xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision ed6078f7)
1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and no write error was indicated and a
41  *        FLUSH request to the device where these blocks are
42  *        located was received and completed.
43  *    2b. All referenced blocks need to have a generation
44  *        number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  *
81  * Expect millions of lines of information in the kernel log with an
82  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83  * kernel config to at least 26 (which is 64MB). Usually the value is
84  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85  * changed like this before LOG_BUF_SHIFT can be set to a high value:
86  * config LOG_BUF_SHIFT
87  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88  *       range 12 30
89  */
90 
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include "ctree.h"
98 #include "disk-io.h"
99 #include "hash.h"
100 #include "transaction.h"
101 #include "extent_io.h"
102 #include "volumes.h"
103 #include "print-tree.h"
104 #include "locking.h"
105 #include "check-integrity.h"
106 #include "rcu-string.h"
107 
108 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
116 							 * excluding " [...]" */
117 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118 
119 /*
120  * The definition of the bitmask fields for the print_mask.
121  * They are specified with the mount option check_integrity_print_mask.
122  */
123 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
124 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
125 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
126 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
127 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
128 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
129 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
130 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
131 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
132 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
133 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
134 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
135 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
136 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
137 
138 struct btrfsic_dev_state;
139 struct btrfsic_state;
140 
141 struct btrfsic_block {
142 	u32 magic_num;		/* only used for debug purposes */
143 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
144 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
145 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
146 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
147 	unsigned int never_written:1;	/* block was added because it was
148 					 * referenced, not because it was
149 					 * written */
150 	unsigned int mirror_num;	/* large enough to hold
151 					 * BTRFS_SUPER_MIRROR_MAX */
152 	struct btrfsic_dev_state *dev_state;
153 	u64 dev_bytenr;		/* key, physical byte num on disk */
154 	u64 logical_bytenr;	/* logical byte num on disk */
155 	u64 generation;
156 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
157 					 * issues, will not always be correct */
158 	struct list_head collision_resolving_node;	/* list node */
159 	struct list_head all_blocks_node;	/* list node */
160 
161 	/* the following two lists contain block_link items */
162 	struct list_head ref_to_list;	/* list */
163 	struct list_head ref_from_list;	/* list */
164 	struct btrfsic_block *next_in_same_bio;
165 	void *orig_bio_bh_private;
166 	union {
167 		bio_end_io_t *bio;
168 		bh_end_io_t *bh;
169 	} orig_bio_bh_end_io;
170 	int submit_bio_bh_rw;
171 	u64 flush_gen; /* only valid if !never_written */
172 };
173 
174 /*
175  * Elements of this type are allocated dynamically and required because
176  * each block object can refer to and can be ref from multiple blocks.
177  * The key to lookup them in the hashtable is the dev_bytenr of
178  * the block ref to plus the one from the block refered from.
179  * The fact that they are searchable via a hashtable and that a
180  * ref_cnt is maintained is not required for the btrfs integrity
181  * check algorithm itself, it is only used to make the output more
182  * beautiful in case that an error is detected (an error is defined
183  * as a write operation to a block while that block is still referenced).
184  */
185 struct btrfsic_block_link {
186 	u32 magic_num;		/* only used for debug purposes */
187 	u32 ref_cnt;
188 	struct list_head node_ref_to;	/* list node */
189 	struct list_head node_ref_from;	/* list node */
190 	struct list_head collision_resolving_node;	/* list node */
191 	struct btrfsic_block *block_ref_to;
192 	struct btrfsic_block *block_ref_from;
193 	u64 parent_generation;
194 };
195 
196 struct btrfsic_dev_state {
197 	u32 magic_num;		/* only used for debug purposes */
198 	struct block_device *bdev;
199 	struct btrfsic_state *state;
200 	struct list_head collision_resolving_node;	/* list node */
201 	struct btrfsic_block dummy_block_for_bio_bh_flush;
202 	u64 last_flush_gen;
203 	char name[BDEVNAME_SIZE];
204 };
205 
206 struct btrfsic_block_hashtable {
207 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208 };
209 
210 struct btrfsic_block_link_hashtable {
211 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212 };
213 
214 struct btrfsic_dev_state_hashtable {
215 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216 };
217 
218 struct btrfsic_block_data_ctx {
219 	u64 start;		/* virtual bytenr */
220 	u64 dev_bytenr;		/* physical bytenr on device */
221 	u32 len;
222 	struct btrfsic_dev_state *dev;
223 	char **datav;
224 	struct page **pagev;
225 	void *mem_to_free;
226 };
227 
228 /* This structure is used to implement recursion without occupying
229  * any stack space, refer to btrfsic_process_metablock() */
230 struct btrfsic_stack_frame {
231 	u32 magic;
232 	u32 nr;
233 	int error;
234 	int i;
235 	int limit_nesting;
236 	int num_copies;
237 	int mirror_num;
238 	struct btrfsic_block *block;
239 	struct btrfsic_block_data_ctx *block_ctx;
240 	struct btrfsic_block *next_block;
241 	struct btrfsic_block_data_ctx next_block_ctx;
242 	struct btrfs_header *hdr;
243 	struct btrfsic_stack_frame *prev;
244 };
245 
246 /* Some state per mounted filesystem */
247 struct btrfsic_state {
248 	u32 print_mask;
249 	int include_extent_data;
250 	int csum_size;
251 	struct list_head all_blocks_list;
252 	struct btrfsic_block_hashtable block_hashtable;
253 	struct btrfsic_block_link_hashtable block_link_hashtable;
254 	struct btrfs_root *root;
255 	u64 max_superblock_generation;
256 	struct btrfsic_block *latest_superblock;
257 	u32 metablock_size;
258 	u32 datablock_size;
259 };
260 
261 static void btrfsic_block_init(struct btrfsic_block *b);
262 static struct btrfsic_block *btrfsic_block_alloc(void);
263 static void btrfsic_block_free(struct btrfsic_block *b);
264 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 					struct btrfsic_block_hashtable *h);
273 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 		struct block_device *bdev,
276 		u64 dev_bytenr,
277 		struct btrfsic_block_hashtable *h);
278 static void btrfsic_block_link_hashtable_init(
279 		struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_block_link_hashtable_add(
281 		struct btrfsic_block_link *l,
282 		struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 		struct block_device *bdev_ref_to,
286 		u64 dev_bytenr_ref_to,
287 		struct block_device *bdev_ref_from,
288 		u64 dev_bytenr_ref_from,
289 		struct btrfsic_block_link_hashtable *h);
290 static void btrfsic_dev_state_hashtable_init(
291 		struct btrfsic_dev_state_hashtable *h);
292 static void btrfsic_dev_state_hashtable_add(
293 		struct btrfsic_dev_state *ds,
294 		struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 		struct block_device *bdev,
298 		struct btrfsic_dev_state_hashtable *h);
299 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301 static int btrfsic_process_superblock(struct btrfsic_state *state,
302 				      struct btrfs_fs_devices *fs_devices);
303 static int btrfsic_process_metablock(struct btrfsic_state *state,
304 				     struct btrfsic_block *block,
305 				     struct btrfsic_block_data_ctx *block_ctx,
306 				     int limit_nesting, int force_iodone_flag);
307 static void btrfsic_read_from_block_data(
308 	struct btrfsic_block_data_ctx *block_ctx,
309 	void *dst, u32 offset, size_t len);
310 static int btrfsic_create_link_to_next_block(
311 		struct btrfsic_state *state,
312 		struct btrfsic_block *block,
313 		struct btrfsic_block_data_ctx
314 		*block_ctx, u64 next_bytenr,
315 		int limit_nesting,
316 		struct btrfsic_block_data_ctx *next_block_ctx,
317 		struct btrfsic_block **next_blockp,
318 		int force_iodone_flag,
319 		int *num_copiesp, int *mirror_nump,
320 		struct btrfs_disk_key *disk_key,
321 		u64 parent_generation);
322 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 				      struct btrfsic_block *block,
324 				      struct btrfsic_block_data_ctx *block_ctx,
325 				      u32 item_offset, int force_iodone_flag);
326 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 			     struct btrfsic_block_data_ctx *block_ctx_out,
328 			     int mirror_num);
329 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 				  u32 len, struct block_device *bdev,
331 				  struct btrfsic_block_data_ctx *block_ctx_out);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 			      struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 				     char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 					  u64 dev_bytenr, char **mapped_datav,
340 					  unsigned int num_pages,
341 					  struct bio *bio, int *bio_is_patched,
342 					  struct buffer_head *bh,
343 					  int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345 		struct btrfsic_state *state,
346 		struct btrfsic_block *const block,
347 		struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 					      const struct btrfsic_block *block,
352 					      int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 					struct btrfsic_block *const block,
355 					int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 				   const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 				   const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 				   const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 				  const struct btrfsic_block *block,
365 				  int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 		struct btrfsic_state *state,
368 		struct btrfsic_block_data_ctx *next_block_ctx,
369 		struct btrfsic_block *next_block,
370 		struct btrfsic_block *from_block,
371 		u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 		struct btrfsic_state *state,
374 		struct btrfsic_block_data_ctx *block_ctx,
375 		const char *additional_string,
376 		int is_metadata,
377 		int is_iodone,
378 		int never_written,
379 		int mirror_num,
380 		int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382 		struct btrfsic_state *state,
383 		struct btrfsic_dev_state *dev_state,
384 		struct btrfs_device *device,
385 		int superblock_mirror_num,
386 		struct btrfsic_dev_state **selected_dev_state,
387 		struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 		struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 					   u64 bytenr,
392 					   struct btrfsic_dev_state *dev_state,
393 					   u64 dev_bytenr);
394 
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398 
399 
400 static void btrfsic_block_init(struct btrfsic_block *b)
401 {
402 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 	b->dev_state = NULL;
404 	b->dev_bytenr = 0;
405 	b->logical_bytenr = 0;
406 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 	b->disk_key.objectid = 0;
408 	b->disk_key.type = 0;
409 	b->disk_key.offset = 0;
410 	b->is_metadata = 0;
411 	b->is_superblock = 0;
412 	b->is_iodone = 0;
413 	b->iodone_w_error = 0;
414 	b->never_written = 0;
415 	b->mirror_num = 0;
416 	b->next_in_same_bio = NULL;
417 	b->orig_bio_bh_private = NULL;
418 	b->orig_bio_bh_end_io.bio = NULL;
419 	INIT_LIST_HEAD(&b->collision_resolving_node);
420 	INIT_LIST_HEAD(&b->all_blocks_node);
421 	INIT_LIST_HEAD(&b->ref_to_list);
422 	INIT_LIST_HEAD(&b->ref_from_list);
423 	b->submit_bio_bh_rw = 0;
424 	b->flush_gen = 0;
425 }
426 
427 static struct btrfsic_block *btrfsic_block_alloc(void)
428 {
429 	struct btrfsic_block *b;
430 
431 	b = kzalloc(sizeof(*b), GFP_NOFS);
432 	if (NULL != b)
433 		btrfsic_block_init(b);
434 
435 	return b;
436 }
437 
438 static void btrfsic_block_free(struct btrfsic_block *b)
439 {
440 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 	kfree(b);
442 }
443 
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445 {
446 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 	l->ref_cnt = 1;
448 	INIT_LIST_HEAD(&l->node_ref_to);
449 	INIT_LIST_HEAD(&l->node_ref_from);
450 	INIT_LIST_HEAD(&l->collision_resolving_node);
451 	l->block_ref_to = NULL;
452 	l->block_ref_from = NULL;
453 }
454 
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456 {
457 	struct btrfsic_block_link *l;
458 
459 	l = kzalloc(sizeof(*l), GFP_NOFS);
460 	if (NULL != l)
461 		btrfsic_block_link_init(l);
462 
463 	return l;
464 }
465 
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467 {
468 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 	kfree(l);
470 }
471 
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473 {
474 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 	ds->bdev = NULL;
476 	ds->state = NULL;
477 	ds->name[0] = '\0';
478 	INIT_LIST_HEAD(&ds->collision_resolving_node);
479 	ds->last_flush_gen = 0;
480 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483 }
484 
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486 {
487 	struct btrfsic_dev_state *ds;
488 
489 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 	if (NULL != ds)
491 		btrfsic_dev_state_init(ds);
492 
493 	return ds;
494 }
495 
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497 {
498 	BUG_ON(!(NULL == ds ||
499 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 	kfree(ds);
501 }
502 
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504 {
505 	int i;
506 
507 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 		INIT_LIST_HEAD(h->table + i);
509 }
510 
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 					struct btrfsic_block_hashtable *h)
513 {
514 	const unsigned int hashval =
515 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
516 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518 
519 	list_add(&b->collision_resolving_node, h->table + hashval);
520 }
521 
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523 {
524 	list_del(&b->collision_resolving_node);
525 }
526 
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 		struct block_device *bdev,
529 		u64 dev_bytenr,
530 		struct btrfsic_block_hashtable *h)
531 {
532 	const unsigned int hashval =
533 	    (((unsigned int)(dev_bytenr >> 16)) ^
534 	     ((unsigned int)((uintptr_t)bdev))) &
535 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 	struct list_head *elem;
537 
538 	list_for_each(elem, h->table + hashval) {
539 		struct btrfsic_block *const b =
540 		    list_entry(elem, struct btrfsic_block,
541 			       collision_resolving_node);
542 
543 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544 			return b;
545 	}
546 
547 	return NULL;
548 }
549 
550 static void btrfsic_block_link_hashtable_init(
551 		struct btrfsic_block_link_hashtable *h)
552 {
553 	int i;
554 
555 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556 		INIT_LIST_HEAD(h->table + i);
557 }
558 
559 static void btrfsic_block_link_hashtable_add(
560 		struct btrfsic_block_link *l,
561 		struct btrfsic_block_link_hashtable *h)
562 {
563 	const unsigned int hashval =
564 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
569 
570 	BUG_ON(NULL == l->block_ref_to);
571 	BUG_ON(NULL == l->block_ref_from);
572 	list_add(&l->collision_resolving_node, h->table + hashval);
573 }
574 
575 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
576 {
577 	list_del(&l->collision_resolving_node);
578 }
579 
580 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581 		struct block_device *bdev_ref_to,
582 		u64 dev_bytenr_ref_to,
583 		struct block_device *bdev_ref_from,
584 		u64 dev_bytenr_ref_from,
585 		struct btrfsic_block_link_hashtable *h)
586 {
587 	const unsigned int hashval =
588 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
592 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593 	struct list_head *elem;
594 
595 	list_for_each(elem, h->table + hashval) {
596 		struct btrfsic_block_link *const l =
597 		    list_entry(elem, struct btrfsic_block_link,
598 			       collision_resolving_node);
599 
600 		BUG_ON(NULL == l->block_ref_to);
601 		BUG_ON(NULL == l->block_ref_from);
602 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606 			return l;
607 	}
608 
609 	return NULL;
610 }
611 
612 static void btrfsic_dev_state_hashtable_init(
613 		struct btrfsic_dev_state_hashtable *h)
614 {
615 	int i;
616 
617 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618 		INIT_LIST_HEAD(h->table + i);
619 }
620 
621 static void btrfsic_dev_state_hashtable_add(
622 		struct btrfsic_dev_state *ds,
623 		struct btrfsic_dev_state_hashtable *h)
624 {
625 	const unsigned int hashval =
626 	    (((unsigned int)((uintptr_t)ds->bdev)) &
627 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
628 
629 	list_add(&ds->collision_resolving_node, h->table + hashval);
630 }
631 
632 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
633 {
634 	list_del(&ds->collision_resolving_node);
635 }
636 
637 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638 		struct block_device *bdev,
639 		struct btrfsic_dev_state_hashtable *h)
640 {
641 	const unsigned int hashval =
642 	    (((unsigned int)((uintptr_t)bdev)) &
643 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644 	struct list_head *elem;
645 
646 	list_for_each(elem, h->table + hashval) {
647 		struct btrfsic_dev_state *const ds =
648 		    list_entry(elem, struct btrfsic_dev_state,
649 			       collision_resolving_node);
650 
651 		if (ds->bdev == bdev)
652 			return ds;
653 	}
654 
655 	return NULL;
656 }
657 
658 static int btrfsic_process_superblock(struct btrfsic_state *state,
659 				      struct btrfs_fs_devices *fs_devices)
660 {
661 	int ret = 0;
662 	struct btrfs_super_block *selected_super;
663 	struct list_head *dev_head = &fs_devices->devices;
664 	struct btrfs_device *device;
665 	struct btrfsic_dev_state *selected_dev_state = NULL;
666 	int pass;
667 
668 	BUG_ON(NULL == state);
669 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
670 	if (NULL == selected_super) {
671 		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672 		return -1;
673 	}
674 
675 	list_for_each_entry(device, dev_head, dev_list) {
676 		int i;
677 		struct btrfsic_dev_state *dev_state;
678 
679 		if (!device->bdev || !device->name)
680 			continue;
681 
682 		dev_state = btrfsic_dev_state_lookup(device->bdev);
683 		BUG_ON(NULL == dev_state);
684 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685 			ret = btrfsic_process_superblock_dev_mirror(
686 					state, dev_state, device, i,
687 					&selected_dev_state, selected_super);
688 			if (0 != ret && 0 == i) {
689 				kfree(selected_super);
690 				return ret;
691 			}
692 		}
693 	}
694 
695 	if (NULL == state->latest_superblock) {
696 		printk(KERN_INFO "btrfsic: no superblock found!\n");
697 		kfree(selected_super);
698 		return -1;
699 	}
700 
701 	state->csum_size = btrfs_super_csum_size(selected_super);
702 
703 	for (pass = 0; pass < 3; pass++) {
704 		int num_copies;
705 		int mirror_num;
706 		u64 next_bytenr;
707 
708 		switch (pass) {
709 		case 0:
710 			next_bytenr = btrfs_super_root(selected_super);
711 			if (state->print_mask &
712 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
713 				printk(KERN_INFO "root@%llu\n", next_bytenr);
714 			break;
715 		case 1:
716 			next_bytenr = btrfs_super_chunk_root(selected_super);
717 			if (state->print_mask &
718 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
719 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
720 			break;
721 		case 2:
722 			next_bytenr = btrfs_super_log_root(selected_super);
723 			if (0 == next_bytenr)
724 				continue;
725 			if (state->print_mask &
726 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
727 				printk(KERN_INFO "log@%llu\n", next_bytenr);
728 			break;
729 		}
730 
731 		num_copies =
732 		    btrfs_num_copies(state->root->fs_info,
733 				     next_bytenr, state->metablock_size);
734 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
736 			       next_bytenr, num_copies);
737 
738 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739 			struct btrfsic_block *next_block;
740 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
741 			struct btrfsic_block_link *l;
742 
743 			ret = btrfsic_map_block(state, next_bytenr,
744 						state->metablock_size,
745 						&tmp_next_block_ctx,
746 						mirror_num);
747 			if (ret) {
748 				printk(KERN_INFO "btrfsic:"
749 				       " btrfsic_map_block(root @%llu,"
750 				       " mirror %d) failed!\n",
751 				       next_bytenr, mirror_num);
752 				kfree(selected_super);
753 				return -1;
754 			}
755 
756 			next_block = btrfsic_block_hashtable_lookup(
757 					tmp_next_block_ctx.dev->bdev,
758 					tmp_next_block_ctx.dev_bytenr,
759 					&state->block_hashtable);
760 			BUG_ON(NULL == next_block);
761 
762 			l = btrfsic_block_link_hashtable_lookup(
763 					tmp_next_block_ctx.dev->bdev,
764 					tmp_next_block_ctx.dev_bytenr,
765 					state->latest_superblock->dev_state->
766 					bdev,
767 					state->latest_superblock->dev_bytenr,
768 					&state->block_link_hashtable);
769 			BUG_ON(NULL == l);
770 
771 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
772 			if (ret < (int)PAGE_CACHE_SIZE) {
773 				printk(KERN_INFO
774 				       "btrfsic: read @logical %llu failed!\n",
775 				       tmp_next_block_ctx.start);
776 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 				kfree(selected_super);
778 				return -1;
779 			}
780 
781 			ret = btrfsic_process_metablock(state,
782 							next_block,
783 							&tmp_next_block_ctx,
784 							BTRFS_MAX_LEVEL + 3, 1);
785 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
786 		}
787 	}
788 
789 	kfree(selected_super);
790 	return ret;
791 }
792 
793 static int btrfsic_process_superblock_dev_mirror(
794 		struct btrfsic_state *state,
795 		struct btrfsic_dev_state *dev_state,
796 		struct btrfs_device *device,
797 		int superblock_mirror_num,
798 		struct btrfsic_dev_state **selected_dev_state,
799 		struct btrfs_super_block *selected_super)
800 {
801 	struct btrfs_super_block *super_tmp;
802 	u64 dev_bytenr;
803 	struct buffer_head *bh;
804 	struct btrfsic_block *superblock_tmp;
805 	int pass;
806 	struct block_device *const superblock_bdev = device->bdev;
807 
808 	/* super block bytenr is always the unmapped device bytenr */
809 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
810 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811 		return -1;
812 	bh = __bread(superblock_bdev, dev_bytenr / 4096,
813 		     BTRFS_SUPER_INFO_SIZE);
814 	if (NULL == bh)
815 		return -1;
816 	super_tmp = (struct btrfs_super_block *)
817 	    (bh->b_data + (dev_bytenr & 4095));
818 
819 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
820 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
821 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
823 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
824 		brelse(bh);
825 		return 0;
826 	}
827 
828 	superblock_tmp =
829 	    btrfsic_block_hashtable_lookup(superblock_bdev,
830 					   dev_bytenr,
831 					   &state->block_hashtable);
832 	if (NULL == superblock_tmp) {
833 		superblock_tmp = btrfsic_block_alloc();
834 		if (NULL == superblock_tmp) {
835 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
836 			brelse(bh);
837 			return -1;
838 		}
839 		/* for superblock, only the dev_bytenr makes sense */
840 		superblock_tmp->dev_bytenr = dev_bytenr;
841 		superblock_tmp->dev_state = dev_state;
842 		superblock_tmp->logical_bytenr = dev_bytenr;
843 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
844 		superblock_tmp->is_metadata = 1;
845 		superblock_tmp->is_superblock = 1;
846 		superblock_tmp->is_iodone = 1;
847 		superblock_tmp->never_written = 0;
848 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
849 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
850 			printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
851 				     " @%llu (%s/%llu/%d)\n",
852 				     superblock_bdev,
853 				     rcu_str_deref(device->name), dev_bytenr,
854 				     dev_state->name, dev_bytenr,
855 				     superblock_mirror_num);
856 		list_add(&superblock_tmp->all_blocks_node,
857 			 &state->all_blocks_list);
858 		btrfsic_block_hashtable_add(superblock_tmp,
859 					    &state->block_hashtable);
860 	}
861 
862 	/* select the one with the highest generation field */
863 	if (btrfs_super_generation(super_tmp) >
864 	    state->max_superblock_generation ||
865 	    0 == state->max_superblock_generation) {
866 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
867 		*selected_dev_state = dev_state;
868 		state->max_superblock_generation =
869 		    btrfs_super_generation(super_tmp);
870 		state->latest_superblock = superblock_tmp;
871 	}
872 
873 	for (pass = 0; pass < 3; pass++) {
874 		u64 next_bytenr;
875 		int num_copies;
876 		int mirror_num;
877 		const char *additional_string = NULL;
878 		struct btrfs_disk_key tmp_disk_key;
879 
880 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
881 		tmp_disk_key.offset = 0;
882 		switch (pass) {
883 		case 0:
884 			btrfs_set_disk_key_objectid(&tmp_disk_key,
885 						    BTRFS_ROOT_TREE_OBJECTID);
886 			additional_string = "initial root ";
887 			next_bytenr = btrfs_super_root(super_tmp);
888 			break;
889 		case 1:
890 			btrfs_set_disk_key_objectid(&tmp_disk_key,
891 						    BTRFS_CHUNK_TREE_OBJECTID);
892 			additional_string = "initial chunk ";
893 			next_bytenr = btrfs_super_chunk_root(super_tmp);
894 			break;
895 		case 2:
896 			btrfs_set_disk_key_objectid(&tmp_disk_key,
897 						    BTRFS_TREE_LOG_OBJECTID);
898 			additional_string = "initial log ";
899 			next_bytenr = btrfs_super_log_root(super_tmp);
900 			if (0 == next_bytenr)
901 				continue;
902 			break;
903 		}
904 
905 		num_copies =
906 		    btrfs_num_copies(state->root->fs_info,
907 				     next_bytenr, state->metablock_size);
908 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
909 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
910 			       next_bytenr, num_copies);
911 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
912 			struct btrfsic_block *next_block;
913 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
914 			struct btrfsic_block_link *l;
915 
916 			if (btrfsic_map_block(state, next_bytenr,
917 					      state->metablock_size,
918 					      &tmp_next_block_ctx,
919 					      mirror_num)) {
920 				printk(KERN_INFO "btrfsic: btrfsic_map_block("
921 				       "bytenr @%llu, mirror %d) failed!\n",
922 				       next_bytenr, mirror_num);
923 				brelse(bh);
924 				return -1;
925 			}
926 
927 			next_block = btrfsic_block_lookup_or_add(
928 					state, &tmp_next_block_ctx,
929 					additional_string, 1, 1, 0,
930 					mirror_num, NULL);
931 			if (NULL == next_block) {
932 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
933 				brelse(bh);
934 				return -1;
935 			}
936 
937 			next_block->disk_key = tmp_disk_key;
938 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
939 			l = btrfsic_block_link_lookup_or_add(
940 					state, &tmp_next_block_ctx,
941 					next_block, superblock_tmp,
942 					BTRFSIC_GENERATION_UNKNOWN);
943 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
944 			if (NULL == l) {
945 				brelse(bh);
946 				return -1;
947 			}
948 		}
949 	}
950 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
951 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
952 
953 	brelse(bh);
954 	return 0;
955 }
956 
957 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
958 {
959 	struct btrfsic_stack_frame *sf;
960 
961 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
962 	if (NULL == sf)
963 		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
964 	else
965 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
966 	return sf;
967 }
968 
969 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
970 {
971 	BUG_ON(!(NULL == sf ||
972 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
973 	kfree(sf);
974 }
975 
976 static int btrfsic_process_metablock(
977 		struct btrfsic_state *state,
978 		struct btrfsic_block *const first_block,
979 		struct btrfsic_block_data_ctx *const first_block_ctx,
980 		int first_limit_nesting, int force_iodone_flag)
981 {
982 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
983 	struct btrfsic_stack_frame *sf;
984 	struct btrfsic_stack_frame *next_stack;
985 	struct btrfs_header *const first_hdr =
986 		(struct btrfs_header *)first_block_ctx->datav[0];
987 
988 	BUG_ON(!first_hdr);
989 	sf = &initial_stack_frame;
990 	sf->error = 0;
991 	sf->i = -1;
992 	sf->limit_nesting = first_limit_nesting;
993 	sf->block = first_block;
994 	sf->block_ctx = first_block_ctx;
995 	sf->next_block = NULL;
996 	sf->hdr = first_hdr;
997 	sf->prev = NULL;
998 
999 continue_with_new_stack_frame:
1000 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
1001 	if (0 == sf->hdr->level) {
1002 		struct btrfs_leaf *const leafhdr =
1003 		    (struct btrfs_leaf *)sf->hdr;
1004 
1005 		if (-1 == sf->i) {
1006 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1007 
1008 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1009 				printk(KERN_INFO
1010 				       "leaf %llu items %d generation %llu"
1011 				       " owner %llu\n",
1012 				       sf->block_ctx->start, sf->nr,
1013 				       btrfs_stack_header_generation(
1014 					       &leafhdr->header),
1015 				       btrfs_stack_header_owner(
1016 					       &leafhdr->header));
1017 		}
1018 
1019 continue_with_current_leaf_stack_frame:
1020 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1021 			sf->i++;
1022 			sf->num_copies = 0;
1023 		}
1024 
1025 		if (sf->i < sf->nr) {
1026 			struct btrfs_item disk_item;
1027 			u32 disk_item_offset =
1028 				(uintptr_t)(leafhdr->items + sf->i) -
1029 				(uintptr_t)leafhdr;
1030 			struct btrfs_disk_key *disk_key;
1031 			u8 type;
1032 			u32 item_offset;
1033 			u32 item_size;
1034 
1035 			if (disk_item_offset + sizeof(struct btrfs_item) >
1036 			    sf->block_ctx->len) {
1037 leaf_item_out_of_bounce_error:
1038 				printk(KERN_INFO
1039 				       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1040 				       sf->block_ctx->start,
1041 				       sf->block_ctx->dev->name);
1042 				goto one_stack_frame_backwards;
1043 			}
1044 			btrfsic_read_from_block_data(sf->block_ctx,
1045 						     &disk_item,
1046 						     disk_item_offset,
1047 						     sizeof(struct btrfs_item));
1048 			item_offset = btrfs_stack_item_offset(&disk_item);
1049 			item_size = btrfs_stack_item_size(&disk_item);
1050 			disk_key = &disk_item.key;
1051 			type = btrfs_disk_key_type(disk_key);
1052 
1053 			if (BTRFS_ROOT_ITEM_KEY == type) {
1054 				struct btrfs_root_item root_item;
1055 				u32 root_item_offset;
1056 				u64 next_bytenr;
1057 
1058 				root_item_offset = item_offset +
1059 					offsetof(struct btrfs_leaf, items);
1060 				if (root_item_offset + item_size >
1061 				    sf->block_ctx->len)
1062 					goto leaf_item_out_of_bounce_error;
1063 				btrfsic_read_from_block_data(
1064 					sf->block_ctx, &root_item,
1065 					root_item_offset,
1066 					item_size);
1067 				next_bytenr = btrfs_root_bytenr(&root_item);
1068 
1069 				sf->error =
1070 				    btrfsic_create_link_to_next_block(
1071 						state,
1072 						sf->block,
1073 						sf->block_ctx,
1074 						next_bytenr,
1075 						sf->limit_nesting,
1076 						&sf->next_block_ctx,
1077 						&sf->next_block,
1078 						force_iodone_flag,
1079 						&sf->num_copies,
1080 						&sf->mirror_num,
1081 						disk_key,
1082 						btrfs_root_generation(
1083 						&root_item));
1084 				if (sf->error)
1085 					goto one_stack_frame_backwards;
1086 
1087 				if (NULL != sf->next_block) {
1088 					struct btrfs_header *const next_hdr =
1089 					    (struct btrfs_header *)
1090 					    sf->next_block_ctx.datav[0];
1091 
1092 					next_stack =
1093 					    btrfsic_stack_frame_alloc();
1094 					if (NULL == next_stack) {
1095 						sf->error = -1;
1096 						btrfsic_release_block_ctx(
1097 								&sf->
1098 								next_block_ctx);
1099 						goto one_stack_frame_backwards;
1100 					}
1101 
1102 					next_stack->i = -1;
1103 					next_stack->block = sf->next_block;
1104 					next_stack->block_ctx =
1105 					    &sf->next_block_ctx;
1106 					next_stack->next_block = NULL;
1107 					next_stack->hdr = next_hdr;
1108 					next_stack->limit_nesting =
1109 					    sf->limit_nesting - 1;
1110 					next_stack->prev = sf;
1111 					sf = next_stack;
1112 					goto continue_with_new_stack_frame;
1113 				}
1114 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1115 				   state->include_extent_data) {
1116 				sf->error = btrfsic_handle_extent_data(
1117 						state,
1118 						sf->block,
1119 						sf->block_ctx,
1120 						item_offset,
1121 						force_iodone_flag);
1122 				if (sf->error)
1123 					goto one_stack_frame_backwards;
1124 			}
1125 
1126 			goto continue_with_current_leaf_stack_frame;
1127 		}
1128 	} else {
1129 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1130 
1131 		if (-1 == sf->i) {
1132 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1133 
1134 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135 				printk(KERN_INFO "node %llu level %d items %d"
1136 				       " generation %llu owner %llu\n",
1137 				       sf->block_ctx->start,
1138 				       nodehdr->header.level, sf->nr,
1139 				       btrfs_stack_header_generation(
1140 				       &nodehdr->header),
1141 				       btrfs_stack_header_owner(
1142 				       &nodehdr->header));
1143 		}
1144 
1145 continue_with_current_node_stack_frame:
1146 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1147 			sf->i++;
1148 			sf->num_copies = 0;
1149 		}
1150 
1151 		if (sf->i < sf->nr) {
1152 			struct btrfs_key_ptr key_ptr;
1153 			u32 key_ptr_offset;
1154 			u64 next_bytenr;
1155 
1156 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1157 					  (uintptr_t)nodehdr;
1158 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1159 			    sf->block_ctx->len) {
1160 				printk(KERN_INFO
1161 				       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1162 				       sf->block_ctx->start,
1163 				       sf->block_ctx->dev->name);
1164 				goto one_stack_frame_backwards;
1165 			}
1166 			btrfsic_read_from_block_data(
1167 				sf->block_ctx, &key_ptr, key_ptr_offset,
1168 				sizeof(struct btrfs_key_ptr));
1169 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1170 
1171 			sf->error = btrfsic_create_link_to_next_block(
1172 					state,
1173 					sf->block,
1174 					sf->block_ctx,
1175 					next_bytenr,
1176 					sf->limit_nesting,
1177 					&sf->next_block_ctx,
1178 					&sf->next_block,
1179 					force_iodone_flag,
1180 					&sf->num_copies,
1181 					&sf->mirror_num,
1182 					&key_ptr.key,
1183 					btrfs_stack_key_generation(&key_ptr));
1184 			if (sf->error)
1185 				goto one_stack_frame_backwards;
1186 
1187 			if (NULL != sf->next_block) {
1188 				struct btrfs_header *const next_hdr =
1189 				    (struct btrfs_header *)
1190 				    sf->next_block_ctx.datav[0];
1191 
1192 				next_stack = btrfsic_stack_frame_alloc();
1193 				if (NULL == next_stack) {
1194 					sf->error = -1;
1195 					goto one_stack_frame_backwards;
1196 				}
1197 
1198 				next_stack->i = -1;
1199 				next_stack->block = sf->next_block;
1200 				next_stack->block_ctx = &sf->next_block_ctx;
1201 				next_stack->next_block = NULL;
1202 				next_stack->hdr = next_hdr;
1203 				next_stack->limit_nesting =
1204 				    sf->limit_nesting - 1;
1205 				next_stack->prev = sf;
1206 				sf = next_stack;
1207 				goto continue_with_new_stack_frame;
1208 			}
1209 
1210 			goto continue_with_current_node_stack_frame;
1211 		}
1212 	}
1213 
1214 one_stack_frame_backwards:
1215 	if (NULL != sf->prev) {
1216 		struct btrfsic_stack_frame *const prev = sf->prev;
1217 
1218 		/* the one for the initial block is freed in the caller */
1219 		btrfsic_release_block_ctx(sf->block_ctx);
1220 
1221 		if (sf->error) {
1222 			prev->error = sf->error;
1223 			btrfsic_stack_frame_free(sf);
1224 			sf = prev;
1225 			goto one_stack_frame_backwards;
1226 		}
1227 
1228 		btrfsic_stack_frame_free(sf);
1229 		sf = prev;
1230 		goto continue_with_new_stack_frame;
1231 	} else {
1232 		BUG_ON(&initial_stack_frame != sf);
1233 	}
1234 
1235 	return sf->error;
1236 }
1237 
1238 static void btrfsic_read_from_block_data(
1239 	struct btrfsic_block_data_ctx *block_ctx,
1240 	void *dstv, u32 offset, size_t len)
1241 {
1242 	size_t cur;
1243 	size_t offset_in_page;
1244 	char *kaddr;
1245 	char *dst = (char *)dstv;
1246 	size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1247 	unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1248 
1249 	WARN_ON(offset + len > block_ctx->len);
1250 	offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1251 
1252 	while (len > 0) {
1253 		cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1254 		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_CACHE_SIZE));
1255 		kaddr = block_ctx->datav[i];
1256 		memcpy(dst, kaddr + offset_in_page, cur);
1257 
1258 		dst += cur;
1259 		len -= cur;
1260 		offset_in_page = 0;
1261 		i++;
1262 	}
1263 }
1264 
1265 static int btrfsic_create_link_to_next_block(
1266 		struct btrfsic_state *state,
1267 		struct btrfsic_block *block,
1268 		struct btrfsic_block_data_ctx *block_ctx,
1269 		u64 next_bytenr,
1270 		int limit_nesting,
1271 		struct btrfsic_block_data_ctx *next_block_ctx,
1272 		struct btrfsic_block **next_blockp,
1273 		int force_iodone_flag,
1274 		int *num_copiesp, int *mirror_nump,
1275 		struct btrfs_disk_key *disk_key,
1276 		u64 parent_generation)
1277 {
1278 	struct btrfsic_block *next_block = NULL;
1279 	int ret;
1280 	struct btrfsic_block_link *l;
1281 	int did_alloc_block_link;
1282 	int block_was_created;
1283 
1284 	*next_blockp = NULL;
1285 	if (0 == *num_copiesp) {
1286 		*num_copiesp =
1287 		    btrfs_num_copies(state->root->fs_info,
1288 				     next_bytenr, state->metablock_size);
1289 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1290 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1291 			       next_bytenr, *num_copiesp);
1292 		*mirror_nump = 1;
1293 	}
1294 
1295 	if (*mirror_nump > *num_copiesp)
1296 		return 0;
1297 
1298 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1299 		printk(KERN_INFO
1300 		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1301 		       *mirror_nump);
1302 	ret = btrfsic_map_block(state, next_bytenr,
1303 				state->metablock_size,
1304 				next_block_ctx, *mirror_nump);
1305 	if (ret) {
1306 		printk(KERN_INFO
1307 		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1308 		       next_bytenr, *mirror_nump);
1309 		btrfsic_release_block_ctx(next_block_ctx);
1310 		*next_blockp = NULL;
1311 		return -1;
1312 	}
1313 
1314 	next_block = btrfsic_block_lookup_or_add(state,
1315 						 next_block_ctx, "referenced ",
1316 						 1, force_iodone_flag,
1317 						 !force_iodone_flag,
1318 						 *mirror_nump,
1319 						 &block_was_created);
1320 	if (NULL == next_block) {
1321 		btrfsic_release_block_ctx(next_block_ctx);
1322 		*next_blockp = NULL;
1323 		return -1;
1324 	}
1325 	if (block_was_created) {
1326 		l = NULL;
1327 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1328 	} else {
1329 		if (next_block->logical_bytenr != next_bytenr &&
1330 		    !(!next_block->is_metadata &&
1331 		      0 == next_block->logical_bytenr)) {
1332 			printk(KERN_INFO
1333 			       "Referenced block @%llu (%s/%llu/%d)"
1334 			       " found in hash table, %c,"
1335 			       " bytenr mismatch (!= stored %llu).\n",
1336 			       next_bytenr, next_block_ctx->dev->name,
1337 			       next_block_ctx->dev_bytenr, *mirror_nump,
1338 			       btrfsic_get_block_type(state, next_block),
1339 			       next_block->logical_bytenr);
1340 		} else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1341 			printk(KERN_INFO
1342 			       "Referenced block @%llu (%s/%llu/%d)"
1343 			       " found in hash table, %c.\n",
1344 			       next_bytenr, next_block_ctx->dev->name,
1345 			       next_block_ctx->dev_bytenr, *mirror_nump,
1346 			       btrfsic_get_block_type(state, next_block));
1347 		next_block->logical_bytenr = next_bytenr;
1348 
1349 		next_block->mirror_num = *mirror_nump;
1350 		l = btrfsic_block_link_hashtable_lookup(
1351 				next_block_ctx->dev->bdev,
1352 				next_block_ctx->dev_bytenr,
1353 				block_ctx->dev->bdev,
1354 				block_ctx->dev_bytenr,
1355 				&state->block_link_hashtable);
1356 	}
1357 
1358 	next_block->disk_key = *disk_key;
1359 	if (NULL == l) {
1360 		l = btrfsic_block_link_alloc();
1361 		if (NULL == l) {
1362 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1363 			btrfsic_release_block_ctx(next_block_ctx);
1364 			*next_blockp = NULL;
1365 			return -1;
1366 		}
1367 
1368 		did_alloc_block_link = 1;
1369 		l->block_ref_to = next_block;
1370 		l->block_ref_from = block;
1371 		l->ref_cnt = 1;
1372 		l->parent_generation = parent_generation;
1373 
1374 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1375 			btrfsic_print_add_link(state, l);
1376 
1377 		list_add(&l->node_ref_to, &block->ref_to_list);
1378 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1379 
1380 		btrfsic_block_link_hashtable_add(l,
1381 						 &state->block_link_hashtable);
1382 	} else {
1383 		did_alloc_block_link = 0;
1384 		if (0 == limit_nesting) {
1385 			l->ref_cnt++;
1386 			l->parent_generation = parent_generation;
1387 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1388 				btrfsic_print_add_link(state, l);
1389 		}
1390 	}
1391 
1392 	if (limit_nesting > 0 && did_alloc_block_link) {
1393 		ret = btrfsic_read_block(state, next_block_ctx);
1394 		if (ret < (int)next_block_ctx->len) {
1395 			printk(KERN_INFO
1396 			       "btrfsic: read block @logical %llu failed!\n",
1397 			       next_bytenr);
1398 			btrfsic_release_block_ctx(next_block_ctx);
1399 			*next_blockp = NULL;
1400 			return -1;
1401 		}
1402 
1403 		*next_blockp = next_block;
1404 	} else {
1405 		*next_blockp = NULL;
1406 	}
1407 	(*mirror_nump)++;
1408 
1409 	return 0;
1410 }
1411 
1412 static int btrfsic_handle_extent_data(
1413 		struct btrfsic_state *state,
1414 		struct btrfsic_block *block,
1415 		struct btrfsic_block_data_ctx *block_ctx,
1416 		u32 item_offset, int force_iodone_flag)
1417 {
1418 	int ret;
1419 	struct btrfs_file_extent_item file_extent_item;
1420 	u64 file_extent_item_offset;
1421 	u64 next_bytenr;
1422 	u64 num_bytes;
1423 	u64 generation;
1424 	struct btrfsic_block_link *l;
1425 
1426 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1427 				  item_offset;
1428 	if (file_extent_item_offset +
1429 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1430 	    block_ctx->len) {
1431 		printk(KERN_INFO
1432 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1433 		       block_ctx->start, block_ctx->dev->name);
1434 		return -1;
1435 	}
1436 
1437 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1438 		file_extent_item_offset,
1439 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1440 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1441 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1442 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1443 			printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1444 			       file_extent_item.type,
1445 			       btrfs_stack_file_extent_disk_bytenr(
1446 			       &file_extent_item));
1447 		return 0;
1448 	}
1449 
1450 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1451 	    block_ctx->len) {
1452 		printk(KERN_INFO
1453 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1454 		       block_ctx->start, block_ctx->dev->name);
1455 		return -1;
1456 	}
1457 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1458 				     file_extent_item_offset,
1459 				     sizeof(struct btrfs_file_extent_item));
1460 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1461 	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1462 	    BTRFS_COMPRESS_NONE) {
1463 		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1464 		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1465 	} else {
1466 		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1467 	}
1468 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1469 
1470 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1471 		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1472 		       " offset = %llu, num_bytes = %llu\n",
1473 		       file_extent_item.type,
1474 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1475 		       btrfs_stack_file_extent_offset(&file_extent_item),
1476 		       num_bytes);
1477 	while (num_bytes > 0) {
1478 		u32 chunk_len;
1479 		int num_copies;
1480 		int mirror_num;
1481 
1482 		if (num_bytes > state->datablock_size)
1483 			chunk_len = state->datablock_size;
1484 		else
1485 			chunk_len = num_bytes;
1486 
1487 		num_copies =
1488 		    btrfs_num_copies(state->root->fs_info,
1489 				     next_bytenr, state->datablock_size);
1490 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1491 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1492 			       next_bytenr, num_copies);
1493 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1494 			struct btrfsic_block_data_ctx next_block_ctx;
1495 			struct btrfsic_block *next_block;
1496 			int block_was_created;
1497 
1498 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1499 				printk(KERN_INFO "btrfsic_handle_extent_data("
1500 				       "mirror_num=%d)\n", mirror_num);
1501 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1502 				printk(KERN_INFO
1503 				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1504 				       next_bytenr, chunk_len);
1505 			ret = btrfsic_map_block(state, next_bytenr,
1506 						chunk_len, &next_block_ctx,
1507 						mirror_num);
1508 			if (ret) {
1509 				printk(KERN_INFO
1510 				       "btrfsic: btrfsic_map_block(@%llu,"
1511 				       " mirror=%d) failed!\n",
1512 				       next_bytenr, mirror_num);
1513 				return -1;
1514 			}
1515 
1516 			next_block = btrfsic_block_lookup_or_add(
1517 					state,
1518 					&next_block_ctx,
1519 					"referenced ",
1520 					0,
1521 					force_iodone_flag,
1522 					!force_iodone_flag,
1523 					mirror_num,
1524 					&block_was_created);
1525 			if (NULL == next_block) {
1526 				printk(KERN_INFO
1527 				       "btrfsic: error, kmalloc failed!\n");
1528 				btrfsic_release_block_ctx(&next_block_ctx);
1529 				return -1;
1530 			}
1531 			if (!block_was_created) {
1532 				if (next_block->logical_bytenr != next_bytenr &&
1533 				    !(!next_block->is_metadata &&
1534 				      0 == next_block->logical_bytenr)) {
1535 					printk(KERN_INFO
1536 					       "Referenced block"
1537 					       " @%llu (%s/%llu/%d)"
1538 					       " found in hash table, D,"
1539 					       " bytenr mismatch"
1540 					       " (!= stored %llu).\n",
1541 					       next_bytenr,
1542 					       next_block_ctx.dev->name,
1543 					       next_block_ctx.dev_bytenr,
1544 					       mirror_num,
1545 					       next_block->logical_bytenr);
1546 				}
1547 				next_block->logical_bytenr = next_bytenr;
1548 				next_block->mirror_num = mirror_num;
1549 			}
1550 
1551 			l = btrfsic_block_link_lookup_or_add(state,
1552 							     &next_block_ctx,
1553 							     next_block, block,
1554 							     generation);
1555 			btrfsic_release_block_ctx(&next_block_ctx);
1556 			if (NULL == l)
1557 				return -1;
1558 		}
1559 
1560 		next_bytenr += chunk_len;
1561 		num_bytes -= chunk_len;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1568 			     struct btrfsic_block_data_ctx *block_ctx_out,
1569 			     int mirror_num)
1570 {
1571 	int ret;
1572 	u64 length;
1573 	struct btrfs_bio *multi = NULL;
1574 	struct btrfs_device *device;
1575 
1576 	length = len;
1577 	ret = btrfs_map_block(state->root->fs_info, READ,
1578 			      bytenr, &length, &multi, mirror_num);
1579 
1580 	if (ret) {
1581 		block_ctx_out->start = 0;
1582 		block_ctx_out->dev_bytenr = 0;
1583 		block_ctx_out->len = 0;
1584 		block_ctx_out->dev = NULL;
1585 		block_ctx_out->datav = NULL;
1586 		block_ctx_out->pagev = NULL;
1587 		block_ctx_out->mem_to_free = NULL;
1588 
1589 		return ret;
1590 	}
1591 
1592 	device = multi->stripes[0].dev;
1593 	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1594 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1595 	block_ctx_out->start = bytenr;
1596 	block_ctx_out->len = len;
1597 	block_ctx_out->datav = NULL;
1598 	block_ctx_out->pagev = NULL;
1599 	block_ctx_out->mem_to_free = NULL;
1600 
1601 	kfree(multi);
1602 	if (NULL == block_ctx_out->dev) {
1603 		ret = -ENXIO;
1604 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1605 	}
1606 
1607 	return ret;
1608 }
1609 
1610 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1611 				  u32 len, struct block_device *bdev,
1612 				  struct btrfsic_block_data_ctx *block_ctx_out)
1613 {
1614 	block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1615 	block_ctx_out->dev_bytenr = bytenr;
1616 	block_ctx_out->start = bytenr;
1617 	block_ctx_out->len = len;
1618 	block_ctx_out->datav = NULL;
1619 	block_ctx_out->pagev = NULL;
1620 	block_ctx_out->mem_to_free = NULL;
1621 	if (NULL != block_ctx_out->dev) {
1622 		return 0;
1623 	} else {
1624 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1625 		return -ENXIO;
1626 	}
1627 }
1628 
1629 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1630 {
1631 	if (block_ctx->mem_to_free) {
1632 		unsigned int num_pages;
1633 
1634 		BUG_ON(!block_ctx->datav);
1635 		BUG_ON(!block_ctx->pagev);
1636 		num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1637 			    PAGE_CACHE_SHIFT;
1638 		while (num_pages > 0) {
1639 			num_pages--;
1640 			if (block_ctx->datav[num_pages]) {
1641 				kunmap(block_ctx->pagev[num_pages]);
1642 				block_ctx->datav[num_pages] = NULL;
1643 			}
1644 			if (block_ctx->pagev[num_pages]) {
1645 				__free_page(block_ctx->pagev[num_pages]);
1646 				block_ctx->pagev[num_pages] = NULL;
1647 			}
1648 		}
1649 
1650 		kfree(block_ctx->mem_to_free);
1651 		block_ctx->mem_to_free = NULL;
1652 		block_ctx->pagev = NULL;
1653 		block_ctx->datav = NULL;
1654 	}
1655 }
1656 
1657 static int btrfsic_read_block(struct btrfsic_state *state,
1658 			      struct btrfsic_block_data_ctx *block_ctx)
1659 {
1660 	unsigned int num_pages;
1661 	unsigned int i;
1662 	u64 dev_bytenr;
1663 	int ret;
1664 
1665 	BUG_ON(block_ctx->datav);
1666 	BUG_ON(block_ctx->pagev);
1667 	BUG_ON(block_ctx->mem_to_free);
1668 	if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1669 		printk(KERN_INFO
1670 		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1671 		       block_ctx->dev_bytenr);
1672 		return -1;
1673 	}
1674 
1675 	num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1676 		    PAGE_CACHE_SHIFT;
1677 	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1678 					  sizeof(*block_ctx->pagev)) *
1679 					 num_pages, GFP_NOFS);
1680 	if (!block_ctx->mem_to_free)
1681 		return -1;
1682 	block_ctx->datav = block_ctx->mem_to_free;
1683 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1684 	for (i = 0; i < num_pages; i++) {
1685 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1686 		if (!block_ctx->pagev[i])
1687 			return -1;
1688 	}
1689 
1690 	dev_bytenr = block_ctx->dev_bytenr;
1691 	for (i = 0; i < num_pages;) {
1692 		struct bio *bio;
1693 		unsigned int j;
1694 
1695 		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1696 		if (!bio) {
1697 			printk(KERN_INFO
1698 			       "btrfsic: bio_alloc() for %u pages failed!\n",
1699 			       num_pages - i);
1700 			return -1;
1701 		}
1702 		bio->bi_bdev = block_ctx->dev->bdev;
1703 		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1704 
1705 		for (j = i; j < num_pages; j++) {
1706 			ret = bio_add_page(bio, block_ctx->pagev[j],
1707 					   PAGE_CACHE_SIZE, 0);
1708 			if (PAGE_CACHE_SIZE != ret)
1709 				break;
1710 		}
1711 		if (j == i) {
1712 			printk(KERN_INFO
1713 			       "btrfsic: error, failed to add a single page!\n");
1714 			return -1;
1715 		}
1716 		if (submit_bio_wait(READ, bio)) {
1717 			printk(KERN_INFO
1718 			       "btrfsic: read error at logical %llu dev %s!\n",
1719 			       block_ctx->start, block_ctx->dev->name);
1720 			bio_put(bio);
1721 			return -1;
1722 		}
1723 		bio_put(bio);
1724 		dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1725 		i = j;
1726 	}
1727 	for (i = 0; i < num_pages; i++) {
1728 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1729 		if (!block_ctx->datav[i]) {
1730 			printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1731 			       block_ctx->dev->name);
1732 			return -1;
1733 		}
1734 	}
1735 
1736 	return block_ctx->len;
1737 }
1738 
1739 static void btrfsic_dump_database(struct btrfsic_state *state)
1740 {
1741 	struct list_head *elem_all;
1742 
1743 	BUG_ON(NULL == state);
1744 
1745 	printk(KERN_INFO "all_blocks_list:\n");
1746 	list_for_each(elem_all, &state->all_blocks_list) {
1747 		const struct btrfsic_block *const b_all =
1748 		    list_entry(elem_all, struct btrfsic_block,
1749 			       all_blocks_node);
1750 		struct list_head *elem_ref_to;
1751 		struct list_head *elem_ref_from;
1752 
1753 		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1754 		       btrfsic_get_block_type(state, b_all),
1755 		       b_all->logical_bytenr, b_all->dev_state->name,
1756 		       b_all->dev_bytenr, b_all->mirror_num);
1757 
1758 		list_for_each(elem_ref_to, &b_all->ref_to_list) {
1759 			const struct btrfsic_block_link *const l =
1760 			    list_entry(elem_ref_to,
1761 				       struct btrfsic_block_link,
1762 				       node_ref_to);
1763 
1764 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1765 			       " refers %u* to"
1766 			       " %c @%llu (%s/%llu/%d)\n",
1767 			       btrfsic_get_block_type(state, b_all),
1768 			       b_all->logical_bytenr, b_all->dev_state->name,
1769 			       b_all->dev_bytenr, b_all->mirror_num,
1770 			       l->ref_cnt,
1771 			       btrfsic_get_block_type(state, l->block_ref_to),
1772 			       l->block_ref_to->logical_bytenr,
1773 			       l->block_ref_to->dev_state->name,
1774 			       l->block_ref_to->dev_bytenr,
1775 			       l->block_ref_to->mirror_num);
1776 		}
1777 
1778 		list_for_each(elem_ref_from, &b_all->ref_from_list) {
1779 			const struct btrfsic_block_link *const l =
1780 			    list_entry(elem_ref_from,
1781 				       struct btrfsic_block_link,
1782 				       node_ref_from);
1783 
1784 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1785 			       " is ref %u* from"
1786 			       " %c @%llu (%s/%llu/%d)\n",
1787 			       btrfsic_get_block_type(state, b_all),
1788 			       b_all->logical_bytenr, b_all->dev_state->name,
1789 			       b_all->dev_bytenr, b_all->mirror_num,
1790 			       l->ref_cnt,
1791 			       btrfsic_get_block_type(state, l->block_ref_from),
1792 			       l->block_ref_from->logical_bytenr,
1793 			       l->block_ref_from->dev_state->name,
1794 			       l->block_ref_from->dev_bytenr,
1795 			       l->block_ref_from->mirror_num);
1796 		}
1797 
1798 		printk(KERN_INFO "\n");
1799 	}
1800 }
1801 
1802 /*
1803  * Test whether the disk block contains a tree block (leaf or node)
1804  * (note that this test fails for the super block)
1805  */
1806 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1807 				     char **datav, unsigned int num_pages)
1808 {
1809 	struct btrfs_header *h;
1810 	u8 csum[BTRFS_CSUM_SIZE];
1811 	u32 crc = ~(u32)0;
1812 	unsigned int i;
1813 
1814 	if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1815 		return 1; /* not metadata */
1816 	num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1817 	h = (struct btrfs_header *)datav[0];
1818 
1819 	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1820 		return 1;
1821 
1822 	for (i = 0; i < num_pages; i++) {
1823 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1824 		size_t sublen = i ? PAGE_CACHE_SIZE :
1825 				    (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1826 
1827 		crc = btrfs_crc32c(crc, data, sublen);
1828 	}
1829 	btrfs_csum_final(crc, csum);
1830 	if (memcmp(csum, h->csum, state->csum_size))
1831 		return 1;
1832 
1833 	return 0; /* is metadata */
1834 }
1835 
1836 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1837 					  u64 dev_bytenr, char **mapped_datav,
1838 					  unsigned int num_pages,
1839 					  struct bio *bio, int *bio_is_patched,
1840 					  struct buffer_head *bh,
1841 					  int submit_bio_bh_rw)
1842 {
1843 	int is_metadata;
1844 	struct btrfsic_block *block;
1845 	struct btrfsic_block_data_ctx block_ctx;
1846 	int ret;
1847 	struct btrfsic_state *state = dev_state->state;
1848 	struct block_device *bdev = dev_state->bdev;
1849 	unsigned int processed_len;
1850 
1851 	if (NULL != bio_is_patched)
1852 		*bio_is_patched = 0;
1853 
1854 again:
1855 	if (num_pages == 0)
1856 		return;
1857 
1858 	processed_len = 0;
1859 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1860 						      num_pages));
1861 
1862 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1863 					       &state->block_hashtable);
1864 	if (NULL != block) {
1865 		u64 bytenr = 0;
1866 		struct list_head *elem_ref_to;
1867 		struct list_head *tmp_ref_to;
1868 
1869 		if (block->is_superblock) {
1870 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1871 						    mapped_datav[0]);
1872 			if (num_pages * PAGE_CACHE_SIZE <
1873 			    BTRFS_SUPER_INFO_SIZE) {
1874 				printk(KERN_INFO
1875 				       "btrfsic: cannot work with too short bios!\n");
1876 				return;
1877 			}
1878 			is_metadata = 1;
1879 			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1880 			processed_len = BTRFS_SUPER_INFO_SIZE;
1881 			if (state->print_mask &
1882 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1883 				printk(KERN_INFO
1884 				       "[before new superblock is written]:\n");
1885 				btrfsic_dump_tree_sub(state, block, 0);
1886 			}
1887 		}
1888 		if (is_metadata) {
1889 			if (!block->is_superblock) {
1890 				if (num_pages * PAGE_CACHE_SIZE <
1891 				    state->metablock_size) {
1892 					printk(KERN_INFO
1893 					       "btrfsic: cannot work with too short bios!\n");
1894 					return;
1895 				}
1896 				processed_len = state->metablock_size;
1897 				bytenr = btrfs_stack_header_bytenr(
1898 						(struct btrfs_header *)
1899 						mapped_datav[0]);
1900 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1901 							       dev_state,
1902 							       dev_bytenr);
1903 			}
1904 			if (block->logical_bytenr != bytenr &&
1905 			    !(!block->is_metadata &&
1906 			      block->logical_bytenr == 0))
1907 				printk(KERN_INFO
1908 				       "Written block @%llu (%s/%llu/%d)"
1909 				       " found in hash table, %c,"
1910 				       " bytenr mismatch"
1911 				       " (!= stored %llu).\n",
1912 				       bytenr, dev_state->name, dev_bytenr,
1913 				       block->mirror_num,
1914 				       btrfsic_get_block_type(state, block),
1915 				       block->logical_bytenr);
1916 			else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1917 				printk(KERN_INFO
1918 				       "Written block @%llu (%s/%llu/%d)"
1919 				       " found in hash table, %c.\n",
1920 				       bytenr, dev_state->name, dev_bytenr,
1921 				       block->mirror_num,
1922 				       btrfsic_get_block_type(state, block));
1923 			block->logical_bytenr = bytenr;
1924 		} else {
1925 			if (num_pages * PAGE_CACHE_SIZE <
1926 			    state->datablock_size) {
1927 				printk(KERN_INFO
1928 				       "btrfsic: cannot work with too short bios!\n");
1929 				return;
1930 			}
1931 			processed_len = state->datablock_size;
1932 			bytenr = block->logical_bytenr;
1933 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1934 				printk(KERN_INFO
1935 				       "Written block @%llu (%s/%llu/%d)"
1936 				       " found in hash table, %c.\n",
1937 				       bytenr, dev_state->name, dev_bytenr,
1938 				       block->mirror_num,
1939 				       btrfsic_get_block_type(state, block));
1940 		}
1941 
1942 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1943 			printk(KERN_INFO
1944 			       "ref_to_list: %cE, ref_from_list: %cE\n",
1945 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1946 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1947 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1948 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1949 			       " @%llu (%s/%llu/%d), old(gen=%llu,"
1950 			       " objectid=%llu, type=%d, offset=%llu),"
1951 			       " new(gen=%llu),"
1952 			       " which is referenced by most recent superblock"
1953 			       " (superblockgen=%llu)!\n",
1954 			       btrfsic_get_block_type(state, block), bytenr,
1955 			       dev_state->name, dev_bytenr, block->mirror_num,
1956 			       block->generation,
1957 			       btrfs_disk_key_objectid(&block->disk_key),
1958 			       block->disk_key.type,
1959 			       btrfs_disk_key_offset(&block->disk_key),
1960 			       btrfs_stack_header_generation(
1961 				       (struct btrfs_header *) mapped_datav[0]),
1962 			       state->max_superblock_generation);
1963 			btrfsic_dump_tree(state);
1964 		}
1965 
1966 		if (!block->is_iodone && !block->never_written) {
1967 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1968 			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1969 			       " which is not yet iodone!\n",
1970 			       btrfsic_get_block_type(state, block), bytenr,
1971 			       dev_state->name, dev_bytenr, block->mirror_num,
1972 			       block->generation,
1973 			       btrfs_stack_header_generation(
1974 				       (struct btrfs_header *)
1975 				       mapped_datav[0]));
1976 			/* it would not be safe to go on */
1977 			btrfsic_dump_tree(state);
1978 			goto continue_loop;
1979 		}
1980 
1981 		/*
1982 		 * Clear all references of this block. Do not free
1983 		 * the block itself even if is not referenced anymore
1984 		 * because it still carries valueable information
1985 		 * like whether it was ever written and IO completed.
1986 		 */
1987 		list_for_each_safe(elem_ref_to, tmp_ref_to,
1988 				   &block->ref_to_list) {
1989 			struct btrfsic_block_link *const l =
1990 			    list_entry(elem_ref_to,
1991 				       struct btrfsic_block_link,
1992 				       node_ref_to);
1993 
1994 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1995 				btrfsic_print_rem_link(state, l);
1996 			l->ref_cnt--;
1997 			if (0 == l->ref_cnt) {
1998 				list_del(&l->node_ref_to);
1999 				list_del(&l->node_ref_from);
2000 				btrfsic_block_link_hashtable_remove(l);
2001 				btrfsic_block_link_free(l);
2002 			}
2003 		}
2004 
2005 		if (block->is_superblock)
2006 			ret = btrfsic_map_superblock(state, bytenr,
2007 						     processed_len,
2008 						     bdev, &block_ctx);
2009 		else
2010 			ret = btrfsic_map_block(state, bytenr, processed_len,
2011 						&block_ctx, 0);
2012 		if (ret) {
2013 			printk(KERN_INFO
2014 			       "btrfsic: btrfsic_map_block(root @%llu)"
2015 			       " failed!\n", bytenr);
2016 			goto continue_loop;
2017 		}
2018 		block_ctx.datav = mapped_datav;
2019 		/* the following is required in case of writes to mirrors,
2020 		 * use the same that was used for the lookup */
2021 		block_ctx.dev = dev_state;
2022 		block_ctx.dev_bytenr = dev_bytenr;
2023 
2024 		if (is_metadata || state->include_extent_data) {
2025 			block->never_written = 0;
2026 			block->iodone_w_error = 0;
2027 			if (NULL != bio) {
2028 				block->is_iodone = 0;
2029 				BUG_ON(NULL == bio_is_patched);
2030 				if (!*bio_is_patched) {
2031 					block->orig_bio_bh_private =
2032 					    bio->bi_private;
2033 					block->orig_bio_bh_end_io.bio =
2034 					    bio->bi_end_io;
2035 					block->next_in_same_bio = NULL;
2036 					bio->bi_private = block;
2037 					bio->bi_end_io = btrfsic_bio_end_io;
2038 					*bio_is_patched = 1;
2039 				} else {
2040 					struct btrfsic_block *chained_block =
2041 					    (struct btrfsic_block *)
2042 					    bio->bi_private;
2043 
2044 					BUG_ON(NULL == chained_block);
2045 					block->orig_bio_bh_private =
2046 					    chained_block->orig_bio_bh_private;
2047 					block->orig_bio_bh_end_io.bio =
2048 					    chained_block->orig_bio_bh_end_io.
2049 					    bio;
2050 					block->next_in_same_bio = chained_block;
2051 					bio->bi_private = block;
2052 				}
2053 			} else if (NULL != bh) {
2054 				block->is_iodone = 0;
2055 				block->orig_bio_bh_private = bh->b_private;
2056 				block->orig_bio_bh_end_io.bh = bh->b_end_io;
2057 				block->next_in_same_bio = NULL;
2058 				bh->b_private = block;
2059 				bh->b_end_io = btrfsic_bh_end_io;
2060 			} else {
2061 				block->is_iodone = 1;
2062 				block->orig_bio_bh_private = NULL;
2063 				block->orig_bio_bh_end_io.bio = NULL;
2064 				block->next_in_same_bio = NULL;
2065 			}
2066 		}
2067 
2068 		block->flush_gen = dev_state->last_flush_gen + 1;
2069 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2070 		if (is_metadata) {
2071 			block->logical_bytenr = bytenr;
2072 			block->is_metadata = 1;
2073 			if (block->is_superblock) {
2074 				BUG_ON(PAGE_CACHE_SIZE !=
2075 				       BTRFS_SUPER_INFO_SIZE);
2076 				ret = btrfsic_process_written_superblock(
2077 						state,
2078 						block,
2079 						(struct btrfs_super_block *)
2080 						mapped_datav[0]);
2081 				if (state->print_mask &
2082 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2083 					printk(KERN_INFO
2084 					"[after new superblock is written]:\n");
2085 					btrfsic_dump_tree_sub(state, block, 0);
2086 				}
2087 			} else {
2088 				block->mirror_num = 0;	/* unknown */
2089 				ret = btrfsic_process_metablock(
2090 						state,
2091 						block,
2092 						&block_ctx,
2093 						0, 0);
2094 			}
2095 			if (ret)
2096 				printk(KERN_INFO
2097 				       "btrfsic: btrfsic_process_metablock"
2098 				       "(root @%llu) failed!\n",
2099 				       dev_bytenr);
2100 		} else {
2101 			block->is_metadata = 0;
2102 			block->mirror_num = 0;	/* unknown */
2103 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
2104 			if (!state->include_extent_data
2105 			    && list_empty(&block->ref_from_list)) {
2106 				/*
2107 				 * disk block is overwritten with extent
2108 				 * data (not meta data) and we are configured
2109 				 * to not include extent data: take the
2110 				 * chance and free the block's memory
2111 				 */
2112 				btrfsic_block_hashtable_remove(block);
2113 				list_del(&block->all_blocks_node);
2114 				btrfsic_block_free(block);
2115 			}
2116 		}
2117 		btrfsic_release_block_ctx(&block_ctx);
2118 	} else {
2119 		/* block has not been found in hash table */
2120 		u64 bytenr;
2121 
2122 		if (!is_metadata) {
2123 			processed_len = state->datablock_size;
2124 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2125 				printk(KERN_INFO "Written block (%s/%llu/?)"
2126 				       " !found in hash table, D.\n",
2127 				       dev_state->name, dev_bytenr);
2128 			if (!state->include_extent_data) {
2129 				/* ignore that written D block */
2130 				goto continue_loop;
2131 			}
2132 
2133 			/* this is getting ugly for the
2134 			 * include_extent_data case... */
2135 			bytenr = 0;	/* unknown */
2136 			block_ctx.start = bytenr;
2137 			block_ctx.len = processed_len;
2138 			block_ctx.mem_to_free = NULL;
2139 			block_ctx.pagev = NULL;
2140 		} else {
2141 			processed_len = state->metablock_size;
2142 			bytenr = btrfs_stack_header_bytenr(
2143 					(struct btrfs_header *)
2144 					mapped_datav[0]);
2145 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2146 						       dev_bytenr);
2147 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2148 				printk(KERN_INFO
2149 				       "Written block @%llu (%s/%llu/?)"
2150 				       " !found in hash table, M.\n",
2151 				       bytenr, dev_state->name, dev_bytenr);
2152 
2153 			ret = btrfsic_map_block(state, bytenr, processed_len,
2154 						&block_ctx, 0);
2155 			if (ret) {
2156 				printk(KERN_INFO
2157 				       "btrfsic: btrfsic_map_block(root @%llu)"
2158 				       " failed!\n",
2159 				       dev_bytenr);
2160 				goto continue_loop;
2161 			}
2162 		}
2163 		block_ctx.datav = mapped_datav;
2164 		/* the following is required in case of writes to mirrors,
2165 		 * use the same that was used for the lookup */
2166 		block_ctx.dev = dev_state;
2167 		block_ctx.dev_bytenr = dev_bytenr;
2168 
2169 		block = btrfsic_block_alloc();
2170 		if (NULL == block) {
2171 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2172 			btrfsic_release_block_ctx(&block_ctx);
2173 			goto continue_loop;
2174 		}
2175 		block->dev_state = dev_state;
2176 		block->dev_bytenr = dev_bytenr;
2177 		block->logical_bytenr = bytenr;
2178 		block->is_metadata = is_metadata;
2179 		block->never_written = 0;
2180 		block->iodone_w_error = 0;
2181 		block->mirror_num = 0;	/* unknown */
2182 		block->flush_gen = dev_state->last_flush_gen + 1;
2183 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2184 		if (NULL != bio) {
2185 			block->is_iodone = 0;
2186 			BUG_ON(NULL == bio_is_patched);
2187 			if (!*bio_is_patched) {
2188 				block->orig_bio_bh_private = bio->bi_private;
2189 				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2190 				block->next_in_same_bio = NULL;
2191 				bio->bi_private = block;
2192 				bio->bi_end_io = btrfsic_bio_end_io;
2193 				*bio_is_patched = 1;
2194 			} else {
2195 				struct btrfsic_block *chained_block =
2196 				    (struct btrfsic_block *)
2197 				    bio->bi_private;
2198 
2199 				BUG_ON(NULL == chained_block);
2200 				block->orig_bio_bh_private =
2201 				    chained_block->orig_bio_bh_private;
2202 				block->orig_bio_bh_end_io.bio =
2203 				    chained_block->orig_bio_bh_end_io.bio;
2204 				block->next_in_same_bio = chained_block;
2205 				bio->bi_private = block;
2206 			}
2207 		} else if (NULL != bh) {
2208 			block->is_iodone = 0;
2209 			block->orig_bio_bh_private = bh->b_private;
2210 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2211 			block->next_in_same_bio = NULL;
2212 			bh->b_private = block;
2213 			bh->b_end_io = btrfsic_bh_end_io;
2214 		} else {
2215 			block->is_iodone = 1;
2216 			block->orig_bio_bh_private = NULL;
2217 			block->orig_bio_bh_end_io.bio = NULL;
2218 			block->next_in_same_bio = NULL;
2219 		}
2220 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2221 			printk(KERN_INFO
2222 			       "New written %c-block @%llu (%s/%llu/%d)\n",
2223 			       is_metadata ? 'M' : 'D',
2224 			       block->logical_bytenr, block->dev_state->name,
2225 			       block->dev_bytenr, block->mirror_num);
2226 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2227 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2228 
2229 		if (is_metadata) {
2230 			ret = btrfsic_process_metablock(state, block,
2231 							&block_ctx, 0, 0);
2232 			if (ret)
2233 				printk(KERN_INFO
2234 				       "btrfsic: process_metablock(root @%llu)"
2235 				       " failed!\n",
2236 				       dev_bytenr);
2237 		}
2238 		btrfsic_release_block_ctx(&block_ctx);
2239 	}
2240 
2241 continue_loop:
2242 	BUG_ON(!processed_len);
2243 	dev_bytenr += processed_len;
2244 	mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2245 	num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2246 	goto again;
2247 }
2248 
2249 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2250 {
2251 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2252 	int iodone_w_error;
2253 
2254 	/* mutex is not held! This is not save if IO is not yet completed
2255 	 * on umount */
2256 	iodone_w_error = 0;
2257 	if (bio_error_status)
2258 		iodone_w_error = 1;
2259 
2260 	BUG_ON(NULL == block);
2261 	bp->bi_private = block->orig_bio_bh_private;
2262 	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2263 
2264 	do {
2265 		struct btrfsic_block *next_block;
2266 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2267 
2268 		if ((dev_state->state->print_mask &
2269 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2270 			printk(KERN_INFO
2271 			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2272 			       bio_error_status,
2273 			       btrfsic_get_block_type(dev_state->state, block),
2274 			       block->logical_bytenr, dev_state->name,
2275 			       block->dev_bytenr, block->mirror_num);
2276 		next_block = block->next_in_same_bio;
2277 		block->iodone_w_error = iodone_w_error;
2278 		if (block->submit_bio_bh_rw & REQ_FLUSH) {
2279 			dev_state->last_flush_gen++;
2280 			if ((dev_state->state->print_mask &
2281 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2282 				printk(KERN_INFO
2283 				       "bio_end_io() new %s flush_gen=%llu\n",
2284 				       dev_state->name,
2285 				       dev_state->last_flush_gen);
2286 		}
2287 		if (block->submit_bio_bh_rw & REQ_FUA)
2288 			block->flush_gen = 0; /* FUA completed means block is
2289 					       * on disk */
2290 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2291 		block = next_block;
2292 	} while (NULL != block);
2293 
2294 	bp->bi_end_io(bp, bio_error_status);
2295 }
2296 
2297 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2298 {
2299 	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2300 	int iodone_w_error = !uptodate;
2301 	struct btrfsic_dev_state *dev_state;
2302 
2303 	BUG_ON(NULL == block);
2304 	dev_state = block->dev_state;
2305 	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2306 		printk(KERN_INFO
2307 		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2308 		       iodone_w_error,
2309 		       btrfsic_get_block_type(dev_state->state, block),
2310 		       block->logical_bytenr, block->dev_state->name,
2311 		       block->dev_bytenr, block->mirror_num);
2312 
2313 	block->iodone_w_error = iodone_w_error;
2314 	if (block->submit_bio_bh_rw & REQ_FLUSH) {
2315 		dev_state->last_flush_gen++;
2316 		if ((dev_state->state->print_mask &
2317 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2318 			printk(KERN_INFO
2319 			       "bh_end_io() new %s flush_gen=%llu\n",
2320 			       dev_state->name, dev_state->last_flush_gen);
2321 	}
2322 	if (block->submit_bio_bh_rw & REQ_FUA)
2323 		block->flush_gen = 0; /* FUA completed means block is on disk */
2324 
2325 	bh->b_private = block->orig_bio_bh_private;
2326 	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2327 	block->is_iodone = 1; /* for FLUSH, this releases the block */
2328 	bh->b_end_io(bh, uptodate);
2329 }
2330 
2331 static int btrfsic_process_written_superblock(
2332 		struct btrfsic_state *state,
2333 		struct btrfsic_block *const superblock,
2334 		struct btrfs_super_block *const super_hdr)
2335 {
2336 	int pass;
2337 
2338 	superblock->generation = btrfs_super_generation(super_hdr);
2339 	if (!(superblock->generation > state->max_superblock_generation ||
2340 	      0 == state->max_superblock_generation)) {
2341 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2342 			printk(KERN_INFO
2343 			       "btrfsic: superblock @%llu (%s/%llu/%d)"
2344 			       " with old gen %llu <= %llu\n",
2345 			       superblock->logical_bytenr,
2346 			       superblock->dev_state->name,
2347 			       superblock->dev_bytenr, superblock->mirror_num,
2348 			       btrfs_super_generation(super_hdr),
2349 			       state->max_superblock_generation);
2350 	} else {
2351 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2352 			printk(KERN_INFO
2353 			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2354 			       " with new gen %llu > %llu\n",
2355 			       superblock->logical_bytenr,
2356 			       superblock->dev_state->name,
2357 			       superblock->dev_bytenr, superblock->mirror_num,
2358 			       btrfs_super_generation(super_hdr),
2359 			       state->max_superblock_generation);
2360 
2361 		state->max_superblock_generation =
2362 		    btrfs_super_generation(super_hdr);
2363 		state->latest_superblock = superblock;
2364 	}
2365 
2366 	for (pass = 0; pass < 3; pass++) {
2367 		int ret;
2368 		u64 next_bytenr;
2369 		struct btrfsic_block *next_block;
2370 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2371 		struct btrfsic_block_link *l;
2372 		int num_copies;
2373 		int mirror_num;
2374 		const char *additional_string = NULL;
2375 		struct btrfs_disk_key tmp_disk_key = {0};
2376 
2377 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2378 					    BTRFS_ROOT_ITEM_KEY);
2379 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2380 
2381 		switch (pass) {
2382 		case 0:
2383 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2384 						    BTRFS_ROOT_TREE_OBJECTID);
2385 			additional_string = "root ";
2386 			next_bytenr = btrfs_super_root(super_hdr);
2387 			if (state->print_mask &
2388 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2389 				printk(KERN_INFO "root@%llu\n", next_bytenr);
2390 			break;
2391 		case 1:
2392 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2393 						    BTRFS_CHUNK_TREE_OBJECTID);
2394 			additional_string = "chunk ";
2395 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2396 			if (state->print_mask &
2397 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2398 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2399 			break;
2400 		case 2:
2401 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2402 						    BTRFS_TREE_LOG_OBJECTID);
2403 			additional_string = "log ";
2404 			next_bytenr = btrfs_super_log_root(super_hdr);
2405 			if (0 == next_bytenr)
2406 				continue;
2407 			if (state->print_mask &
2408 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2409 				printk(KERN_INFO "log@%llu\n", next_bytenr);
2410 			break;
2411 		}
2412 
2413 		num_copies =
2414 		    btrfs_num_copies(state->root->fs_info,
2415 				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2416 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2417 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2418 			       next_bytenr, num_copies);
2419 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2420 			int was_created;
2421 
2422 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2423 				printk(KERN_INFO
2424 				       "btrfsic_process_written_superblock("
2425 				       "mirror_num=%d)\n", mirror_num);
2426 			ret = btrfsic_map_block(state, next_bytenr,
2427 						BTRFS_SUPER_INFO_SIZE,
2428 						&tmp_next_block_ctx,
2429 						mirror_num);
2430 			if (ret) {
2431 				printk(KERN_INFO
2432 				       "btrfsic: btrfsic_map_block(@%llu,"
2433 				       " mirror=%d) failed!\n",
2434 				       next_bytenr, mirror_num);
2435 				return -1;
2436 			}
2437 
2438 			next_block = btrfsic_block_lookup_or_add(
2439 					state,
2440 					&tmp_next_block_ctx,
2441 					additional_string,
2442 					1, 0, 1,
2443 					mirror_num,
2444 					&was_created);
2445 			if (NULL == next_block) {
2446 				printk(KERN_INFO
2447 				       "btrfsic: error, kmalloc failed!\n");
2448 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2449 				return -1;
2450 			}
2451 
2452 			next_block->disk_key = tmp_disk_key;
2453 			if (was_created)
2454 				next_block->generation =
2455 				    BTRFSIC_GENERATION_UNKNOWN;
2456 			l = btrfsic_block_link_lookup_or_add(
2457 					state,
2458 					&tmp_next_block_ctx,
2459 					next_block,
2460 					superblock,
2461 					BTRFSIC_GENERATION_UNKNOWN);
2462 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2463 			if (NULL == l)
2464 				return -1;
2465 		}
2466 	}
2467 
2468 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2469 		btrfsic_dump_tree(state);
2470 
2471 	return 0;
2472 }
2473 
2474 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2475 					struct btrfsic_block *const block,
2476 					int recursion_level)
2477 {
2478 	struct list_head *elem_ref_to;
2479 	int ret = 0;
2480 
2481 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2482 		/*
2483 		 * Note that this situation can happen and does not
2484 		 * indicate an error in regular cases. It happens
2485 		 * when disk blocks are freed and later reused.
2486 		 * The check-integrity module is not aware of any
2487 		 * block free operations, it just recognizes block
2488 		 * write operations. Therefore it keeps the linkage
2489 		 * information for a block until a block is
2490 		 * rewritten. This can temporarily cause incorrect
2491 		 * and even circular linkage informations. This
2492 		 * causes no harm unless such blocks are referenced
2493 		 * by the most recent super block.
2494 		 */
2495 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2496 			printk(KERN_INFO
2497 			       "btrfsic: abort cyclic linkage (case 1).\n");
2498 
2499 		return ret;
2500 	}
2501 
2502 	/*
2503 	 * This algorithm is recursive because the amount of used stack
2504 	 * space is very small and the max recursion depth is limited.
2505 	 */
2506 	list_for_each(elem_ref_to, &block->ref_to_list) {
2507 		const struct btrfsic_block_link *const l =
2508 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2509 			       node_ref_to);
2510 
2511 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2512 			printk(KERN_INFO
2513 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2514 			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
2515 			       recursion_level,
2516 			       btrfsic_get_block_type(state, block),
2517 			       block->logical_bytenr, block->dev_state->name,
2518 			       block->dev_bytenr, block->mirror_num,
2519 			       l->ref_cnt,
2520 			       btrfsic_get_block_type(state, l->block_ref_to),
2521 			       l->block_ref_to->logical_bytenr,
2522 			       l->block_ref_to->dev_state->name,
2523 			       l->block_ref_to->dev_bytenr,
2524 			       l->block_ref_to->mirror_num);
2525 		if (l->block_ref_to->never_written) {
2526 			printk(KERN_INFO "btrfs: attempt to write superblock"
2527 			       " which references block %c @%llu (%s/%llu/%d)"
2528 			       " which is never written!\n",
2529 			       btrfsic_get_block_type(state, l->block_ref_to),
2530 			       l->block_ref_to->logical_bytenr,
2531 			       l->block_ref_to->dev_state->name,
2532 			       l->block_ref_to->dev_bytenr,
2533 			       l->block_ref_to->mirror_num);
2534 			ret = -1;
2535 		} else if (!l->block_ref_to->is_iodone) {
2536 			printk(KERN_INFO "btrfs: attempt to write superblock"
2537 			       " which references block %c @%llu (%s/%llu/%d)"
2538 			       " which is not yet iodone!\n",
2539 			       btrfsic_get_block_type(state, l->block_ref_to),
2540 			       l->block_ref_to->logical_bytenr,
2541 			       l->block_ref_to->dev_state->name,
2542 			       l->block_ref_to->dev_bytenr,
2543 			       l->block_ref_to->mirror_num);
2544 			ret = -1;
2545 		} else if (l->block_ref_to->iodone_w_error) {
2546 			printk(KERN_INFO "btrfs: attempt to write superblock"
2547 			       " which references block %c @%llu (%s/%llu/%d)"
2548 			       " which has write error!\n",
2549 			       btrfsic_get_block_type(state, l->block_ref_to),
2550 			       l->block_ref_to->logical_bytenr,
2551 			       l->block_ref_to->dev_state->name,
2552 			       l->block_ref_to->dev_bytenr,
2553 			       l->block_ref_to->mirror_num);
2554 			ret = -1;
2555 		} else if (l->parent_generation !=
2556 			   l->block_ref_to->generation &&
2557 			   BTRFSIC_GENERATION_UNKNOWN !=
2558 			   l->parent_generation &&
2559 			   BTRFSIC_GENERATION_UNKNOWN !=
2560 			   l->block_ref_to->generation) {
2561 			printk(KERN_INFO "btrfs: attempt to write superblock"
2562 			       " which references block %c @%llu (%s/%llu/%d)"
2563 			       " with generation %llu !="
2564 			       " parent generation %llu!\n",
2565 			       btrfsic_get_block_type(state, l->block_ref_to),
2566 			       l->block_ref_to->logical_bytenr,
2567 			       l->block_ref_to->dev_state->name,
2568 			       l->block_ref_to->dev_bytenr,
2569 			       l->block_ref_to->mirror_num,
2570 			       l->block_ref_to->generation,
2571 			       l->parent_generation);
2572 			ret = -1;
2573 		} else if (l->block_ref_to->flush_gen >
2574 			   l->block_ref_to->dev_state->last_flush_gen) {
2575 			printk(KERN_INFO "btrfs: attempt to write superblock"
2576 			       " which references block %c @%llu (%s/%llu/%d)"
2577 			       " which is not flushed out of disk's write cache"
2578 			       " (block flush_gen=%llu,"
2579 			       " dev->flush_gen=%llu)!\n",
2580 			       btrfsic_get_block_type(state, l->block_ref_to),
2581 			       l->block_ref_to->logical_bytenr,
2582 			       l->block_ref_to->dev_state->name,
2583 			       l->block_ref_to->dev_bytenr,
2584 			       l->block_ref_to->mirror_num, block->flush_gen,
2585 			       l->block_ref_to->dev_state->last_flush_gen);
2586 			ret = -1;
2587 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2588 							      l->block_ref_to,
2589 							      recursion_level +
2590 							      1)) {
2591 			ret = -1;
2592 		}
2593 	}
2594 
2595 	return ret;
2596 }
2597 
2598 static int btrfsic_is_block_ref_by_superblock(
2599 		const struct btrfsic_state *state,
2600 		const struct btrfsic_block *block,
2601 		int recursion_level)
2602 {
2603 	struct list_head *elem_ref_from;
2604 
2605 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2606 		/* refer to comment at "abort cyclic linkage (case 1)" */
2607 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2608 			printk(KERN_INFO
2609 			       "btrfsic: abort cyclic linkage (case 2).\n");
2610 
2611 		return 0;
2612 	}
2613 
2614 	/*
2615 	 * This algorithm is recursive because the amount of used stack space
2616 	 * is very small and the max recursion depth is limited.
2617 	 */
2618 	list_for_each(elem_ref_from, &block->ref_from_list) {
2619 		const struct btrfsic_block_link *const l =
2620 		    list_entry(elem_ref_from, struct btrfsic_block_link,
2621 			       node_ref_from);
2622 
2623 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2624 			printk(KERN_INFO
2625 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2626 			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2627 			       recursion_level,
2628 			       btrfsic_get_block_type(state, block),
2629 			       block->logical_bytenr, block->dev_state->name,
2630 			       block->dev_bytenr, block->mirror_num,
2631 			       l->ref_cnt,
2632 			       btrfsic_get_block_type(state, l->block_ref_from),
2633 			       l->block_ref_from->logical_bytenr,
2634 			       l->block_ref_from->dev_state->name,
2635 			       l->block_ref_from->dev_bytenr,
2636 			       l->block_ref_from->mirror_num);
2637 		if (l->block_ref_from->is_superblock &&
2638 		    state->latest_superblock->dev_bytenr ==
2639 		    l->block_ref_from->dev_bytenr &&
2640 		    state->latest_superblock->dev_state->bdev ==
2641 		    l->block_ref_from->dev_state->bdev)
2642 			return 1;
2643 		else if (btrfsic_is_block_ref_by_superblock(state,
2644 							    l->block_ref_from,
2645 							    recursion_level +
2646 							    1))
2647 			return 1;
2648 	}
2649 
2650 	return 0;
2651 }
2652 
2653 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2654 				   const struct btrfsic_block_link *l)
2655 {
2656 	printk(KERN_INFO
2657 	       "Add %u* link from %c @%llu (%s/%llu/%d)"
2658 	       " to %c @%llu (%s/%llu/%d).\n",
2659 	       l->ref_cnt,
2660 	       btrfsic_get_block_type(state, l->block_ref_from),
2661 	       l->block_ref_from->logical_bytenr,
2662 	       l->block_ref_from->dev_state->name,
2663 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2664 	       btrfsic_get_block_type(state, l->block_ref_to),
2665 	       l->block_ref_to->logical_bytenr,
2666 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2667 	       l->block_ref_to->mirror_num);
2668 }
2669 
2670 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2671 				   const struct btrfsic_block_link *l)
2672 {
2673 	printk(KERN_INFO
2674 	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
2675 	       " to %c @%llu (%s/%llu/%d).\n",
2676 	       l->ref_cnt,
2677 	       btrfsic_get_block_type(state, l->block_ref_from),
2678 	       l->block_ref_from->logical_bytenr,
2679 	       l->block_ref_from->dev_state->name,
2680 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2681 	       btrfsic_get_block_type(state, l->block_ref_to),
2682 	       l->block_ref_to->logical_bytenr,
2683 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2684 	       l->block_ref_to->mirror_num);
2685 }
2686 
2687 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2688 				   const struct btrfsic_block *block)
2689 {
2690 	if (block->is_superblock &&
2691 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2692 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2693 		return 'S';
2694 	else if (block->is_superblock)
2695 		return 's';
2696 	else if (block->is_metadata)
2697 		return 'M';
2698 	else
2699 		return 'D';
2700 }
2701 
2702 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2703 {
2704 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2705 }
2706 
2707 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2708 				  const struct btrfsic_block *block,
2709 				  int indent_level)
2710 {
2711 	struct list_head *elem_ref_to;
2712 	int indent_add;
2713 	static char buf[80];
2714 	int cursor_position;
2715 
2716 	/*
2717 	 * Should better fill an on-stack buffer with a complete line and
2718 	 * dump it at once when it is time to print a newline character.
2719 	 */
2720 
2721 	/*
2722 	 * This algorithm is recursive because the amount of used stack space
2723 	 * is very small and the max recursion depth is limited.
2724 	 */
2725 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2726 			     btrfsic_get_block_type(state, block),
2727 			     block->logical_bytenr, block->dev_state->name,
2728 			     block->dev_bytenr, block->mirror_num);
2729 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2730 		printk("[...]\n");
2731 		return;
2732 	}
2733 	printk(buf);
2734 	indent_level += indent_add;
2735 	if (list_empty(&block->ref_to_list)) {
2736 		printk("\n");
2737 		return;
2738 	}
2739 	if (block->mirror_num > 1 &&
2740 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2741 		printk(" [...]\n");
2742 		return;
2743 	}
2744 
2745 	cursor_position = indent_level;
2746 	list_for_each(elem_ref_to, &block->ref_to_list) {
2747 		const struct btrfsic_block_link *const l =
2748 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2749 			       node_ref_to);
2750 
2751 		while (cursor_position < indent_level) {
2752 			printk(" ");
2753 			cursor_position++;
2754 		}
2755 		if (l->ref_cnt > 1)
2756 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2757 		else
2758 			indent_add = sprintf(buf, " --> ");
2759 		if (indent_level + indent_add >
2760 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2761 			printk("[...]\n");
2762 			cursor_position = 0;
2763 			continue;
2764 		}
2765 
2766 		printk(buf);
2767 
2768 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2769 				      indent_level + indent_add);
2770 		cursor_position = 0;
2771 	}
2772 }
2773 
2774 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2775 		struct btrfsic_state *state,
2776 		struct btrfsic_block_data_ctx *next_block_ctx,
2777 		struct btrfsic_block *next_block,
2778 		struct btrfsic_block *from_block,
2779 		u64 parent_generation)
2780 {
2781 	struct btrfsic_block_link *l;
2782 
2783 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2784 						next_block_ctx->dev_bytenr,
2785 						from_block->dev_state->bdev,
2786 						from_block->dev_bytenr,
2787 						&state->block_link_hashtable);
2788 	if (NULL == l) {
2789 		l = btrfsic_block_link_alloc();
2790 		if (NULL == l) {
2791 			printk(KERN_INFO
2792 			       "btrfsic: error, kmalloc" " failed!\n");
2793 			return NULL;
2794 		}
2795 
2796 		l->block_ref_to = next_block;
2797 		l->block_ref_from = from_block;
2798 		l->ref_cnt = 1;
2799 		l->parent_generation = parent_generation;
2800 
2801 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2802 			btrfsic_print_add_link(state, l);
2803 
2804 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2805 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2806 
2807 		btrfsic_block_link_hashtable_add(l,
2808 						 &state->block_link_hashtable);
2809 	} else {
2810 		l->ref_cnt++;
2811 		l->parent_generation = parent_generation;
2812 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2813 			btrfsic_print_add_link(state, l);
2814 	}
2815 
2816 	return l;
2817 }
2818 
2819 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2820 		struct btrfsic_state *state,
2821 		struct btrfsic_block_data_ctx *block_ctx,
2822 		const char *additional_string,
2823 		int is_metadata,
2824 		int is_iodone,
2825 		int never_written,
2826 		int mirror_num,
2827 		int *was_created)
2828 {
2829 	struct btrfsic_block *block;
2830 
2831 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2832 					       block_ctx->dev_bytenr,
2833 					       &state->block_hashtable);
2834 	if (NULL == block) {
2835 		struct btrfsic_dev_state *dev_state;
2836 
2837 		block = btrfsic_block_alloc();
2838 		if (NULL == block) {
2839 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2840 			return NULL;
2841 		}
2842 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2843 		if (NULL == dev_state) {
2844 			printk(KERN_INFO
2845 			       "btrfsic: error, lookup dev_state failed!\n");
2846 			btrfsic_block_free(block);
2847 			return NULL;
2848 		}
2849 		block->dev_state = dev_state;
2850 		block->dev_bytenr = block_ctx->dev_bytenr;
2851 		block->logical_bytenr = block_ctx->start;
2852 		block->is_metadata = is_metadata;
2853 		block->is_iodone = is_iodone;
2854 		block->never_written = never_written;
2855 		block->mirror_num = mirror_num;
2856 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2857 			printk(KERN_INFO
2858 			       "New %s%c-block @%llu (%s/%llu/%d)\n",
2859 			       additional_string,
2860 			       btrfsic_get_block_type(state, block),
2861 			       block->logical_bytenr, dev_state->name,
2862 			       block->dev_bytenr, mirror_num);
2863 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2864 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2865 		if (NULL != was_created)
2866 			*was_created = 1;
2867 	} else {
2868 		if (NULL != was_created)
2869 			*was_created = 0;
2870 	}
2871 
2872 	return block;
2873 }
2874 
2875 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2876 					   u64 bytenr,
2877 					   struct btrfsic_dev_state *dev_state,
2878 					   u64 dev_bytenr)
2879 {
2880 	int num_copies;
2881 	int mirror_num;
2882 	int ret;
2883 	struct btrfsic_block_data_ctx block_ctx;
2884 	int match = 0;
2885 
2886 	num_copies = btrfs_num_copies(state->root->fs_info,
2887 				      bytenr, state->metablock_size);
2888 
2889 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2890 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2891 					&block_ctx, mirror_num);
2892 		if (ret) {
2893 			printk(KERN_INFO "btrfsic:"
2894 			       " btrfsic_map_block(logical @%llu,"
2895 			       " mirror %d) failed!\n",
2896 			       bytenr, mirror_num);
2897 			continue;
2898 		}
2899 
2900 		if (dev_state->bdev == block_ctx.dev->bdev &&
2901 		    dev_bytenr == block_ctx.dev_bytenr) {
2902 			match++;
2903 			btrfsic_release_block_ctx(&block_ctx);
2904 			break;
2905 		}
2906 		btrfsic_release_block_ctx(&block_ctx);
2907 	}
2908 
2909 	if (WARN_ON(!match)) {
2910 		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2911 		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2912 		       " phys_bytenr=%llu)!\n",
2913 		       bytenr, dev_state->name, dev_bytenr);
2914 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2915 			ret = btrfsic_map_block(state, bytenr,
2916 						state->metablock_size,
2917 						&block_ctx, mirror_num);
2918 			if (ret)
2919 				continue;
2920 
2921 			printk(KERN_INFO "Read logical bytenr @%llu maps to"
2922 			       " (%s/%llu/%d)\n",
2923 			       bytenr, block_ctx.dev->name,
2924 			       block_ctx.dev_bytenr, mirror_num);
2925 		}
2926 	}
2927 }
2928 
2929 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2930 		struct block_device *bdev)
2931 {
2932 	struct btrfsic_dev_state *ds;
2933 
2934 	ds = btrfsic_dev_state_hashtable_lookup(bdev,
2935 						&btrfsic_dev_state_hashtable);
2936 	return ds;
2937 }
2938 
2939 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2940 {
2941 	struct btrfsic_dev_state *dev_state;
2942 
2943 	if (!btrfsic_is_initialized)
2944 		return submit_bh(rw, bh);
2945 
2946 	mutex_lock(&btrfsic_mutex);
2947 	/* since btrfsic_submit_bh() might also be called before
2948 	 * btrfsic_mount(), this might return NULL */
2949 	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2950 
2951 	/* Only called to write the superblock (incl. FLUSH/FUA) */
2952 	if (NULL != dev_state &&
2953 	    (rw & WRITE) && bh->b_size > 0) {
2954 		u64 dev_bytenr;
2955 
2956 		dev_bytenr = 4096 * bh->b_blocknr;
2957 		if (dev_state->state->print_mask &
2958 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2959 			printk(KERN_INFO
2960 			       "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2961 			       " size=%zu, data=%p, bdev=%p)\n",
2962 			       rw, (unsigned long long)bh->b_blocknr,
2963 			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2964 		btrfsic_process_written_block(dev_state, dev_bytenr,
2965 					      &bh->b_data, 1, NULL,
2966 					      NULL, bh, rw);
2967 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2968 		if (dev_state->state->print_mask &
2969 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2970 			printk(KERN_INFO
2971 			       "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2972 			       rw, bh->b_bdev);
2973 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2974 			if ((dev_state->state->print_mask &
2975 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2976 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2977 				printk(KERN_INFO
2978 				       "btrfsic_submit_bh(%s) with FLUSH"
2979 				       " but dummy block already in use"
2980 				       " (ignored)!\n",
2981 				       dev_state->name);
2982 		} else {
2983 			struct btrfsic_block *const block =
2984 				&dev_state->dummy_block_for_bio_bh_flush;
2985 
2986 			block->is_iodone = 0;
2987 			block->never_written = 0;
2988 			block->iodone_w_error = 0;
2989 			block->flush_gen = dev_state->last_flush_gen + 1;
2990 			block->submit_bio_bh_rw = rw;
2991 			block->orig_bio_bh_private = bh->b_private;
2992 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2993 			block->next_in_same_bio = NULL;
2994 			bh->b_private = block;
2995 			bh->b_end_io = btrfsic_bh_end_io;
2996 		}
2997 	}
2998 	mutex_unlock(&btrfsic_mutex);
2999 	return submit_bh(rw, bh);
3000 }
3001 
3002 static void __btrfsic_submit_bio(int rw, struct bio *bio)
3003 {
3004 	struct btrfsic_dev_state *dev_state;
3005 
3006 	if (!btrfsic_is_initialized)
3007 		return;
3008 
3009 	mutex_lock(&btrfsic_mutex);
3010 	/* since btrfsic_submit_bio() is also called before
3011 	 * btrfsic_mount(), this might return NULL */
3012 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3013 	if (NULL != dev_state &&
3014 	    (rw & WRITE) && NULL != bio->bi_io_vec) {
3015 		unsigned int i;
3016 		u64 dev_bytenr;
3017 		u64 cur_bytenr;
3018 		int bio_is_patched;
3019 		char **mapped_datav;
3020 
3021 		dev_bytenr = 512 * bio->bi_iter.bi_sector;
3022 		bio_is_patched = 0;
3023 		if (dev_state->state->print_mask &
3024 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3025 			printk(KERN_INFO
3026 			       "submit_bio(rw=0x%x, bi_vcnt=%u,"
3027 			       " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3028 			       rw, bio->bi_vcnt,
3029 			       (unsigned long long)bio->bi_iter.bi_sector,
3030 			       dev_bytenr, bio->bi_bdev);
3031 
3032 		mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3033 				       GFP_NOFS);
3034 		if (!mapped_datav)
3035 			goto leave;
3036 		cur_bytenr = dev_bytenr;
3037 		for (i = 0; i < bio->bi_vcnt; i++) {
3038 			BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3039 			mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3040 			if (!mapped_datav[i]) {
3041 				while (i > 0) {
3042 					i--;
3043 					kunmap(bio->bi_io_vec[i].bv_page);
3044 				}
3045 				kfree(mapped_datav);
3046 				goto leave;
3047 			}
3048 			if (dev_state->state->print_mask &
3049 			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3050 				printk(KERN_INFO
3051 				       "#%u: bytenr=%llu, len=%u, offset=%u\n",
3052 				       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3053 				       bio->bi_io_vec[i].bv_offset);
3054 			cur_bytenr += bio->bi_io_vec[i].bv_len;
3055 		}
3056 		btrfsic_process_written_block(dev_state, dev_bytenr,
3057 					      mapped_datav, bio->bi_vcnt,
3058 					      bio, &bio_is_patched,
3059 					      NULL, rw);
3060 		while (i > 0) {
3061 			i--;
3062 			kunmap(bio->bi_io_vec[i].bv_page);
3063 		}
3064 		kfree(mapped_datav);
3065 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3066 		if (dev_state->state->print_mask &
3067 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3068 			printk(KERN_INFO
3069 			       "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3070 			       rw, bio->bi_bdev);
3071 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3072 			if ((dev_state->state->print_mask &
3073 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3074 			      BTRFSIC_PRINT_MASK_VERBOSE)))
3075 				printk(KERN_INFO
3076 				       "btrfsic_submit_bio(%s) with FLUSH"
3077 				       " but dummy block already in use"
3078 				       " (ignored)!\n",
3079 				       dev_state->name);
3080 		} else {
3081 			struct btrfsic_block *const block =
3082 				&dev_state->dummy_block_for_bio_bh_flush;
3083 
3084 			block->is_iodone = 0;
3085 			block->never_written = 0;
3086 			block->iodone_w_error = 0;
3087 			block->flush_gen = dev_state->last_flush_gen + 1;
3088 			block->submit_bio_bh_rw = rw;
3089 			block->orig_bio_bh_private = bio->bi_private;
3090 			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3091 			block->next_in_same_bio = NULL;
3092 			bio->bi_private = block;
3093 			bio->bi_end_io = btrfsic_bio_end_io;
3094 		}
3095 	}
3096 leave:
3097 	mutex_unlock(&btrfsic_mutex);
3098 }
3099 
3100 void btrfsic_submit_bio(int rw, struct bio *bio)
3101 {
3102 	__btrfsic_submit_bio(rw, bio);
3103 	submit_bio(rw, bio);
3104 }
3105 
3106 int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3107 {
3108 	__btrfsic_submit_bio(rw, bio);
3109 	return submit_bio_wait(rw, bio);
3110 }
3111 
3112 int btrfsic_mount(struct btrfs_root *root,
3113 		  struct btrfs_fs_devices *fs_devices,
3114 		  int including_extent_data, u32 print_mask)
3115 {
3116 	int ret;
3117 	struct btrfsic_state *state;
3118 	struct list_head *dev_head = &fs_devices->devices;
3119 	struct btrfs_device *device;
3120 
3121 	if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3122 		printk(KERN_INFO
3123 		       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3124 		       root->nodesize, PAGE_CACHE_SIZE);
3125 		return -1;
3126 	}
3127 	if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3128 		printk(KERN_INFO
3129 		       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3130 		       root->sectorsize, PAGE_CACHE_SIZE);
3131 		return -1;
3132 	}
3133 	state = kzalloc(sizeof(*state), GFP_NOFS);
3134 	if (NULL == state) {
3135 		printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3136 		return -1;
3137 	}
3138 
3139 	if (!btrfsic_is_initialized) {
3140 		mutex_init(&btrfsic_mutex);
3141 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3142 		btrfsic_is_initialized = 1;
3143 	}
3144 	mutex_lock(&btrfsic_mutex);
3145 	state->root = root;
3146 	state->print_mask = print_mask;
3147 	state->include_extent_data = including_extent_data;
3148 	state->csum_size = 0;
3149 	state->metablock_size = root->nodesize;
3150 	state->datablock_size = root->sectorsize;
3151 	INIT_LIST_HEAD(&state->all_blocks_list);
3152 	btrfsic_block_hashtable_init(&state->block_hashtable);
3153 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3154 	state->max_superblock_generation = 0;
3155 	state->latest_superblock = NULL;
3156 
3157 	list_for_each_entry(device, dev_head, dev_list) {
3158 		struct btrfsic_dev_state *ds;
3159 		char *p;
3160 
3161 		if (!device->bdev || !device->name)
3162 			continue;
3163 
3164 		ds = btrfsic_dev_state_alloc();
3165 		if (NULL == ds) {
3166 			printk(KERN_INFO
3167 			       "btrfs check-integrity: kmalloc() failed!\n");
3168 			mutex_unlock(&btrfsic_mutex);
3169 			return -1;
3170 		}
3171 		ds->bdev = device->bdev;
3172 		ds->state = state;
3173 		bdevname(ds->bdev, ds->name);
3174 		ds->name[BDEVNAME_SIZE - 1] = '\0';
3175 		for (p = ds->name; *p != '\0'; p++);
3176 		while (p > ds->name && *p != '/')
3177 			p--;
3178 		if (*p == '/')
3179 			p++;
3180 		strlcpy(ds->name, p, sizeof(ds->name));
3181 		btrfsic_dev_state_hashtable_add(ds,
3182 						&btrfsic_dev_state_hashtable);
3183 	}
3184 
3185 	ret = btrfsic_process_superblock(state, fs_devices);
3186 	if (0 != ret) {
3187 		mutex_unlock(&btrfsic_mutex);
3188 		btrfsic_unmount(root, fs_devices);
3189 		return ret;
3190 	}
3191 
3192 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3193 		btrfsic_dump_database(state);
3194 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3195 		btrfsic_dump_tree(state);
3196 
3197 	mutex_unlock(&btrfsic_mutex);
3198 	return 0;
3199 }
3200 
3201 void btrfsic_unmount(struct btrfs_root *root,
3202 		     struct btrfs_fs_devices *fs_devices)
3203 {
3204 	struct list_head *elem_all;
3205 	struct list_head *tmp_all;
3206 	struct btrfsic_state *state;
3207 	struct list_head *dev_head = &fs_devices->devices;
3208 	struct btrfs_device *device;
3209 
3210 	if (!btrfsic_is_initialized)
3211 		return;
3212 
3213 	mutex_lock(&btrfsic_mutex);
3214 
3215 	state = NULL;
3216 	list_for_each_entry(device, dev_head, dev_list) {
3217 		struct btrfsic_dev_state *ds;
3218 
3219 		if (!device->bdev || !device->name)
3220 			continue;
3221 
3222 		ds = btrfsic_dev_state_hashtable_lookup(
3223 				device->bdev,
3224 				&btrfsic_dev_state_hashtable);
3225 		if (NULL != ds) {
3226 			state = ds->state;
3227 			btrfsic_dev_state_hashtable_remove(ds);
3228 			btrfsic_dev_state_free(ds);
3229 		}
3230 	}
3231 
3232 	if (NULL == state) {
3233 		printk(KERN_INFO
3234 		       "btrfsic: error, cannot find state information"
3235 		       " on umount!\n");
3236 		mutex_unlock(&btrfsic_mutex);
3237 		return;
3238 	}
3239 
3240 	/*
3241 	 * Don't care about keeping the lists' state up to date,
3242 	 * just free all memory that was allocated dynamically.
3243 	 * Free the blocks and the block_links.
3244 	 */
3245 	list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3246 		struct btrfsic_block *const b_all =
3247 		    list_entry(elem_all, struct btrfsic_block,
3248 			       all_blocks_node);
3249 		struct list_head *elem_ref_to;
3250 		struct list_head *tmp_ref_to;
3251 
3252 		list_for_each_safe(elem_ref_to, tmp_ref_to,
3253 				   &b_all->ref_to_list) {
3254 			struct btrfsic_block_link *const l =
3255 			    list_entry(elem_ref_to,
3256 				       struct btrfsic_block_link,
3257 				       node_ref_to);
3258 
3259 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3260 				btrfsic_print_rem_link(state, l);
3261 
3262 			l->ref_cnt--;
3263 			if (0 == l->ref_cnt)
3264 				btrfsic_block_link_free(l);
3265 		}
3266 
3267 		if (b_all->is_iodone || b_all->never_written)
3268 			btrfsic_block_free(b_all);
3269 		else
3270 			printk(KERN_INFO "btrfs: attempt to free %c-block"
3271 			       " @%llu (%s/%llu/%d) on umount which is"
3272 			       " not yet iodone!\n",
3273 			       btrfsic_get_block_type(state, b_all),
3274 			       b_all->logical_bytenr, b_all->dev_state->name,
3275 			       b_all->dev_bytenr, b_all->mirror_num);
3276 	}
3277 
3278 	mutex_unlock(&btrfsic_mutex);
3279 
3280 	kfree(state);
3281 }
3282