(&cb->pending_bios); 654 655 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 656 ret = btrfs_lookup_bio_sums(inode, comp_bio, 657 sums); 658 BUG_ON(ret); /* -ENOMEM */ 659 } 660 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 661 fs_info->sectorsize); 662 663 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 664 if (ret) { 665 comp_bio->bi_status = ret; 666 bio_endio(comp_bio); 667 } 668 669 bio_put(comp_bio); 670 671 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 672 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0); 673 comp_bio->bi_private = cb; 674 comp_bio->bi_end_io = end_compressed_bio_read; 675 676 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 677 } 678 cur_disk_byte += PAGE_SIZE; 679 } 680 bio_get(comp_bio); 681 682 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 683 BUG_ON(ret); /* -ENOMEM */ 684 685 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 686 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 687 BUG_ON(ret); /* -ENOMEM */ 688 } 689 690 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 691 if (ret) { 692 comp_bio->bi_status = ret; 693 bio_endio(comp_bio); 694 } 695 696 bio_put(comp_bio); 697 return 0; 698 699 fail2: 700 while (faili >= 0) { 701 __free_page(cb->compressed_pages[faili]); 702 faili--; 703 } 704 705 kfree(cb->compressed_pages); 706 fail1: 707 kfree(cb); 708 out: 709 free_extent_map(em); 710 return ret; 711 } 712 713 /* 714 * Heuristic uses systematic sampling to collect data from the input data 715 * range, the logic can be tuned by the following constants: 716 * 717 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 718 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 719 */ 720 #define SAMPLING_READ_SIZE (16) 721 #define SAMPLING_INTERVAL (256) 722 723 /* 724 * For statistical analysis of the input data we consider bytes that form a 725 * Galois Field of 256 objects. Each object has an attribute count, ie. how 726 * many times the object appeared in the sample. 727 */ 728 #define BUCKET_SIZE (256) 729 730 /* 731 * The size of the sample is based on a statistical sampling rule of thumb. 732 * The common way is to perform sampling tests as long as the number of 733 * elements in each cell is at least 5. 734 * 735 * Instead of 5, we choose 32 to obtain more accurate results. 736 * If the data contain the maximum number of symbols, which is 256, we obtain a 737 * sample size bound by 8192. 738 * 739 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 740 * from up to 512 locations. 741 */ 742 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 743 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 744 745 struct bucket_item { 746 u32 count; 747 }; 748 749 struct heuristic_ws { 750 /* Partial copy of input data */ 751 u8 *sample; 752 u32 sample_size; 753 /* Buckets store counters for each byte value */ 754 struct bucket_item *bucket; 755 struct list_head list; 756 }; 757 758 static void free_heuristic_ws(struct list_head *ws) 759 { 760 struct heuristic_ws *workspace; 761 762 workspace = list_entry(ws, struct heuristic_ws, list); 763 764 kvfree(workspace->sample); 765 kfree(workspace->bucket); 766 kfree(workspace); 767 } 768 769 static struct list_head *alloc_heuristic_ws(void) 770 { 771 struct heuristic_ws *ws; 772 773 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 774 if (!ws) 775 return ERR_PTR(-ENOMEM); 776 777 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 778 if (!ws->sample) 779 goto fail; 780 781 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 782 if (!ws->bucket) 783 goto fail; 784 785 INIT_LIST_HEAD(&ws->list); 786 return &ws->list; 787 fail: 788 free_heuristic_ws(&ws->list); 789 return ERR_PTR(-ENOMEM); 790 } 791 792 struct workspaces_list { 793 struct list_head idle_ws; 794 spinlock_t ws_lock; 795 /* Number of free workspaces */ 796 int free_ws; 797 /* Total number of allocated workspaces */ 798 atomic_t total_ws; 799 /* Waiters for a free workspace */ 800 wait_queue_head_t ws_wait; 801 }; 802 803 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 804 805 static struct workspaces_list btrfs_heuristic_ws; 806 807 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 808 &btrfs_zlib_compress, 809 &btrfs_lzo_compress, 810 &btrfs_zstd_compress, 811 }; 812 813 void __init btrfs_init_compress(void) 814 { 815 struct list_head *workspace; 816 int i; 817 818 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws); 819 spin_lock_init(&btrfs_heuristic_ws.ws_lock); 820 atomic_set(&btrfs_heuristic_ws.total_ws, 0); 821 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait); 822 823 workspace = alloc_heuristic_ws(); 824 if (IS_ERR(workspace)) { 825 pr_warn( 826 "BTRFS: cannot preallocate heuristic workspace, will try later\n"); 827 } else { 828 atomic_set(&btrfs_heuristic_ws.total_ws, 1); 829 btrfs_heuristic_ws.free_ws = 1; 830 list_add(workspace, &btrfs_heuristic_ws.idle_ws); 831 } 832 833 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 834 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 835 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 836 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 837 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 838 839 /* 840 * Preallocate one workspace for each compression type so 841 * we can guarantee forward progress in the worst case 842 */ 843 workspace = btrfs_compress_op[i]->alloc_workspace(); 844 if (IS_ERR(workspace)) { 845 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 846 } else { 847 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 848 btrfs_comp_ws[i].free_ws = 1; 849 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 850 } 851 } 852 } 853 854 /* 855 * This finds an available workspace or allocates a new one. 856 * If it's not possible to allocate a new one, waits until there's one. 857 * Preallocation makes a forward progress guarantees and we do not return 858 * errors. 859 */ 860 static struct list_head *__find_workspace(int type, bool heuristic) 861 { 862 struct list_head *workspace; 863 int cpus = num_online_cpus(); 864 int idx = type - 1; 865 unsigned nofs_flag; 866 struct list_head *idle_ws; 867 spinlock_t *ws_lock; 868 atomic_t *total_ws; 869 wait_queue_head_t *ws_wait; 870 int *free_ws; 871 872 if (heuristic) { 873 idle_ws = &btrfs_heuristic_ws.idle_ws; 874 ws_lock = &btrfs_heuristic_ws.ws_lock; 875 total_ws = &btrfs_heuristic_ws.total_ws; 876 ws_wait = &btrfs_heuristic_ws.ws_wait; 877 free_ws = &btrfs_heuristic_ws.free_ws; 878 } else { 879 idle_ws = &btrfs_comp_ws[idx].idle_ws; 880 ws_lock = &btrfs_comp_ws[idx].ws_lock; 881 total_ws = &btrfs_comp_ws[idx].total_ws; 882 ws_wait = &btrfs_comp_ws[idx].ws_wait; 883 free_ws = &btrfs_comp_ws[idx].free_ws; 884 } 885 886 again: 887 spin_lock(ws_lock); 888 if (!list_empty(idle_ws)) { 889 workspace = idle_ws->next; 890 list_del(workspace); 891 (*free_ws)--; 892 spin_unlock(ws_lock); 893 return workspace; 894 895 } 896 if (atomic_read(total_ws) > cpus) { 897 DEFINE_WAIT(wait); 898 899 spin_unlock(ws_lock); 900 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 901 if (atomic_read(total_ws) > cpus && !*free_ws) 902 schedule(); 903 finish_wait(ws_wait, &wait); 904 goto again; 905 } 906 atomic_inc(total_ws); 907 spin_unlock(ws_lock); 908 909 /* 910 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 911 * to turn it off here because we might get called from the restricted 912 * context of btrfs_compress_bio/btrfs_compress_pages 913 */ 914 nofs_flag = memalloc_nofs_save(); 915 if (heuristic) 916 workspace = alloc_heuristic_ws(); 917 else 918 workspace = btrfs_compress_op[idx]->alloc_workspace(); 919 memalloc_nofs_restore(nofs_flag); 920 921 if (IS_ERR(workspace)) { 922 atomic_dec(total_ws); 923 wake_up(ws_wait); 924 925 /* 926 * Do not return the error but go back to waiting. There's a 927 * workspace preallocated for each type and the compression 928 * time is bounded so we get to a workspace eventually. This 929 * makes our caller's life easier. 930 * 931 * To prevent silent and low-probability deadlocks (when the 932 * initial preallocation fails), check if there are any 933 * workspaces at all. 934 */ 935 if (atomic_read(total_ws) == 0) { 936 static DEFINE_RATELIMIT_STATE(_rs, 937 /* once per minute */ 60 * HZ, 938 /* no burst */ 1); 939 940 if (__ratelimit(&_rs)) { 941 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 942 } 943 } 944 goto again; 945 } 946 return workspace; 947 } 948 949 static struct list_head *find_workspace(int type) 950 { 951 return __find_workspace(type, false); 952 } 953 954 /* 955 * put a workspace struct back on the list or free it if we have enough 956 * idle ones sitting around 957 */ 958 static void __free_workspace(int type, struct list_head *workspace, 959 bool heuristic) 960 { 961 int idx = type - 1; 962 struct list_head *idle_ws; 963 spinlock_t *ws_lock; 964 atomic_t *total_ws; 965 wait_queue_head_t *ws_wait; 966 int *free_ws; 967 968 if (heuristic) { 969 idle_ws = &btrfs_heuristic_ws.idle_ws; 970 ws_lock = &btrfs_heuristic_ws.ws_lock; 971 total_ws = &btrfs_heuristic_ws.total_ws; 972 ws_wait = &btrfs_heuristic_ws.ws_wait; 973 free_ws = &btrfs_heuristic_ws.free_ws; 974 } else { 975 idle_ws = &btrfs_comp_ws[idx].idle_ws; 976 ws_lock = &btrfs_comp_ws[idx].ws_lock; 977 total_ws = &btrfs_comp_ws[idx].total_ws; 978 ws_wait = &btrfs_comp_ws[idx].ws_wait; 979 free_ws = &btrfs_comp_ws[idx].free_ws; 980 } 981 982 spin_lock(ws_lock); 983 if (*free_ws <= num_online_cpus()) { 984 list_add(workspace, idle_ws); 985 (*free_ws)++; 986 spin_unlock(ws_lock); 987 goto wake; 988 } 989 spin_unlock(ws_lock); 990 991 if (heuristic) 992 free_heuristic_ws(workspace); 993 else 994 btrfs_compress_op[idx]->free_workspace(workspace); 995 atomic_dec(total_ws); 996 wake: 997 /* 998 * Make sure counter is updated before we wake up waiters. 999 */ 1000 smp_mb(); 1001 if (waitqueue_active(ws_wait)) 1002 wake_up(ws_wait); 1003 } 1004 1005 static void free_workspace(int type, struct list_head *ws) 1006 { 1007 return __free_workspace(type, ws, false); 1008 } 1009 1010 /* 1011 * cleanup function for module exit 1012 */ 1013 static void free_workspaces(void) 1014 { 1015 struct list_head *workspace; 1016 int i; 1017 1018 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) { 1019 workspace = btrfs_heuristic_ws.idle_ws.next; 1020 list_del(workspace); 1021 free_heuristic_ws(workspace); 1022 atomic_dec(&btrfs_heuristic_ws.total_ws); 1023 } 1024 1025 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 1026 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 1027 workspace = btrfs_comp_ws[i].idle_ws.next; 1028 list_del(workspace); 1029 btrfs_compress_op[i]->free_workspace(workspace); 1030 atomic_dec(&btrfs_comp_ws[i].total_ws); 1031 } 1032 } 1033 } 1034 1035 /* 1036 * Given an address space and start and length, compress the bytes into @pages 1037 * that are allocated on demand. 1038 * 1039 * @type_level is encoded algorithm and level, where level 0 means whatever 1040 * default the algorithm chooses and is opaque here; 1041 * - compression algo are 0-3 1042 * - the level are bits 4-7 1043 * 1044 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1045 * and returns number of actually allocated pages 1046 * 1047 * @total_in is used to return the number of bytes actually read. It 1048 * may be smaller than the input length if we had to exit early because we 1049 * ran out of room in the pages array or because we cross the 1050 * max_out threshold. 1051 * 1052 * @total_out is an in/out parameter, must be set to the input length and will 1053 * be also used to return the total number of compressed bytes 1054 * 1055 * @max_out tells us the max number of bytes that we're allowed to 1056 * stuff into pages 1057 */ 1058 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1059 u64 start, struct page **pages, 1060 unsigned long *out_pages, 1061 unsigned long *total_in, 1062 unsigned long *total_out) 1063 { 1064 struct list_head *workspace; 1065 int ret; 1066 int type = type_level & 0xF; 1067 1068 workspace = find_workspace(type); 1069 1070 btrfs_compress_op[type - 1]->set_level(workspace, type_level); 1071 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 1072 start, pages, 1073 out_pages, 1074 total_in, total_out); 1075 free_workspace(type, workspace); 1076 return ret; 1077 } 1078 1079 /* 1080 * pages_in is an array of pages with compressed data. 1081 * 1082 * disk_start is the starting logical offset of this array in the file 1083 * 1084 * orig_bio contains the pages from the file that we want to decompress into 1085 * 1086 * srclen is the number of bytes in pages_in 1087 * 1088 * The basic idea is that we have a bio that was created by readpages. 1089 * The pages in the bio are for the uncompressed data, and they may not 1090 * be contiguous. They all correspond to the range of bytes covered by 1091 * the compressed extent. 1092 */ 1093 static int btrfs_decompress_bio(struct compressed_bio *cb) 1094 { 1095 struct list_head *workspace; 1096 int ret; 1097 int type = cb->compress_type; 1098 1099 workspace = find_workspace(type); 1100 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 1101 free_workspace(type, workspace); 1102 1103 return ret; 1104 } 1105 1106 /* 1107 * a less complex decompression routine. Our compressed data fits in a 1108 * single page, and we want to read a single page out of it. 1109 * start_byte tells us the offset into the compressed data we're interested in 1110 */ 1111 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1112 unsigned long start_byte, size_t srclen, size_t destlen) 1113 { 1114 struct list_head *workspace; 1115 int ret; 1116 1117 workspace = find_workspace(type); 1118 1119 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 1120 dest_page, start_byte, 1121 srclen, destlen); 1122 1123 free_workspace(type, workspace); 1124 return ret; 1125 } 1126 1127 void btrfs_exit_compress(void) 1128 { 1129 free_workspaces(); 1130 } 1131 1132 /* 1133 * Copy uncompressed data from working buffer to pages. 1134 * 1135 * buf_start is the byte offset we're of the start of our workspace buffer. 1136 * 1137 * total_out is the last byte of the buffer 1138 */ 1139 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1140 unsigned long total_out, u64 disk_start, 1141 struct bio *bio) 1142 { 1143 unsigned long buf_offset; 1144 unsigned long current_buf_start; 1145 unsigned long start_byte; 1146 unsigned long prev_start_byte; 1147 unsigned long working_bytes = total_out - buf_start; 1148 unsigned long bytes; 1149 char *kaddr; 1150 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1151 1152 /* 1153 * start byte is the first byte of the page we're currently 1154 * copying into relative to the start of the compressed data. 1155 */ 1156 start_byte = page_offset(bvec.bv_page) - disk_start; 1157 1158 /* we haven't yet hit data corresponding to this page */ 1159 if (total_out <= start_byte) 1160 return 1; 1161 1162 /* 1163 * the start of the data we care about is offset into 1164 * the middle of our working buffer 1165 */ 1166 if (total_out > start_byte && buf_start < start_byte) { 1167 buf_offset = start_byte - buf_start; 1168 working_bytes -= buf_offset; 1169 } else { 1170 buf_offset = 0; 1171 } 1172 current_buf_start = buf_start; 1173 1174 /* copy bytes from the working buffer into the pages */ 1175 while (working_bytes > 0) { 1176 bytes = min_t(unsigned long, bvec.bv_len, 1177 PAGE_SIZE - buf_offset); 1178 bytes = min(bytes, working_bytes); 1179 1180 kaddr = kmap_atomic(bvec.bv_page); 1181 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1182 kunmap_atomic(kaddr); 1183 flush_dcache_page(bvec.bv_page); 1184 1185 buf_offset += bytes; 1186 working_bytes -= bytes; 1187 current_buf_start += bytes; 1188 1189 /* check if we need to pick another page */ 1190 bio_advance(bio, bytes); 1191 if (!bio->bi_iter.bi_size) 1192 return 0; 1193 bvec = bio_iter_iovec(bio, bio->bi_iter); 1194 prev_start_byte = start_byte; 1195 start_byte = page_offset(bvec.bv_page) - disk_start; 1196 1197 /* 1198 * We need to make sure we're only adjusting 1199 * our offset into compression working buffer when 1200 * we're switching pages. Otherwise we can incorrectly 1201 * keep copying when we were actually done. 1202 */ 1203 if (start_byte != prev_start_byte) { 1204 /* 1205 * make sure our new page is covered by this 1206 * working buffer 1207 */ 1208 if (total_out <= start_byte) 1209 return 1; 1210 1211 /* 1212 * the next page in the biovec might not be adjacent 1213 * to the last page, but it might still be found 1214 * inside this working buffer. bump our offset pointer 1215 */ 1216 if (total_out > start_byte && 1217 current_buf_start < start_byte) { 1218 buf_offset = start_byte - buf_start; 1219 working_bytes = total_out - start_byte; 1220 current_buf_start = buf_start + buf_offset; 1221 } 1222 } 1223 } 1224 1225 return 1; 1226 } 1227 1228 /* 1229 * Shannon Entropy calculation 1230 * 1231 * Pure byte distribution analysis fails to determine compressiability of data. 1232 * Try calculating entropy to estimate the average minimum number of bits 1233 * needed to encode the sampled data. 1234 * 1235 * For convenience, return the percentage of needed bits, instead of amount of 1236 * bits directly. 1237 * 1238 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1239 * and can be compressible with high probability 1240 * 1241 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1242 * 1243 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1244 */ 1245 #define ENTROPY_LVL_ACEPTABLE (65) 1246 #define ENTROPY_LVL_HIGH (80) 1247 1248 /* 1249 * For increasead precision in shannon_entropy calculation, 1250 * let's do pow(n, M) to save more digits after comma: 1251 * 1252 * - maximum int bit length is 64 1253 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1254 * - 13 * 4 = 52 < 64 -> M = 4 1255 * 1256 * So use pow(n, 4). 1257 */ 1258 static inline u32 ilog2_w(u64 n) 1259 { 1260 return ilog2(n * n * n * n); 1261 } 1262 1263 static u32 shannon_entropy(struct heuristic_ws *ws) 1264 { 1265 const u32 entropy_max = 8 * ilog2_w(2); 1266 u32 entropy_sum = 0; 1267 u32 p, p_base, sz_base; 1268 u32 i; 1269 1270 sz_base = ilog2_w(ws->sample_size); 1271 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1272 p = ws->bucket[i].count; 1273 p_base = ilog2_w(p); 1274 entropy_sum += p * (sz_base - p_base); 1275 } 1276 1277 entropy_sum /= ws->sample_size; 1278 return entropy_sum * 100 / entropy_max; 1279 } 1280 1281 /* Compare buckets by size, ascending */ 1282 static int bucket_comp_rev(const void *lv, const void *rv) 1283 { 1284 const struct bucket_item *l = (const struct bucket_item *)lv; 1285 const struct bucket_item *r = (const struct bucket_item *)rv; 1286 1287 return r->count - l->count; 1288 } 1289 1290 /* 1291 * Size of the core byte set - how many bytes cover 90% of the sample 1292 * 1293 * There are several types of structured binary data that use nearly all byte 1294 * values. The distribution can be uniform and counts in all buckets will be 1295 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1296 * 1297 * Other possibility is normal (Gaussian) distribution, where the data could 1298 * be potentially compressible, but we have to take a few more steps to decide 1299 * how much. 1300 * 1301 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1302 * compression algo can easy fix that 1303 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1304 * probability is not compressible 1305 */ 1306 #define BYTE_CORE_SET_LOW (64) 1307 #define BYTE_CORE_SET_HIGH (200) 1308 1309 static int byte_core_set_size(struct heuristic_ws *ws) 1310 { 1311 u32 i; 1312 u32 coreset_sum = 0; 1313 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1314 struct bucket_item *bucket = ws->bucket; 1315 1316 /* Sort in reverse order */ 1317 sort(bucket, BUCKET_SIZE, sizeof(*bucket), &bucket_comp_rev, NULL); 1318 1319 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1320 coreset_sum += bucket[i].count; 1321 1322 if (coreset_sum > core_set_threshold) 1323 return i; 1324 1325 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1326 coreset_sum += bucket[i].count; 1327 if (coreset_sum > core_set_threshold) 1328 break; 1329 } 1330 1331 return i; 1332 } 1333 1334 /* 1335 * Count byte values in buckets. 1336 * This heuristic can detect textual data (configs, xml, json, html, etc). 1337 * Because in most text-like data byte set is restricted to limited number of 1338 * possible characters, and that restriction in most cases makes data easy to 1339 * compress. 1340 * 1341 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1342 * less - compressible 1343 * more - need additional analysis 1344 */ 1345 #define BYTE_SET_THRESHOLD (64) 1346 1347 static u32 byte_set_size(const struct heuristic_ws *ws) 1348 { 1349 u32 i; 1350 u32 byte_set_size = 0; 1351 1352 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1353 if (ws->bucket[i].count > 0) 1354 byte_set_size++; 1355 } 1356 1357 /* 1358 * Continue collecting count of byte values in buckets. If the byte 1359 * set size is bigger then the threshold, it's pointless to continue, 1360 * the detection technique would fail for this type of data. 1361 */ 1362 for (; i < BUCKET_SIZE; i++) { 1363 if (ws->bucket[i].count > 0) { 1364 byte_set_size++; 1365 if (byte_set_size > BYTE_SET_THRESHOLD) 1366 return byte_set_size; 1367 } 1368 } 1369 1370 return byte_set_size; 1371 } 1372 1373 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1374 { 1375 const u32 half_of_sample = ws->sample_size / 2; 1376 const u8 *data = ws->sample; 1377 1378 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1379 } 1380 1381 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1382 struct heuristic_ws *ws) 1383 { 1384 struct page *page; 1385 u64 index, index_end; 1386 u32 i, curr_sample_pos; 1387 u8 *in_data; 1388 1389 /* 1390 * Compression handles the input data by chunks of 128KiB 1391 * (defined by BTRFS_MAX_UNCOMPRESSED) 1392 * 1393 * We do the same for the heuristic and loop over the whole range. 1394 * 1395 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1396 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1397 */ 1398 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1399 end = start + BTRFS_MAX_UNCOMPRESSED; 1400 1401 index = start >> PAGE_SHIFT; 1402 index_end = end >> PAGE_SHIFT; 1403 1404 /* Don't miss unaligned end */ 1405 if (!IS_ALIGNED(end, PAGE_SIZE)) 1406 index_end++; 1407 1408 curr_sample_pos = 0; 1409 while (index < index_end) { 1410 page = find_get_page(inode->i_mapping, index); 1411 in_data = kmap(page); 1412 /* Handle case where the start is not aligned to PAGE_SIZE */ 1413 i = start % PAGE_SIZE; 1414 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1415 /* Don't sample any garbage from the last page */ 1416 if (start > end - SAMPLING_READ_SIZE) 1417 break; 1418 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1419 SAMPLING_READ_SIZE); 1420 i += SAMPLING_INTERVAL; 1421 start += SAMPLING_INTERVAL; 1422 curr_sample_pos += SAMPLING_READ_SIZE; 1423 } 1424 kunmap(page); 1425 put_page(page); 1426 1427 index++; 1428 } 1429 1430 ws->sample_size = curr_sample_pos; 1431 } 1432 1433 /* 1434 * Compression heuristic. 1435 * 1436 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1437 * quickly (compared to direct compression) detect data characteristics 1438 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1439 * data. 1440 * 1441 * The following types of analysis can be performed: 1442 * - detect mostly zero data 1443 * - detect data with low "byte set" size (text, etc) 1444 * - detect data with low/high "core byte" set 1445 * 1446 * Return non-zero if the compression should be done, 0 otherwise. 1447 */ 1448 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1449 { 1450 struct list_head *ws_list = __find_workspace(0, true); 1451 struct heuristic_ws *ws; 1452 u32 i; 1453 u8 byte; 1454 int ret = 0; 1455 1456 ws = list_entry(ws_list, struct heuristic_ws, list); 1457 1458 heuristic_collect_sample(inode, start, end, ws); 1459 1460 if (sample_repeated_patterns(ws)) { 1461 ret = 1; 1462 goto out; 1463 } 1464 1465 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1466 1467 for (i = 0; i < ws->sample_size; i++) { 1468 byte = ws->sample[i]; 1469 ws->bucket[byte].count++; 1470 } 1471 1472 i = byte_set_size(ws); 1473 if (i < BYTE_SET_THRESHOLD) { 1474 ret = 2; 1475 goto out; 1476 } 1477 1478 i = byte_core_set_size(ws); 1479 if (i <= BYTE_CORE_SET_LOW) { 1480 ret = 3; 1481 goto out; 1482 } 1483 1484 if (i >= BYTE_CORE_SET_HIGH) { 1485 ret = 0; 1486 goto out; 1487 } 1488 1489 i = shannon_entropy(ws); 1490 if (i <= ENTROPY_LVL_ACEPTABLE) { 1491 ret = 4; 1492 goto out; 1493 } 1494 1495 /* 1496 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1497 * needed to give green light to compression. 1498 * 1499 * For now just assume that compression at that level is not worth the 1500 * resources because: 1501 * 1502 * 1. it is possible to defrag the data later 1503 * 1504 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1505 * values, every bucket has counter at level ~54. The heuristic would 1506 * be confused. This can happen when data have some internal repeated 1507 * patterns like "abbacbbc...". This can be detected by analyzing 1508 * pairs of bytes, which is too costly. 1509 */ 1510 if (i < ENTROPY_LVL_HIGH) { 1511 ret = 5; 1512 goto out; 1513 } else { 1514 ret = 0; 1515 goto out; 1516 } 1517 1518 out: 1519 __free_workspace(0, ws_list, true); 1520 return ret; 1521 } 1522 1523 unsigned int btrfs_compress_str2level(const char *str) 1524 { 1525 if (strncmp(str, "zlib", 4) != 0) 1526 return 0; 1527 1528 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */ 1529 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0) 1530 return str[5] - '0'; 1531 1532 return BTRFS_ZLIB_DEFAULT_LEVEL; 1533 } 1534