1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "compat.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "ordered-data.h" 42 #include "compression.h" 43 #include "extent_io.h" 44 #include "extent_map.h" 45 46 struct compressed_bio { 47 /* number of bios pending for this compressed extent */ 48 atomic_t pending_bios; 49 50 /* the pages with the compressed data on them */ 51 struct page **compressed_pages; 52 53 /* inode that owns this data */ 54 struct inode *inode; 55 56 /* starting offset in the inode for our pages */ 57 u64 start; 58 59 /* number of bytes in the inode we're working on */ 60 unsigned long len; 61 62 /* number of bytes on disk */ 63 unsigned long compressed_len; 64 65 /* the compression algorithm for this bio */ 66 int compress_type; 67 68 /* number of compressed pages in the array */ 69 unsigned long nr_pages; 70 71 /* IO errors */ 72 int errors; 73 int mirror_num; 74 75 /* for reads, this is the bio we are copying the data into */ 76 struct bio *orig_bio; 77 78 /* 79 * the start of a variable length array of checksums only 80 * used by reads 81 */ 82 u32 sums; 83 }; 84 85 static int btrfs_decompress_biovec(int type, struct page **pages_in, 86 u64 disk_start, struct bio_vec *bvec, 87 int vcnt, size_t srclen); 88 89 static inline int compressed_bio_size(struct btrfs_root *root, 90 unsigned long disk_size) 91 { 92 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 93 94 return sizeof(struct compressed_bio) + 95 ((disk_size + root->sectorsize - 1) / root->sectorsize) * 96 csum_size; 97 } 98 99 static struct bio *compressed_bio_alloc(struct block_device *bdev, 100 u64 first_byte, gfp_t gfp_flags) 101 { 102 int nr_vecs; 103 104 nr_vecs = bio_get_nr_vecs(bdev); 105 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); 106 } 107 108 static int check_compressed_csum(struct inode *inode, 109 struct compressed_bio *cb, 110 u64 disk_start) 111 { 112 int ret; 113 struct page *page; 114 unsigned long i; 115 char *kaddr; 116 u32 csum; 117 u32 *cb_sum = &cb->sums; 118 119 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 120 return 0; 121 122 for (i = 0; i < cb->nr_pages; i++) { 123 page = cb->compressed_pages[i]; 124 csum = ~(u32)0; 125 126 kaddr = kmap_atomic(page); 127 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); 128 btrfs_csum_final(csum, (char *)&csum); 129 kunmap_atomic(kaddr); 130 131 if (csum != *cb_sum) { 132 printk(KERN_INFO "btrfs csum failed ino %llu " 133 "extent %llu csum %u " 134 "wanted %u mirror %d\n", 135 btrfs_ino(inode), disk_start, csum, *cb_sum, 136 cb->mirror_num); 137 ret = -EIO; 138 goto fail; 139 } 140 cb_sum++; 141 142 } 143 ret = 0; 144 fail: 145 return ret; 146 } 147 148 /* when we finish reading compressed pages from the disk, we 149 * decompress them and then run the bio end_io routines on the 150 * decompressed pages (in the inode address space). 151 * 152 * This allows the checksumming and other IO error handling routines 153 * to work normally 154 * 155 * The compressed pages are freed here, and it must be run 156 * in process context 157 */ 158 static void end_compressed_bio_read(struct bio *bio, int err) 159 { 160 struct compressed_bio *cb = bio->bi_private; 161 struct inode *inode; 162 struct page *page; 163 unsigned long index; 164 int ret; 165 166 if (err) 167 cb->errors = 1; 168 169 /* if there are more bios still pending for this compressed 170 * extent, just exit 171 */ 172 if (!atomic_dec_and_test(&cb->pending_bios)) 173 goto out; 174 175 inode = cb->inode; 176 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9); 177 if (ret) 178 goto csum_failed; 179 180 /* ok, we're the last bio for this extent, lets start 181 * the decompression. 182 */ 183 ret = btrfs_decompress_biovec(cb->compress_type, 184 cb->compressed_pages, 185 cb->start, 186 cb->orig_bio->bi_io_vec, 187 cb->orig_bio->bi_vcnt, 188 cb->compressed_len); 189 csum_failed: 190 if (ret) 191 cb->errors = 1; 192 193 /* release the compressed pages */ 194 index = 0; 195 for (index = 0; index < cb->nr_pages; index++) { 196 page = cb->compressed_pages[index]; 197 page->mapping = NULL; 198 page_cache_release(page); 199 } 200 201 /* do io completion on the original bio */ 202 if (cb->errors) { 203 bio_io_error(cb->orig_bio); 204 } else { 205 int bio_index = 0; 206 struct bio_vec *bvec = cb->orig_bio->bi_io_vec; 207 208 /* 209 * we have verified the checksum already, set page 210 * checked so the end_io handlers know about it 211 */ 212 while (bio_index < cb->orig_bio->bi_vcnt) { 213 SetPageChecked(bvec->bv_page); 214 bvec++; 215 bio_index++; 216 } 217 bio_endio(cb->orig_bio, 0); 218 } 219 220 /* finally free the cb struct */ 221 kfree(cb->compressed_pages); 222 kfree(cb); 223 out: 224 bio_put(bio); 225 } 226 227 /* 228 * Clear the writeback bits on all of the file 229 * pages for a compressed write 230 */ 231 static noinline void end_compressed_writeback(struct inode *inode, u64 start, 232 unsigned long ram_size) 233 { 234 unsigned long index = start >> PAGE_CACHE_SHIFT; 235 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT; 236 struct page *pages[16]; 237 unsigned long nr_pages = end_index - index + 1; 238 int i; 239 int ret; 240 241 while (nr_pages > 0) { 242 ret = find_get_pages_contig(inode->i_mapping, index, 243 min_t(unsigned long, 244 nr_pages, ARRAY_SIZE(pages)), pages); 245 if (ret == 0) { 246 nr_pages -= 1; 247 index += 1; 248 continue; 249 } 250 for (i = 0; i < ret; i++) { 251 end_page_writeback(pages[i]); 252 page_cache_release(pages[i]); 253 } 254 nr_pages -= ret; 255 index += ret; 256 } 257 /* the inode may be gone now */ 258 } 259 260 /* 261 * do the cleanup once all the compressed pages hit the disk. 262 * This will clear writeback on the file pages and free the compressed 263 * pages. 264 * 265 * This also calls the writeback end hooks for the file pages so that 266 * metadata and checksums can be updated in the file. 267 */ 268 static void end_compressed_bio_write(struct bio *bio, int err) 269 { 270 struct extent_io_tree *tree; 271 struct compressed_bio *cb = bio->bi_private; 272 struct inode *inode; 273 struct page *page; 274 unsigned long index; 275 276 if (err) 277 cb->errors = 1; 278 279 /* if there are more bios still pending for this compressed 280 * extent, just exit 281 */ 282 if (!atomic_dec_and_test(&cb->pending_bios)) 283 goto out; 284 285 /* ok, we're the last bio for this extent, step one is to 286 * call back into the FS and do all the end_io operations 287 */ 288 inode = cb->inode; 289 tree = &BTRFS_I(inode)->io_tree; 290 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 291 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 292 cb->start, 293 cb->start + cb->len - 1, 294 NULL, 1); 295 cb->compressed_pages[0]->mapping = NULL; 296 297 end_compressed_writeback(inode, cb->start, cb->len); 298 /* note, our inode could be gone now */ 299 300 /* 301 * release the compressed pages, these came from alloc_page and 302 * are not attached to the inode at all 303 */ 304 index = 0; 305 for (index = 0; index < cb->nr_pages; index++) { 306 page = cb->compressed_pages[index]; 307 page->mapping = NULL; 308 page_cache_release(page); 309 } 310 311 /* finally free the cb struct */ 312 kfree(cb->compressed_pages); 313 kfree(cb); 314 out: 315 bio_put(bio); 316 } 317 318 /* 319 * worker function to build and submit bios for previously compressed pages. 320 * The corresponding pages in the inode should be marked for writeback 321 * and the compressed pages should have a reference on them for dropping 322 * when the IO is complete. 323 * 324 * This also checksums the file bytes and gets things ready for 325 * the end io hooks. 326 */ 327 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 328 unsigned long len, u64 disk_start, 329 unsigned long compressed_len, 330 struct page **compressed_pages, 331 unsigned long nr_pages) 332 { 333 struct bio *bio = NULL; 334 struct btrfs_root *root = BTRFS_I(inode)->root; 335 struct compressed_bio *cb; 336 unsigned long bytes_left; 337 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 338 int pg_index = 0; 339 struct page *page; 340 u64 first_byte = disk_start; 341 struct block_device *bdev; 342 int ret; 343 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 344 345 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); 346 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 347 if (!cb) 348 return -ENOMEM; 349 atomic_set(&cb->pending_bios, 0); 350 cb->errors = 0; 351 cb->inode = inode; 352 cb->start = start; 353 cb->len = len; 354 cb->mirror_num = 0; 355 cb->compressed_pages = compressed_pages; 356 cb->compressed_len = compressed_len; 357 cb->orig_bio = NULL; 358 cb->nr_pages = nr_pages; 359 360 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 361 362 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 363 if(!bio) { 364 kfree(cb); 365 return -ENOMEM; 366 } 367 bio->bi_private = cb; 368 bio->bi_end_io = end_compressed_bio_write; 369 atomic_inc(&cb->pending_bios); 370 371 /* create and submit bios for the compressed pages */ 372 bytes_left = compressed_len; 373 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 374 page = compressed_pages[pg_index]; 375 page->mapping = inode->i_mapping; 376 if (bio->bi_size) 377 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, 378 PAGE_CACHE_SIZE, 379 bio, 0); 380 else 381 ret = 0; 382 383 page->mapping = NULL; 384 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < 385 PAGE_CACHE_SIZE) { 386 bio_get(bio); 387 388 /* 389 * inc the count before we submit the bio so 390 * we know the end IO handler won't happen before 391 * we inc the count. Otherwise, the cb might get 392 * freed before we're done setting it up 393 */ 394 atomic_inc(&cb->pending_bios); 395 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 396 BUG_ON(ret); /* -ENOMEM */ 397 398 if (!skip_sum) { 399 ret = btrfs_csum_one_bio(root, inode, bio, 400 start, 1); 401 BUG_ON(ret); /* -ENOMEM */ 402 } 403 404 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 405 BUG_ON(ret); /* -ENOMEM */ 406 407 bio_put(bio); 408 409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 410 BUG_ON(!bio); 411 bio->bi_private = cb; 412 bio->bi_end_io = end_compressed_bio_write; 413 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 414 } 415 if (bytes_left < PAGE_CACHE_SIZE) { 416 printk("bytes left %lu compress len %lu nr %lu\n", 417 bytes_left, cb->compressed_len, cb->nr_pages); 418 } 419 bytes_left -= PAGE_CACHE_SIZE; 420 first_byte += PAGE_CACHE_SIZE; 421 cond_resched(); 422 } 423 bio_get(bio); 424 425 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 426 BUG_ON(ret); /* -ENOMEM */ 427 428 if (!skip_sum) { 429 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 430 BUG_ON(ret); /* -ENOMEM */ 431 } 432 433 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 434 BUG_ON(ret); /* -ENOMEM */ 435 436 bio_put(bio); 437 return 0; 438 } 439 440 static noinline int add_ra_bio_pages(struct inode *inode, 441 u64 compressed_end, 442 struct compressed_bio *cb) 443 { 444 unsigned long end_index; 445 unsigned long pg_index; 446 u64 last_offset; 447 u64 isize = i_size_read(inode); 448 int ret; 449 struct page *page; 450 unsigned long nr_pages = 0; 451 struct extent_map *em; 452 struct address_space *mapping = inode->i_mapping; 453 struct extent_map_tree *em_tree; 454 struct extent_io_tree *tree; 455 u64 end; 456 int misses = 0; 457 458 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 459 last_offset = (page_offset(page) + PAGE_CACHE_SIZE); 460 em_tree = &BTRFS_I(inode)->extent_tree; 461 tree = &BTRFS_I(inode)->io_tree; 462 463 if (isize == 0) 464 return 0; 465 466 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 467 468 while (last_offset < compressed_end) { 469 pg_index = last_offset >> PAGE_CACHE_SHIFT; 470 471 if (pg_index > end_index) 472 break; 473 474 rcu_read_lock(); 475 page = radix_tree_lookup(&mapping->page_tree, pg_index); 476 rcu_read_unlock(); 477 if (page) { 478 misses++; 479 if (misses > 4) 480 break; 481 goto next; 482 } 483 484 page = __page_cache_alloc(mapping_gfp_mask(mapping) & 485 ~__GFP_FS); 486 if (!page) 487 break; 488 489 if (add_to_page_cache_lru(page, mapping, pg_index, 490 GFP_NOFS)) { 491 page_cache_release(page); 492 goto next; 493 } 494 495 end = last_offset + PAGE_CACHE_SIZE - 1; 496 /* 497 * at this point, we have a locked page in the page cache 498 * for these bytes in the file. But, we have to make 499 * sure they map to this compressed extent on disk. 500 */ 501 set_page_extent_mapped(page); 502 lock_extent(tree, last_offset, end); 503 read_lock(&em_tree->lock); 504 em = lookup_extent_mapping(em_tree, last_offset, 505 PAGE_CACHE_SIZE); 506 read_unlock(&em_tree->lock); 507 508 if (!em || last_offset < em->start || 509 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || 510 (em->block_start >> 9) != cb->orig_bio->bi_sector) { 511 free_extent_map(em); 512 unlock_extent(tree, last_offset, end); 513 unlock_page(page); 514 page_cache_release(page); 515 break; 516 } 517 free_extent_map(em); 518 519 if (page->index == end_index) { 520 char *userpage; 521 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); 522 523 if (zero_offset) { 524 int zeros; 525 zeros = PAGE_CACHE_SIZE - zero_offset; 526 userpage = kmap_atomic(page); 527 memset(userpage + zero_offset, 0, zeros); 528 flush_dcache_page(page); 529 kunmap_atomic(userpage); 530 } 531 } 532 533 ret = bio_add_page(cb->orig_bio, page, 534 PAGE_CACHE_SIZE, 0); 535 536 if (ret == PAGE_CACHE_SIZE) { 537 nr_pages++; 538 page_cache_release(page); 539 } else { 540 unlock_extent(tree, last_offset, end); 541 unlock_page(page); 542 page_cache_release(page); 543 break; 544 } 545 next: 546 last_offset += PAGE_CACHE_SIZE; 547 } 548 return 0; 549 } 550 551 /* 552 * for a compressed read, the bio we get passed has all the inode pages 553 * in it. We don't actually do IO on those pages but allocate new ones 554 * to hold the compressed pages on disk. 555 * 556 * bio->bi_sector points to the compressed extent on disk 557 * bio->bi_io_vec points to all of the inode pages 558 * bio->bi_vcnt is a count of pages 559 * 560 * After the compressed pages are read, we copy the bytes into the 561 * bio we were passed and then call the bio end_io calls 562 */ 563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 564 int mirror_num, unsigned long bio_flags) 565 { 566 struct extent_io_tree *tree; 567 struct extent_map_tree *em_tree; 568 struct compressed_bio *cb; 569 struct btrfs_root *root = BTRFS_I(inode)->root; 570 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 571 unsigned long compressed_len; 572 unsigned long nr_pages; 573 unsigned long pg_index; 574 struct page *page; 575 struct block_device *bdev; 576 struct bio *comp_bio; 577 u64 cur_disk_byte = (u64)bio->bi_sector << 9; 578 u64 em_len; 579 u64 em_start; 580 struct extent_map *em; 581 int ret = -ENOMEM; 582 int faili = 0; 583 u32 *sums; 584 585 tree = &BTRFS_I(inode)->io_tree; 586 em_tree = &BTRFS_I(inode)->extent_tree; 587 588 /* we need the actual starting offset of this extent in the file */ 589 read_lock(&em_tree->lock); 590 em = lookup_extent_mapping(em_tree, 591 page_offset(bio->bi_io_vec->bv_page), 592 PAGE_CACHE_SIZE); 593 read_unlock(&em_tree->lock); 594 if (!em) 595 return -EIO; 596 597 compressed_len = em->block_len; 598 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 599 if (!cb) 600 goto out; 601 602 atomic_set(&cb->pending_bios, 0); 603 cb->errors = 0; 604 cb->inode = inode; 605 cb->mirror_num = mirror_num; 606 sums = &cb->sums; 607 608 cb->start = em->orig_start; 609 em_len = em->len; 610 em_start = em->start; 611 612 free_extent_map(em); 613 em = NULL; 614 615 cb->len = uncompressed_len; 616 cb->compressed_len = compressed_len; 617 cb->compress_type = extent_compress_type(bio_flags); 618 cb->orig_bio = bio; 619 620 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) / 621 PAGE_CACHE_SIZE; 622 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages, 623 GFP_NOFS); 624 if (!cb->compressed_pages) 625 goto fail1; 626 627 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 628 629 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 630 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 631 __GFP_HIGHMEM); 632 if (!cb->compressed_pages[pg_index]) { 633 faili = pg_index - 1; 634 ret = -ENOMEM; 635 goto fail2; 636 } 637 } 638 faili = nr_pages - 1; 639 cb->nr_pages = nr_pages; 640 641 /* In the parent-locked case, we only locked the range we are 642 * interested in. In all other cases, we can opportunistically 643 * cache decompressed data that goes beyond the requested range. */ 644 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) 645 add_ra_bio_pages(inode, em_start + em_len, cb); 646 647 /* include any pages we added in add_ra-bio_pages */ 648 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 649 cb->len = uncompressed_len; 650 651 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 652 if (!comp_bio) 653 goto fail2; 654 comp_bio->bi_private = cb; 655 comp_bio->bi_end_io = end_compressed_bio_read; 656 atomic_inc(&cb->pending_bios); 657 658 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 659 page = cb->compressed_pages[pg_index]; 660 page->mapping = inode->i_mapping; 661 page->index = em_start >> PAGE_CACHE_SHIFT; 662 663 if (comp_bio->bi_size) 664 ret = tree->ops->merge_bio_hook(READ, page, 0, 665 PAGE_CACHE_SIZE, 666 comp_bio, 0); 667 else 668 ret = 0; 669 670 page->mapping = NULL; 671 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < 672 PAGE_CACHE_SIZE) { 673 bio_get(comp_bio); 674 675 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 676 BUG_ON(ret); /* -ENOMEM */ 677 678 /* 679 * inc the count before we submit the bio so 680 * we know the end IO handler won't happen before 681 * we inc the count. Otherwise, the cb might get 682 * freed before we're done setting it up 683 */ 684 atomic_inc(&cb->pending_bios); 685 686 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 687 ret = btrfs_lookup_bio_sums(root, inode, 688 comp_bio, sums); 689 BUG_ON(ret); /* -ENOMEM */ 690 } 691 sums += (comp_bio->bi_size + root->sectorsize - 1) / 692 root->sectorsize; 693 694 ret = btrfs_map_bio(root, READ, comp_bio, 695 mirror_num, 0); 696 if (ret) 697 bio_endio(comp_bio, ret); 698 699 bio_put(comp_bio); 700 701 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 702 GFP_NOFS); 703 BUG_ON(!comp_bio); 704 comp_bio->bi_private = cb; 705 comp_bio->bi_end_io = end_compressed_bio_read; 706 707 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); 708 } 709 cur_disk_byte += PAGE_CACHE_SIZE; 710 } 711 bio_get(comp_bio); 712 713 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 714 BUG_ON(ret); /* -ENOMEM */ 715 716 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 717 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 718 BUG_ON(ret); /* -ENOMEM */ 719 } 720 721 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); 722 if (ret) 723 bio_endio(comp_bio, ret); 724 725 bio_put(comp_bio); 726 return 0; 727 728 fail2: 729 while (faili >= 0) { 730 __free_page(cb->compressed_pages[faili]); 731 faili--; 732 } 733 734 kfree(cb->compressed_pages); 735 fail1: 736 kfree(cb); 737 out: 738 free_extent_map(em); 739 return ret; 740 } 741 742 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; 743 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; 744 static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; 745 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; 746 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; 747 748 static struct btrfs_compress_op *btrfs_compress_op[] = { 749 &btrfs_zlib_compress, 750 &btrfs_lzo_compress, 751 }; 752 753 void __init btrfs_init_compress(void) 754 { 755 int i; 756 757 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 758 INIT_LIST_HEAD(&comp_idle_workspace[i]); 759 spin_lock_init(&comp_workspace_lock[i]); 760 atomic_set(&comp_alloc_workspace[i], 0); 761 init_waitqueue_head(&comp_workspace_wait[i]); 762 } 763 } 764 765 /* 766 * this finds an available workspace or allocates a new one 767 * ERR_PTR is returned if things go bad. 768 */ 769 static struct list_head *find_workspace(int type) 770 { 771 struct list_head *workspace; 772 int cpus = num_online_cpus(); 773 int idx = type - 1; 774 775 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 776 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 777 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 778 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 779 int *num_workspace = &comp_num_workspace[idx]; 780 again: 781 spin_lock(workspace_lock); 782 if (!list_empty(idle_workspace)) { 783 workspace = idle_workspace->next; 784 list_del(workspace); 785 (*num_workspace)--; 786 spin_unlock(workspace_lock); 787 return workspace; 788 789 } 790 if (atomic_read(alloc_workspace) > cpus) { 791 DEFINE_WAIT(wait); 792 793 spin_unlock(workspace_lock); 794 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); 795 if (atomic_read(alloc_workspace) > cpus && !*num_workspace) 796 schedule(); 797 finish_wait(workspace_wait, &wait); 798 goto again; 799 } 800 atomic_inc(alloc_workspace); 801 spin_unlock(workspace_lock); 802 803 workspace = btrfs_compress_op[idx]->alloc_workspace(); 804 if (IS_ERR(workspace)) { 805 atomic_dec(alloc_workspace); 806 wake_up(workspace_wait); 807 } 808 return workspace; 809 } 810 811 /* 812 * put a workspace struct back on the list or free it if we have enough 813 * idle ones sitting around 814 */ 815 static void free_workspace(int type, struct list_head *workspace) 816 { 817 int idx = type - 1; 818 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 819 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 820 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 821 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 822 int *num_workspace = &comp_num_workspace[idx]; 823 824 spin_lock(workspace_lock); 825 if (*num_workspace < num_online_cpus()) { 826 list_add_tail(workspace, idle_workspace); 827 (*num_workspace)++; 828 spin_unlock(workspace_lock); 829 goto wake; 830 } 831 spin_unlock(workspace_lock); 832 833 btrfs_compress_op[idx]->free_workspace(workspace); 834 atomic_dec(alloc_workspace); 835 wake: 836 smp_mb(); 837 if (waitqueue_active(workspace_wait)) 838 wake_up(workspace_wait); 839 } 840 841 /* 842 * cleanup function for module exit 843 */ 844 static void free_workspaces(void) 845 { 846 struct list_head *workspace; 847 int i; 848 849 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 850 while (!list_empty(&comp_idle_workspace[i])) { 851 workspace = comp_idle_workspace[i].next; 852 list_del(workspace); 853 btrfs_compress_op[i]->free_workspace(workspace); 854 atomic_dec(&comp_alloc_workspace[i]); 855 } 856 } 857 } 858 859 /* 860 * given an address space and start/len, compress the bytes. 861 * 862 * pages are allocated to hold the compressed result and stored 863 * in 'pages' 864 * 865 * out_pages is used to return the number of pages allocated. There 866 * may be pages allocated even if we return an error 867 * 868 * total_in is used to return the number of bytes actually read. It 869 * may be smaller then len if we had to exit early because we 870 * ran out of room in the pages array or because we cross the 871 * max_out threshold. 872 * 873 * total_out is used to return the total number of compressed bytes 874 * 875 * max_out tells us the max number of bytes that we're allowed to 876 * stuff into pages 877 */ 878 int btrfs_compress_pages(int type, struct address_space *mapping, 879 u64 start, unsigned long len, 880 struct page **pages, 881 unsigned long nr_dest_pages, 882 unsigned long *out_pages, 883 unsigned long *total_in, 884 unsigned long *total_out, 885 unsigned long max_out) 886 { 887 struct list_head *workspace; 888 int ret; 889 890 workspace = find_workspace(type); 891 if (IS_ERR(workspace)) 892 return -1; 893 894 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 895 start, len, pages, 896 nr_dest_pages, out_pages, 897 total_in, total_out, 898 max_out); 899 free_workspace(type, workspace); 900 return ret; 901 } 902 903 /* 904 * pages_in is an array of pages with compressed data. 905 * 906 * disk_start is the starting logical offset of this array in the file 907 * 908 * bvec is a bio_vec of pages from the file that we want to decompress into 909 * 910 * vcnt is the count of pages in the biovec 911 * 912 * srclen is the number of bytes in pages_in 913 * 914 * The basic idea is that we have a bio that was created by readpages. 915 * The pages in the bio are for the uncompressed data, and they may not 916 * be contiguous. They all correspond to the range of bytes covered by 917 * the compressed extent. 918 */ 919 static int btrfs_decompress_biovec(int type, struct page **pages_in, 920 u64 disk_start, struct bio_vec *bvec, 921 int vcnt, size_t srclen) 922 { 923 struct list_head *workspace; 924 int ret; 925 926 workspace = find_workspace(type); 927 if (IS_ERR(workspace)) 928 return -ENOMEM; 929 930 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 931 disk_start, 932 bvec, vcnt, srclen); 933 free_workspace(type, workspace); 934 return ret; 935 } 936 937 /* 938 * a less complex decompression routine. Our compressed data fits in a 939 * single page, and we want to read a single page out of it. 940 * start_byte tells us the offset into the compressed data we're interested in 941 */ 942 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 943 unsigned long start_byte, size_t srclen, size_t destlen) 944 { 945 struct list_head *workspace; 946 int ret; 947 948 workspace = find_workspace(type); 949 if (IS_ERR(workspace)) 950 return -ENOMEM; 951 952 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 953 dest_page, start_byte, 954 srclen, destlen); 955 956 free_workspace(type, workspace); 957 return ret; 958 } 959 960 void btrfs_exit_compress(void) 961 { 962 free_workspaces(); 963 } 964 965 /* 966 * Copy uncompressed data from working buffer to pages. 967 * 968 * buf_start is the byte offset we're of the start of our workspace buffer. 969 * 970 * total_out is the last byte of the buffer 971 */ 972 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 973 unsigned long total_out, u64 disk_start, 974 struct bio_vec *bvec, int vcnt, 975 unsigned long *pg_index, 976 unsigned long *pg_offset) 977 { 978 unsigned long buf_offset; 979 unsigned long current_buf_start; 980 unsigned long start_byte; 981 unsigned long working_bytes = total_out - buf_start; 982 unsigned long bytes; 983 char *kaddr; 984 struct page *page_out = bvec[*pg_index].bv_page; 985 986 /* 987 * start byte is the first byte of the page we're currently 988 * copying into relative to the start of the compressed data. 989 */ 990 start_byte = page_offset(page_out) - disk_start; 991 992 /* we haven't yet hit data corresponding to this page */ 993 if (total_out <= start_byte) 994 return 1; 995 996 /* 997 * the start of the data we care about is offset into 998 * the middle of our working buffer 999 */ 1000 if (total_out > start_byte && buf_start < start_byte) { 1001 buf_offset = start_byte - buf_start; 1002 working_bytes -= buf_offset; 1003 } else { 1004 buf_offset = 0; 1005 } 1006 current_buf_start = buf_start; 1007 1008 /* copy bytes from the working buffer into the pages */ 1009 while (working_bytes > 0) { 1010 bytes = min(PAGE_CACHE_SIZE - *pg_offset, 1011 PAGE_CACHE_SIZE - buf_offset); 1012 bytes = min(bytes, working_bytes); 1013 kaddr = kmap_atomic(page_out); 1014 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 1015 kunmap_atomic(kaddr); 1016 flush_dcache_page(page_out); 1017 1018 *pg_offset += bytes; 1019 buf_offset += bytes; 1020 working_bytes -= bytes; 1021 current_buf_start += bytes; 1022 1023 /* check if we need to pick another page */ 1024 if (*pg_offset == PAGE_CACHE_SIZE) { 1025 (*pg_index)++; 1026 if (*pg_index >= vcnt) 1027 return 0; 1028 1029 page_out = bvec[*pg_index].bv_page; 1030 *pg_offset = 0; 1031 start_byte = page_offset(page_out) - disk_start; 1032 1033 /* 1034 * make sure our new page is covered by this 1035 * working buffer 1036 */ 1037 if (total_out <= start_byte) 1038 return 1; 1039 1040 /* 1041 * the next page in the biovec might not be adjacent 1042 * to the last page, but it might still be found 1043 * inside this working buffer. bump our offset pointer 1044 */ 1045 if (total_out > start_byte && 1046 current_buf_start < start_byte) { 1047 buf_offset = start_byte - buf_start; 1048 working_bytes = total_out - start_byte; 1049 current_buf_start = buf_start + buf_offset; 1050 } 1051 } 1052 } 1053 1054 return 1; 1055 } 1056