xref: /openbmc/linux/fs/btrfs/compression.c (revision 1b39eacd)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/log2.h>
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "volumes.h"
43 #include "ordered-data.h"
44 #include "compression.h"
45 #include "extent_io.h"
46 #include "extent_map.h"
47 
48 static int btrfs_decompress_bio(struct compressed_bio *cb);
49 
50 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
51 				      unsigned long disk_size)
52 {
53 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
54 
55 	return sizeof(struct compressed_bio) +
56 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
57 }
58 
59 static int check_compressed_csum(struct btrfs_inode *inode,
60 				 struct compressed_bio *cb,
61 				 u64 disk_start)
62 {
63 	int ret;
64 	struct page *page;
65 	unsigned long i;
66 	char *kaddr;
67 	u32 csum;
68 	u32 *cb_sum = &cb->sums;
69 
70 	if (inode->flags & BTRFS_INODE_NODATASUM)
71 		return 0;
72 
73 	for (i = 0; i < cb->nr_pages; i++) {
74 		page = cb->compressed_pages[i];
75 		csum = ~(u32)0;
76 
77 		kaddr = kmap_atomic(page);
78 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
79 		btrfs_csum_final(csum, (u8 *)&csum);
80 		kunmap_atomic(kaddr);
81 
82 		if (csum != *cb_sum) {
83 			btrfs_print_data_csum_error(inode, disk_start, csum,
84 					*cb_sum, cb->mirror_num);
85 			ret = -EIO;
86 			goto fail;
87 		}
88 		cb_sum++;
89 
90 	}
91 	ret = 0;
92 fail:
93 	return ret;
94 }
95 
96 /* when we finish reading compressed pages from the disk, we
97  * decompress them and then run the bio end_io routines on the
98  * decompressed pages (in the inode address space).
99  *
100  * This allows the checksumming and other IO error handling routines
101  * to work normally
102  *
103  * The compressed pages are freed here, and it must be run
104  * in process context
105  */
106 static void end_compressed_bio_read(struct bio *bio)
107 {
108 	struct compressed_bio *cb = bio->bi_private;
109 	struct inode *inode;
110 	struct page *page;
111 	unsigned long index;
112 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
113 	int ret = 0;
114 
115 	if (bio->bi_status)
116 		cb->errors = 1;
117 
118 	/* if there are more bios still pending for this compressed
119 	 * extent, just exit
120 	 */
121 	if (!refcount_dec_and_test(&cb->pending_bios))
122 		goto out;
123 
124 	/*
125 	 * Record the correct mirror_num in cb->orig_bio so that
126 	 * read-repair can work properly.
127 	 */
128 	ASSERT(btrfs_io_bio(cb->orig_bio));
129 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
130 	cb->mirror_num = mirror;
131 
132 	/*
133 	 * Some IO in this cb have failed, just skip checksum as there
134 	 * is no way it could be correct.
135 	 */
136 	if (cb->errors == 1)
137 		goto csum_failed;
138 
139 	inode = cb->inode;
140 	ret = check_compressed_csum(BTRFS_I(inode), cb,
141 				    (u64)bio->bi_iter.bi_sector << 9);
142 	if (ret)
143 		goto csum_failed;
144 
145 	/* ok, we're the last bio for this extent, lets start
146 	 * the decompression.
147 	 */
148 	ret = btrfs_decompress_bio(cb);
149 
150 csum_failed:
151 	if (ret)
152 		cb->errors = 1;
153 
154 	/* release the compressed pages */
155 	index = 0;
156 	for (index = 0; index < cb->nr_pages; index++) {
157 		page = cb->compressed_pages[index];
158 		page->mapping = NULL;
159 		put_page(page);
160 	}
161 
162 	/* do io completion on the original bio */
163 	if (cb->errors) {
164 		bio_io_error(cb->orig_bio);
165 	} else {
166 		int i;
167 		struct bio_vec *bvec;
168 
169 		/*
170 		 * we have verified the checksum already, set page
171 		 * checked so the end_io handlers know about it
172 		 */
173 		ASSERT(!bio_flagged(bio, BIO_CLONED));
174 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
175 			SetPageChecked(bvec->bv_page);
176 
177 		bio_endio(cb->orig_bio);
178 	}
179 
180 	/* finally free the cb struct */
181 	kfree(cb->compressed_pages);
182 	kfree(cb);
183 out:
184 	bio_put(bio);
185 }
186 
187 /*
188  * Clear the writeback bits on all of the file
189  * pages for a compressed write
190  */
191 static noinline void end_compressed_writeback(struct inode *inode,
192 					      const struct compressed_bio *cb)
193 {
194 	unsigned long index = cb->start >> PAGE_SHIFT;
195 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
196 	struct page *pages[16];
197 	unsigned long nr_pages = end_index - index + 1;
198 	int i;
199 	int ret;
200 
201 	if (cb->errors)
202 		mapping_set_error(inode->i_mapping, -EIO);
203 
204 	while (nr_pages > 0) {
205 		ret = find_get_pages_contig(inode->i_mapping, index,
206 				     min_t(unsigned long,
207 				     nr_pages, ARRAY_SIZE(pages)), pages);
208 		if (ret == 0) {
209 			nr_pages -= 1;
210 			index += 1;
211 			continue;
212 		}
213 		for (i = 0; i < ret; i++) {
214 			if (cb->errors)
215 				SetPageError(pages[i]);
216 			end_page_writeback(pages[i]);
217 			put_page(pages[i]);
218 		}
219 		nr_pages -= ret;
220 		index += ret;
221 	}
222 	/* the inode may be gone now */
223 }
224 
225 /*
226  * do the cleanup once all the compressed pages hit the disk.
227  * This will clear writeback on the file pages and free the compressed
228  * pages.
229  *
230  * This also calls the writeback end hooks for the file pages so that
231  * metadata and checksums can be updated in the file.
232  */
233 static void end_compressed_bio_write(struct bio *bio)
234 {
235 	struct extent_io_tree *tree;
236 	struct compressed_bio *cb = bio->bi_private;
237 	struct inode *inode;
238 	struct page *page;
239 	unsigned long index;
240 
241 	if (bio->bi_status)
242 		cb->errors = 1;
243 
244 	/* if there are more bios still pending for this compressed
245 	 * extent, just exit
246 	 */
247 	if (!refcount_dec_and_test(&cb->pending_bios))
248 		goto out;
249 
250 	/* ok, we're the last bio for this extent, step one is to
251 	 * call back into the FS and do all the end_io operations
252 	 */
253 	inode = cb->inode;
254 	tree = &BTRFS_I(inode)->io_tree;
255 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
256 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
257 					 cb->start,
258 					 cb->start + cb->len - 1,
259 					 NULL,
260 					 bio->bi_status ?
261 					 BLK_STS_OK : BLK_STS_NOTSUPP);
262 	cb->compressed_pages[0]->mapping = NULL;
263 
264 	end_compressed_writeback(inode, cb);
265 	/* note, our inode could be gone now */
266 
267 	/*
268 	 * release the compressed pages, these came from alloc_page and
269 	 * are not attached to the inode at all
270 	 */
271 	index = 0;
272 	for (index = 0; index < cb->nr_pages; index++) {
273 		page = cb->compressed_pages[index];
274 		page->mapping = NULL;
275 		put_page(page);
276 	}
277 
278 	/* finally free the cb struct */
279 	kfree(cb->compressed_pages);
280 	kfree(cb);
281 out:
282 	bio_put(bio);
283 }
284 
285 /*
286  * worker function to build and submit bios for previously compressed pages.
287  * The corresponding pages in the inode should be marked for writeback
288  * and the compressed pages should have a reference on them for dropping
289  * when the IO is complete.
290  *
291  * This also checksums the file bytes and gets things ready for
292  * the end io hooks.
293  */
294 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
295 				 unsigned long len, u64 disk_start,
296 				 unsigned long compressed_len,
297 				 struct page **compressed_pages,
298 				 unsigned long nr_pages,
299 				 unsigned int write_flags)
300 {
301 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
302 	struct bio *bio = NULL;
303 	struct compressed_bio *cb;
304 	unsigned long bytes_left;
305 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306 	int pg_index = 0;
307 	struct page *page;
308 	u64 first_byte = disk_start;
309 	struct block_device *bdev;
310 	blk_status_t ret;
311 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
312 
313 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
314 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
315 	if (!cb)
316 		return BLK_STS_RESOURCE;
317 	refcount_set(&cb->pending_bios, 0);
318 	cb->errors = 0;
319 	cb->inode = inode;
320 	cb->start = start;
321 	cb->len = len;
322 	cb->mirror_num = 0;
323 	cb->compressed_pages = compressed_pages;
324 	cb->compressed_len = compressed_len;
325 	cb->orig_bio = NULL;
326 	cb->nr_pages = nr_pages;
327 
328 	bdev = fs_info->fs_devices->latest_bdev;
329 
330 	bio = btrfs_bio_alloc(bdev, first_byte);
331 	bio->bi_opf = REQ_OP_WRITE | write_flags;
332 	bio->bi_private = cb;
333 	bio->bi_end_io = end_compressed_bio_write;
334 	refcount_set(&cb->pending_bios, 1);
335 
336 	/* create and submit bios for the compressed pages */
337 	bytes_left = compressed_len;
338 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
339 		int submit = 0;
340 
341 		page = compressed_pages[pg_index];
342 		page->mapping = inode->i_mapping;
343 		if (bio->bi_iter.bi_size)
344 			submit = io_tree->ops->merge_bio_hook(page, 0,
345 							   PAGE_SIZE,
346 							   bio, 0);
347 
348 		page->mapping = NULL;
349 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
350 		    PAGE_SIZE) {
351 			bio_get(bio);
352 
353 			/*
354 			 * inc the count before we submit the bio so
355 			 * we know the end IO handler won't happen before
356 			 * we inc the count.  Otherwise, the cb might get
357 			 * freed before we're done setting it up
358 			 */
359 			refcount_inc(&cb->pending_bios);
360 			ret = btrfs_bio_wq_end_io(fs_info, bio,
361 						  BTRFS_WQ_ENDIO_DATA);
362 			BUG_ON(ret); /* -ENOMEM */
363 
364 			if (!skip_sum) {
365 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
366 				BUG_ON(ret); /* -ENOMEM */
367 			}
368 
369 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
370 			if (ret) {
371 				bio->bi_status = ret;
372 				bio_endio(bio);
373 			}
374 
375 			bio_put(bio);
376 
377 			bio = btrfs_bio_alloc(bdev, first_byte);
378 			bio->bi_opf = REQ_OP_WRITE | write_flags;
379 			bio->bi_private = cb;
380 			bio->bi_end_io = end_compressed_bio_write;
381 			bio_add_page(bio, page, PAGE_SIZE, 0);
382 		}
383 		if (bytes_left < PAGE_SIZE) {
384 			btrfs_info(fs_info,
385 					"bytes left %lu compress len %lu nr %lu",
386 			       bytes_left, cb->compressed_len, cb->nr_pages);
387 		}
388 		bytes_left -= PAGE_SIZE;
389 		first_byte += PAGE_SIZE;
390 		cond_resched();
391 	}
392 	bio_get(bio);
393 
394 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
395 	BUG_ON(ret); /* -ENOMEM */
396 
397 	if (!skip_sum) {
398 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
399 		BUG_ON(ret); /* -ENOMEM */
400 	}
401 
402 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
403 	if (ret) {
404 		bio->bi_status = ret;
405 		bio_endio(bio);
406 	}
407 
408 	bio_put(bio);
409 	return 0;
410 }
411 
412 static u64 bio_end_offset(struct bio *bio)
413 {
414 	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
415 
416 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
417 }
418 
419 static noinline int add_ra_bio_pages(struct inode *inode,
420 				     u64 compressed_end,
421 				     struct compressed_bio *cb)
422 {
423 	unsigned long end_index;
424 	unsigned long pg_index;
425 	u64 last_offset;
426 	u64 isize = i_size_read(inode);
427 	int ret;
428 	struct page *page;
429 	unsigned long nr_pages = 0;
430 	struct extent_map *em;
431 	struct address_space *mapping = inode->i_mapping;
432 	struct extent_map_tree *em_tree;
433 	struct extent_io_tree *tree;
434 	u64 end;
435 	int misses = 0;
436 
437 	last_offset = bio_end_offset(cb->orig_bio);
438 	em_tree = &BTRFS_I(inode)->extent_tree;
439 	tree = &BTRFS_I(inode)->io_tree;
440 
441 	if (isize == 0)
442 		return 0;
443 
444 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
445 
446 	while (last_offset < compressed_end) {
447 		pg_index = last_offset >> PAGE_SHIFT;
448 
449 		if (pg_index > end_index)
450 			break;
451 
452 		rcu_read_lock();
453 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
454 		rcu_read_unlock();
455 		if (page && !radix_tree_exceptional_entry(page)) {
456 			misses++;
457 			if (misses > 4)
458 				break;
459 			goto next;
460 		}
461 
462 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
463 								 ~__GFP_FS));
464 		if (!page)
465 			break;
466 
467 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
468 			put_page(page);
469 			goto next;
470 		}
471 
472 		end = last_offset + PAGE_SIZE - 1;
473 		/*
474 		 * at this point, we have a locked page in the page cache
475 		 * for these bytes in the file.  But, we have to make
476 		 * sure they map to this compressed extent on disk.
477 		 */
478 		set_page_extent_mapped(page);
479 		lock_extent(tree, last_offset, end);
480 		read_lock(&em_tree->lock);
481 		em = lookup_extent_mapping(em_tree, last_offset,
482 					   PAGE_SIZE);
483 		read_unlock(&em_tree->lock);
484 
485 		if (!em || last_offset < em->start ||
486 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
487 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
488 			free_extent_map(em);
489 			unlock_extent(tree, last_offset, end);
490 			unlock_page(page);
491 			put_page(page);
492 			break;
493 		}
494 		free_extent_map(em);
495 
496 		if (page->index == end_index) {
497 			char *userpage;
498 			size_t zero_offset = isize & (PAGE_SIZE - 1);
499 
500 			if (zero_offset) {
501 				int zeros;
502 				zeros = PAGE_SIZE - zero_offset;
503 				userpage = kmap_atomic(page);
504 				memset(userpage + zero_offset, 0, zeros);
505 				flush_dcache_page(page);
506 				kunmap_atomic(userpage);
507 			}
508 		}
509 
510 		ret = bio_add_page(cb->orig_bio, page,
511 				   PAGE_SIZE, 0);
512 
513 		if (ret == PAGE_SIZE) {
514 			nr_pages++;
515 			put_page(page);
516 		} else {
517 			unlock_extent(tree, last_offset, end);
518 			unlock_page(page);
519 			put_page(page);
520 			break;
521 		}
522 next:
523 		last_offset += PAGE_SIZE;
524 	}
525 	return 0;
526 }
527 
528 /*
529  * for a compressed read, the bio we get passed has all the inode pages
530  * in it.  We don't actually do IO on those pages but allocate new ones
531  * to hold the compressed pages on disk.
532  *
533  * bio->bi_iter.bi_sector points to the compressed extent on disk
534  * bio->bi_io_vec points to all of the inode pages
535  *
536  * After the compressed pages are read, we copy the bytes into the
537  * bio we were passed and then call the bio end_io calls
538  */
539 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
540 				 int mirror_num, unsigned long bio_flags)
541 {
542 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
543 	struct extent_io_tree *tree;
544 	struct extent_map_tree *em_tree;
545 	struct compressed_bio *cb;
546 	unsigned long compressed_len;
547 	unsigned long nr_pages;
548 	unsigned long pg_index;
549 	struct page *page;
550 	struct block_device *bdev;
551 	struct bio *comp_bio;
552 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
553 	u64 em_len;
554 	u64 em_start;
555 	struct extent_map *em;
556 	blk_status_t ret = BLK_STS_RESOURCE;
557 	int faili = 0;
558 	u32 *sums;
559 
560 	tree = &BTRFS_I(inode)->io_tree;
561 	em_tree = &BTRFS_I(inode)->extent_tree;
562 
563 	/* we need the actual starting offset of this extent in the file */
564 	read_lock(&em_tree->lock);
565 	em = lookup_extent_mapping(em_tree,
566 				   page_offset(bio->bi_io_vec->bv_page),
567 				   PAGE_SIZE);
568 	read_unlock(&em_tree->lock);
569 	if (!em)
570 		return BLK_STS_IOERR;
571 
572 	compressed_len = em->block_len;
573 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
574 	if (!cb)
575 		goto out;
576 
577 	refcount_set(&cb->pending_bios, 0);
578 	cb->errors = 0;
579 	cb->inode = inode;
580 	cb->mirror_num = mirror_num;
581 	sums = &cb->sums;
582 
583 	cb->start = em->orig_start;
584 	em_len = em->len;
585 	em_start = em->start;
586 
587 	free_extent_map(em);
588 	em = NULL;
589 
590 	cb->len = bio->bi_iter.bi_size;
591 	cb->compressed_len = compressed_len;
592 	cb->compress_type = extent_compress_type(bio_flags);
593 	cb->orig_bio = bio;
594 
595 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
596 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
597 				       GFP_NOFS);
598 	if (!cb->compressed_pages)
599 		goto fail1;
600 
601 	bdev = fs_info->fs_devices->latest_bdev;
602 
603 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
604 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
605 							      __GFP_HIGHMEM);
606 		if (!cb->compressed_pages[pg_index]) {
607 			faili = pg_index - 1;
608 			ret = BLK_STS_RESOURCE;
609 			goto fail2;
610 		}
611 	}
612 	faili = nr_pages - 1;
613 	cb->nr_pages = nr_pages;
614 
615 	add_ra_bio_pages(inode, em_start + em_len, cb);
616 
617 	/* include any pages we added in add_ra-bio_pages */
618 	cb->len = bio->bi_iter.bi_size;
619 
620 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
621 	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
622 	comp_bio->bi_private = cb;
623 	comp_bio->bi_end_io = end_compressed_bio_read;
624 	refcount_set(&cb->pending_bios, 1);
625 
626 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
627 		int submit = 0;
628 
629 		page = cb->compressed_pages[pg_index];
630 		page->mapping = inode->i_mapping;
631 		page->index = em_start >> PAGE_SHIFT;
632 
633 		if (comp_bio->bi_iter.bi_size)
634 			submit = tree->ops->merge_bio_hook(page, 0,
635 							PAGE_SIZE,
636 							comp_bio, 0);
637 
638 		page->mapping = NULL;
639 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
640 		    PAGE_SIZE) {
641 			bio_get(comp_bio);
642 
643 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
644 						  BTRFS_WQ_ENDIO_DATA);
645 			BUG_ON(ret); /* -ENOMEM */
646 
647 			/*
648 			 * inc the count before we submit the bio so
649 			 * we know the end IO handler won't happen before
650 			 * we inc the count.  Otherwise, the cb might get
651 			 * freed before we're done setting it up
652 			 */
653 			refcount_inc(&cb->pending_bios);
654 
655 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
656 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
657 							    sums);
658 				BUG_ON(ret); /* -ENOMEM */
659 			}
660 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
661 					     fs_info->sectorsize);
662 
663 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
664 			if (ret) {
665 				comp_bio->bi_status = ret;
666 				bio_endio(comp_bio);
667 			}
668 
669 			bio_put(comp_bio);
670 
671 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
672 			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
673 			comp_bio->bi_private = cb;
674 			comp_bio->bi_end_io = end_compressed_bio_read;
675 
676 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
677 		}
678 		cur_disk_byte += PAGE_SIZE;
679 	}
680 	bio_get(comp_bio);
681 
682 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
683 	BUG_ON(ret); /* -ENOMEM */
684 
685 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
686 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
687 		BUG_ON(ret); /* -ENOMEM */
688 	}
689 
690 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
691 	if (ret) {
692 		comp_bio->bi_status = ret;
693 		bio_endio(comp_bio);
694 	}
695 
696 	bio_put(comp_bio);
697 	return 0;
698 
699 fail2:
700 	while (faili >= 0) {
701 		__free_page(cb->compressed_pages[faili]);
702 		faili--;
703 	}
704 
705 	kfree(cb->compressed_pages);
706 fail1:
707 	kfree(cb);
708 out:
709 	free_extent_map(em);
710 	return ret;
711 }
712 
713 /*
714  * Heuristic uses systematic sampling to collect data from the input data
715  * range, the logic can be tuned by the following constants:
716  *
717  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
718  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
719  */
720 #define SAMPLING_READ_SIZE	(16)
721 #define SAMPLING_INTERVAL	(256)
722 
723 /*
724  * For statistical analysis of the input data we consider bytes that form a
725  * Galois Field of 256 objects. Each object has an attribute count, ie. how
726  * many times the object appeared in the sample.
727  */
728 #define BUCKET_SIZE		(256)
729 
730 /*
731  * The size of the sample is based on a statistical sampling rule of thumb.
732  * The common way is to perform sampling tests as long as the number of
733  * elements in each cell is at least 5.
734  *
735  * Instead of 5, we choose 32 to obtain more accurate results.
736  * If the data contain the maximum number of symbols, which is 256, we obtain a
737  * sample size bound by 8192.
738  *
739  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
740  * from up to 512 locations.
741  */
742 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
743 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
744 
745 struct bucket_item {
746 	u32 count;
747 };
748 
749 struct heuristic_ws {
750 	/* Partial copy of input data */
751 	u8 *sample;
752 	u32 sample_size;
753 	/* Buckets store counters for each byte value */
754 	struct bucket_item *bucket;
755 	struct list_head list;
756 };
757 
758 static void free_heuristic_ws(struct list_head *ws)
759 {
760 	struct heuristic_ws *workspace;
761 
762 	workspace = list_entry(ws, struct heuristic_ws, list);
763 
764 	kvfree(workspace->sample);
765 	kfree(workspace->bucket);
766 	kfree(workspace);
767 }
768 
769 static struct list_head *alloc_heuristic_ws(void)
770 {
771 	struct heuristic_ws *ws;
772 
773 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
774 	if (!ws)
775 		return ERR_PTR(-ENOMEM);
776 
777 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
778 	if (!ws->sample)
779 		goto fail;
780 
781 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
782 	if (!ws->bucket)
783 		goto fail;
784 
785 	INIT_LIST_HEAD(&ws->list);
786 	return &ws->list;
787 fail:
788 	free_heuristic_ws(&ws->list);
789 	return ERR_PTR(-ENOMEM);
790 }
791 
792 struct workspaces_list {
793 	struct list_head idle_ws;
794 	spinlock_t ws_lock;
795 	/* Number of free workspaces */
796 	int free_ws;
797 	/* Total number of allocated workspaces */
798 	atomic_t total_ws;
799 	/* Waiters for a free workspace */
800 	wait_queue_head_t ws_wait;
801 };
802 
803 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
804 
805 static struct workspaces_list btrfs_heuristic_ws;
806 
807 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
808 	&btrfs_zlib_compress,
809 	&btrfs_lzo_compress,
810 	&btrfs_zstd_compress,
811 };
812 
813 void __init btrfs_init_compress(void)
814 {
815 	struct list_head *workspace;
816 	int i;
817 
818 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
819 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
820 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
821 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
822 
823 	workspace = alloc_heuristic_ws();
824 	if (IS_ERR(workspace)) {
825 		pr_warn(
826 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
827 	} else {
828 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
829 		btrfs_heuristic_ws.free_ws = 1;
830 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
831 	}
832 
833 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
834 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
835 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
836 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
837 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
838 
839 		/*
840 		 * Preallocate one workspace for each compression type so
841 		 * we can guarantee forward progress in the worst case
842 		 */
843 		workspace = btrfs_compress_op[i]->alloc_workspace();
844 		if (IS_ERR(workspace)) {
845 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
846 		} else {
847 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
848 			btrfs_comp_ws[i].free_ws = 1;
849 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
850 		}
851 	}
852 }
853 
854 /*
855  * This finds an available workspace or allocates a new one.
856  * If it's not possible to allocate a new one, waits until there's one.
857  * Preallocation makes a forward progress guarantees and we do not return
858  * errors.
859  */
860 static struct list_head *__find_workspace(int type, bool heuristic)
861 {
862 	struct list_head *workspace;
863 	int cpus = num_online_cpus();
864 	int idx = type - 1;
865 	unsigned nofs_flag;
866 	struct list_head *idle_ws;
867 	spinlock_t *ws_lock;
868 	atomic_t *total_ws;
869 	wait_queue_head_t *ws_wait;
870 	int *free_ws;
871 
872 	if (heuristic) {
873 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
874 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
875 		total_ws = &btrfs_heuristic_ws.total_ws;
876 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
877 		free_ws	 = &btrfs_heuristic_ws.free_ws;
878 	} else {
879 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
880 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
881 		total_ws = &btrfs_comp_ws[idx].total_ws;
882 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
883 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
884 	}
885 
886 again:
887 	spin_lock(ws_lock);
888 	if (!list_empty(idle_ws)) {
889 		workspace = idle_ws->next;
890 		list_del(workspace);
891 		(*free_ws)--;
892 		spin_unlock(ws_lock);
893 		return workspace;
894 
895 	}
896 	if (atomic_read(total_ws) > cpus) {
897 		DEFINE_WAIT(wait);
898 
899 		spin_unlock(ws_lock);
900 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
901 		if (atomic_read(total_ws) > cpus && !*free_ws)
902 			schedule();
903 		finish_wait(ws_wait, &wait);
904 		goto again;
905 	}
906 	atomic_inc(total_ws);
907 	spin_unlock(ws_lock);
908 
909 	/*
910 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
911 	 * to turn it off here because we might get called from the restricted
912 	 * context of btrfs_compress_bio/btrfs_compress_pages
913 	 */
914 	nofs_flag = memalloc_nofs_save();
915 	if (heuristic)
916 		workspace = alloc_heuristic_ws();
917 	else
918 		workspace = btrfs_compress_op[idx]->alloc_workspace();
919 	memalloc_nofs_restore(nofs_flag);
920 
921 	if (IS_ERR(workspace)) {
922 		atomic_dec(total_ws);
923 		wake_up(ws_wait);
924 
925 		/*
926 		 * Do not return the error but go back to waiting. There's a
927 		 * workspace preallocated for each type and the compression
928 		 * time is bounded so we get to a workspace eventually. This
929 		 * makes our caller's life easier.
930 		 *
931 		 * To prevent silent and low-probability deadlocks (when the
932 		 * initial preallocation fails), check if there are any
933 		 * workspaces at all.
934 		 */
935 		if (atomic_read(total_ws) == 0) {
936 			static DEFINE_RATELIMIT_STATE(_rs,
937 					/* once per minute */ 60 * HZ,
938 					/* no burst */ 1);
939 
940 			if (__ratelimit(&_rs)) {
941 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
942 			}
943 		}
944 		goto again;
945 	}
946 	return workspace;
947 }
948 
949 static struct list_head *find_workspace(int type)
950 {
951 	return __find_workspace(type, false);
952 }
953 
954 /*
955  * put a workspace struct back on the list or free it if we have enough
956  * idle ones sitting around
957  */
958 static void __free_workspace(int type, struct list_head *workspace,
959 			     bool heuristic)
960 {
961 	int idx = type - 1;
962 	struct list_head *idle_ws;
963 	spinlock_t *ws_lock;
964 	atomic_t *total_ws;
965 	wait_queue_head_t *ws_wait;
966 	int *free_ws;
967 
968 	if (heuristic) {
969 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
970 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
971 		total_ws = &btrfs_heuristic_ws.total_ws;
972 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
973 		free_ws	 = &btrfs_heuristic_ws.free_ws;
974 	} else {
975 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
976 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
977 		total_ws = &btrfs_comp_ws[idx].total_ws;
978 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
979 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
980 	}
981 
982 	spin_lock(ws_lock);
983 	if (*free_ws <= num_online_cpus()) {
984 		list_add(workspace, idle_ws);
985 		(*free_ws)++;
986 		spin_unlock(ws_lock);
987 		goto wake;
988 	}
989 	spin_unlock(ws_lock);
990 
991 	if (heuristic)
992 		free_heuristic_ws(workspace);
993 	else
994 		btrfs_compress_op[idx]->free_workspace(workspace);
995 	atomic_dec(total_ws);
996 wake:
997 	/*
998 	 * Make sure counter is updated before we wake up waiters.
999 	 */
1000 	smp_mb();
1001 	if (waitqueue_active(ws_wait))
1002 		wake_up(ws_wait);
1003 }
1004 
1005 static void free_workspace(int type, struct list_head *ws)
1006 {
1007 	return __free_workspace(type, ws, false);
1008 }
1009 
1010 /*
1011  * cleanup function for module exit
1012  */
1013 static void free_workspaces(void)
1014 {
1015 	struct list_head *workspace;
1016 	int i;
1017 
1018 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1019 		workspace = btrfs_heuristic_ws.idle_ws.next;
1020 		list_del(workspace);
1021 		free_heuristic_ws(workspace);
1022 		atomic_dec(&btrfs_heuristic_ws.total_ws);
1023 	}
1024 
1025 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1026 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1027 			workspace = btrfs_comp_ws[i].idle_ws.next;
1028 			list_del(workspace);
1029 			btrfs_compress_op[i]->free_workspace(workspace);
1030 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1031 		}
1032 	}
1033 }
1034 
1035 /*
1036  * Given an address space and start and length, compress the bytes into @pages
1037  * that are allocated on demand.
1038  *
1039  * @type_level is encoded algorithm and level, where level 0 means whatever
1040  * default the algorithm chooses and is opaque here;
1041  * - compression algo are 0-3
1042  * - the level are bits 4-7
1043  *
1044  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1045  * and returns number of actually allocated pages
1046  *
1047  * @total_in is used to return the number of bytes actually read.  It
1048  * may be smaller than the input length if we had to exit early because we
1049  * ran out of room in the pages array or because we cross the
1050  * max_out threshold.
1051  *
1052  * @total_out is an in/out parameter, must be set to the input length and will
1053  * be also used to return the total number of compressed bytes
1054  *
1055  * @max_out tells us the max number of bytes that we're allowed to
1056  * stuff into pages
1057  */
1058 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1059 			 u64 start, struct page **pages,
1060 			 unsigned long *out_pages,
1061 			 unsigned long *total_in,
1062 			 unsigned long *total_out)
1063 {
1064 	struct list_head *workspace;
1065 	int ret;
1066 	int type = type_level & 0xF;
1067 
1068 	workspace = find_workspace(type);
1069 
1070 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1071 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1072 						      start, pages,
1073 						      out_pages,
1074 						      total_in, total_out);
1075 	free_workspace(type, workspace);
1076 	return ret;
1077 }
1078 
1079 /*
1080  * pages_in is an array of pages with compressed data.
1081  *
1082  * disk_start is the starting logical offset of this array in the file
1083  *
1084  * orig_bio contains the pages from the file that we want to decompress into
1085  *
1086  * srclen is the number of bytes in pages_in
1087  *
1088  * The basic idea is that we have a bio that was created by readpages.
1089  * The pages in the bio are for the uncompressed data, and they may not
1090  * be contiguous.  They all correspond to the range of bytes covered by
1091  * the compressed extent.
1092  */
1093 static int btrfs_decompress_bio(struct compressed_bio *cb)
1094 {
1095 	struct list_head *workspace;
1096 	int ret;
1097 	int type = cb->compress_type;
1098 
1099 	workspace = find_workspace(type);
1100 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1101 	free_workspace(type, workspace);
1102 
1103 	return ret;
1104 }
1105 
1106 /*
1107  * a less complex decompression routine.  Our compressed data fits in a
1108  * single page, and we want to read a single page out of it.
1109  * start_byte tells us the offset into the compressed data we're interested in
1110  */
1111 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1112 		     unsigned long start_byte, size_t srclen, size_t destlen)
1113 {
1114 	struct list_head *workspace;
1115 	int ret;
1116 
1117 	workspace = find_workspace(type);
1118 
1119 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1120 						  dest_page, start_byte,
1121 						  srclen, destlen);
1122 
1123 	free_workspace(type, workspace);
1124 	return ret;
1125 }
1126 
1127 void btrfs_exit_compress(void)
1128 {
1129 	free_workspaces();
1130 }
1131 
1132 /*
1133  * Copy uncompressed data from working buffer to pages.
1134  *
1135  * buf_start is the byte offset we're of the start of our workspace buffer.
1136  *
1137  * total_out is the last byte of the buffer
1138  */
1139 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1140 			      unsigned long total_out, u64 disk_start,
1141 			      struct bio *bio)
1142 {
1143 	unsigned long buf_offset;
1144 	unsigned long current_buf_start;
1145 	unsigned long start_byte;
1146 	unsigned long prev_start_byte;
1147 	unsigned long working_bytes = total_out - buf_start;
1148 	unsigned long bytes;
1149 	char *kaddr;
1150 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1151 
1152 	/*
1153 	 * start byte is the first byte of the page we're currently
1154 	 * copying into relative to the start of the compressed data.
1155 	 */
1156 	start_byte = page_offset(bvec.bv_page) - disk_start;
1157 
1158 	/* we haven't yet hit data corresponding to this page */
1159 	if (total_out <= start_byte)
1160 		return 1;
1161 
1162 	/*
1163 	 * the start of the data we care about is offset into
1164 	 * the middle of our working buffer
1165 	 */
1166 	if (total_out > start_byte && buf_start < start_byte) {
1167 		buf_offset = start_byte - buf_start;
1168 		working_bytes -= buf_offset;
1169 	} else {
1170 		buf_offset = 0;
1171 	}
1172 	current_buf_start = buf_start;
1173 
1174 	/* copy bytes from the working buffer into the pages */
1175 	while (working_bytes > 0) {
1176 		bytes = min_t(unsigned long, bvec.bv_len,
1177 				PAGE_SIZE - buf_offset);
1178 		bytes = min(bytes, working_bytes);
1179 
1180 		kaddr = kmap_atomic(bvec.bv_page);
1181 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1182 		kunmap_atomic(kaddr);
1183 		flush_dcache_page(bvec.bv_page);
1184 
1185 		buf_offset += bytes;
1186 		working_bytes -= bytes;
1187 		current_buf_start += bytes;
1188 
1189 		/* check if we need to pick another page */
1190 		bio_advance(bio, bytes);
1191 		if (!bio->bi_iter.bi_size)
1192 			return 0;
1193 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1194 		prev_start_byte = start_byte;
1195 		start_byte = page_offset(bvec.bv_page) - disk_start;
1196 
1197 		/*
1198 		 * We need to make sure we're only adjusting
1199 		 * our offset into compression working buffer when
1200 		 * we're switching pages.  Otherwise we can incorrectly
1201 		 * keep copying when we were actually done.
1202 		 */
1203 		if (start_byte != prev_start_byte) {
1204 			/*
1205 			 * make sure our new page is covered by this
1206 			 * working buffer
1207 			 */
1208 			if (total_out <= start_byte)
1209 				return 1;
1210 
1211 			/*
1212 			 * the next page in the biovec might not be adjacent
1213 			 * to the last page, but it might still be found
1214 			 * inside this working buffer. bump our offset pointer
1215 			 */
1216 			if (total_out > start_byte &&
1217 			    current_buf_start < start_byte) {
1218 				buf_offset = start_byte - buf_start;
1219 				working_bytes = total_out - start_byte;
1220 				current_buf_start = buf_start + buf_offset;
1221 			}
1222 		}
1223 	}
1224 
1225 	return 1;
1226 }
1227 
1228 /*
1229  * Shannon Entropy calculation
1230  *
1231  * Pure byte distribution analysis fails to determine compressiability of data.
1232  * Try calculating entropy to estimate the average minimum number of bits
1233  * needed to encode the sampled data.
1234  *
1235  * For convenience, return the percentage of needed bits, instead of amount of
1236  * bits directly.
1237  *
1238  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1239  *			    and can be compressible with high probability
1240  *
1241  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1242  *
1243  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1244  */
1245 #define ENTROPY_LVL_ACEPTABLE		(65)
1246 #define ENTROPY_LVL_HIGH		(80)
1247 
1248 /*
1249  * For increasead precision in shannon_entropy calculation,
1250  * let's do pow(n, M) to save more digits after comma:
1251  *
1252  * - maximum int bit length is 64
1253  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1254  * - 13 * 4 = 52 < 64		-> M = 4
1255  *
1256  * So use pow(n, 4).
1257  */
1258 static inline u32 ilog2_w(u64 n)
1259 {
1260 	return ilog2(n * n * n * n);
1261 }
1262 
1263 static u32 shannon_entropy(struct heuristic_ws *ws)
1264 {
1265 	const u32 entropy_max = 8 * ilog2_w(2);
1266 	u32 entropy_sum = 0;
1267 	u32 p, p_base, sz_base;
1268 	u32 i;
1269 
1270 	sz_base = ilog2_w(ws->sample_size);
1271 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1272 		p = ws->bucket[i].count;
1273 		p_base = ilog2_w(p);
1274 		entropy_sum += p * (sz_base - p_base);
1275 	}
1276 
1277 	entropy_sum /= ws->sample_size;
1278 	return entropy_sum * 100 / entropy_max;
1279 }
1280 
1281 /* Compare buckets by size, ascending */
1282 static int bucket_comp_rev(const void *lv, const void *rv)
1283 {
1284 	const struct bucket_item *l = (const struct bucket_item *)lv;
1285 	const struct bucket_item *r = (const struct bucket_item *)rv;
1286 
1287 	return r->count - l->count;
1288 }
1289 
1290 /*
1291  * Size of the core byte set - how many bytes cover 90% of the sample
1292  *
1293  * There are several types of structured binary data that use nearly all byte
1294  * values. The distribution can be uniform and counts in all buckets will be
1295  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1296  *
1297  * Other possibility is normal (Gaussian) distribution, where the data could
1298  * be potentially compressible, but we have to take a few more steps to decide
1299  * how much.
1300  *
1301  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1302  *                       compression algo can easy fix that
1303  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1304  *                       probability is not compressible
1305  */
1306 #define BYTE_CORE_SET_LOW		(64)
1307 #define BYTE_CORE_SET_HIGH		(200)
1308 
1309 static int byte_core_set_size(struct heuristic_ws *ws)
1310 {
1311 	u32 i;
1312 	u32 coreset_sum = 0;
1313 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1314 	struct bucket_item *bucket = ws->bucket;
1315 
1316 	/* Sort in reverse order */
1317 	sort(bucket, BUCKET_SIZE, sizeof(*bucket), &bucket_comp_rev, NULL);
1318 
1319 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1320 		coreset_sum += bucket[i].count;
1321 
1322 	if (coreset_sum > core_set_threshold)
1323 		return i;
1324 
1325 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1326 		coreset_sum += bucket[i].count;
1327 		if (coreset_sum > core_set_threshold)
1328 			break;
1329 	}
1330 
1331 	return i;
1332 }
1333 
1334 /*
1335  * Count byte values in buckets.
1336  * This heuristic can detect textual data (configs, xml, json, html, etc).
1337  * Because in most text-like data byte set is restricted to limited number of
1338  * possible characters, and that restriction in most cases makes data easy to
1339  * compress.
1340  *
1341  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1342  *	less - compressible
1343  *	more - need additional analysis
1344  */
1345 #define BYTE_SET_THRESHOLD		(64)
1346 
1347 static u32 byte_set_size(const struct heuristic_ws *ws)
1348 {
1349 	u32 i;
1350 	u32 byte_set_size = 0;
1351 
1352 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1353 		if (ws->bucket[i].count > 0)
1354 			byte_set_size++;
1355 	}
1356 
1357 	/*
1358 	 * Continue collecting count of byte values in buckets.  If the byte
1359 	 * set size is bigger then the threshold, it's pointless to continue,
1360 	 * the detection technique would fail for this type of data.
1361 	 */
1362 	for (; i < BUCKET_SIZE; i++) {
1363 		if (ws->bucket[i].count > 0) {
1364 			byte_set_size++;
1365 			if (byte_set_size > BYTE_SET_THRESHOLD)
1366 				return byte_set_size;
1367 		}
1368 	}
1369 
1370 	return byte_set_size;
1371 }
1372 
1373 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1374 {
1375 	const u32 half_of_sample = ws->sample_size / 2;
1376 	const u8 *data = ws->sample;
1377 
1378 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1379 }
1380 
1381 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1382 				     struct heuristic_ws *ws)
1383 {
1384 	struct page *page;
1385 	u64 index, index_end;
1386 	u32 i, curr_sample_pos;
1387 	u8 *in_data;
1388 
1389 	/*
1390 	 * Compression handles the input data by chunks of 128KiB
1391 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1392 	 *
1393 	 * We do the same for the heuristic and loop over the whole range.
1394 	 *
1395 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1396 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1397 	 */
1398 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1399 		end = start + BTRFS_MAX_UNCOMPRESSED;
1400 
1401 	index = start >> PAGE_SHIFT;
1402 	index_end = end >> PAGE_SHIFT;
1403 
1404 	/* Don't miss unaligned end */
1405 	if (!IS_ALIGNED(end, PAGE_SIZE))
1406 		index_end++;
1407 
1408 	curr_sample_pos = 0;
1409 	while (index < index_end) {
1410 		page = find_get_page(inode->i_mapping, index);
1411 		in_data = kmap(page);
1412 		/* Handle case where the start is not aligned to PAGE_SIZE */
1413 		i = start % PAGE_SIZE;
1414 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1415 			/* Don't sample any garbage from the last page */
1416 			if (start > end - SAMPLING_READ_SIZE)
1417 				break;
1418 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1419 					SAMPLING_READ_SIZE);
1420 			i += SAMPLING_INTERVAL;
1421 			start += SAMPLING_INTERVAL;
1422 			curr_sample_pos += SAMPLING_READ_SIZE;
1423 		}
1424 		kunmap(page);
1425 		put_page(page);
1426 
1427 		index++;
1428 	}
1429 
1430 	ws->sample_size = curr_sample_pos;
1431 }
1432 
1433 /*
1434  * Compression heuristic.
1435  *
1436  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1437  * quickly (compared to direct compression) detect data characteristics
1438  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1439  * data.
1440  *
1441  * The following types of analysis can be performed:
1442  * - detect mostly zero data
1443  * - detect data with low "byte set" size (text, etc)
1444  * - detect data with low/high "core byte" set
1445  *
1446  * Return non-zero if the compression should be done, 0 otherwise.
1447  */
1448 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1449 {
1450 	struct list_head *ws_list = __find_workspace(0, true);
1451 	struct heuristic_ws *ws;
1452 	u32 i;
1453 	u8 byte;
1454 	int ret = 0;
1455 
1456 	ws = list_entry(ws_list, struct heuristic_ws, list);
1457 
1458 	heuristic_collect_sample(inode, start, end, ws);
1459 
1460 	if (sample_repeated_patterns(ws)) {
1461 		ret = 1;
1462 		goto out;
1463 	}
1464 
1465 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1466 
1467 	for (i = 0; i < ws->sample_size; i++) {
1468 		byte = ws->sample[i];
1469 		ws->bucket[byte].count++;
1470 	}
1471 
1472 	i = byte_set_size(ws);
1473 	if (i < BYTE_SET_THRESHOLD) {
1474 		ret = 2;
1475 		goto out;
1476 	}
1477 
1478 	i = byte_core_set_size(ws);
1479 	if (i <= BYTE_CORE_SET_LOW) {
1480 		ret = 3;
1481 		goto out;
1482 	}
1483 
1484 	if (i >= BYTE_CORE_SET_HIGH) {
1485 		ret = 0;
1486 		goto out;
1487 	}
1488 
1489 	i = shannon_entropy(ws);
1490 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1491 		ret = 4;
1492 		goto out;
1493 	}
1494 
1495 	/*
1496 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1497 	 * needed to give green light to compression.
1498 	 *
1499 	 * For now just assume that compression at that level is not worth the
1500 	 * resources because:
1501 	 *
1502 	 * 1. it is possible to defrag the data later
1503 	 *
1504 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1505 	 * values, every bucket has counter at level ~54. The heuristic would
1506 	 * be confused. This can happen when data have some internal repeated
1507 	 * patterns like "abbacbbc...". This can be detected by analyzing
1508 	 * pairs of bytes, which is too costly.
1509 	 */
1510 	if (i < ENTROPY_LVL_HIGH) {
1511 		ret = 5;
1512 		goto out;
1513 	} else {
1514 		ret = 0;
1515 		goto out;
1516 	}
1517 
1518 out:
1519 	__free_workspace(0, ws_list, true);
1520 	return ret;
1521 }
1522 
1523 unsigned int btrfs_compress_str2level(const char *str)
1524 {
1525 	if (strncmp(str, "zlib", 4) != 0)
1526 		return 0;
1527 
1528 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1529 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1530 		return str[5] - '0';
1531 
1532 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1533 }
1534