xref: /openbmc/linux/fs/btrfs/compression.c (revision 26d0dfbb16fcb17d128a79dc70f3020ea6992af0)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2008 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/kernel.h>
7  #include <linux/bio.h>
8  #include <linux/file.h>
9  #include <linux/fs.h>
10  #include <linux/pagemap.h>
11  #include <linux/pagevec.h>
12  #include <linux/highmem.h>
13  #include <linux/kthread.h>
14  #include <linux/time.h>
15  #include <linux/init.h>
16  #include <linux/string.h>
17  #include <linux/backing-dev.h>
18  #include <linux/writeback.h>
19  #include <linux/psi.h>
20  #include <linux/slab.h>
21  #include <linux/sched/mm.h>
22  #include <linux/log2.h>
23  #include <crypto/hash.h>
24  #include "misc.h"
25  #include "ctree.h"
26  #include "fs.h"
27  #include "disk-io.h"
28  #include "transaction.h"
29  #include "btrfs_inode.h"
30  #include "bio.h"
31  #include "ordered-data.h"
32  #include "compression.h"
33  #include "extent_io.h"
34  #include "extent_map.h"
35  #include "subpage.h"
36  #include "zoned.h"
37  #include "file-item.h"
38  #include "super.h"
39  
40  static struct bio_set btrfs_compressed_bioset;
41  
42  static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
43  
btrfs_compress_type2str(enum btrfs_compression_type type)44  const char* btrfs_compress_type2str(enum btrfs_compression_type type)
45  {
46  	switch (type) {
47  	case BTRFS_COMPRESS_ZLIB:
48  	case BTRFS_COMPRESS_LZO:
49  	case BTRFS_COMPRESS_ZSTD:
50  	case BTRFS_COMPRESS_NONE:
51  		return btrfs_compress_types[type];
52  	default:
53  		break;
54  	}
55  
56  	return NULL;
57  }
58  
to_compressed_bio(struct btrfs_bio * bbio)59  static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
60  {
61  	return container_of(bbio, struct compressed_bio, bbio);
62  }
63  
alloc_compressed_bio(struct btrfs_inode * inode,u64 start,blk_opf_t op,btrfs_bio_end_io_t end_io)64  static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
65  						   u64 start, blk_opf_t op,
66  						   btrfs_bio_end_io_t end_io)
67  {
68  	struct btrfs_bio *bbio;
69  
70  	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
71  					  GFP_NOFS, &btrfs_compressed_bioset));
72  	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
73  	bbio->inode = inode;
74  	bbio->file_offset = start;
75  	return to_compressed_bio(bbio);
76  }
77  
btrfs_compress_is_valid_type(const char * str,size_t len)78  bool btrfs_compress_is_valid_type(const char *str, size_t len)
79  {
80  	int i;
81  
82  	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
83  		size_t comp_len = strlen(btrfs_compress_types[i]);
84  
85  		if (len < comp_len)
86  			continue;
87  
88  		if (!strncmp(btrfs_compress_types[i], str, comp_len))
89  			return true;
90  	}
91  	return false;
92  }
93  
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)94  static int compression_compress_pages(int type, struct list_head *ws,
95                 struct address_space *mapping, u64 start, struct page **pages,
96                 unsigned long *out_pages, unsigned long *total_in,
97                 unsigned long *total_out)
98  {
99  	switch (type) {
100  	case BTRFS_COMPRESS_ZLIB:
101  		return zlib_compress_pages(ws, mapping, start, pages,
102  				out_pages, total_in, total_out);
103  	case BTRFS_COMPRESS_LZO:
104  		return lzo_compress_pages(ws, mapping, start, pages,
105  				out_pages, total_in, total_out);
106  	case BTRFS_COMPRESS_ZSTD:
107  		return zstd_compress_pages(ws, mapping, start, pages,
108  				out_pages, total_in, total_out);
109  	case BTRFS_COMPRESS_NONE:
110  	default:
111  		/*
112  		 * This can happen when compression races with remount setting
113  		 * it to 'no compress', while caller doesn't call
114  		 * inode_need_compress() to check if we really need to
115  		 * compress.
116  		 *
117  		 * Not a big deal, just need to inform caller that we
118  		 * haven't allocated any pages yet.
119  		 */
120  		*out_pages = 0;
121  		return -E2BIG;
122  	}
123  }
124  
compression_decompress_bio(struct list_head * ws,struct compressed_bio * cb)125  static int compression_decompress_bio(struct list_head *ws,
126  				      struct compressed_bio *cb)
127  {
128  	switch (cb->compress_type) {
129  	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
130  	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
131  	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
132  	case BTRFS_COMPRESS_NONE:
133  	default:
134  		/*
135  		 * This can't happen, the type is validated several times
136  		 * before we get here.
137  		 */
138  		BUG();
139  	}
140  }
141  
compression_decompress(int type,struct list_head * ws,const u8 * data_in,struct page * dest_page,unsigned long dest_pgoff,size_t srclen,size_t destlen)142  static int compression_decompress(int type, struct list_head *ws,
143  		const u8 *data_in, struct page *dest_page,
144  		unsigned long dest_pgoff, size_t srclen, size_t destlen)
145  {
146  	switch (type) {
147  	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
148  						dest_pgoff, srclen, destlen);
149  	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
150  						dest_pgoff, srclen, destlen);
151  	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
152  						dest_pgoff, srclen, destlen);
153  	case BTRFS_COMPRESS_NONE:
154  	default:
155  		/*
156  		 * This can't happen, the type is validated several times
157  		 * before we get here.
158  		 */
159  		BUG();
160  	}
161  }
162  
btrfs_free_compressed_pages(struct compressed_bio * cb)163  static void btrfs_free_compressed_pages(struct compressed_bio *cb)
164  {
165  	for (unsigned int i = 0; i < cb->nr_pages; i++)
166  		put_page(cb->compressed_pages[i]);
167  	kfree(cb->compressed_pages);
168  }
169  
170  static int btrfs_decompress_bio(struct compressed_bio *cb);
171  
end_compressed_bio_read(struct btrfs_bio * bbio)172  static void end_compressed_bio_read(struct btrfs_bio *bbio)
173  {
174  	struct compressed_bio *cb = to_compressed_bio(bbio);
175  	blk_status_t status = bbio->bio.bi_status;
176  
177  	if (!status)
178  		status = errno_to_blk_status(btrfs_decompress_bio(cb));
179  
180  	btrfs_free_compressed_pages(cb);
181  	btrfs_bio_end_io(cb->orig_bbio, status);
182  	bio_put(&bbio->bio);
183  }
184  
185  /*
186   * Clear the writeback bits on all of the file
187   * pages for a compressed write
188   */
end_compressed_writeback(const struct compressed_bio * cb)189  static noinline void end_compressed_writeback(const struct compressed_bio *cb)
190  {
191  	struct inode *inode = &cb->bbio.inode->vfs_inode;
192  	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
193  	unsigned long index = cb->start >> PAGE_SHIFT;
194  	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
195  	struct folio_batch fbatch;
196  	const int errno = blk_status_to_errno(cb->bbio.bio.bi_status);
197  	int i;
198  	int ret;
199  
200  	if (errno)
201  		mapping_set_error(inode->i_mapping, errno);
202  
203  	folio_batch_init(&fbatch);
204  	while (index <= end_index) {
205  		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
206  				&fbatch);
207  
208  		if (ret == 0)
209  			return;
210  
211  		for (i = 0; i < ret; i++) {
212  			struct folio *folio = fbatch.folios[i];
213  
214  			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
215  							 cb->start, cb->len);
216  		}
217  		folio_batch_release(&fbatch);
218  	}
219  	/* the inode may be gone now */
220  }
221  
btrfs_finish_compressed_write_work(struct work_struct * work)222  static void btrfs_finish_compressed_write_work(struct work_struct *work)
223  {
224  	struct compressed_bio *cb =
225  		container_of(work, struct compressed_bio, write_end_work);
226  
227  	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
228  				    cb->bbio.bio.bi_status == BLK_STS_OK);
229  
230  	if (cb->writeback)
231  		end_compressed_writeback(cb);
232  	/* Note, our inode could be gone now */
233  
234  	btrfs_free_compressed_pages(cb);
235  	bio_put(&cb->bbio.bio);
236  }
237  
238  /*
239   * Do the cleanup once all the compressed pages hit the disk.  This will clear
240   * writeback on the file pages and free the compressed pages.
241   *
242   * This also calls the writeback end hooks for the file pages so that metadata
243   * and checksums can be updated in the file.
244   */
end_compressed_bio_write(struct btrfs_bio * bbio)245  static void end_compressed_bio_write(struct btrfs_bio *bbio)
246  {
247  	struct compressed_bio *cb = to_compressed_bio(bbio);
248  	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
249  
250  	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
251  }
252  
btrfs_add_compressed_bio_pages(struct compressed_bio * cb)253  static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
254  {
255  	struct bio *bio = &cb->bbio.bio;
256  	u32 offset = 0;
257  
258  	while (offset < cb->compressed_len) {
259  		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
260  
261  		/* Maximum compressed extent is smaller than bio size limit. */
262  		__bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT],
263  			       len, 0);
264  		offset += len;
265  	}
266  }
267  
268  /*
269   * worker function to build and submit bios for previously compressed pages.
270   * The corresponding pages in the inode should be marked for writeback
271   * and the compressed pages should have a reference on them for dropping
272   * when the IO is complete.
273   *
274   * This also checksums the file bytes and gets things ready for
275   * the end io hooks.
276   */
btrfs_submit_compressed_write(struct btrfs_ordered_extent * ordered,struct page ** compressed_pages,unsigned int nr_pages,blk_opf_t write_flags,bool writeback)277  void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
278  				   struct page **compressed_pages,
279  				   unsigned int nr_pages,
280  				   blk_opf_t write_flags,
281  				   bool writeback)
282  {
283  	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
284  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
285  	struct compressed_bio *cb;
286  
287  	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
288  	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
289  
290  	cb = alloc_compressed_bio(inode, ordered->file_offset,
291  				  REQ_OP_WRITE | write_flags,
292  				  end_compressed_bio_write);
293  	cb->start = ordered->file_offset;
294  	cb->len = ordered->num_bytes;
295  	cb->compressed_pages = compressed_pages;
296  	cb->compressed_len = ordered->disk_num_bytes;
297  	cb->writeback = writeback;
298  	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
299  	cb->nr_pages = nr_pages;
300  	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
301  	cb->bbio.ordered = ordered;
302  	btrfs_add_compressed_bio_pages(cb);
303  
304  	btrfs_submit_bio(&cb->bbio, 0);
305  }
306  
307  /*
308   * Add extra pages in the same compressed file extent so that we don't need to
309   * re-read the same extent again and again.
310   *
311   * NOTE: this won't work well for subpage, as for subpage read, we lock the
312   * full page then submit bio for each compressed/regular extents.
313   *
314   * This means, if we have several sectors in the same page points to the same
315   * on-disk compressed data, we will re-read the same extent many times and
316   * this function can only help for the next page.
317   */
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb,int * memstall,unsigned long * pflags)318  static noinline int add_ra_bio_pages(struct inode *inode,
319  				     u64 compressed_end,
320  				     struct compressed_bio *cb,
321  				     int *memstall, unsigned long *pflags)
322  {
323  	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
324  	unsigned long end_index;
325  	struct bio *orig_bio = &cb->orig_bbio->bio;
326  	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
327  	u64 isize = i_size_read(inode);
328  	int ret;
329  	struct page *page;
330  	struct extent_map *em;
331  	struct address_space *mapping = inode->i_mapping;
332  	struct extent_map_tree *em_tree;
333  	struct extent_io_tree *tree;
334  	int sectors_missed = 0;
335  
336  	em_tree = &BTRFS_I(inode)->extent_tree;
337  	tree = &BTRFS_I(inode)->io_tree;
338  
339  	if (isize == 0)
340  		return 0;
341  
342  	/*
343  	 * For current subpage support, we only support 64K page size,
344  	 * which means maximum compressed extent size (128K) is just 2x page
345  	 * size.
346  	 * This makes readahead less effective, so here disable readahead for
347  	 * subpage for now, until full compressed write is supported.
348  	 */
349  	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
350  		return 0;
351  
352  	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
353  
354  	while (cur < compressed_end) {
355  		u64 page_end;
356  		u64 pg_index = cur >> PAGE_SHIFT;
357  		u32 add_size;
358  
359  		if (pg_index > end_index)
360  			break;
361  
362  		page = xa_load(&mapping->i_pages, pg_index);
363  		if (page && !xa_is_value(page)) {
364  			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
365  					  fs_info->sectorsize_bits;
366  
367  			/* Beyond threshold, no need to continue */
368  			if (sectors_missed > 4)
369  				break;
370  
371  			/*
372  			 * Jump to next page start as we already have page for
373  			 * current offset.
374  			 */
375  			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
376  			continue;
377  		}
378  
379  		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
380  								 ~__GFP_FS));
381  		if (!page)
382  			break;
383  
384  		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
385  			put_page(page);
386  			/* There is already a page, skip to page end */
387  			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
388  			continue;
389  		}
390  
391  		if (!*memstall && PageWorkingset(page)) {
392  			psi_memstall_enter(pflags);
393  			*memstall = 1;
394  		}
395  
396  		ret = set_page_extent_mapped(page);
397  		if (ret < 0) {
398  			unlock_page(page);
399  			put_page(page);
400  			break;
401  		}
402  
403  		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
404  		lock_extent(tree, cur, page_end, NULL);
405  		read_lock(&em_tree->lock);
406  		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
407  		read_unlock(&em_tree->lock);
408  
409  		/*
410  		 * At this point, we have a locked page in the page cache for
411  		 * these bytes in the file.  But, we have to make sure they map
412  		 * to this compressed extent on disk.
413  		 */
414  		if (!em || cur < em->start ||
415  		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
416  		    (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) {
417  			free_extent_map(em);
418  			unlock_extent(tree, cur, page_end, NULL);
419  			unlock_page(page);
420  			put_page(page);
421  			break;
422  		}
423  		add_size = min(em->start + em->len, page_end + 1) - cur;
424  		free_extent_map(em);
425  
426  		if (page->index == end_index) {
427  			size_t zero_offset = offset_in_page(isize);
428  
429  			if (zero_offset) {
430  				int zeros;
431  				zeros = PAGE_SIZE - zero_offset;
432  				memzero_page(page, zero_offset, zeros);
433  			}
434  		}
435  
436  		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
437  		if (ret != add_size) {
438  			unlock_extent(tree, cur, page_end, NULL);
439  			unlock_page(page);
440  			put_page(page);
441  			break;
442  		}
443  		/*
444  		 * If it's subpage, we also need to increase its
445  		 * subpage::readers number, as at endio we will decrease
446  		 * subpage::readers and to unlock the page.
447  		 */
448  		if (fs_info->sectorsize < PAGE_SIZE)
449  			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
450  		put_page(page);
451  		cur += add_size;
452  	}
453  	return 0;
454  }
455  
456  /*
457   * for a compressed read, the bio we get passed has all the inode pages
458   * in it.  We don't actually do IO on those pages but allocate new ones
459   * to hold the compressed pages on disk.
460   *
461   * bio->bi_iter.bi_sector points to the compressed extent on disk
462   * bio->bi_io_vec points to all of the inode pages
463   *
464   * After the compressed pages are read, we copy the bytes into the
465   * bio we were passed and then call the bio end_io calls
466   */
btrfs_submit_compressed_read(struct btrfs_bio * bbio)467  void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
468  {
469  	struct btrfs_inode *inode = bbio->inode;
470  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
471  	struct extent_map_tree *em_tree = &inode->extent_tree;
472  	struct compressed_bio *cb;
473  	unsigned int compressed_len;
474  	u64 file_offset = bbio->file_offset;
475  	u64 em_len;
476  	u64 em_start;
477  	struct extent_map *em;
478  	unsigned long pflags;
479  	int memstall = 0;
480  	blk_status_t ret;
481  	int ret2;
482  
483  	/* we need the actual starting offset of this extent in the file */
484  	read_lock(&em_tree->lock);
485  	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
486  	read_unlock(&em_tree->lock);
487  	if (!em) {
488  		ret = BLK_STS_IOERR;
489  		goto out;
490  	}
491  
492  	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
493  	compressed_len = em->block_len;
494  
495  	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
496  				  end_compressed_bio_read);
497  
498  	cb->start = em->orig_start;
499  	em_len = em->len;
500  	em_start = em->start;
501  
502  	cb->len = bbio->bio.bi_iter.bi_size;
503  	cb->compressed_len = compressed_len;
504  	cb->compress_type = em->compress_type;
505  	cb->orig_bbio = bbio;
506  
507  	free_extent_map(em);
508  
509  	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
510  	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
511  	if (!cb->compressed_pages) {
512  		ret = BLK_STS_RESOURCE;
513  		goto out_free_bio;
514  	}
515  
516  	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
517  	if (ret2) {
518  		ret = BLK_STS_RESOURCE;
519  		goto out_free_compressed_pages;
520  	}
521  
522  	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
523  			 &pflags);
524  
525  	/* include any pages we added in add_ra-bio_pages */
526  	cb->len = bbio->bio.bi_iter.bi_size;
527  	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
528  	btrfs_add_compressed_bio_pages(cb);
529  
530  	if (memstall)
531  		psi_memstall_leave(&pflags);
532  
533  	btrfs_submit_bio(&cb->bbio, 0);
534  	return;
535  
536  out_free_compressed_pages:
537  	kfree(cb->compressed_pages);
538  out_free_bio:
539  	bio_put(&cb->bbio.bio);
540  out:
541  	btrfs_bio_end_io(bbio, ret);
542  }
543  
544  /*
545   * Heuristic uses systematic sampling to collect data from the input data
546   * range, the logic can be tuned by the following constants:
547   *
548   * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
549   * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
550   */
551  #define SAMPLING_READ_SIZE	(16)
552  #define SAMPLING_INTERVAL	(256)
553  
554  /*
555   * For statistical analysis of the input data we consider bytes that form a
556   * Galois Field of 256 objects. Each object has an attribute count, ie. how
557   * many times the object appeared in the sample.
558   */
559  #define BUCKET_SIZE		(256)
560  
561  /*
562   * The size of the sample is based on a statistical sampling rule of thumb.
563   * The common way is to perform sampling tests as long as the number of
564   * elements in each cell is at least 5.
565   *
566   * Instead of 5, we choose 32 to obtain more accurate results.
567   * If the data contain the maximum number of symbols, which is 256, we obtain a
568   * sample size bound by 8192.
569   *
570   * For a sample of at most 8KB of data per data range: 16 consecutive bytes
571   * from up to 512 locations.
572   */
573  #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
574  				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
575  
576  struct bucket_item {
577  	u32 count;
578  };
579  
580  struct heuristic_ws {
581  	/* Partial copy of input data */
582  	u8 *sample;
583  	u32 sample_size;
584  	/* Buckets store counters for each byte value */
585  	struct bucket_item *bucket;
586  	/* Sorting buffer */
587  	struct bucket_item *bucket_b;
588  	struct list_head list;
589  };
590  
591  static struct workspace_manager heuristic_wsm;
592  
free_heuristic_ws(struct list_head * ws)593  static void free_heuristic_ws(struct list_head *ws)
594  {
595  	struct heuristic_ws *workspace;
596  
597  	workspace = list_entry(ws, struct heuristic_ws, list);
598  
599  	kvfree(workspace->sample);
600  	kfree(workspace->bucket);
601  	kfree(workspace->bucket_b);
602  	kfree(workspace);
603  }
604  
alloc_heuristic_ws(unsigned int level)605  static struct list_head *alloc_heuristic_ws(unsigned int level)
606  {
607  	struct heuristic_ws *ws;
608  
609  	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
610  	if (!ws)
611  		return ERR_PTR(-ENOMEM);
612  
613  	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
614  	if (!ws->sample)
615  		goto fail;
616  
617  	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
618  	if (!ws->bucket)
619  		goto fail;
620  
621  	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
622  	if (!ws->bucket_b)
623  		goto fail;
624  
625  	INIT_LIST_HEAD(&ws->list);
626  	return &ws->list;
627  fail:
628  	free_heuristic_ws(&ws->list);
629  	return ERR_PTR(-ENOMEM);
630  }
631  
632  const struct btrfs_compress_op btrfs_heuristic_compress = {
633  	.workspace_manager = &heuristic_wsm,
634  };
635  
636  static const struct btrfs_compress_op * const btrfs_compress_op[] = {
637  	/* The heuristic is represented as compression type 0 */
638  	&btrfs_heuristic_compress,
639  	&btrfs_zlib_compress,
640  	&btrfs_lzo_compress,
641  	&btrfs_zstd_compress,
642  };
643  
alloc_workspace(int type,unsigned int level)644  static struct list_head *alloc_workspace(int type, unsigned int level)
645  {
646  	switch (type) {
647  	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
648  	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
649  	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
650  	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
651  	default:
652  		/*
653  		 * This can't happen, the type is validated several times
654  		 * before we get here.
655  		 */
656  		BUG();
657  	}
658  }
659  
free_workspace(int type,struct list_head * ws)660  static void free_workspace(int type, struct list_head *ws)
661  {
662  	switch (type) {
663  	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
664  	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
665  	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
666  	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
667  	default:
668  		/*
669  		 * This can't happen, the type is validated several times
670  		 * before we get here.
671  		 */
672  		BUG();
673  	}
674  }
675  
btrfs_init_workspace_manager(int type)676  static void btrfs_init_workspace_manager(int type)
677  {
678  	struct workspace_manager *wsm;
679  	struct list_head *workspace;
680  
681  	wsm = btrfs_compress_op[type]->workspace_manager;
682  	INIT_LIST_HEAD(&wsm->idle_ws);
683  	spin_lock_init(&wsm->ws_lock);
684  	atomic_set(&wsm->total_ws, 0);
685  	init_waitqueue_head(&wsm->ws_wait);
686  
687  	/*
688  	 * Preallocate one workspace for each compression type so we can
689  	 * guarantee forward progress in the worst case
690  	 */
691  	workspace = alloc_workspace(type, 0);
692  	if (IS_ERR(workspace)) {
693  		pr_warn(
694  	"BTRFS: cannot preallocate compression workspace, will try later\n");
695  	} else {
696  		atomic_set(&wsm->total_ws, 1);
697  		wsm->free_ws = 1;
698  		list_add(workspace, &wsm->idle_ws);
699  	}
700  }
701  
btrfs_cleanup_workspace_manager(int type)702  static void btrfs_cleanup_workspace_manager(int type)
703  {
704  	struct workspace_manager *wsman;
705  	struct list_head *ws;
706  
707  	wsman = btrfs_compress_op[type]->workspace_manager;
708  	while (!list_empty(&wsman->idle_ws)) {
709  		ws = wsman->idle_ws.next;
710  		list_del(ws);
711  		free_workspace(type, ws);
712  		atomic_dec(&wsman->total_ws);
713  	}
714  }
715  
716  /*
717   * This finds an available workspace or allocates a new one.
718   * If it's not possible to allocate a new one, waits until there's one.
719   * Preallocation makes a forward progress guarantees and we do not return
720   * errors.
721   */
btrfs_get_workspace(int type,unsigned int level)722  struct list_head *btrfs_get_workspace(int type, unsigned int level)
723  {
724  	struct workspace_manager *wsm;
725  	struct list_head *workspace;
726  	int cpus = num_online_cpus();
727  	unsigned nofs_flag;
728  	struct list_head *idle_ws;
729  	spinlock_t *ws_lock;
730  	atomic_t *total_ws;
731  	wait_queue_head_t *ws_wait;
732  	int *free_ws;
733  
734  	wsm = btrfs_compress_op[type]->workspace_manager;
735  	idle_ws	 = &wsm->idle_ws;
736  	ws_lock	 = &wsm->ws_lock;
737  	total_ws = &wsm->total_ws;
738  	ws_wait	 = &wsm->ws_wait;
739  	free_ws	 = &wsm->free_ws;
740  
741  again:
742  	spin_lock(ws_lock);
743  	if (!list_empty(idle_ws)) {
744  		workspace = idle_ws->next;
745  		list_del(workspace);
746  		(*free_ws)--;
747  		spin_unlock(ws_lock);
748  		return workspace;
749  
750  	}
751  	if (atomic_read(total_ws) > cpus) {
752  		DEFINE_WAIT(wait);
753  
754  		spin_unlock(ws_lock);
755  		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
756  		if (atomic_read(total_ws) > cpus && !*free_ws)
757  			schedule();
758  		finish_wait(ws_wait, &wait);
759  		goto again;
760  	}
761  	atomic_inc(total_ws);
762  	spin_unlock(ws_lock);
763  
764  	/*
765  	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
766  	 * to turn it off here because we might get called from the restricted
767  	 * context of btrfs_compress_bio/btrfs_compress_pages
768  	 */
769  	nofs_flag = memalloc_nofs_save();
770  	workspace = alloc_workspace(type, level);
771  	memalloc_nofs_restore(nofs_flag);
772  
773  	if (IS_ERR(workspace)) {
774  		atomic_dec(total_ws);
775  		wake_up(ws_wait);
776  
777  		/*
778  		 * Do not return the error but go back to waiting. There's a
779  		 * workspace preallocated for each type and the compression
780  		 * time is bounded so we get to a workspace eventually. This
781  		 * makes our caller's life easier.
782  		 *
783  		 * To prevent silent and low-probability deadlocks (when the
784  		 * initial preallocation fails), check if there are any
785  		 * workspaces at all.
786  		 */
787  		if (atomic_read(total_ws) == 0) {
788  			static DEFINE_RATELIMIT_STATE(_rs,
789  					/* once per minute */ 60 * HZ,
790  					/* no burst */ 1);
791  
792  			if (__ratelimit(&_rs)) {
793  				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
794  			}
795  		}
796  		goto again;
797  	}
798  	return workspace;
799  }
800  
get_workspace(int type,int level)801  static struct list_head *get_workspace(int type, int level)
802  {
803  	switch (type) {
804  	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
805  	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
806  	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
807  	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
808  	default:
809  		/*
810  		 * This can't happen, the type is validated several times
811  		 * before we get here.
812  		 */
813  		BUG();
814  	}
815  }
816  
817  /*
818   * put a workspace struct back on the list or free it if we have enough
819   * idle ones sitting around
820   */
btrfs_put_workspace(int type,struct list_head * ws)821  void btrfs_put_workspace(int type, struct list_head *ws)
822  {
823  	struct workspace_manager *wsm;
824  	struct list_head *idle_ws;
825  	spinlock_t *ws_lock;
826  	atomic_t *total_ws;
827  	wait_queue_head_t *ws_wait;
828  	int *free_ws;
829  
830  	wsm = btrfs_compress_op[type]->workspace_manager;
831  	idle_ws	 = &wsm->idle_ws;
832  	ws_lock	 = &wsm->ws_lock;
833  	total_ws = &wsm->total_ws;
834  	ws_wait	 = &wsm->ws_wait;
835  	free_ws	 = &wsm->free_ws;
836  
837  	spin_lock(ws_lock);
838  	if (*free_ws <= num_online_cpus()) {
839  		list_add(ws, idle_ws);
840  		(*free_ws)++;
841  		spin_unlock(ws_lock);
842  		goto wake;
843  	}
844  	spin_unlock(ws_lock);
845  
846  	free_workspace(type, ws);
847  	atomic_dec(total_ws);
848  wake:
849  	cond_wake_up(ws_wait);
850  }
851  
put_workspace(int type,struct list_head * ws)852  static void put_workspace(int type, struct list_head *ws)
853  {
854  	switch (type) {
855  	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
856  	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
857  	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
858  	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
859  	default:
860  		/*
861  		 * This can't happen, the type is validated several times
862  		 * before we get here.
863  		 */
864  		BUG();
865  	}
866  }
867  
868  /*
869   * Adjust @level according to the limits of the compression algorithm or
870   * fallback to default
871   */
btrfs_compress_set_level(int type,unsigned level)872  static unsigned int btrfs_compress_set_level(int type, unsigned level)
873  {
874  	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
875  
876  	if (level == 0)
877  		level = ops->default_level;
878  	else
879  		level = min(level, ops->max_level);
880  
881  	return level;
882  }
883  
884  /*
885   * Given an address space and start and length, compress the bytes into @pages
886   * that are allocated on demand.
887   *
888   * @type_level is encoded algorithm and level, where level 0 means whatever
889   * default the algorithm chooses and is opaque here;
890   * - compression algo are 0-3
891   * - the level are bits 4-7
892   *
893   * @out_pages is an in/out parameter, holds maximum number of pages to allocate
894   * and returns number of actually allocated pages
895   *
896   * @total_in is used to return the number of bytes actually read.  It
897   * may be smaller than the input length if we had to exit early because we
898   * ran out of room in the pages array or because we cross the
899   * max_out threshold.
900   *
901   * @total_out is an in/out parameter, must be set to the input length and will
902   * be also used to return the total number of compressed bytes
903   */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)904  int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
905  			 u64 start, struct page **pages,
906  			 unsigned long *out_pages,
907  			 unsigned long *total_in,
908  			 unsigned long *total_out)
909  {
910  	int type = btrfs_compress_type(type_level);
911  	int level = btrfs_compress_level(type_level);
912  	struct list_head *workspace;
913  	int ret;
914  
915  	level = btrfs_compress_set_level(type, level);
916  	workspace = get_workspace(type, level);
917  	ret = compression_compress_pages(type, workspace, mapping, start, pages,
918  					 out_pages, total_in, total_out);
919  	put_workspace(type, workspace);
920  	return ret;
921  }
922  
btrfs_decompress_bio(struct compressed_bio * cb)923  static int btrfs_decompress_bio(struct compressed_bio *cb)
924  {
925  	struct list_head *workspace;
926  	int ret;
927  	int type = cb->compress_type;
928  
929  	workspace = get_workspace(type, 0);
930  	ret = compression_decompress_bio(workspace, cb);
931  	put_workspace(type, workspace);
932  
933  	if (!ret)
934  		zero_fill_bio(&cb->orig_bbio->bio);
935  	return ret;
936  }
937  
938  /*
939   * a less complex decompression routine.  Our compressed data fits in a
940   * single page, and we want to read a single page out of it.
941   * start_byte tells us the offset into the compressed data we're interested in
942   */
btrfs_decompress(int type,const u8 * data_in,struct page * dest_page,unsigned long dest_pgoff,size_t srclen,size_t destlen)943  int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
944  		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
945  {
946  	struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb);
947  	struct list_head *workspace;
948  	const u32 sectorsize = fs_info->sectorsize;
949  	int ret;
950  
951  	/*
952  	 * The full destination page range should not exceed the page size.
953  	 * And the @destlen should not exceed sectorsize, as this is only called for
954  	 * inline file extents, which should not exceed sectorsize.
955  	 */
956  	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
957  
958  	workspace = get_workspace(type, 0);
959  	ret = compression_decompress(type, workspace, data_in, dest_page,
960  				     dest_pgoff, srclen, destlen);
961  	put_workspace(type, workspace);
962  
963  	return ret;
964  }
965  
btrfs_init_compress(void)966  int __init btrfs_init_compress(void)
967  {
968  	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
969  			offsetof(struct compressed_bio, bbio.bio),
970  			BIOSET_NEED_BVECS))
971  		return -ENOMEM;
972  	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
973  	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
974  	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
975  	zstd_init_workspace_manager();
976  	return 0;
977  }
978  
btrfs_exit_compress(void)979  void __cold btrfs_exit_compress(void)
980  {
981  	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
982  	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
983  	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
984  	zstd_cleanup_workspace_manager();
985  	bioset_exit(&btrfs_compressed_bioset);
986  }
987  
988  /*
989   * Copy decompressed data from working buffer to pages.
990   *
991   * @buf:		The decompressed data buffer
992   * @buf_len:		The decompressed data length
993   * @decompressed:	Number of bytes that are already decompressed inside the
994   * 			compressed extent
995   * @cb:			The compressed extent descriptor
996   * @orig_bio:		The original bio that the caller wants to read for
997   *
998   * An easier to understand graph is like below:
999   *
1000   * 		|<- orig_bio ->|     |<- orig_bio->|
1001   * 	|<-------      full decompressed extent      ----->|
1002   * 	|<-----------    @cb range   ---->|
1003   * 	|			|<-- @buf_len -->|
1004   * 	|<--- @decompressed --->|
1005   *
1006   * Note that, @cb can be a subpage of the full decompressed extent, but
1007   * @cb->start always has the same as the orig_file_offset value of the full
1008   * decompressed extent.
1009   *
1010   * When reading compressed extent, we have to read the full compressed extent,
1011   * while @orig_bio may only want part of the range.
1012   * Thus this function will ensure only data covered by @orig_bio will be copied
1013   * to.
1014   *
1015   * Return 0 if we have copied all needed contents for @orig_bio.
1016   * Return >0 if we need continue decompress.
1017   */
btrfs_decompress_buf2page(const char * buf,u32 buf_len,struct compressed_bio * cb,u32 decompressed)1018  int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1019  			      struct compressed_bio *cb, u32 decompressed)
1020  {
1021  	struct bio *orig_bio = &cb->orig_bbio->bio;
1022  	/* Offset inside the full decompressed extent */
1023  	u32 cur_offset;
1024  
1025  	cur_offset = decompressed;
1026  	/* The main loop to do the copy */
1027  	while (cur_offset < decompressed + buf_len) {
1028  		struct bio_vec bvec;
1029  		size_t copy_len;
1030  		u32 copy_start;
1031  		/* Offset inside the full decompressed extent */
1032  		u32 bvec_offset;
1033  
1034  		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1035  		/*
1036  		 * cb->start may underflow, but subtracting that value can still
1037  		 * give us correct offset inside the full decompressed extent.
1038  		 */
1039  		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1040  
1041  		/* Haven't reached the bvec range, exit */
1042  		if (decompressed + buf_len <= bvec_offset)
1043  			return 1;
1044  
1045  		copy_start = max(cur_offset, bvec_offset);
1046  		copy_len = min(bvec_offset + bvec.bv_len,
1047  			       decompressed + buf_len) - copy_start;
1048  		ASSERT(copy_len);
1049  
1050  		/*
1051  		 * Extra range check to ensure we didn't go beyond
1052  		 * @buf + @buf_len.
1053  		 */
1054  		ASSERT(copy_start - decompressed < buf_len);
1055  		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1056  			       buf + copy_start - decompressed, copy_len);
1057  		cur_offset += copy_len;
1058  
1059  		bio_advance(orig_bio, copy_len);
1060  		/* Finished the bio */
1061  		if (!orig_bio->bi_iter.bi_size)
1062  			return 0;
1063  	}
1064  	return 1;
1065  }
1066  
1067  /*
1068   * Shannon Entropy calculation
1069   *
1070   * Pure byte distribution analysis fails to determine compressibility of data.
1071   * Try calculating entropy to estimate the average minimum number of bits
1072   * needed to encode the sampled data.
1073   *
1074   * For convenience, return the percentage of needed bits, instead of amount of
1075   * bits directly.
1076   *
1077   * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1078   *			    and can be compressible with high probability
1079   *
1080   * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1081   *
1082   * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1083   */
1084  #define ENTROPY_LVL_ACEPTABLE		(65)
1085  #define ENTROPY_LVL_HIGH		(80)
1086  
1087  /*
1088   * For increasead precision in shannon_entropy calculation,
1089   * let's do pow(n, M) to save more digits after comma:
1090   *
1091   * - maximum int bit length is 64
1092   * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1093   * - 13 * 4 = 52 < 64		-> M = 4
1094   *
1095   * So use pow(n, 4).
1096   */
ilog2_w(u64 n)1097  static inline u32 ilog2_w(u64 n)
1098  {
1099  	return ilog2(n * n * n * n);
1100  }
1101  
shannon_entropy(struct heuristic_ws * ws)1102  static u32 shannon_entropy(struct heuristic_ws *ws)
1103  {
1104  	const u32 entropy_max = 8 * ilog2_w(2);
1105  	u32 entropy_sum = 0;
1106  	u32 p, p_base, sz_base;
1107  	u32 i;
1108  
1109  	sz_base = ilog2_w(ws->sample_size);
1110  	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1111  		p = ws->bucket[i].count;
1112  		p_base = ilog2_w(p);
1113  		entropy_sum += p * (sz_base - p_base);
1114  	}
1115  
1116  	entropy_sum /= ws->sample_size;
1117  	return entropy_sum * 100 / entropy_max;
1118  }
1119  
1120  #define RADIX_BASE		4U
1121  #define COUNTERS_SIZE		(1U << RADIX_BASE)
1122  
get4bits(u64 num,int shift)1123  static u8 get4bits(u64 num, int shift) {
1124  	u8 low4bits;
1125  
1126  	num >>= shift;
1127  	/* Reverse order */
1128  	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1129  	return low4bits;
1130  }
1131  
1132  /*
1133   * Use 4 bits as radix base
1134   * Use 16 u32 counters for calculating new position in buf array
1135   *
1136   * @array     - array that will be sorted
1137   * @array_buf - buffer array to store sorting results
1138   *              must be equal in size to @array
1139   * @num       - array size
1140   */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1141  static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1142  		       int num)
1143  {
1144  	u64 max_num;
1145  	u64 buf_num;
1146  	u32 counters[COUNTERS_SIZE];
1147  	u32 new_addr;
1148  	u32 addr;
1149  	int bitlen;
1150  	int shift;
1151  	int i;
1152  
1153  	/*
1154  	 * Try avoid useless loop iterations for small numbers stored in big
1155  	 * counters.  Example: 48 33 4 ... in 64bit array
1156  	 */
1157  	max_num = array[0].count;
1158  	for (i = 1; i < num; i++) {
1159  		buf_num = array[i].count;
1160  		if (buf_num > max_num)
1161  			max_num = buf_num;
1162  	}
1163  
1164  	buf_num = ilog2(max_num);
1165  	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1166  
1167  	shift = 0;
1168  	while (shift < bitlen) {
1169  		memset(counters, 0, sizeof(counters));
1170  
1171  		for (i = 0; i < num; i++) {
1172  			buf_num = array[i].count;
1173  			addr = get4bits(buf_num, shift);
1174  			counters[addr]++;
1175  		}
1176  
1177  		for (i = 1; i < COUNTERS_SIZE; i++)
1178  			counters[i] += counters[i - 1];
1179  
1180  		for (i = num - 1; i >= 0; i--) {
1181  			buf_num = array[i].count;
1182  			addr = get4bits(buf_num, shift);
1183  			counters[addr]--;
1184  			new_addr = counters[addr];
1185  			array_buf[new_addr] = array[i];
1186  		}
1187  
1188  		shift += RADIX_BASE;
1189  
1190  		/*
1191  		 * Normal radix expects to move data from a temporary array, to
1192  		 * the main one.  But that requires some CPU time. Avoid that
1193  		 * by doing another sort iteration to original array instead of
1194  		 * memcpy()
1195  		 */
1196  		memset(counters, 0, sizeof(counters));
1197  
1198  		for (i = 0; i < num; i ++) {
1199  			buf_num = array_buf[i].count;
1200  			addr = get4bits(buf_num, shift);
1201  			counters[addr]++;
1202  		}
1203  
1204  		for (i = 1; i < COUNTERS_SIZE; i++)
1205  			counters[i] += counters[i - 1];
1206  
1207  		for (i = num - 1; i >= 0; i--) {
1208  			buf_num = array_buf[i].count;
1209  			addr = get4bits(buf_num, shift);
1210  			counters[addr]--;
1211  			new_addr = counters[addr];
1212  			array[new_addr] = array_buf[i];
1213  		}
1214  
1215  		shift += RADIX_BASE;
1216  	}
1217  }
1218  
1219  /*
1220   * Size of the core byte set - how many bytes cover 90% of the sample
1221   *
1222   * There are several types of structured binary data that use nearly all byte
1223   * values. The distribution can be uniform and counts in all buckets will be
1224   * nearly the same (eg. encrypted data). Unlikely to be compressible.
1225   *
1226   * Other possibility is normal (Gaussian) distribution, where the data could
1227   * be potentially compressible, but we have to take a few more steps to decide
1228   * how much.
1229   *
1230   * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1231   *                       compression algo can easy fix that
1232   * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1233   *                       probability is not compressible
1234   */
1235  #define BYTE_CORE_SET_LOW		(64)
1236  #define BYTE_CORE_SET_HIGH		(200)
1237  
byte_core_set_size(struct heuristic_ws * ws)1238  static int byte_core_set_size(struct heuristic_ws *ws)
1239  {
1240  	u32 i;
1241  	u32 coreset_sum = 0;
1242  	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1243  	struct bucket_item *bucket = ws->bucket;
1244  
1245  	/* Sort in reverse order */
1246  	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1247  
1248  	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1249  		coreset_sum += bucket[i].count;
1250  
1251  	if (coreset_sum > core_set_threshold)
1252  		return i;
1253  
1254  	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1255  		coreset_sum += bucket[i].count;
1256  		if (coreset_sum > core_set_threshold)
1257  			break;
1258  	}
1259  
1260  	return i;
1261  }
1262  
1263  /*
1264   * Count byte values in buckets.
1265   * This heuristic can detect textual data (configs, xml, json, html, etc).
1266   * Because in most text-like data byte set is restricted to limited number of
1267   * possible characters, and that restriction in most cases makes data easy to
1268   * compress.
1269   *
1270   * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1271   *	less - compressible
1272   *	more - need additional analysis
1273   */
1274  #define BYTE_SET_THRESHOLD		(64)
1275  
byte_set_size(const struct heuristic_ws * ws)1276  static u32 byte_set_size(const struct heuristic_ws *ws)
1277  {
1278  	u32 i;
1279  	u32 byte_set_size = 0;
1280  
1281  	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1282  		if (ws->bucket[i].count > 0)
1283  			byte_set_size++;
1284  	}
1285  
1286  	/*
1287  	 * Continue collecting count of byte values in buckets.  If the byte
1288  	 * set size is bigger then the threshold, it's pointless to continue,
1289  	 * the detection technique would fail for this type of data.
1290  	 */
1291  	for (; i < BUCKET_SIZE; i++) {
1292  		if (ws->bucket[i].count > 0) {
1293  			byte_set_size++;
1294  			if (byte_set_size > BYTE_SET_THRESHOLD)
1295  				return byte_set_size;
1296  		}
1297  	}
1298  
1299  	return byte_set_size;
1300  }
1301  
sample_repeated_patterns(struct heuristic_ws * ws)1302  static bool sample_repeated_patterns(struct heuristic_ws *ws)
1303  {
1304  	const u32 half_of_sample = ws->sample_size / 2;
1305  	const u8 *data = ws->sample;
1306  
1307  	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1308  }
1309  
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1310  static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1311  				     struct heuristic_ws *ws)
1312  {
1313  	struct page *page;
1314  	u64 index, index_end;
1315  	u32 i, curr_sample_pos;
1316  	u8 *in_data;
1317  
1318  	/*
1319  	 * Compression handles the input data by chunks of 128KiB
1320  	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1321  	 *
1322  	 * We do the same for the heuristic and loop over the whole range.
1323  	 *
1324  	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1325  	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1326  	 */
1327  	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1328  		end = start + BTRFS_MAX_UNCOMPRESSED;
1329  
1330  	index = start >> PAGE_SHIFT;
1331  	index_end = end >> PAGE_SHIFT;
1332  
1333  	/* Don't miss unaligned end */
1334  	if (!PAGE_ALIGNED(end))
1335  		index_end++;
1336  
1337  	curr_sample_pos = 0;
1338  	while (index < index_end) {
1339  		page = find_get_page(inode->i_mapping, index);
1340  		in_data = kmap_local_page(page);
1341  		/* Handle case where the start is not aligned to PAGE_SIZE */
1342  		i = start % PAGE_SIZE;
1343  		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1344  			/* Don't sample any garbage from the last page */
1345  			if (start > end - SAMPLING_READ_SIZE)
1346  				break;
1347  			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1348  					SAMPLING_READ_SIZE);
1349  			i += SAMPLING_INTERVAL;
1350  			start += SAMPLING_INTERVAL;
1351  			curr_sample_pos += SAMPLING_READ_SIZE;
1352  		}
1353  		kunmap_local(in_data);
1354  		put_page(page);
1355  
1356  		index++;
1357  	}
1358  
1359  	ws->sample_size = curr_sample_pos;
1360  }
1361  
1362  /*
1363   * Compression heuristic.
1364   *
1365   * For now is's a naive and optimistic 'return true', we'll extend the logic to
1366   * quickly (compared to direct compression) detect data characteristics
1367   * (compressible/incompressible) to avoid wasting CPU time on incompressible
1368   * data.
1369   *
1370   * The following types of analysis can be performed:
1371   * - detect mostly zero data
1372   * - detect data with low "byte set" size (text, etc)
1373   * - detect data with low/high "core byte" set
1374   *
1375   * Return non-zero if the compression should be done, 0 otherwise.
1376   */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1377  int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1378  {
1379  	struct list_head *ws_list = get_workspace(0, 0);
1380  	struct heuristic_ws *ws;
1381  	u32 i;
1382  	u8 byte;
1383  	int ret = 0;
1384  
1385  	ws = list_entry(ws_list, struct heuristic_ws, list);
1386  
1387  	heuristic_collect_sample(inode, start, end, ws);
1388  
1389  	if (sample_repeated_patterns(ws)) {
1390  		ret = 1;
1391  		goto out;
1392  	}
1393  
1394  	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1395  
1396  	for (i = 0; i < ws->sample_size; i++) {
1397  		byte = ws->sample[i];
1398  		ws->bucket[byte].count++;
1399  	}
1400  
1401  	i = byte_set_size(ws);
1402  	if (i < BYTE_SET_THRESHOLD) {
1403  		ret = 2;
1404  		goto out;
1405  	}
1406  
1407  	i = byte_core_set_size(ws);
1408  	if (i <= BYTE_CORE_SET_LOW) {
1409  		ret = 3;
1410  		goto out;
1411  	}
1412  
1413  	if (i >= BYTE_CORE_SET_HIGH) {
1414  		ret = 0;
1415  		goto out;
1416  	}
1417  
1418  	i = shannon_entropy(ws);
1419  	if (i <= ENTROPY_LVL_ACEPTABLE) {
1420  		ret = 4;
1421  		goto out;
1422  	}
1423  
1424  	/*
1425  	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1426  	 * needed to give green light to compression.
1427  	 *
1428  	 * For now just assume that compression at that level is not worth the
1429  	 * resources because:
1430  	 *
1431  	 * 1. it is possible to defrag the data later
1432  	 *
1433  	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1434  	 * values, every bucket has counter at level ~54. The heuristic would
1435  	 * be confused. This can happen when data have some internal repeated
1436  	 * patterns like "abbacbbc...". This can be detected by analyzing
1437  	 * pairs of bytes, which is too costly.
1438  	 */
1439  	if (i < ENTROPY_LVL_HIGH) {
1440  		ret = 5;
1441  		goto out;
1442  	} else {
1443  		ret = 0;
1444  		goto out;
1445  	}
1446  
1447  out:
1448  	put_workspace(0, ws_list);
1449  	return ret;
1450  }
1451  
1452  /*
1453   * Convert the compression suffix (eg. after "zlib" starting with ":") to
1454   * level, unrecognized string will set the default level
1455   */
btrfs_compress_str2level(unsigned int type,const char * str)1456  unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1457  {
1458  	unsigned int level = 0;
1459  	int ret;
1460  
1461  	if (!type)
1462  		return 0;
1463  
1464  	if (str[0] == ':') {
1465  		ret = kstrtouint(str + 1, 10, &level);
1466  		if (ret)
1467  			level = 0;
1468  	}
1469  
1470  	level = btrfs_compress_set_level(type, level);
1471  
1472  	return level;
1473  }
1474