xref: /openbmc/linux/fs/btrfs/compression.c (revision 10e924bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <crypto/hash.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "fs.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "btrfs_inode.h"
30 #include "bio.h"
31 #include "ordered-data.h"
32 #include "compression.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "subpage.h"
36 #include "zoned.h"
37 #include "file-item.h"
38 #include "super.h"
39 
40 struct bio_set btrfs_compressed_bioset;
41 
42 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
43 
44 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
45 {
46 	switch (type) {
47 	case BTRFS_COMPRESS_ZLIB:
48 	case BTRFS_COMPRESS_LZO:
49 	case BTRFS_COMPRESS_ZSTD:
50 	case BTRFS_COMPRESS_NONE:
51 		return btrfs_compress_types[type];
52 	default:
53 		break;
54 	}
55 
56 	return NULL;
57 }
58 
59 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
60 {
61 	return container_of(bbio, struct compressed_bio, bbio);
62 }
63 
64 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
65 						   u64 start, blk_opf_t op,
66 						   btrfs_bio_end_io_t end_io)
67 {
68 	struct btrfs_bio *bbio;
69 
70 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
71 					  GFP_NOFS, &btrfs_compressed_bioset));
72 	btrfs_bio_init(bbio, inode, end_io, NULL);
73 	bbio->file_offset = start;
74 	return to_compressed_bio(bbio);
75 }
76 
77 bool btrfs_compress_is_valid_type(const char *str, size_t len)
78 {
79 	int i;
80 
81 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
82 		size_t comp_len = strlen(btrfs_compress_types[i]);
83 
84 		if (len < comp_len)
85 			continue;
86 
87 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
88 			return true;
89 	}
90 	return false;
91 }
92 
93 static int compression_compress_pages(int type, struct list_head *ws,
94                struct address_space *mapping, u64 start, struct page **pages,
95                unsigned long *out_pages, unsigned long *total_in,
96                unsigned long *total_out)
97 {
98 	switch (type) {
99 	case BTRFS_COMPRESS_ZLIB:
100 		return zlib_compress_pages(ws, mapping, start, pages,
101 				out_pages, total_in, total_out);
102 	case BTRFS_COMPRESS_LZO:
103 		return lzo_compress_pages(ws, mapping, start, pages,
104 				out_pages, total_in, total_out);
105 	case BTRFS_COMPRESS_ZSTD:
106 		return zstd_compress_pages(ws, mapping, start, pages,
107 				out_pages, total_in, total_out);
108 	case BTRFS_COMPRESS_NONE:
109 	default:
110 		/*
111 		 * This can happen when compression races with remount setting
112 		 * it to 'no compress', while caller doesn't call
113 		 * inode_need_compress() to check if we really need to
114 		 * compress.
115 		 *
116 		 * Not a big deal, just need to inform caller that we
117 		 * haven't allocated any pages yet.
118 		 */
119 		*out_pages = 0;
120 		return -E2BIG;
121 	}
122 }
123 
124 static int compression_decompress_bio(struct list_head *ws,
125 				      struct compressed_bio *cb)
126 {
127 	switch (cb->compress_type) {
128 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
129 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
130 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_NONE:
132 	default:
133 		/*
134 		 * This can't happen, the type is validated several times
135 		 * before we get here.
136 		 */
137 		BUG();
138 	}
139 }
140 
141 static int compression_decompress(int type, struct list_head *ws,
142                const u8 *data_in, struct page *dest_page,
143                unsigned long start_byte, size_t srclen, size_t destlen)
144 {
145 	switch (type) {
146 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
147 						start_byte, srclen, destlen);
148 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_NONE:
153 	default:
154 		/*
155 		 * This can't happen, the type is validated several times
156 		 * before we get here.
157 		 */
158 		BUG();
159 	}
160 }
161 
162 static int btrfs_decompress_bio(struct compressed_bio *cb);
163 
164 static void end_compressed_bio_read(struct btrfs_bio *bbio)
165 {
166 	struct compressed_bio *cb = to_compressed_bio(bbio);
167 	blk_status_t status = bbio->bio.bi_status;
168 	unsigned int index;
169 	struct page *page;
170 
171 	if (!status)
172 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
173 
174 	/* Release the compressed pages */
175 	for (index = 0; index < cb->nr_pages; index++) {
176 		page = cb->compressed_pages[index];
177 		page->mapping = NULL;
178 		put_page(page);
179 	}
180 
181 	/* Do io completion on the original bio */
182 	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), status);
183 
184 	/* Finally free the cb struct */
185 	kfree(cb->compressed_pages);
186 	bio_put(&bbio->bio);
187 }
188 
189 /*
190  * Clear the writeback bits on all of the file
191  * pages for a compressed write
192  */
193 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
194 {
195 	struct inode *inode = &cb->bbio.inode->vfs_inode;
196 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
197 	unsigned long index = cb->start >> PAGE_SHIFT;
198 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
199 	struct folio_batch fbatch;
200 	const int errno = blk_status_to_errno(cb->bbio.bio.bi_status);
201 	int i;
202 	int ret;
203 
204 	if (errno)
205 		mapping_set_error(inode->i_mapping, errno);
206 
207 	folio_batch_init(&fbatch);
208 	while (index <= end_index) {
209 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
210 				&fbatch);
211 
212 		if (ret == 0)
213 			return;
214 
215 		for (i = 0; i < ret; i++) {
216 			struct folio *folio = fbatch.folios[i];
217 
218 			if (errno)
219 				folio_set_error(folio);
220 			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
221 							 cb->start, cb->len);
222 		}
223 		folio_batch_release(&fbatch);
224 	}
225 	/* the inode may be gone now */
226 }
227 
228 static void finish_compressed_bio_write(struct compressed_bio *cb)
229 {
230 	unsigned int index;
231 
232 	/*
233 	 * Ok, we're the last bio for this extent, step one is to call back
234 	 * into the FS and do all the end_io operations.
235 	 */
236 	btrfs_writepage_endio_finish_ordered(cb->bbio.inode, NULL,
237 			cb->start, cb->start + cb->len - 1,
238 			cb->bbio.bio.bi_status == BLK_STS_OK);
239 
240 	if (cb->writeback)
241 		end_compressed_writeback(cb);
242 	/* Note, our inode could be gone now */
243 
244 	/*
245 	 * Release the compressed pages, these came from alloc_page and
246 	 * are not attached to the inode at all
247 	 */
248 	for (index = 0; index < cb->nr_pages; index++) {
249 		struct page *page = cb->compressed_pages[index];
250 
251 		page->mapping = NULL;
252 		put_page(page);
253 	}
254 
255 	/* Finally free the cb struct */
256 	kfree(cb->compressed_pages);
257 	bio_put(&cb->bbio.bio);
258 }
259 
260 static void btrfs_finish_compressed_write_work(struct work_struct *work)
261 {
262 	struct compressed_bio *cb =
263 		container_of(work, struct compressed_bio, write_end_work);
264 
265 	finish_compressed_bio_write(cb);
266 }
267 
268 /*
269  * Do the cleanup once all the compressed pages hit the disk.  This will clear
270  * writeback on the file pages and free the compressed pages.
271  *
272  * This also calls the writeback end hooks for the file pages so that metadata
273  * and checksums can be updated in the file.
274  */
275 static void end_compressed_bio_write(struct btrfs_bio *bbio)
276 {
277 	struct compressed_bio *cb = to_compressed_bio(bbio);
278 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
279 
280 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
281 }
282 
283 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb,
284 					   u64 disk_bytenr)
285 {
286 	struct btrfs_fs_info *fs_info = cb->bbio.inode->root->fs_info;
287 	struct bio *bio = &cb->bbio.bio;
288 	u64 cur_disk_byte = disk_bytenr;
289 
290 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
291 	while (cur_disk_byte < disk_bytenr + cb->compressed_len) {
292 		u64 offset = cur_disk_byte - disk_bytenr;
293 		unsigned int index = offset >> PAGE_SHIFT;
294 		unsigned int real_size;
295 		unsigned int added;
296 		struct page *page = cb->compressed_pages[index];
297 
298 		/*
299 		 * We have various limit on the real read size:
300 		 * - page boundary
301 		 * - compressed length boundary
302 		 */
303 		real_size = min_t(u64, U32_MAX, PAGE_SIZE - offset_in_page(offset));
304 		real_size = min_t(u64, real_size, cb->compressed_len - offset);
305 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
306 
307 		added = bio_add_page(bio, page, real_size, offset_in_page(offset));
308 		/*
309 		 * Maximum compressed extent is smaller than bio size limit,
310 		 * thus bio_add_page() should always success.
311 		 */
312 		ASSERT(added == real_size);
313 		cur_disk_byte += added;
314 	}
315 
316 	ASSERT(bio->bi_iter.bi_size);
317 }
318 
319 /*
320  * worker function to build and submit bios for previously compressed pages.
321  * The corresponding pages in the inode should be marked for writeback
322  * and the compressed pages should have a reference on them for dropping
323  * when the IO is complete.
324  *
325  * This also checksums the file bytes and gets things ready for
326  * the end io hooks.
327  */
328 void btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
329 				 unsigned int len, u64 disk_start,
330 				 unsigned int compressed_len,
331 				 struct page **compressed_pages,
332 				 unsigned int nr_pages,
333 				 blk_opf_t write_flags,
334 				 struct cgroup_subsys_state *blkcg_css,
335 				 bool writeback)
336 {
337 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
338 	struct compressed_bio *cb;
339 
340 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
341 	       IS_ALIGNED(len, fs_info->sectorsize));
342 
343 	if (blkcg_css) {
344 		kthread_associate_blkcg(blkcg_css);
345 		write_flags |= REQ_CGROUP_PUNT;
346 	}
347 	write_flags |= REQ_BTRFS_ONE_ORDERED;
348 
349 	cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags,
350 				  end_compressed_bio_write);
351 	cb->start = start;
352 	cb->len = len;
353 	cb->compressed_pages = compressed_pages;
354 	cb->compressed_len = compressed_len;
355 	cb->writeback = writeback;
356 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
357 	cb->nr_pages = nr_pages;
358 
359 	btrfs_add_compressed_bio_pages(cb, disk_start);
360 	btrfs_submit_bio(&cb->bbio.bio, 0);
361 
362 	if (blkcg_css)
363 		kthread_associate_blkcg(NULL);
364 }
365 
366 /*
367  * Add extra pages in the same compressed file extent so that we don't need to
368  * re-read the same extent again and again.
369  *
370  * NOTE: this won't work well for subpage, as for subpage read, we lock the
371  * full page then submit bio for each compressed/regular extents.
372  *
373  * This means, if we have several sectors in the same page points to the same
374  * on-disk compressed data, we will re-read the same extent many times and
375  * this function can only help for the next page.
376  */
377 static noinline int add_ra_bio_pages(struct inode *inode,
378 				     u64 compressed_end,
379 				     struct compressed_bio *cb,
380 				     int *memstall, unsigned long *pflags)
381 {
382 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
383 	unsigned long end_index;
384 	u64 cur = btrfs_bio(cb->orig_bio)->file_offset + cb->orig_bio->bi_iter.bi_size;
385 	u64 isize = i_size_read(inode);
386 	int ret;
387 	struct page *page;
388 	struct extent_map *em;
389 	struct address_space *mapping = inode->i_mapping;
390 	struct extent_map_tree *em_tree;
391 	struct extent_io_tree *tree;
392 	int sectors_missed = 0;
393 
394 	em_tree = &BTRFS_I(inode)->extent_tree;
395 	tree = &BTRFS_I(inode)->io_tree;
396 
397 	if (isize == 0)
398 		return 0;
399 
400 	/*
401 	 * For current subpage support, we only support 64K page size,
402 	 * which means maximum compressed extent size (128K) is just 2x page
403 	 * size.
404 	 * This makes readahead less effective, so here disable readahead for
405 	 * subpage for now, until full compressed write is supported.
406 	 */
407 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
408 		return 0;
409 
410 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
411 
412 	while (cur < compressed_end) {
413 		u64 page_end;
414 		u64 pg_index = cur >> PAGE_SHIFT;
415 		u32 add_size;
416 
417 		if (pg_index > end_index)
418 			break;
419 
420 		page = xa_load(&mapping->i_pages, pg_index);
421 		if (page && !xa_is_value(page)) {
422 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
423 					  fs_info->sectorsize_bits;
424 
425 			/* Beyond threshold, no need to continue */
426 			if (sectors_missed > 4)
427 				break;
428 
429 			/*
430 			 * Jump to next page start as we already have page for
431 			 * current offset.
432 			 */
433 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
434 			continue;
435 		}
436 
437 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
438 								 ~__GFP_FS));
439 		if (!page)
440 			break;
441 
442 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
443 			put_page(page);
444 			/* There is already a page, skip to page end */
445 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
446 			continue;
447 		}
448 
449 		if (!*memstall && PageWorkingset(page)) {
450 			psi_memstall_enter(pflags);
451 			*memstall = 1;
452 		}
453 
454 		ret = set_page_extent_mapped(page);
455 		if (ret < 0) {
456 			unlock_page(page);
457 			put_page(page);
458 			break;
459 		}
460 
461 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
462 		lock_extent(tree, cur, page_end, NULL);
463 		read_lock(&em_tree->lock);
464 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
465 		read_unlock(&em_tree->lock);
466 
467 		/*
468 		 * At this point, we have a locked page in the page cache for
469 		 * these bytes in the file.  But, we have to make sure they map
470 		 * to this compressed extent on disk.
471 		 */
472 		if (!em || cur < em->start ||
473 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
474 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
475 			free_extent_map(em);
476 			unlock_extent(tree, cur, page_end, NULL);
477 			unlock_page(page);
478 			put_page(page);
479 			break;
480 		}
481 		free_extent_map(em);
482 
483 		if (page->index == end_index) {
484 			size_t zero_offset = offset_in_page(isize);
485 
486 			if (zero_offset) {
487 				int zeros;
488 				zeros = PAGE_SIZE - zero_offset;
489 				memzero_page(page, zero_offset, zeros);
490 			}
491 		}
492 
493 		add_size = min(em->start + em->len, page_end + 1) - cur;
494 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
495 		if (ret != add_size) {
496 			unlock_extent(tree, cur, page_end, NULL);
497 			unlock_page(page);
498 			put_page(page);
499 			break;
500 		}
501 		/*
502 		 * If it's subpage, we also need to increase its
503 		 * subpage::readers number, as at endio we will decrease
504 		 * subpage::readers and to unlock the page.
505 		 */
506 		if (fs_info->sectorsize < PAGE_SIZE)
507 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
508 		put_page(page);
509 		cur += add_size;
510 	}
511 	return 0;
512 }
513 
514 /*
515  * for a compressed read, the bio we get passed has all the inode pages
516  * in it.  We don't actually do IO on those pages but allocate new ones
517  * to hold the compressed pages on disk.
518  *
519  * bio->bi_iter.bi_sector points to the compressed extent on disk
520  * bio->bi_io_vec points to all of the inode pages
521  *
522  * After the compressed pages are read, we copy the bytes into the
523  * bio we were passed and then call the bio end_io calls
524  */
525 void btrfs_submit_compressed_read(struct bio *bio, int mirror_num)
526 {
527 	struct btrfs_inode *inode = btrfs_bio(bio)->inode;
528 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
529 	struct extent_map_tree *em_tree = &inode->extent_tree;
530 	struct compressed_bio *cb;
531 	unsigned int compressed_len;
532 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
533 	u64 file_offset = btrfs_bio(bio)->file_offset;
534 	u64 em_len;
535 	u64 em_start;
536 	struct extent_map *em;
537 	unsigned long pflags;
538 	int memstall = 0;
539 	blk_status_t ret;
540 	int ret2;
541 
542 	/* we need the actual starting offset of this extent in the file */
543 	read_lock(&em_tree->lock);
544 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
545 	read_unlock(&em_tree->lock);
546 	if (!em) {
547 		ret = BLK_STS_IOERR;
548 		goto out;
549 	}
550 
551 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
552 	compressed_len = em->block_len;
553 
554 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
555 				  end_compressed_bio_read);
556 
557 	cb->start = em->orig_start;
558 	em_len = em->len;
559 	em_start = em->start;
560 
561 	cb->len = bio->bi_iter.bi_size;
562 	cb->compressed_len = compressed_len;
563 	cb->compress_type = em->compress_type;
564 	cb->orig_bio = bio;
565 
566 	free_extent_map(em);
567 
568 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
569 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
570 	if (!cb->compressed_pages) {
571 		ret = BLK_STS_RESOURCE;
572 		goto out_free_bio;
573 	}
574 
575 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
576 	if (ret2) {
577 		ret = BLK_STS_RESOURCE;
578 		goto out_free_compressed_pages;
579 	}
580 
581 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
582 			 &pflags);
583 
584 	/* include any pages we added in add_ra-bio_pages */
585 	cb->len = bio->bi_iter.bi_size;
586 
587 	btrfs_add_compressed_bio_pages(cb, disk_bytenr);
588 
589 	if (memstall)
590 		psi_memstall_leave(&pflags);
591 
592 	btrfs_submit_bio(&cb->bbio.bio, mirror_num);
593 	return;
594 
595 out_free_compressed_pages:
596 	kfree(cb->compressed_pages);
597 out_free_bio:
598 	bio_put(&cb->bbio.bio);
599 out:
600 	btrfs_bio_end_io(btrfs_bio(bio), ret);
601 }
602 
603 /*
604  * Heuristic uses systematic sampling to collect data from the input data
605  * range, the logic can be tuned by the following constants:
606  *
607  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
608  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
609  */
610 #define SAMPLING_READ_SIZE	(16)
611 #define SAMPLING_INTERVAL	(256)
612 
613 /*
614  * For statistical analysis of the input data we consider bytes that form a
615  * Galois Field of 256 objects. Each object has an attribute count, ie. how
616  * many times the object appeared in the sample.
617  */
618 #define BUCKET_SIZE		(256)
619 
620 /*
621  * The size of the sample is based on a statistical sampling rule of thumb.
622  * The common way is to perform sampling tests as long as the number of
623  * elements in each cell is at least 5.
624  *
625  * Instead of 5, we choose 32 to obtain more accurate results.
626  * If the data contain the maximum number of symbols, which is 256, we obtain a
627  * sample size bound by 8192.
628  *
629  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
630  * from up to 512 locations.
631  */
632 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
633 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
634 
635 struct bucket_item {
636 	u32 count;
637 };
638 
639 struct heuristic_ws {
640 	/* Partial copy of input data */
641 	u8 *sample;
642 	u32 sample_size;
643 	/* Buckets store counters for each byte value */
644 	struct bucket_item *bucket;
645 	/* Sorting buffer */
646 	struct bucket_item *bucket_b;
647 	struct list_head list;
648 };
649 
650 static struct workspace_manager heuristic_wsm;
651 
652 static void free_heuristic_ws(struct list_head *ws)
653 {
654 	struct heuristic_ws *workspace;
655 
656 	workspace = list_entry(ws, struct heuristic_ws, list);
657 
658 	kvfree(workspace->sample);
659 	kfree(workspace->bucket);
660 	kfree(workspace->bucket_b);
661 	kfree(workspace);
662 }
663 
664 static struct list_head *alloc_heuristic_ws(unsigned int level)
665 {
666 	struct heuristic_ws *ws;
667 
668 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
669 	if (!ws)
670 		return ERR_PTR(-ENOMEM);
671 
672 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
673 	if (!ws->sample)
674 		goto fail;
675 
676 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
677 	if (!ws->bucket)
678 		goto fail;
679 
680 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
681 	if (!ws->bucket_b)
682 		goto fail;
683 
684 	INIT_LIST_HEAD(&ws->list);
685 	return &ws->list;
686 fail:
687 	free_heuristic_ws(&ws->list);
688 	return ERR_PTR(-ENOMEM);
689 }
690 
691 const struct btrfs_compress_op btrfs_heuristic_compress = {
692 	.workspace_manager = &heuristic_wsm,
693 };
694 
695 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
696 	/* The heuristic is represented as compression type 0 */
697 	&btrfs_heuristic_compress,
698 	&btrfs_zlib_compress,
699 	&btrfs_lzo_compress,
700 	&btrfs_zstd_compress,
701 };
702 
703 static struct list_head *alloc_workspace(int type, unsigned int level)
704 {
705 	switch (type) {
706 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
707 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
708 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
709 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
710 	default:
711 		/*
712 		 * This can't happen, the type is validated several times
713 		 * before we get here.
714 		 */
715 		BUG();
716 	}
717 }
718 
719 static void free_workspace(int type, struct list_head *ws)
720 {
721 	switch (type) {
722 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
723 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
724 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
725 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
726 	default:
727 		/*
728 		 * This can't happen, the type is validated several times
729 		 * before we get here.
730 		 */
731 		BUG();
732 	}
733 }
734 
735 static void btrfs_init_workspace_manager(int type)
736 {
737 	struct workspace_manager *wsm;
738 	struct list_head *workspace;
739 
740 	wsm = btrfs_compress_op[type]->workspace_manager;
741 	INIT_LIST_HEAD(&wsm->idle_ws);
742 	spin_lock_init(&wsm->ws_lock);
743 	atomic_set(&wsm->total_ws, 0);
744 	init_waitqueue_head(&wsm->ws_wait);
745 
746 	/*
747 	 * Preallocate one workspace for each compression type so we can
748 	 * guarantee forward progress in the worst case
749 	 */
750 	workspace = alloc_workspace(type, 0);
751 	if (IS_ERR(workspace)) {
752 		pr_warn(
753 	"BTRFS: cannot preallocate compression workspace, will try later\n");
754 	} else {
755 		atomic_set(&wsm->total_ws, 1);
756 		wsm->free_ws = 1;
757 		list_add(workspace, &wsm->idle_ws);
758 	}
759 }
760 
761 static void btrfs_cleanup_workspace_manager(int type)
762 {
763 	struct workspace_manager *wsman;
764 	struct list_head *ws;
765 
766 	wsman = btrfs_compress_op[type]->workspace_manager;
767 	while (!list_empty(&wsman->idle_ws)) {
768 		ws = wsman->idle_ws.next;
769 		list_del(ws);
770 		free_workspace(type, ws);
771 		atomic_dec(&wsman->total_ws);
772 	}
773 }
774 
775 /*
776  * This finds an available workspace or allocates a new one.
777  * If it's not possible to allocate a new one, waits until there's one.
778  * Preallocation makes a forward progress guarantees and we do not return
779  * errors.
780  */
781 struct list_head *btrfs_get_workspace(int type, unsigned int level)
782 {
783 	struct workspace_manager *wsm;
784 	struct list_head *workspace;
785 	int cpus = num_online_cpus();
786 	unsigned nofs_flag;
787 	struct list_head *idle_ws;
788 	spinlock_t *ws_lock;
789 	atomic_t *total_ws;
790 	wait_queue_head_t *ws_wait;
791 	int *free_ws;
792 
793 	wsm = btrfs_compress_op[type]->workspace_manager;
794 	idle_ws	 = &wsm->idle_ws;
795 	ws_lock	 = &wsm->ws_lock;
796 	total_ws = &wsm->total_ws;
797 	ws_wait	 = &wsm->ws_wait;
798 	free_ws	 = &wsm->free_ws;
799 
800 again:
801 	spin_lock(ws_lock);
802 	if (!list_empty(idle_ws)) {
803 		workspace = idle_ws->next;
804 		list_del(workspace);
805 		(*free_ws)--;
806 		spin_unlock(ws_lock);
807 		return workspace;
808 
809 	}
810 	if (atomic_read(total_ws) > cpus) {
811 		DEFINE_WAIT(wait);
812 
813 		spin_unlock(ws_lock);
814 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
815 		if (atomic_read(total_ws) > cpus && !*free_ws)
816 			schedule();
817 		finish_wait(ws_wait, &wait);
818 		goto again;
819 	}
820 	atomic_inc(total_ws);
821 	spin_unlock(ws_lock);
822 
823 	/*
824 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
825 	 * to turn it off here because we might get called from the restricted
826 	 * context of btrfs_compress_bio/btrfs_compress_pages
827 	 */
828 	nofs_flag = memalloc_nofs_save();
829 	workspace = alloc_workspace(type, level);
830 	memalloc_nofs_restore(nofs_flag);
831 
832 	if (IS_ERR(workspace)) {
833 		atomic_dec(total_ws);
834 		wake_up(ws_wait);
835 
836 		/*
837 		 * Do not return the error but go back to waiting. There's a
838 		 * workspace preallocated for each type and the compression
839 		 * time is bounded so we get to a workspace eventually. This
840 		 * makes our caller's life easier.
841 		 *
842 		 * To prevent silent and low-probability deadlocks (when the
843 		 * initial preallocation fails), check if there are any
844 		 * workspaces at all.
845 		 */
846 		if (atomic_read(total_ws) == 0) {
847 			static DEFINE_RATELIMIT_STATE(_rs,
848 					/* once per minute */ 60 * HZ,
849 					/* no burst */ 1);
850 
851 			if (__ratelimit(&_rs)) {
852 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
853 			}
854 		}
855 		goto again;
856 	}
857 	return workspace;
858 }
859 
860 static struct list_head *get_workspace(int type, int level)
861 {
862 	switch (type) {
863 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
864 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
865 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
866 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
867 	default:
868 		/*
869 		 * This can't happen, the type is validated several times
870 		 * before we get here.
871 		 */
872 		BUG();
873 	}
874 }
875 
876 /*
877  * put a workspace struct back on the list or free it if we have enough
878  * idle ones sitting around
879  */
880 void btrfs_put_workspace(int type, struct list_head *ws)
881 {
882 	struct workspace_manager *wsm;
883 	struct list_head *idle_ws;
884 	spinlock_t *ws_lock;
885 	atomic_t *total_ws;
886 	wait_queue_head_t *ws_wait;
887 	int *free_ws;
888 
889 	wsm = btrfs_compress_op[type]->workspace_manager;
890 	idle_ws	 = &wsm->idle_ws;
891 	ws_lock	 = &wsm->ws_lock;
892 	total_ws = &wsm->total_ws;
893 	ws_wait	 = &wsm->ws_wait;
894 	free_ws	 = &wsm->free_ws;
895 
896 	spin_lock(ws_lock);
897 	if (*free_ws <= num_online_cpus()) {
898 		list_add(ws, idle_ws);
899 		(*free_ws)++;
900 		spin_unlock(ws_lock);
901 		goto wake;
902 	}
903 	spin_unlock(ws_lock);
904 
905 	free_workspace(type, ws);
906 	atomic_dec(total_ws);
907 wake:
908 	cond_wake_up(ws_wait);
909 }
910 
911 static void put_workspace(int type, struct list_head *ws)
912 {
913 	switch (type) {
914 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
915 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
916 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
917 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
918 	default:
919 		/*
920 		 * This can't happen, the type is validated several times
921 		 * before we get here.
922 		 */
923 		BUG();
924 	}
925 }
926 
927 /*
928  * Adjust @level according to the limits of the compression algorithm or
929  * fallback to default
930  */
931 static unsigned int btrfs_compress_set_level(int type, unsigned level)
932 {
933 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
934 
935 	if (level == 0)
936 		level = ops->default_level;
937 	else
938 		level = min(level, ops->max_level);
939 
940 	return level;
941 }
942 
943 /*
944  * Given an address space and start and length, compress the bytes into @pages
945  * that are allocated on demand.
946  *
947  * @type_level is encoded algorithm and level, where level 0 means whatever
948  * default the algorithm chooses and is opaque here;
949  * - compression algo are 0-3
950  * - the level are bits 4-7
951  *
952  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
953  * and returns number of actually allocated pages
954  *
955  * @total_in is used to return the number of bytes actually read.  It
956  * may be smaller than the input length if we had to exit early because we
957  * ran out of room in the pages array or because we cross the
958  * max_out threshold.
959  *
960  * @total_out is an in/out parameter, must be set to the input length and will
961  * be also used to return the total number of compressed bytes
962  */
963 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
964 			 u64 start, struct page **pages,
965 			 unsigned long *out_pages,
966 			 unsigned long *total_in,
967 			 unsigned long *total_out)
968 {
969 	int type = btrfs_compress_type(type_level);
970 	int level = btrfs_compress_level(type_level);
971 	struct list_head *workspace;
972 	int ret;
973 
974 	level = btrfs_compress_set_level(type, level);
975 	workspace = get_workspace(type, level);
976 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
977 					 out_pages, total_in, total_out);
978 	put_workspace(type, workspace);
979 	return ret;
980 }
981 
982 static int btrfs_decompress_bio(struct compressed_bio *cb)
983 {
984 	struct list_head *workspace;
985 	int ret;
986 	int type = cb->compress_type;
987 
988 	workspace = get_workspace(type, 0);
989 	ret = compression_decompress_bio(workspace, cb);
990 	put_workspace(type, workspace);
991 
992 	return ret;
993 }
994 
995 /*
996  * a less complex decompression routine.  Our compressed data fits in a
997  * single page, and we want to read a single page out of it.
998  * start_byte tells us the offset into the compressed data we're interested in
999  */
1000 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1001 		     unsigned long start_byte, size_t srclen, size_t destlen)
1002 {
1003 	struct list_head *workspace;
1004 	int ret;
1005 
1006 	workspace = get_workspace(type, 0);
1007 	ret = compression_decompress(type, workspace, data_in, dest_page,
1008 				     start_byte, srclen, destlen);
1009 	put_workspace(type, workspace);
1010 
1011 	return ret;
1012 }
1013 
1014 int __init btrfs_init_compress(void)
1015 {
1016 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1017 			offsetof(struct compressed_bio, bbio.bio),
1018 			BIOSET_NEED_BVECS))
1019 		return -ENOMEM;
1020 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1021 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1022 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1023 	zstd_init_workspace_manager();
1024 	return 0;
1025 }
1026 
1027 void __cold btrfs_exit_compress(void)
1028 {
1029 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1030 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1031 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1032 	zstd_cleanup_workspace_manager();
1033 	bioset_exit(&btrfs_compressed_bioset);
1034 }
1035 
1036 /*
1037  * Copy decompressed data from working buffer to pages.
1038  *
1039  * @buf:		The decompressed data buffer
1040  * @buf_len:		The decompressed data length
1041  * @decompressed:	Number of bytes that are already decompressed inside the
1042  * 			compressed extent
1043  * @cb:			The compressed extent descriptor
1044  * @orig_bio:		The original bio that the caller wants to read for
1045  *
1046  * An easier to understand graph is like below:
1047  *
1048  * 		|<- orig_bio ->|     |<- orig_bio->|
1049  * 	|<-------      full decompressed extent      ----->|
1050  * 	|<-----------    @cb range   ---->|
1051  * 	|			|<-- @buf_len -->|
1052  * 	|<--- @decompressed --->|
1053  *
1054  * Note that, @cb can be a subpage of the full decompressed extent, but
1055  * @cb->start always has the same as the orig_file_offset value of the full
1056  * decompressed extent.
1057  *
1058  * When reading compressed extent, we have to read the full compressed extent,
1059  * while @orig_bio may only want part of the range.
1060  * Thus this function will ensure only data covered by @orig_bio will be copied
1061  * to.
1062  *
1063  * Return 0 if we have copied all needed contents for @orig_bio.
1064  * Return >0 if we need continue decompress.
1065  */
1066 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1067 			      struct compressed_bio *cb, u32 decompressed)
1068 {
1069 	struct bio *orig_bio = cb->orig_bio;
1070 	/* Offset inside the full decompressed extent */
1071 	u32 cur_offset;
1072 
1073 	cur_offset = decompressed;
1074 	/* The main loop to do the copy */
1075 	while (cur_offset < decompressed + buf_len) {
1076 		struct bio_vec bvec;
1077 		size_t copy_len;
1078 		u32 copy_start;
1079 		/* Offset inside the full decompressed extent */
1080 		u32 bvec_offset;
1081 
1082 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1083 		/*
1084 		 * cb->start may underflow, but subtracting that value can still
1085 		 * give us correct offset inside the full decompressed extent.
1086 		 */
1087 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1088 
1089 		/* Haven't reached the bvec range, exit */
1090 		if (decompressed + buf_len <= bvec_offset)
1091 			return 1;
1092 
1093 		copy_start = max(cur_offset, bvec_offset);
1094 		copy_len = min(bvec_offset + bvec.bv_len,
1095 			       decompressed + buf_len) - copy_start;
1096 		ASSERT(copy_len);
1097 
1098 		/*
1099 		 * Extra range check to ensure we didn't go beyond
1100 		 * @buf + @buf_len.
1101 		 */
1102 		ASSERT(copy_start - decompressed < buf_len);
1103 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1104 			       buf + copy_start - decompressed, copy_len);
1105 		cur_offset += copy_len;
1106 
1107 		bio_advance(orig_bio, copy_len);
1108 		/* Finished the bio */
1109 		if (!orig_bio->bi_iter.bi_size)
1110 			return 0;
1111 	}
1112 	return 1;
1113 }
1114 
1115 /*
1116  * Shannon Entropy calculation
1117  *
1118  * Pure byte distribution analysis fails to determine compressibility of data.
1119  * Try calculating entropy to estimate the average minimum number of bits
1120  * needed to encode the sampled data.
1121  *
1122  * For convenience, return the percentage of needed bits, instead of amount of
1123  * bits directly.
1124  *
1125  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1126  *			    and can be compressible with high probability
1127  *
1128  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1129  *
1130  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1131  */
1132 #define ENTROPY_LVL_ACEPTABLE		(65)
1133 #define ENTROPY_LVL_HIGH		(80)
1134 
1135 /*
1136  * For increasead precision in shannon_entropy calculation,
1137  * let's do pow(n, M) to save more digits after comma:
1138  *
1139  * - maximum int bit length is 64
1140  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1141  * - 13 * 4 = 52 < 64		-> M = 4
1142  *
1143  * So use pow(n, 4).
1144  */
1145 static inline u32 ilog2_w(u64 n)
1146 {
1147 	return ilog2(n * n * n * n);
1148 }
1149 
1150 static u32 shannon_entropy(struct heuristic_ws *ws)
1151 {
1152 	const u32 entropy_max = 8 * ilog2_w(2);
1153 	u32 entropy_sum = 0;
1154 	u32 p, p_base, sz_base;
1155 	u32 i;
1156 
1157 	sz_base = ilog2_w(ws->sample_size);
1158 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1159 		p = ws->bucket[i].count;
1160 		p_base = ilog2_w(p);
1161 		entropy_sum += p * (sz_base - p_base);
1162 	}
1163 
1164 	entropy_sum /= ws->sample_size;
1165 	return entropy_sum * 100 / entropy_max;
1166 }
1167 
1168 #define RADIX_BASE		4U
1169 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1170 
1171 static u8 get4bits(u64 num, int shift) {
1172 	u8 low4bits;
1173 
1174 	num >>= shift;
1175 	/* Reverse order */
1176 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1177 	return low4bits;
1178 }
1179 
1180 /*
1181  * Use 4 bits as radix base
1182  * Use 16 u32 counters for calculating new position in buf array
1183  *
1184  * @array     - array that will be sorted
1185  * @array_buf - buffer array to store sorting results
1186  *              must be equal in size to @array
1187  * @num       - array size
1188  */
1189 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1190 		       int num)
1191 {
1192 	u64 max_num;
1193 	u64 buf_num;
1194 	u32 counters[COUNTERS_SIZE];
1195 	u32 new_addr;
1196 	u32 addr;
1197 	int bitlen;
1198 	int shift;
1199 	int i;
1200 
1201 	/*
1202 	 * Try avoid useless loop iterations for small numbers stored in big
1203 	 * counters.  Example: 48 33 4 ... in 64bit array
1204 	 */
1205 	max_num = array[0].count;
1206 	for (i = 1; i < num; i++) {
1207 		buf_num = array[i].count;
1208 		if (buf_num > max_num)
1209 			max_num = buf_num;
1210 	}
1211 
1212 	buf_num = ilog2(max_num);
1213 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1214 
1215 	shift = 0;
1216 	while (shift < bitlen) {
1217 		memset(counters, 0, sizeof(counters));
1218 
1219 		for (i = 0; i < num; i++) {
1220 			buf_num = array[i].count;
1221 			addr = get4bits(buf_num, shift);
1222 			counters[addr]++;
1223 		}
1224 
1225 		for (i = 1; i < COUNTERS_SIZE; i++)
1226 			counters[i] += counters[i - 1];
1227 
1228 		for (i = num - 1; i >= 0; i--) {
1229 			buf_num = array[i].count;
1230 			addr = get4bits(buf_num, shift);
1231 			counters[addr]--;
1232 			new_addr = counters[addr];
1233 			array_buf[new_addr] = array[i];
1234 		}
1235 
1236 		shift += RADIX_BASE;
1237 
1238 		/*
1239 		 * Normal radix expects to move data from a temporary array, to
1240 		 * the main one.  But that requires some CPU time. Avoid that
1241 		 * by doing another sort iteration to original array instead of
1242 		 * memcpy()
1243 		 */
1244 		memset(counters, 0, sizeof(counters));
1245 
1246 		for (i = 0; i < num; i ++) {
1247 			buf_num = array_buf[i].count;
1248 			addr = get4bits(buf_num, shift);
1249 			counters[addr]++;
1250 		}
1251 
1252 		for (i = 1; i < COUNTERS_SIZE; i++)
1253 			counters[i] += counters[i - 1];
1254 
1255 		for (i = num - 1; i >= 0; i--) {
1256 			buf_num = array_buf[i].count;
1257 			addr = get4bits(buf_num, shift);
1258 			counters[addr]--;
1259 			new_addr = counters[addr];
1260 			array[new_addr] = array_buf[i];
1261 		}
1262 
1263 		shift += RADIX_BASE;
1264 	}
1265 }
1266 
1267 /*
1268  * Size of the core byte set - how many bytes cover 90% of the sample
1269  *
1270  * There are several types of structured binary data that use nearly all byte
1271  * values. The distribution can be uniform and counts in all buckets will be
1272  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1273  *
1274  * Other possibility is normal (Gaussian) distribution, where the data could
1275  * be potentially compressible, but we have to take a few more steps to decide
1276  * how much.
1277  *
1278  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1279  *                       compression algo can easy fix that
1280  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1281  *                       probability is not compressible
1282  */
1283 #define BYTE_CORE_SET_LOW		(64)
1284 #define BYTE_CORE_SET_HIGH		(200)
1285 
1286 static int byte_core_set_size(struct heuristic_ws *ws)
1287 {
1288 	u32 i;
1289 	u32 coreset_sum = 0;
1290 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1291 	struct bucket_item *bucket = ws->bucket;
1292 
1293 	/* Sort in reverse order */
1294 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1295 
1296 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1297 		coreset_sum += bucket[i].count;
1298 
1299 	if (coreset_sum > core_set_threshold)
1300 		return i;
1301 
1302 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1303 		coreset_sum += bucket[i].count;
1304 		if (coreset_sum > core_set_threshold)
1305 			break;
1306 	}
1307 
1308 	return i;
1309 }
1310 
1311 /*
1312  * Count byte values in buckets.
1313  * This heuristic can detect textual data (configs, xml, json, html, etc).
1314  * Because in most text-like data byte set is restricted to limited number of
1315  * possible characters, and that restriction in most cases makes data easy to
1316  * compress.
1317  *
1318  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1319  *	less - compressible
1320  *	more - need additional analysis
1321  */
1322 #define BYTE_SET_THRESHOLD		(64)
1323 
1324 static u32 byte_set_size(const struct heuristic_ws *ws)
1325 {
1326 	u32 i;
1327 	u32 byte_set_size = 0;
1328 
1329 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1330 		if (ws->bucket[i].count > 0)
1331 			byte_set_size++;
1332 	}
1333 
1334 	/*
1335 	 * Continue collecting count of byte values in buckets.  If the byte
1336 	 * set size is bigger then the threshold, it's pointless to continue,
1337 	 * the detection technique would fail for this type of data.
1338 	 */
1339 	for (; i < BUCKET_SIZE; i++) {
1340 		if (ws->bucket[i].count > 0) {
1341 			byte_set_size++;
1342 			if (byte_set_size > BYTE_SET_THRESHOLD)
1343 				return byte_set_size;
1344 		}
1345 	}
1346 
1347 	return byte_set_size;
1348 }
1349 
1350 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1351 {
1352 	const u32 half_of_sample = ws->sample_size / 2;
1353 	const u8 *data = ws->sample;
1354 
1355 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1356 }
1357 
1358 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1359 				     struct heuristic_ws *ws)
1360 {
1361 	struct page *page;
1362 	u64 index, index_end;
1363 	u32 i, curr_sample_pos;
1364 	u8 *in_data;
1365 
1366 	/*
1367 	 * Compression handles the input data by chunks of 128KiB
1368 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1369 	 *
1370 	 * We do the same for the heuristic and loop over the whole range.
1371 	 *
1372 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1373 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1374 	 */
1375 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1376 		end = start + BTRFS_MAX_UNCOMPRESSED;
1377 
1378 	index = start >> PAGE_SHIFT;
1379 	index_end = end >> PAGE_SHIFT;
1380 
1381 	/* Don't miss unaligned end */
1382 	if (!PAGE_ALIGNED(end))
1383 		index_end++;
1384 
1385 	curr_sample_pos = 0;
1386 	while (index < index_end) {
1387 		page = find_get_page(inode->i_mapping, index);
1388 		in_data = kmap_local_page(page);
1389 		/* Handle case where the start is not aligned to PAGE_SIZE */
1390 		i = start % PAGE_SIZE;
1391 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1392 			/* Don't sample any garbage from the last page */
1393 			if (start > end - SAMPLING_READ_SIZE)
1394 				break;
1395 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1396 					SAMPLING_READ_SIZE);
1397 			i += SAMPLING_INTERVAL;
1398 			start += SAMPLING_INTERVAL;
1399 			curr_sample_pos += SAMPLING_READ_SIZE;
1400 		}
1401 		kunmap_local(in_data);
1402 		put_page(page);
1403 
1404 		index++;
1405 	}
1406 
1407 	ws->sample_size = curr_sample_pos;
1408 }
1409 
1410 /*
1411  * Compression heuristic.
1412  *
1413  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1414  * quickly (compared to direct compression) detect data characteristics
1415  * (compressible/incompressible) to avoid wasting CPU time on incompressible
1416  * data.
1417  *
1418  * The following types of analysis can be performed:
1419  * - detect mostly zero data
1420  * - detect data with low "byte set" size (text, etc)
1421  * - detect data with low/high "core byte" set
1422  *
1423  * Return non-zero if the compression should be done, 0 otherwise.
1424  */
1425 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1426 {
1427 	struct list_head *ws_list = get_workspace(0, 0);
1428 	struct heuristic_ws *ws;
1429 	u32 i;
1430 	u8 byte;
1431 	int ret = 0;
1432 
1433 	ws = list_entry(ws_list, struct heuristic_ws, list);
1434 
1435 	heuristic_collect_sample(inode, start, end, ws);
1436 
1437 	if (sample_repeated_patterns(ws)) {
1438 		ret = 1;
1439 		goto out;
1440 	}
1441 
1442 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1443 
1444 	for (i = 0; i < ws->sample_size; i++) {
1445 		byte = ws->sample[i];
1446 		ws->bucket[byte].count++;
1447 	}
1448 
1449 	i = byte_set_size(ws);
1450 	if (i < BYTE_SET_THRESHOLD) {
1451 		ret = 2;
1452 		goto out;
1453 	}
1454 
1455 	i = byte_core_set_size(ws);
1456 	if (i <= BYTE_CORE_SET_LOW) {
1457 		ret = 3;
1458 		goto out;
1459 	}
1460 
1461 	if (i >= BYTE_CORE_SET_HIGH) {
1462 		ret = 0;
1463 		goto out;
1464 	}
1465 
1466 	i = shannon_entropy(ws);
1467 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1468 		ret = 4;
1469 		goto out;
1470 	}
1471 
1472 	/*
1473 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1474 	 * needed to give green light to compression.
1475 	 *
1476 	 * For now just assume that compression at that level is not worth the
1477 	 * resources because:
1478 	 *
1479 	 * 1. it is possible to defrag the data later
1480 	 *
1481 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1482 	 * values, every bucket has counter at level ~54. The heuristic would
1483 	 * be confused. This can happen when data have some internal repeated
1484 	 * patterns like "abbacbbc...". This can be detected by analyzing
1485 	 * pairs of bytes, which is too costly.
1486 	 */
1487 	if (i < ENTROPY_LVL_HIGH) {
1488 		ret = 5;
1489 		goto out;
1490 	} else {
1491 		ret = 0;
1492 		goto out;
1493 	}
1494 
1495 out:
1496 	put_workspace(0, ws_list);
1497 	return ret;
1498 }
1499 
1500 /*
1501  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1502  * level, unrecognized string will set the default level
1503  */
1504 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1505 {
1506 	unsigned int level = 0;
1507 	int ret;
1508 
1509 	if (!type)
1510 		return 0;
1511 
1512 	if (str[0] == ':') {
1513 		ret = kstrtouint(str + 1, 10, &level);
1514 		if (ret)
1515 			level = 0;
1516 	}
1517 
1518 	level = btrfs_compress_set_level(type, level);
1519 
1520 	return level;
1521 }
1522