xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and no write error was indicated and a
41  *        FLUSH request to the device where these blocks are
42  *        located was received and completed.
43  *    2b. All referenced blocks need to have a generation
44  *        number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  *
81  * Expect millions of lines of information in the kernel log with an
82  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83  * kernel config to at least 26 (which is 64MB). Usually the value is
84  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85  * changed like this before LOG_BUF_SHIFT can be set to a high value:
86  * config LOG_BUF_SHIFT
87  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88  *       range 12 30
89  */
90 
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include <linux/vmalloc.h>
98 #include "ctree.h"
99 #include "disk-io.h"
100 #include "hash.h"
101 #include "transaction.h"
102 #include "extent_io.h"
103 #include "volumes.h"
104 #include "print-tree.h"
105 #include "locking.h"
106 #include "check-integrity.h"
107 #include "rcu-string.h"
108 
109 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
110 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
111 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
112 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
113 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
114 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
115 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
116 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
117 							 * excluding " [...]" */
118 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
119 
120 /*
121  * The definition of the bitmask fields for the print_mask.
122  * They are specified with the mount option check_integrity_print_mask.
123  */
124 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
125 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
126 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
127 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
128 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
129 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
130 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
131 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
132 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
133 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
134 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
135 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
136 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
137 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
138 
139 struct btrfsic_dev_state;
140 struct btrfsic_state;
141 
142 struct btrfsic_block {
143 	u32 magic_num;		/* only used for debug purposes */
144 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
145 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
146 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
147 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
148 	unsigned int never_written:1;	/* block was added because it was
149 					 * referenced, not because it was
150 					 * written */
151 	unsigned int mirror_num;	/* large enough to hold
152 					 * BTRFS_SUPER_MIRROR_MAX */
153 	struct btrfsic_dev_state *dev_state;
154 	u64 dev_bytenr;		/* key, physical byte num on disk */
155 	u64 logical_bytenr;	/* logical byte num on disk */
156 	u64 generation;
157 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
158 					 * issues, will not always be correct */
159 	struct list_head collision_resolving_node;	/* list node */
160 	struct list_head all_blocks_node;	/* list node */
161 
162 	/* the following two lists contain block_link items */
163 	struct list_head ref_to_list;	/* list */
164 	struct list_head ref_from_list;	/* list */
165 	struct btrfsic_block *next_in_same_bio;
166 	void *orig_bio_bh_private;
167 	union {
168 		bio_end_io_t *bio;
169 		bh_end_io_t *bh;
170 	} orig_bio_bh_end_io;
171 	int submit_bio_bh_rw;
172 	u64 flush_gen; /* only valid if !never_written */
173 };
174 
175 /*
176  * Elements of this type are allocated dynamically and required because
177  * each block object can refer to and can be ref from multiple blocks.
178  * The key to lookup them in the hashtable is the dev_bytenr of
179  * the block ref to plus the one from the block refered from.
180  * The fact that they are searchable via a hashtable and that a
181  * ref_cnt is maintained is not required for the btrfs integrity
182  * check algorithm itself, it is only used to make the output more
183  * beautiful in case that an error is detected (an error is defined
184  * as a write operation to a block while that block is still referenced).
185  */
186 struct btrfsic_block_link {
187 	u32 magic_num;		/* only used for debug purposes */
188 	u32 ref_cnt;
189 	struct list_head node_ref_to;	/* list node */
190 	struct list_head node_ref_from;	/* list node */
191 	struct list_head collision_resolving_node;	/* list node */
192 	struct btrfsic_block *block_ref_to;
193 	struct btrfsic_block *block_ref_from;
194 	u64 parent_generation;
195 };
196 
197 struct btrfsic_dev_state {
198 	u32 magic_num;		/* only used for debug purposes */
199 	struct block_device *bdev;
200 	struct btrfsic_state *state;
201 	struct list_head collision_resolving_node;	/* list node */
202 	struct btrfsic_block dummy_block_for_bio_bh_flush;
203 	u64 last_flush_gen;
204 	char name[BDEVNAME_SIZE];
205 };
206 
207 struct btrfsic_block_hashtable {
208 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
209 };
210 
211 struct btrfsic_block_link_hashtable {
212 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
213 };
214 
215 struct btrfsic_dev_state_hashtable {
216 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
217 };
218 
219 struct btrfsic_block_data_ctx {
220 	u64 start;		/* virtual bytenr */
221 	u64 dev_bytenr;		/* physical bytenr on device */
222 	u32 len;
223 	struct btrfsic_dev_state *dev;
224 	char **datav;
225 	struct page **pagev;
226 	void *mem_to_free;
227 };
228 
229 /* This structure is used to implement recursion without occupying
230  * any stack space, refer to btrfsic_process_metablock() */
231 struct btrfsic_stack_frame {
232 	u32 magic;
233 	u32 nr;
234 	int error;
235 	int i;
236 	int limit_nesting;
237 	int num_copies;
238 	int mirror_num;
239 	struct btrfsic_block *block;
240 	struct btrfsic_block_data_ctx *block_ctx;
241 	struct btrfsic_block *next_block;
242 	struct btrfsic_block_data_ctx next_block_ctx;
243 	struct btrfs_header *hdr;
244 	struct btrfsic_stack_frame *prev;
245 };
246 
247 /* Some state per mounted filesystem */
248 struct btrfsic_state {
249 	u32 print_mask;
250 	int include_extent_data;
251 	int csum_size;
252 	struct list_head all_blocks_list;
253 	struct btrfsic_block_hashtable block_hashtable;
254 	struct btrfsic_block_link_hashtable block_link_hashtable;
255 	struct btrfs_root *root;
256 	u64 max_superblock_generation;
257 	struct btrfsic_block *latest_superblock;
258 	u32 metablock_size;
259 	u32 datablock_size;
260 };
261 
262 static void btrfsic_block_init(struct btrfsic_block *b);
263 static struct btrfsic_block *btrfsic_block_alloc(void);
264 static void btrfsic_block_free(struct btrfsic_block *b);
265 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
266 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
267 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
268 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
269 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
270 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
271 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
272 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
273 					struct btrfsic_block_hashtable *h);
274 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
275 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
276 		struct block_device *bdev,
277 		u64 dev_bytenr,
278 		struct btrfsic_block_hashtable *h);
279 static void btrfsic_block_link_hashtable_init(
280 		struct btrfsic_block_link_hashtable *h);
281 static void btrfsic_block_link_hashtable_add(
282 		struct btrfsic_block_link *l,
283 		struct btrfsic_block_link_hashtable *h);
284 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
285 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
286 		struct block_device *bdev_ref_to,
287 		u64 dev_bytenr_ref_to,
288 		struct block_device *bdev_ref_from,
289 		u64 dev_bytenr_ref_from,
290 		struct btrfsic_block_link_hashtable *h);
291 static void btrfsic_dev_state_hashtable_init(
292 		struct btrfsic_dev_state_hashtable *h);
293 static void btrfsic_dev_state_hashtable_add(
294 		struct btrfsic_dev_state *ds,
295 		struct btrfsic_dev_state_hashtable *h);
296 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
297 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
298 		struct block_device *bdev,
299 		struct btrfsic_dev_state_hashtable *h);
300 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
301 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
302 static int btrfsic_process_superblock(struct btrfsic_state *state,
303 				      struct btrfs_fs_devices *fs_devices);
304 static int btrfsic_process_metablock(struct btrfsic_state *state,
305 				     struct btrfsic_block *block,
306 				     struct btrfsic_block_data_ctx *block_ctx,
307 				     int limit_nesting, int force_iodone_flag);
308 static void btrfsic_read_from_block_data(
309 	struct btrfsic_block_data_ctx *block_ctx,
310 	void *dst, u32 offset, size_t len);
311 static int btrfsic_create_link_to_next_block(
312 		struct btrfsic_state *state,
313 		struct btrfsic_block *block,
314 		struct btrfsic_block_data_ctx
315 		*block_ctx, u64 next_bytenr,
316 		int limit_nesting,
317 		struct btrfsic_block_data_ctx *next_block_ctx,
318 		struct btrfsic_block **next_blockp,
319 		int force_iodone_flag,
320 		int *num_copiesp, int *mirror_nump,
321 		struct btrfs_disk_key *disk_key,
322 		u64 parent_generation);
323 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
324 				      struct btrfsic_block *block,
325 				      struct btrfsic_block_data_ctx *block_ctx,
326 				      u32 item_offset, int force_iodone_flag);
327 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
328 			     struct btrfsic_block_data_ctx *block_ctx_out,
329 			     int mirror_num);
330 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
331 static int btrfsic_read_block(struct btrfsic_state *state,
332 			      struct btrfsic_block_data_ctx *block_ctx);
333 static void btrfsic_dump_database(struct btrfsic_state *state);
334 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
335 				     char **datav, unsigned int num_pages);
336 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
337 					  u64 dev_bytenr, char **mapped_datav,
338 					  unsigned int num_pages,
339 					  struct bio *bio, int *bio_is_patched,
340 					  struct buffer_head *bh,
341 					  int submit_bio_bh_rw);
342 static int btrfsic_process_written_superblock(
343 		struct btrfsic_state *state,
344 		struct btrfsic_block *const block,
345 		struct btrfs_super_block *const super_hdr);
346 static void btrfsic_bio_end_io(struct bio *bp);
347 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
348 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
349 					      const struct btrfsic_block *block,
350 					      int recursion_level);
351 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
352 					struct btrfsic_block *const block,
353 					int recursion_level);
354 static void btrfsic_print_add_link(const struct btrfsic_state *state,
355 				   const struct btrfsic_block_link *l);
356 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
357 				   const struct btrfsic_block_link *l);
358 static char btrfsic_get_block_type(const struct btrfsic_state *state,
359 				   const struct btrfsic_block *block);
360 static void btrfsic_dump_tree(const struct btrfsic_state *state);
361 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
362 				  const struct btrfsic_block *block,
363 				  int indent_level);
364 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
365 		struct btrfsic_state *state,
366 		struct btrfsic_block_data_ctx *next_block_ctx,
367 		struct btrfsic_block *next_block,
368 		struct btrfsic_block *from_block,
369 		u64 parent_generation);
370 static struct btrfsic_block *btrfsic_block_lookup_or_add(
371 		struct btrfsic_state *state,
372 		struct btrfsic_block_data_ctx *block_ctx,
373 		const char *additional_string,
374 		int is_metadata,
375 		int is_iodone,
376 		int never_written,
377 		int mirror_num,
378 		int *was_created);
379 static int btrfsic_process_superblock_dev_mirror(
380 		struct btrfsic_state *state,
381 		struct btrfsic_dev_state *dev_state,
382 		struct btrfs_device *device,
383 		int superblock_mirror_num,
384 		struct btrfsic_dev_state **selected_dev_state,
385 		struct btrfs_super_block *selected_super);
386 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
387 		struct block_device *bdev);
388 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
389 					   u64 bytenr,
390 					   struct btrfsic_dev_state *dev_state,
391 					   u64 dev_bytenr);
392 
393 static struct mutex btrfsic_mutex;
394 static int btrfsic_is_initialized;
395 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
396 
397 
398 static void btrfsic_block_init(struct btrfsic_block *b)
399 {
400 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
401 	b->dev_state = NULL;
402 	b->dev_bytenr = 0;
403 	b->logical_bytenr = 0;
404 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
405 	b->disk_key.objectid = 0;
406 	b->disk_key.type = 0;
407 	b->disk_key.offset = 0;
408 	b->is_metadata = 0;
409 	b->is_superblock = 0;
410 	b->is_iodone = 0;
411 	b->iodone_w_error = 0;
412 	b->never_written = 0;
413 	b->mirror_num = 0;
414 	b->next_in_same_bio = NULL;
415 	b->orig_bio_bh_private = NULL;
416 	b->orig_bio_bh_end_io.bio = NULL;
417 	INIT_LIST_HEAD(&b->collision_resolving_node);
418 	INIT_LIST_HEAD(&b->all_blocks_node);
419 	INIT_LIST_HEAD(&b->ref_to_list);
420 	INIT_LIST_HEAD(&b->ref_from_list);
421 	b->submit_bio_bh_rw = 0;
422 	b->flush_gen = 0;
423 }
424 
425 static struct btrfsic_block *btrfsic_block_alloc(void)
426 {
427 	struct btrfsic_block *b;
428 
429 	b = kzalloc(sizeof(*b), GFP_NOFS);
430 	if (NULL != b)
431 		btrfsic_block_init(b);
432 
433 	return b;
434 }
435 
436 static void btrfsic_block_free(struct btrfsic_block *b)
437 {
438 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
439 	kfree(b);
440 }
441 
442 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
443 {
444 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
445 	l->ref_cnt = 1;
446 	INIT_LIST_HEAD(&l->node_ref_to);
447 	INIT_LIST_HEAD(&l->node_ref_from);
448 	INIT_LIST_HEAD(&l->collision_resolving_node);
449 	l->block_ref_to = NULL;
450 	l->block_ref_from = NULL;
451 }
452 
453 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
454 {
455 	struct btrfsic_block_link *l;
456 
457 	l = kzalloc(sizeof(*l), GFP_NOFS);
458 	if (NULL != l)
459 		btrfsic_block_link_init(l);
460 
461 	return l;
462 }
463 
464 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
465 {
466 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
467 	kfree(l);
468 }
469 
470 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
471 {
472 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
473 	ds->bdev = NULL;
474 	ds->state = NULL;
475 	ds->name[0] = '\0';
476 	INIT_LIST_HEAD(&ds->collision_resolving_node);
477 	ds->last_flush_gen = 0;
478 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
479 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
480 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
481 }
482 
483 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
484 {
485 	struct btrfsic_dev_state *ds;
486 
487 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
488 	if (NULL != ds)
489 		btrfsic_dev_state_init(ds);
490 
491 	return ds;
492 }
493 
494 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
495 {
496 	BUG_ON(!(NULL == ds ||
497 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
498 	kfree(ds);
499 }
500 
501 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
502 {
503 	int i;
504 
505 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
506 		INIT_LIST_HEAD(h->table + i);
507 }
508 
509 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
510 					struct btrfsic_block_hashtable *h)
511 {
512 	const unsigned int hashval =
513 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
514 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
515 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
516 
517 	list_add(&b->collision_resolving_node, h->table + hashval);
518 }
519 
520 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
521 {
522 	list_del(&b->collision_resolving_node);
523 }
524 
525 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
526 		struct block_device *bdev,
527 		u64 dev_bytenr,
528 		struct btrfsic_block_hashtable *h)
529 {
530 	const unsigned int hashval =
531 	    (((unsigned int)(dev_bytenr >> 16)) ^
532 	     ((unsigned int)((uintptr_t)bdev))) &
533 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
534 	struct list_head *elem;
535 
536 	list_for_each(elem, h->table + hashval) {
537 		struct btrfsic_block *const b =
538 		    list_entry(elem, struct btrfsic_block,
539 			       collision_resolving_node);
540 
541 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
542 			return b;
543 	}
544 
545 	return NULL;
546 }
547 
548 static void btrfsic_block_link_hashtable_init(
549 		struct btrfsic_block_link_hashtable *h)
550 {
551 	int i;
552 
553 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
554 		INIT_LIST_HEAD(h->table + i);
555 }
556 
557 static void btrfsic_block_link_hashtable_add(
558 		struct btrfsic_block_link *l,
559 		struct btrfsic_block_link_hashtable *h)
560 {
561 	const unsigned int hashval =
562 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
563 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
564 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
565 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
566 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
567 
568 	BUG_ON(NULL == l->block_ref_to);
569 	BUG_ON(NULL == l->block_ref_from);
570 	list_add(&l->collision_resolving_node, h->table + hashval);
571 }
572 
573 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
574 {
575 	list_del(&l->collision_resolving_node);
576 }
577 
578 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
579 		struct block_device *bdev_ref_to,
580 		u64 dev_bytenr_ref_to,
581 		struct block_device *bdev_ref_from,
582 		u64 dev_bytenr_ref_from,
583 		struct btrfsic_block_link_hashtable *h)
584 {
585 	const unsigned int hashval =
586 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
587 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
588 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
589 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
590 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
591 	struct list_head *elem;
592 
593 	list_for_each(elem, h->table + hashval) {
594 		struct btrfsic_block_link *const l =
595 		    list_entry(elem, struct btrfsic_block_link,
596 			       collision_resolving_node);
597 
598 		BUG_ON(NULL == l->block_ref_to);
599 		BUG_ON(NULL == l->block_ref_from);
600 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
601 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
602 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
603 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
604 			return l;
605 	}
606 
607 	return NULL;
608 }
609 
610 static void btrfsic_dev_state_hashtable_init(
611 		struct btrfsic_dev_state_hashtable *h)
612 {
613 	int i;
614 
615 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
616 		INIT_LIST_HEAD(h->table + i);
617 }
618 
619 static void btrfsic_dev_state_hashtable_add(
620 		struct btrfsic_dev_state *ds,
621 		struct btrfsic_dev_state_hashtable *h)
622 {
623 	const unsigned int hashval =
624 	    (((unsigned int)((uintptr_t)ds->bdev)) &
625 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
626 
627 	list_add(&ds->collision_resolving_node, h->table + hashval);
628 }
629 
630 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
631 {
632 	list_del(&ds->collision_resolving_node);
633 }
634 
635 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
636 		struct block_device *bdev,
637 		struct btrfsic_dev_state_hashtable *h)
638 {
639 	const unsigned int hashval =
640 	    (((unsigned int)((uintptr_t)bdev)) &
641 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
642 	struct list_head *elem;
643 
644 	list_for_each(elem, h->table + hashval) {
645 		struct btrfsic_dev_state *const ds =
646 		    list_entry(elem, struct btrfsic_dev_state,
647 			       collision_resolving_node);
648 
649 		if (ds->bdev == bdev)
650 			return ds;
651 	}
652 
653 	return NULL;
654 }
655 
656 static int btrfsic_process_superblock(struct btrfsic_state *state,
657 				      struct btrfs_fs_devices *fs_devices)
658 {
659 	int ret = 0;
660 	struct btrfs_super_block *selected_super;
661 	struct list_head *dev_head = &fs_devices->devices;
662 	struct btrfs_device *device;
663 	struct btrfsic_dev_state *selected_dev_state = NULL;
664 	int pass;
665 
666 	BUG_ON(NULL == state);
667 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
668 	if (NULL == selected_super) {
669 		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
670 		return -1;
671 	}
672 
673 	list_for_each_entry(device, dev_head, dev_list) {
674 		int i;
675 		struct btrfsic_dev_state *dev_state;
676 
677 		if (!device->bdev || !device->name)
678 			continue;
679 
680 		dev_state = btrfsic_dev_state_lookup(device->bdev);
681 		BUG_ON(NULL == dev_state);
682 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
683 			ret = btrfsic_process_superblock_dev_mirror(
684 					state, dev_state, device, i,
685 					&selected_dev_state, selected_super);
686 			if (0 != ret && 0 == i) {
687 				kfree(selected_super);
688 				return ret;
689 			}
690 		}
691 	}
692 
693 	if (NULL == state->latest_superblock) {
694 		printk(KERN_INFO "btrfsic: no superblock found!\n");
695 		kfree(selected_super);
696 		return -1;
697 	}
698 
699 	state->csum_size = btrfs_super_csum_size(selected_super);
700 
701 	for (pass = 0; pass < 3; pass++) {
702 		int num_copies;
703 		int mirror_num;
704 		u64 next_bytenr;
705 
706 		switch (pass) {
707 		case 0:
708 			next_bytenr = btrfs_super_root(selected_super);
709 			if (state->print_mask &
710 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
711 				printk(KERN_INFO "root@%llu\n", next_bytenr);
712 			break;
713 		case 1:
714 			next_bytenr = btrfs_super_chunk_root(selected_super);
715 			if (state->print_mask &
716 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
717 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
718 			break;
719 		case 2:
720 			next_bytenr = btrfs_super_log_root(selected_super);
721 			if (0 == next_bytenr)
722 				continue;
723 			if (state->print_mask &
724 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
725 				printk(KERN_INFO "log@%llu\n", next_bytenr);
726 			break;
727 		}
728 
729 		num_copies =
730 		    btrfs_num_copies(state->root->fs_info,
731 				     next_bytenr, state->metablock_size);
732 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
733 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
734 			       next_bytenr, num_copies);
735 
736 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
737 			struct btrfsic_block *next_block;
738 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
739 			struct btrfsic_block_link *l;
740 
741 			ret = btrfsic_map_block(state, next_bytenr,
742 						state->metablock_size,
743 						&tmp_next_block_ctx,
744 						mirror_num);
745 			if (ret) {
746 				printk(KERN_INFO "btrfsic:"
747 				       " btrfsic_map_block(root @%llu,"
748 				       " mirror %d) failed!\n",
749 				       next_bytenr, mirror_num);
750 				kfree(selected_super);
751 				return -1;
752 			}
753 
754 			next_block = btrfsic_block_hashtable_lookup(
755 					tmp_next_block_ctx.dev->bdev,
756 					tmp_next_block_ctx.dev_bytenr,
757 					&state->block_hashtable);
758 			BUG_ON(NULL == next_block);
759 
760 			l = btrfsic_block_link_hashtable_lookup(
761 					tmp_next_block_ctx.dev->bdev,
762 					tmp_next_block_ctx.dev_bytenr,
763 					state->latest_superblock->dev_state->
764 					bdev,
765 					state->latest_superblock->dev_bytenr,
766 					&state->block_link_hashtable);
767 			BUG_ON(NULL == l);
768 
769 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
770 			if (ret < (int)PAGE_CACHE_SIZE) {
771 				printk(KERN_INFO
772 				       "btrfsic: read @logical %llu failed!\n",
773 				       tmp_next_block_ctx.start);
774 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
775 				kfree(selected_super);
776 				return -1;
777 			}
778 
779 			ret = btrfsic_process_metablock(state,
780 							next_block,
781 							&tmp_next_block_ctx,
782 							BTRFS_MAX_LEVEL + 3, 1);
783 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
784 		}
785 	}
786 
787 	kfree(selected_super);
788 	return ret;
789 }
790 
791 static int btrfsic_process_superblock_dev_mirror(
792 		struct btrfsic_state *state,
793 		struct btrfsic_dev_state *dev_state,
794 		struct btrfs_device *device,
795 		int superblock_mirror_num,
796 		struct btrfsic_dev_state **selected_dev_state,
797 		struct btrfs_super_block *selected_super)
798 {
799 	struct btrfs_super_block *super_tmp;
800 	u64 dev_bytenr;
801 	struct buffer_head *bh;
802 	struct btrfsic_block *superblock_tmp;
803 	int pass;
804 	struct block_device *const superblock_bdev = device->bdev;
805 
806 	/* super block bytenr is always the unmapped device bytenr */
807 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
808 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
809 		return -1;
810 	bh = __bread(superblock_bdev, dev_bytenr / 4096,
811 		     BTRFS_SUPER_INFO_SIZE);
812 	if (NULL == bh)
813 		return -1;
814 	super_tmp = (struct btrfs_super_block *)
815 	    (bh->b_data + (dev_bytenr & 4095));
816 
817 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
818 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
819 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
820 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
821 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
822 		brelse(bh);
823 		return 0;
824 	}
825 
826 	superblock_tmp =
827 	    btrfsic_block_hashtable_lookup(superblock_bdev,
828 					   dev_bytenr,
829 					   &state->block_hashtable);
830 	if (NULL == superblock_tmp) {
831 		superblock_tmp = btrfsic_block_alloc();
832 		if (NULL == superblock_tmp) {
833 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
834 			brelse(bh);
835 			return -1;
836 		}
837 		/* for superblock, only the dev_bytenr makes sense */
838 		superblock_tmp->dev_bytenr = dev_bytenr;
839 		superblock_tmp->dev_state = dev_state;
840 		superblock_tmp->logical_bytenr = dev_bytenr;
841 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
842 		superblock_tmp->is_metadata = 1;
843 		superblock_tmp->is_superblock = 1;
844 		superblock_tmp->is_iodone = 1;
845 		superblock_tmp->never_written = 0;
846 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
847 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
848 			printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
849 				     " @%llu (%s/%llu/%d)\n",
850 				     superblock_bdev,
851 				     rcu_str_deref(device->name), dev_bytenr,
852 				     dev_state->name, dev_bytenr,
853 				     superblock_mirror_num);
854 		list_add(&superblock_tmp->all_blocks_node,
855 			 &state->all_blocks_list);
856 		btrfsic_block_hashtable_add(superblock_tmp,
857 					    &state->block_hashtable);
858 	}
859 
860 	/* select the one with the highest generation field */
861 	if (btrfs_super_generation(super_tmp) >
862 	    state->max_superblock_generation ||
863 	    0 == state->max_superblock_generation) {
864 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
865 		*selected_dev_state = dev_state;
866 		state->max_superblock_generation =
867 		    btrfs_super_generation(super_tmp);
868 		state->latest_superblock = superblock_tmp;
869 	}
870 
871 	for (pass = 0; pass < 3; pass++) {
872 		u64 next_bytenr;
873 		int num_copies;
874 		int mirror_num;
875 		const char *additional_string = NULL;
876 		struct btrfs_disk_key tmp_disk_key;
877 
878 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
879 		tmp_disk_key.offset = 0;
880 		switch (pass) {
881 		case 0:
882 			btrfs_set_disk_key_objectid(&tmp_disk_key,
883 						    BTRFS_ROOT_TREE_OBJECTID);
884 			additional_string = "initial root ";
885 			next_bytenr = btrfs_super_root(super_tmp);
886 			break;
887 		case 1:
888 			btrfs_set_disk_key_objectid(&tmp_disk_key,
889 						    BTRFS_CHUNK_TREE_OBJECTID);
890 			additional_string = "initial chunk ";
891 			next_bytenr = btrfs_super_chunk_root(super_tmp);
892 			break;
893 		case 2:
894 			btrfs_set_disk_key_objectid(&tmp_disk_key,
895 						    BTRFS_TREE_LOG_OBJECTID);
896 			additional_string = "initial log ";
897 			next_bytenr = btrfs_super_log_root(super_tmp);
898 			if (0 == next_bytenr)
899 				continue;
900 			break;
901 		}
902 
903 		num_copies =
904 		    btrfs_num_copies(state->root->fs_info,
905 				     next_bytenr, state->metablock_size);
906 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
907 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
908 			       next_bytenr, num_copies);
909 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
910 			struct btrfsic_block *next_block;
911 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
912 			struct btrfsic_block_link *l;
913 
914 			if (btrfsic_map_block(state, next_bytenr,
915 					      state->metablock_size,
916 					      &tmp_next_block_ctx,
917 					      mirror_num)) {
918 				printk(KERN_INFO "btrfsic: btrfsic_map_block("
919 				       "bytenr @%llu, mirror %d) failed!\n",
920 				       next_bytenr, mirror_num);
921 				brelse(bh);
922 				return -1;
923 			}
924 
925 			next_block = btrfsic_block_lookup_or_add(
926 					state, &tmp_next_block_ctx,
927 					additional_string, 1, 1, 0,
928 					mirror_num, NULL);
929 			if (NULL == next_block) {
930 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
931 				brelse(bh);
932 				return -1;
933 			}
934 
935 			next_block->disk_key = tmp_disk_key;
936 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
937 			l = btrfsic_block_link_lookup_or_add(
938 					state, &tmp_next_block_ctx,
939 					next_block, superblock_tmp,
940 					BTRFSIC_GENERATION_UNKNOWN);
941 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
942 			if (NULL == l) {
943 				brelse(bh);
944 				return -1;
945 			}
946 		}
947 	}
948 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
949 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
950 
951 	brelse(bh);
952 	return 0;
953 }
954 
955 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
956 {
957 	struct btrfsic_stack_frame *sf;
958 
959 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
960 	if (NULL == sf)
961 		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
962 	else
963 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
964 	return sf;
965 }
966 
967 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
968 {
969 	BUG_ON(!(NULL == sf ||
970 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
971 	kfree(sf);
972 }
973 
974 static int btrfsic_process_metablock(
975 		struct btrfsic_state *state,
976 		struct btrfsic_block *const first_block,
977 		struct btrfsic_block_data_ctx *const first_block_ctx,
978 		int first_limit_nesting, int force_iodone_flag)
979 {
980 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
981 	struct btrfsic_stack_frame *sf;
982 	struct btrfsic_stack_frame *next_stack;
983 	struct btrfs_header *const first_hdr =
984 		(struct btrfs_header *)first_block_ctx->datav[0];
985 
986 	BUG_ON(!first_hdr);
987 	sf = &initial_stack_frame;
988 	sf->error = 0;
989 	sf->i = -1;
990 	sf->limit_nesting = first_limit_nesting;
991 	sf->block = first_block;
992 	sf->block_ctx = first_block_ctx;
993 	sf->next_block = NULL;
994 	sf->hdr = first_hdr;
995 	sf->prev = NULL;
996 
997 continue_with_new_stack_frame:
998 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
999 	if (0 == sf->hdr->level) {
1000 		struct btrfs_leaf *const leafhdr =
1001 		    (struct btrfs_leaf *)sf->hdr;
1002 
1003 		if (-1 == sf->i) {
1004 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1005 
1006 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1007 				printk(KERN_INFO
1008 				       "leaf %llu items %d generation %llu"
1009 				       " owner %llu\n",
1010 				       sf->block_ctx->start, sf->nr,
1011 				       btrfs_stack_header_generation(
1012 					       &leafhdr->header),
1013 				       btrfs_stack_header_owner(
1014 					       &leafhdr->header));
1015 		}
1016 
1017 continue_with_current_leaf_stack_frame:
1018 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1019 			sf->i++;
1020 			sf->num_copies = 0;
1021 		}
1022 
1023 		if (sf->i < sf->nr) {
1024 			struct btrfs_item disk_item;
1025 			u32 disk_item_offset =
1026 				(uintptr_t)(leafhdr->items + sf->i) -
1027 				(uintptr_t)leafhdr;
1028 			struct btrfs_disk_key *disk_key;
1029 			u8 type;
1030 			u32 item_offset;
1031 			u32 item_size;
1032 
1033 			if (disk_item_offset + sizeof(struct btrfs_item) >
1034 			    sf->block_ctx->len) {
1035 leaf_item_out_of_bounce_error:
1036 				printk(KERN_INFO
1037 				       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1038 				       sf->block_ctx->start,
1039 				       sf->block_ctx->dev->name);
1040 				goto one_stack_frame_backwards;
1041 			}
1042 			btrfsic_read_from_block_data(sf->block_ctx,
1043 						     &disk_item,
1044 						     disk_item_offset,
1045 						     sizeof(struct btrfs_item));
1046 			item_offset = btrfs_stack_item_offset(&disk_item);
1047 			item_size = btrfs_stack_item_size(&disk_item);
1048 			disk_key = &disk_item.key;
1049 			type = btrfs_disk_key_type(disk_key);
1050 
1051 			if (BTRFS_ROOT_ITEM_KEY == type) {
1052 				struct btrfs_root_item root_item;
1053 				u32 root_item_offset;
1054 				u64 next_bytenr;
1055 
1056 				root_item_offset = item_offset +
1057 					offsetof(struct btrfs_leaf, items);
1058 				if (root_item_offset + item_size >
1059 				    sf->block_ctx->len)
1060 					goto leaf_item_out_of_bounce_error;
1061 				btrfsic_read_from_block_data(
1062 					sf->block_ctx, &root_item,
1063 					root_item_offset,
1064 					item_size);
1065 				next_bytenr = btrfs_root_bytenr(&root_item);
1066 
1067 				sf->error =
1068 				    btrfsic_create_link_to_next_block(
1069 						state,
1070 						sf->block,
1071 						sf->block_ctx,
1072 						next_bytenr,
1073 						sf->limit_nesting,
1074 						&sf->next_block_ctx,
1075 						&sf->next_block,
1076 						force_iodone_flag,
1077 						&sf->num_copies,
1078 						&sf->mirror_num,
1079 						disk_key,
1080 						btrfs_root_generation(
1081 						&root_item));
1082 				if (sf->error)
1083 					goto one_stack_frame_backwards;
1084 
1085 				if (NULL != sf->next_block) {
1086 					struct btrfs_header *const next_hdr =
1087 					    (struct btrfs_header *)
1088 					    sf->next_block_ctx.datav[0];
1089 
1090 					next_stack =
1091 					    btrfsic_stack_frame_alloc();
1092 					if (NULL == next_stack) {
1093 						sf->error = -1;
1094 						btrfsic_release_block_ctx(
1095 								&sf->
1096 								next_block_ctx);
1097 						goto one_stack_frame_backwards;
1098 					}
1099 
1100 					next_stack->i = -1;
1101 					next_stack->block = sf->next_block;
1102 					next_stack->block_ctx =
1103 					    &sf->next_block_ctx;
1104 					next_stack->next_block = NULL;
1105 					next_stack->hdr = next_hdr;
1106 					next_stack->limit_nesting =
1107 					    sf->limit_nesting - 1;
1108 					next_stack->prev = sf;
1109 					sf = next_stack;
1110 					goto continue_with_new_stack_frame;
1111 				}
1112 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1113 				   state->include_extent_data) {
1114 				sf->error = btrfsic_handle_extent_data(
1115 						state,
1116 						sf->block,
1117 						sf->block_ctx,
1118 						item_offset,
1119 						force_iodone_flag);
1120 				if (sf->error)
1121 					goto one_stack_frame_backwards;
1122 			}
1123 
1124 			goto continue_with_current_leaf_stack_frame;
1125 		}
1126 	} else {
1127 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1128 
1129 		if (-1 == sf->i) {
1130 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1131 
1132 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1133 				printk(KERN_INFO "node %llu level %d items %d"
1134 				       " generation %llu owner %llu\n",
1135 				       sf->block_ctx->start,
1136 				       nodehdr->header.level, sf->nr,
1137 				       btrfs_stack_header_generation(
1138 				       &nodehdr->header),
1139 				       btrfs_stack_header_owner(
1140 				       &nodehdr->header));
1141 		}
1142 
1143 continue_with_current_node_stack_frame:
1144 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1145 			sf->i++;
1146 			sf->num_copies = 0;
1147 		}
1148 
1149 		if (sf->i < sf->nr) {
1150 			struct btrfs_key_ptr key_ptr;
1151 			u32 key_ptr_offset;
1152 			u64 next_bytenr;
1153 
1154 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1155 					  (uintptr_t)nodehdr;
1156 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1157 			    sf->block_ctx->len) {
1158 				printk(KERN_INFO
1159 				       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1160 				       sf->block_ctx->start,
1161 				       sf->block_ctx->dev->name);
1162 				goto one_stack_frame_backwards;
1163 			}
1164 			btrfsic_read_from_block_data(
1165 				sf->block_ctx, &key_ptr, key_ptr_offset,
1166 				sizeof(struct btrfs_key_ptr));
1167 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1168 
1169 			sf->error = btrfsic_create_link_to_next_block(
1170 					state,
1171 					sf->block,
1172 					sf->block_ctx,
1173 					next_bytenr,
1174 					sf->limit_nesting,
1175 					&sf->next_block_ctx,
1176 					&sf->next_block,
1177 					force_iodone_flag,
1178 					&sf->num_copies,
1179 					&sf->mirror_num,
1180 					&key_ptr.key,
1181 					btrfs_stack_key_generation(&key_ptr));
1182 			if (sf->error)
1183 				goto one_stack_frame_backwards;
1184 
1185 			if (NULL != sf->next_block) {
1186 				struct btrfs_header *const next_hdr =
1187 				    (struct btrfs_header *)
1188 				    sf->next_block_ctx.datav[0];
1189 
1190 				next_stack = btrfsic_stack_frame_alloc();
1191 				if (NULL == next_stack) {
1192 					sf->error = -1;
1193 					goto one_stack_frame_backwards;
1194 				}
1195 
1196 				next_stack->i = -1;
1197 				next_stack->block = sf->next_block;
1198 				next_stack->block_ctx = &sf->next_block_ctx;
1199 				next_stack->next_block = NULL;
1200 				next_stack->hdr = next_hdr;
1201 				next_stack->limit_nesting =
1202 				    sf->limit_nesting - 1;
1203 				next_stack->prev = sf;
1204 				sf = next_stack;
1205 				goto continue_with_new_stack_frame;
1206 			}
1207 
1208 			goto continue_with_current_node_stack_frame;
1209 		}
1210 	}
1211 
1212 one_stack_frame_backwards:
1213 	if (NULL != sf->prev) {
1214 		struct btrfsic_stack_frame *const prev = sf->prev;
1215 
1216 		/* the one for the initial block is freed in the caller */
1217 		btrfsic_release_block_ctx(sf->block_ctx);
1218 
1219 		if (sf->error) {
1220 			prev->error = sf->error;
1221 			btrfsic_stack_frame_free(sf);
1222 			sf = prev;
1223 			goto one_stack_frame_backwards;
1224 		}
1225 
1226 		btrfsic_stack_frame_free(sf);
1227 		sf = prev;
1228 		goto continue_with_new_stack_frame;
1229 	} else {
1230 		BUG_ON(&initial_stack_frame != sf);
1231 	}
1232 
1233 	return sf->error;
1234 }
1235 
1236 static void btrfsic_read_from_block_data(
1237 	struct btrfsic_block_data_ctx *block_ctx,
1238 	void *dstv, u32 offset, size_t len)
1239 {
1240 	size_t cur;
1241 	size_t offset_in_page;
1242 	char *kaddr;
1243 	char *dst = (char *)dstv;
1244 	size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1245 	unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1246 
1247 	WARN_ON(offset + len > block_ctx->len);
1248 	offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1249 
1250 	while (len > 0) {
1251 		cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1252 		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_CACHE_SIZE));
1253 		kaddr = block_ctx->datav[i];
1254 		memcpy(dst, kaddr + offset_in_page, cur);
1255 
1256 		dst += cur;
1257 		len -= cur;
1258 		offset_in_page = 0;
1259 		i++;
1260 	}
1261 }
1262 
1263 static int btrfsic_create_link_to_next_block(
1264 		struct btrfsic_state *state,
1265 		struct btrfsic_block *block,
1266 		struct btrfsic_block_data_ctx *block_ctx,
1267 		u64 next_bytenr,
1268 		int limit_nesting,
1269 		struct btrfsic_block_data_ctx *next_block_ctx,
1270 		struct btrfsic_block **next_blockp,
1271 		int force_iodone_flag,
1272 		int *num_copiesp, int *mirror_nump,
1273 		struct btrfs_disk_key *disk_key,
1274 		u64 parent_generation)
1275 {
1276 	struct btrfsic_block *next_block = NULL;
1277 	int ret;
1278 	struct btrfsic_block_link *l;
1279 	int did_alloc_block_link;
1280 	int block_was_created;
1281 
1282 	*next_blockp = NULL;
1283 	if (0 == *num_copiesp) {
1284 		*num_copiesp =
1285 		    btrfs_num_copies(state->root->fs_info,
1286 				     next_bytenr, state->metablock_size);
1287 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1288 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1289 			       next_bytenr, *num_copiesp);
1290 		*mirror_nump = 1;
1291 	}
1292 
1293 	if (*mirror_nump > *num_copiesp)
1294 		return 0;
1295 
1296 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1297 		printk(KERN_INFO
1298 		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1299 		       *mirror_nump);
1300 	ret = btrfsic_map_block(state, next_bytenr,
1301 				state->metablock_size,
1302 				next_block_ctx, *mirror_nump);
1303 	if (ret) {
1304 		printk(KERN_INFO
1305 		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1306 		       next_bytenr, *mirror_nump);
1307 		btrfsic_release_block_ctx(next_block_ctx);
1308 		*next_blockp = NULL;
1309 		return -1;
1310 	}
1311 
1312 	next_block = btrfsic_block_lookup_or_add(state,
1313 						 next_block_ctx, "referenced ",
1314 						 1, force_iodone_flag,
1315 						 !force_iodone_flag,
1316 						 *mirror_nump,
1317 						 &block_was_created);
1318 	if (NULL == next_block) {
1319 		btrfsic_release_block_ctx(next_block_ctx);
1320 		*next_blockp = NULL;
1321 		return -1;
1322 	}
1323 	if (block_was_created) {
1324 		l = NULL;
1325 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1326 	} else {
1327 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1328 			if (next_block->logical_bytenr != next_bytenr &&
1329 			    !(!next_block->is_metadata &&
1330 			      0 == next_block->logical_bytenr))
1331 				printk(KERN_INFO
1332 				       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1333 				       next_bytenr, next_block_ctx->dev->name,
1334 				       next_block_ctx->dev_bytenr, *mirror_nump,
1335 				       btrfsic_get_block_type(state,
1336 							      next_block),
1337 				       next_block->logical_bytenr);
1338 			else
1339 				printk(KERN_INFO
1340 				       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1341 				       next_bytenr, next_block_ctx->dev->name,
1342 				       next_block_ctx->dev_bytenr, *mirror_nump,
1343 				       btrfsic_get_block_type(state,
1344 							      next_block));
1345 		}
1346 		next_block->logical_bytenr = next_bytenr;
1347 
1348 		next_block->mirror_num = *mirror_nump;
1349 		l = btrfsic_block_link_hashtable_lookup(
1350 				next_block_ctx->dev->bdev,
1351 				next_block_ctx->dev_bytenr,
1352 				block_ctx->dev->bdev,
1353 				block_ctx->dev_bytenr,
1354 				&state->block_link_hashtable);
1355 	}
1356 
1357 	next_block->disk_key = *disk_key;
1358 	if (NULL == l) {
1359 		l = btrfsic_block_link_alloc();
1360 		if (NULL == l) {
1361 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1362 			btrfsic_release_block_ctx(next_block_ctx);
1363 			*next_blockp = NULL;
1364 			return -1;
1365 		}
1366 
1367 		did_alloc_block_link = 1;
1368 		l->block_ref_to = next_block;
1369 		l->block_ref_from = block;
1370 		l->ref_cnt = 1;
1371 		l->parent_generation = parent_generation;
1372 
1373 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1374 			btrfsic_print_add_link(state, l);
1375 
1376 		list_add(&l->node_ref_to, &block->ref_to_list);
1377 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1378 
1379 		btrfsic_block_link_hashtable_add(l,
1380 						 &state->block_link_hashtable);
1381 	} else {
1382 		did_alloc_block_link = 0;
1383 		if (0 == limit_nesting) {
1384 			l->ref_cnt++;
1385 			l->parent_generation = parent_generation;
1386 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1387 				btrfsic_print_add_link(state, l);
1388 		}
1389 	}
1390 
1391 	if (limit_nesting > 0 && did_alloc_block_link) {
1392 		ret = btrfsic_read_block(state, next_block_ctx);
1393 		if (ret < (int)next_block_ctx->len) {
1394 			printk(KERN_INFO
1395 			       "btrfsic: read block @logical %llu failed!\n",
1396 			       next_bytenr);
1397 			btrfsic_release_block_ctx(next_block_ctx);
1398 			*next_blockp = NULL;
1399 			return -1;
1400 		}
1401 
1402 		*next_blockp = next_block;
1403 	} else {
1404 		*next_blockp = NULL;
1405 	}
1406 	(*mirror_nump)++;
1407 
1408 	return 0;
1409 }
1410 
1411 static int btrfsic_handle_extent_data(
1412 		struct btrfsic_state *state,
1413 		struct btrfsic_block *block,
1414 		struct btrfsic_block_data_ctx *block_ctx,
1415 		u32 item_offset, int force_iodone_flag)
1416 {
1417 	int ret;
1418 	struct btrfs_file_extent_item file_extent_item;
1419 	u64 file_extent_item_offset;
1420 	u64 next_bytenr;
1421 	u64 num_bytes;
1422 	u64 generation;
1423 	struct btrfsic_block_link *l;
1424 
1425 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1426 				  item_offset;
1427 	if (file_extent_item_offset +
1428 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1429 	    block_ctx->len) {
1430 		printk(KERN_INFO
1431 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1432 		       block_ctx->start, block_ctx->dev->name);
1433 		return -1;
1434 	}
1435 
1436 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1437 		file_extent_item_offset,
1438 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1439 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1440 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1441 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1442 			printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1443 			       file_extent_item.type,
1444 			       btrfs_stack_file_extent_disk_bytenr(
1445 			       &file_extent_item));
1446 		return 0;
1447 	}
1448 
1449 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1450 	    block_ctx->len) {
1451 		printk(KERN_INFO
1452 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1453 		       block_ctx->start, block_ctx->dev->name);
1454 		return -1;
1455 	}
1456 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1457 				     file_extent_item_offset,
1458 				     sizeof(struct btrfs_file_extent_item));
1459 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1460 	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1461 	    BTRFS_COMPRESS_NONE) {
1462 		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1463 		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1464 	} else {
1465 		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1466 	}
1467 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1468 
1469 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1470 		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1471 		       " offset = %llu, num_bytes = %llu\n",
1472 		       file_extent_item.type,
1473 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1474 		       btrfs_stack_file_extent_offset(&file_extent_item),
1475 		       num_bytes);
1476 	while (num_bytes > 0) {
1477 		u32 chunk_len;
1478 		int num_copies;
1479 		int mirror_num;
1480 
1481 		if (num_bytes > state->datablock_size)
1482 			chunk_len = state->datablock_size;
1483 		else
1484 			chunk_len = num_bytes;
1485 
1486 		num_copies =
1487 		    btrfs_num_copies(state->root->fs_info,
1488 				     next_bytenr, state->datablock_size);
1489 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1490 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1491 			       next_bytenr, num_copies);
1492 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1493 			struct btrfsic_block_data_ctx next_block_ctx;
1494 			struct btrfsic_block *next_block;
1495 			int block_was_created;
1496 
1497 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1498 				printk(KERN_INFO "btrfsic_handle_extent_data("
1499 				       "mirror_num=%d)\n", mirror_num);
1500 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1501 				printk(KERN_INFO
1502 				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1503 				       next_bytenr, chunk_len);
1504 			ret = btrfsic_map_block(state, next_bytenr,
1505 						chunk_len, &next_block_ctx,
1506 						mirror_num);
1507 			if (ret) {
1508 				printk(KERN_INFO
1509 				       "btrfsic: btrfsic_map_block(@%llu,"
1510 				       " mirror=%d) failed!\n",
1511 				       next_bytenr, mirror_num);
1512 				return -1;
1513 			}
1514 
1515 			next_block = btrfsic_block_lookup_or_add(
1516 					state,
1517 					&next_block_ctx,
1518 					"referenced ",
1519 					0,
1520 					force_iodone_flag,
1521 					!force_iodone_flag,
1522 					mirror_num,
1523 					&block_was_created);
1524 			if (NULL == next_block) {
1525 				printk(KERN_INFO
1526 				       "btrfsic: error, kmalloc failed!\n");
1527 				btrfsic_release_block_ctx(&next_block_ctx);
1528 				return -1;
1529 			}
1530 			if (!block_was_created) {
1531 				if ((state->print_mask &
1532 				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1533 				    next_block->logical_bytenr != next_bytenr &&
1534 				    !(!next_block->is_metadata &&
1535 				      0 == next_block->logical_bytenr)) {
1536 					printk(KERN_INFO
1537 					       "Referenced block"
1538 					       " @%llu (%s/%llu/%d)"
1539 					       " found in hash table, D,"
1540 					       " bytenr mismatch"
1541 					       " (!= stored %llu).\n",
1542 					       next_bytenr,
1543 					       next_block_ctx.dev->name,
1544 					       next_block_ctx.dev_bytenr,
1545 					       mirror_num,
1546 					       next_block->logical_bytenr);
1547 				}
1548 				next_block->logical_bytenr = next_bytenr;
1549 				next_block->mirror_num = mirror_num;
1550 			}
1551 
1552 			l = btrfsic_block_link_lookup_or_add(state,
1553 							     &next_block_ctx,
1554 							     next_block, block,
1555 							     generation);
1556 			btrfsic_release_block_ctx(&next_block_ctx);
1557 			if (NULL == l)
1558 				return -1;
1559 		}
1560 
1561 		next_bytenr += chunk_len;
1562 		num_bytes -= chunk_len;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1569 			     struct btrfsic_block_data_ctx *block_ctx_out,
1570 			     int mirror_num)
1571 {
1572 	int ret;
1573 	u64 length;
1574 	struct btrfs_bio *multi = NULL;
1575 	struct btrfs_device *device;
1576 
1577 	length = len;
1578 	ret = btrfs_map_block(state->root->fs_info, READ,
1579 			      bytenr, &length, &multi, mirror_num);
1580 
1581 	if (ret) {
1582 		block_ctx_out->start = 0;
1583 		block_ctx_out->dev_bytenr = 0;
1584 		block_ctx_out->len = 0;
1585 		block_ctx_out->dev = NULL;
1586 		block_ctx_out->datav = NULL;
1587 		block_ctx_out->pagev = NULL;
1588 		block_ctx_out->mem_to_free = NULL;
1589 
1590 		return ret;
1591 	}
1592 
1593 	device = multi->stripes[0].dev;
1594 	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1595 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1596 	block_ctx_out->start = bytenr;
1597 	block_ctx_out->len = len;
1598 	block_ctx_out->datav = NULL;
1599 	block_ctx_out->pagev = NULL;
1600 	block_ctx_out->mem_to_free = NULL;
1601 
1602 	kfree(multi);
1603 	if (NULL == block_ctx_out->dev) {
1604 		ret = -ENXIO;
1605 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1606 	}
1607 
1608 	return ret;
1609 }
1610 
1611 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1612 {
1613 	if (block_ctx->mem_to_free) {
1614 		unsigned int num_pages;
1615 
1616 		BUG_ON(!block_ctx->datav);
1617 		BUG_ON(!block_ctx->pagev);
1618 		num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1619 			    PAGE_CACHE_SHIFT;
1620 		while (num_pages > 0) {
1621 			num_pages--;
1622 			if (block_ctx->datav[num_pages]) {
1623 				kunmap(block_ctx->pagev[num_pages]);
1624 				block_ctx->datav[num_pages] = NULL;
1625 			}
1626 			if (block_ctx->pagev[num_pages]) {
1627 				__free_page(block_ctx->pagev[num_pages]);
1628 				block_ctx->pagev[num_pages] = NULL;
1629 			}
1630 		}
1631 
1632 		kfree(block_ctx->mem_to_free);
1633 		block_ctx->mem_to_free = NULL;
1634 		block_ctx->pagev = NULL;
1635 		block_ctx->datav = NULL;
1636 	}
1637 }
1638 
1639 static int btrfsic_read_block(struct btrfsic_state *state,
1640 			      struct btrfsic_block_data_ctx *block_ctx)
1641 {
1642 	unsigned int num_pages;
1643 	unsigned int i;
1644 	u64 dev_bytenr;
1645 	int ret;
1646 
1647 	BUG_ON(block_ctx->datav);
1648 	BUG_ON(block_ctx->pagev);
1649 	BUG_ON(block_ctx->mem_to_free);
1650 	if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1651 		printk(KERN_INFO
1652 		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1653 		       block_ctx->dev_bytenr);
1654 		return -1;
1655 	}
1656 
1657 	num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1658 		    PAGE_CACHE_SHIFT;
1659 	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1660 					  sizeof(*block_ctx->pagev)) *
1661 					 num_pages, GFP_NOFS);
1662 	if (!block_ctx->mem_to_free)
1663 		return -1;
1664 	block_ctx->datav = block_ctx->mem_to_free;
1665 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1666 	for (i = 0; i < num_pages; i++) {
1667 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1668 		if (!block_ctx->pagev[i])
1669 			return -1;
1670 	}
1671 
1672 	dev_bytenr = block_ctx->dev_bytenr;
1673 	for (i = 0; i < num_pages;) {
1674 		struct bio *bio;
1675 		unsigned int j;
1676 
1677 		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1678 		if (!bio) {
1679 			printk(KERN_INFO
1680 			       "btrfsic: bio_alloc() for %u pages failed!\n",
1681 			       num_pages - i);
1682 			return -1;
1683 		}
1684 		bio->bi_bdev = block_ctx->dev->bdev;
1685 		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1686 
1687 		for (j = i; j < num_pages; j++) {
1688 			ret = bio_add_page(bio, block_ctx->pagev[j],
1689 					   PAGE_CACHE_SIZE, 0);
1690 			if (PAGE_CACHE_SIZE != ret)
1691 				break;
1692 		}
1693 		if (j == i) {
1694 			printk(KERN_INFO
1695 			       "btrfsic: error, failed to add a single page!\n");
1696 			return -1;
1697 		}
1698 		if (submit_bio_wait(READ, bio)) {
1699 			printk(KERN_INFO
1700 			       "btrfsic: read error at logical %llu dev %s!\n",
1701 			       block_ctx->start, block_ctx->dev->name);
1702 			bio_put(bio);
1703 			return -1;
1704 		}
1705 		bio_put(bio);
1706 		dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1707 		i = j;
1708 	}
1709 	for (i = 0; i < num_pages; i++) {
1710 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1711 		if (!block_ctx->datav[i]) {
1712 			printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1713 			       block_ctx->dev->name);
1714 			return -1;
1715 		}
1716 	}
1717 
1718 	return block_ctx->len;
1719 }
1720 
1721 static void btrfsic_dump_database(struct btrfsic_state *state)
1722 {
1723 	struct list_head *elem_all;
1724 
1725 	BUG_ON(NULL == state);
1726 
1727 	printk(KERN_INFO "all_blocks_list:\n");
1728 	list_for_each(elem_all, &state->all_blocks_list) {
1729 		const struct btrfsic_block *const b_all =
1730 		    list_entry(elem_all, struct btrfsic_block,
1731 			       all_blocks_node);
1732 		struct list_head *elem_ref_to;
1733 		struct list_head *elem_ref_from;
1734 
1735 		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1736 		       btrfsic_get_block_type(state, b_all),
1737 		       b_all->logical_bytenr, b_all->dev_state->name,
1738 		       b_all->dev_bytenr, b_all->mirror_num);
1739 
1740 		list_for_each(elem_ref_to, &b_all->ref_to_list) {
1741 			const struct btrfsic_block_link *const l =
1742 			    list_entry(elem_ref_to,
1743 				       struct btrfsic_block_link,
1744 				       node_ref_to);
1745 
1746 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1747 			       " refers %u* to"
1748 			       " %c @%llu (%s/%llu/%d)\n",
1749 			       btrfsic_get_block_type(state, b_all),
1750 			       b_all->logical_bytenr, b_all->dev_state->name,
1751 			       b_all->dev_bytenr, b_all->mirror_num,
1752 			       l->ref_cnt,
1753 			       btrfsic_get_block_type(state, l->block_ref_to),
1754 			       l->block_ref_to->logical_bytenr,
1755 			       l->block_ref_to->dev_state->name,
1756 			       l->block_ref_to->dev_bytenr,
1757 			       l->block_ref_to->mirror_num);
1758 		}
1759 
1760 		list_for_each(elem_ref_from, &b_all->ref_from_list) {
1761 			const struct btrfsic_block_link *const l =
1762 			    list_entry(elem_ref_from,
1763 				       struct btrfsic_block_link,
1764 				       node_ref_from);
1765 
1766 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1767 			       " is ref %u* from"
1768 			       " %c @%llu (%s/%llu/%d)\n",
1769 			       btrfsic_get_block_type(state, b_all),
1770 			       b_all->logical_bytenr, b_all->dev_state->name,
1771 			       b_all->dev_bytenr, b_all->mirror_num,
1772 			       l->ref_cnt,
1773 			       btrfsic_get_block_type(state, l->block_ref_from),
1774 			       l->block_ref_from->logical_bytenr,
1775 			       l->block_ref_from->dev_state->name,
1776 			       l->block_ref_from->dev_bytenr,
1777 			       l->block_ref_from->mirror_num);
1778 		}
1779 
1780 		printk(KERN_INFO "\n");
1781 	}
1782 }
1783 
1784 /*
1785  * Test whether the disk block contains a tree block (leaf or node)
1786  * (note that this test fails for the super block)
1787  */
1788 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1789 				     char **datav, unsigned int num_pages)
1790 {
1791 	struct btrfs_header *h;
1792 	u8 csum[BTRFS_CSUM_SIZE];
1793 	u32 crc = ~(u32)0;
1794 	unsigned int i;
1795 
1796 	if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1797 		return 1; /* not metadata */
1798 	num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1799 	h = (struct btrfs_header *)datav[0];
1800 
1801 	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1802 		return 1;
1803 
1804 	for (i = 0; i < num_pages; i++) {
1805 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1806 		size_t sublen = i ? PAGE_CACHE_SIZE :
1807 				    (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1808 
1809 		crc = btrfs_crc32c(crc, data, sublen);
1810 	}
1811 	btrfs_csum_final(crc, csum);
1812 	if (memcmp(csum, h->csum, state->csum_size))
1813 		return 1;
1814 
1815 	return 0; /* is metadata */
1816 }
1817 
1818 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1819 					  u64 dev_bytenr, char **mapped_datav,
1820 					  unsigned int num_pages,
1821 					  struct bio *bio, int *bio_is_patched,
1822 					  struct buffer_head *bh,
1823 					  int submit_bio_bh_rw)
1824 {
1825 	int is_metadata;
1826 	struct btrfsic_block *block;
1827 	struct btrfsic_block_data_ctx block_ctx;
1828 	int ret;
1829 	struct btrfsic_state *state = dev_state->state;
1830 	struct block_device *bdev = dev_state->bdev;
1831 	unsigned int processed_len;
1832 
1833 	if (NULL != bio_is_patched)
1834 		*bio_is_patched = 0;
1835 
1836 again:
1837 	if (num_pages == 0)
1838 		return;
1839 
1840 	processed_len = 0;
1841 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1842 						      num_pages));
1843 
1844 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1845 					       &state->block_hashtable);
1846 	if (NULL != block) {
1847 		u64 bytenr = 0;
1848 		struct list_head *elem_ref_to;
1849 		struct list_head *tmp_ref_to;
1850 
1851 		if (block->is_superblock) {
1852 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1853 						    mapped_datav[0]);
1854 			if (num_pages * PAGE_CACHE_SIZE <
1855 			    BTRFS_SUPER_INFO_SIZE) {
1856 				printk(KERN_INFO
1857 				       "btrfsic: cannot work with too short bios!\n");
1858 				return;
1859 			}
1860 			is_metadata = 1;
1861 			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1862 			processed_len = BTRFS_SUPER_INFO_SIZE;
1863 			if (state->print_mask &
1864 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1865 				printk(KERN_INFO
1866 				       "[before new superblock is written]:\n");
1867 				btrfsic_dump_tree_sub(state, block, 0);
1868 			}
1869 		}
1870 		if (is_metadata) {
1871 			if (!block->is_superblock) {
1872 				if (num_pages * PAGE_CACHE_SIZE <
1873 				    state->metablock_size) {
1874 					printk(KERN_INFO
1875 					       "btrfsic: cannot work with too short bios!\n");
1876 					return;
1877 				}
1878 				processed_len = state->metablock_size;
1879 				bytenr = btrfs_stack_header_bytenr(
1880 						(struct btrfs_header *)
1881 						mapped_datav[0]);
1882 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1883 							       dev_state,
1884 							       dev_bytenr);
1885 			}
1886 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1887 				if (block->logical_bytenr != bytenr &&
1888 				    !(!block->is_metadata &&
1889 				      block->logical_bytenr == 0))
1890 					printk(KERN_INFO
1891 					       "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1892 					       bytenr, dev_state->name,
1893 					       dev_bytenr,
1894 					       block->mirror_num,
1895 					       btrfsic_get_block_type(state,
1896 								      block),
1897 					       block->logical_bytenr);
1898 				else
1899 					printk(KERN_INFO
1900 					       "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1901 					       bytenr, dev_state->name,
1902 					       dev_bytenr, block->mirror_num,
1903 					       btrfsic_get_block_type(state,
1904 								      block));
1905 			}
1906 			block->logical_bytenr = bytenr;
1907 		} else {
1908 			if (num_pages * PAGE_CACHE_SIZE <
1909 			    state->datablock_size) {
1910 				printk(KERN_INFO
1911 				       "btrfsic: cannot work with too short bios!\n");
1912 				return;
1913 			}
1914 			processed_len = state->datablock_size;
1915 			bytenr = block->logical_bytenr;
1916 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1917 				printk(KERN_INFO
1918 				       "Written block @%llu (%s/%llu/%d)"
1919 				       " found in hash table, %c.\n",
1920 				       bytenr, dev_state->name, dev_bytenr,
1921 				       block->mirror_num,
1922 				       btrfsic_get_block_type(state, block));
1923 		}
1924 
1925 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1926 			printk(KERN_INFO
1927 			       "ref_to_list: %cE, ref_from_list: %cE\n",
1928 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1929 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1930 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1931 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1932 			       " @%llu (%s/%llu/%d), old(gen=%llu,"
1933 			       " objectid=%llu, type=%d, offset=%llu),"
1934 			       " new(gen=%llu),"
1935 			       " which is referenced by most recent superblock"
1936 			       " (superblockgen=%llu)!\n",
1937 			       btrfsic_get_block_type(state, block), bytenr,
1938 			       dev_state->name, dev_bytenr, block->mirror_num,
1939 			       block->generation,
1940 			       btrfs_disk_key_objectid(&block->disk_key),
1941 			       block->disk_key.type,
1942 			       btrfs_disk_key_offset(&block->disk_key),
1943 			       btrfs_stack_header_generation(
1944 				       (struct btrfs_header *) mapped_datav[0]),
1945 			       state->max_superblock_generation);
1946 			btrfsic_dump_tree(state);
1947 		}
1948 
1949 		if (!block->is_iodone && !block->never_written) {
1950 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1951 			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1952 			       " which is not yet iodone!\n",
1953 			       btrfsic_get_block_type(state, block), bytenr,
1954 			       dev_state->name, dev_bytenr, block->mirror_num,
1955 			       block->generation,
1956 			       btrfs_stack_header_generation(
1957 				       (struct btrfs_header *)
1958 				       mapped_datav[0]));
1959 			/* it would not be safe to go on */
1960 			btrfsic_dump_tree(state);
1961 			goto continue_loop;
1962 		}
1963 
1964 		/*
1965 		 * Clear all references of this block. Do not free
1966 		 * the block itself even if is not referenced anymore
1967 		 * because it still carries valueable information
1968 		 * like whether it was ever written and IO completed.
1969 		 */
1970 		list_for_each_safe(elem_ref_to, tmp_ref_to,
1971 				   &block->ref_to_list) {
1972 			struct btrfsic_block_link *const l =
1973 			    list_entry(elem_ref_to,
1974 				       struct btrfsic_block_link,
1975 				       node_ref_to);
1976 
1977 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1978 				btrfsic_print_rem_link(state, l);
1979 			l->ref_cnt--;
1980 			if (0 == l->ref_cnt) {
1981 				list_del(&l->node_ref_to);
1982 				list_del(&l->node_ref_from);
1983 				btrfsic_block_link_hashtable_remove(l);
1984 				btrfsic_block_link_free(l);
1985 			}
1986 		}
1987 
1988 		block_ctx.dev = dev_state;
1989 		block_ctx.dev_bytenr = dev_bytenr;
1990 		block_ctx.start = bytenr;
1991 		block_ctx.len = processed_len;
1992 		block_ctx.pagev = NULL;
1993 		block_ctx.mem_to_free = NULL;
1994 		block_ctx.datav = mapped_datav;
1995 
1996 		if (is_metadata || state->include_extent_data) {
1997 			block->never_written = 0;
1998 			block->iodone_w_error = 0;
1999 			if (NULL != bio) {
2000 				block->is_iodone = 0;
2001 				BUG_ON(NULL == bio_is_patched);
2002 				if (!*bio_is_patched) {
2003 					block->orig_bio_bh_private =
2004 					    bio->bi_private;
2005 					block->orig_bio_bh_end_io.bio =
2006 					    bio->bi_end_io;
2007 					block->next_in_same_bio = NULL;
2008 					bio->bi_private = block;
2009 					bio->bi_end_io = btrfsic_bio_end_io;
2010 					*bio_is_patched = 1;
2011 				} else {
2012 					struct btrfsic_block *chained_block =
2013 					    (struct btrfsic_block *)
2014 					    bio->bi_private;
2015 
2016 					BUG_ON(NULL == chained_block);
2017 					block->orig_bio_bh_private =
2018 					    chained_block->orig_bio_bh_private;
2019 					block->orig_bio_bh_end_io.bio =
2020 					    chained_block->orig_bio_bh_end_io.
2021 					    bio;
2022 					block->next_in_same_bio = chained_block;
2023 					bio->bi_private = block;
2024 				}
2025 			} else if (NULL != bh) {
2026 				block->is_iodone = 0;
2027 				block->orig_bio_bh_private = bh->b_private;
2028 				block->orig_bio_bh_end_io.bh = bh->b_end_io;
2029 				block->next_in_same_bio = NULL;
2030 				bh->b_private = block;
2031 				bh->b_end_io = btrfsic_bh_end_io;
2032 			} else {
2033 				block->is_iodone = 1;
2034 				block->orig_bio_bh_private = NULL;
2035 				block->orig_bio_bh_end_io.bio = NULL;
2036 				block->next_in_same_bio = NULL;
2037 			}
2038 		}
2039 
2040 		block->flush_gen = dev_state->last_flush_gen + 1;
2041 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2042 		if (is_metadata) {
2043 			block->logical_bytenr = bytenr;
2044 			block->is_metadata = 1;
2045 			if (block->is_superblock) {
2046 				BUG_ON(PAGE_CACHE_SIZE !=
2047 				       BTRFS_SUPER_INFO_SIZE);
2048 				ret = btrfsic_process_written_superblock(
2049 						state,
2050 						block,
2051 						(struct btrfs_super_block *)
2052 						mapped_datav[0]);
2053 				if (state->print_mask &
2054 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2055 					printk(KERN_INFO
2056 					"[after new superblock is written]:\n");
2057 					btrfsic_dump_tree_sub(state, block, 0);
2058 				}
2059 			} else {
2060 				block->mirror_num = 0;	/* unknown */
2061 				ret = btrfsic_process_metablock(
2062 						state,
2063 						block,
2064 						&block_ctx,
2065 						0, 0);
2066 			}
2067 			if (ret)
2068 				printk(KERN_INFO
2069 				       "btrfsic: btrfsic_process_metablock"
2070 				       "(root @%llu) failed!\n",
2071 				       dev_bytenr);
2072 		} else {
2073 			block->is_metadata = 0;
2074 			block->mirror_num = 0;	/* unknown */
2075 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
2076 			if (!state->include_extent_data
2077 			    && list_empty(&block->ref_from_list)) {
2078 				/*
2079 				 * disk block is overwritten with extent
2080 				 * data (not meta data) and we are configured
2081 				 * to not include extent data: take the
2082 				 * chance and free the block's memory
2083 				 */
2084 				btrfsic_block_hashtable_remove(block);
2085 				list_del(&block->all_blocks_node);
2086 				btrfsic_block_free(block);
2087 			}
2088 		}
2089 		btrfsic_release_block_ctx(&block_ctx);
2090 	} else {
2091 		/* block has not been found in hash table */
2092 		u64 bytenr;
2093 
2094 		if (!is_metadata) {
2095 			processed_len = state->datablock_size;
2096 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2097 				printk(KERN_INFO "Written block (%s/%llu/?)"
2098 				       " !found in hash table, D.\n",
2099 				       dev_state->name, dev_bytenr);
2100 			if (!state->include_extent_data) {
2101 				/* ignore that written D block */
2102 				goto continue_loop;
2103 			}
2104 
2105 			/* this is getting ugly for the
2106 			 * include_extent_data case... */
2107 			bytenr = 0;	/* unknown */
2108 		} else {
2109 			processed_len = state->metablock_size;
2110 			bytenr = btrfs_stack_header_bytenr(
2111 					(struct btrfs_header *)
2112 					mapped_datav[0]);
2113 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2114 						       dev_bytenr);
2115 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2116 				printk(KERN_INFO
2117 				       "Written block @%llu (%s/%llu/?)"
2118 				       " !found in hash table, M.\n",
2119 				       bytenr, dev_state->name, dev_bytenr);
2120 		}
2121 
2122 		block_ctx.dev = dev_state;
2123 		block_ctx.dev_bytenr = dev_bytenr;
2124 		block_ctx.start = bytenr;
2125 		block_ctx.len = processed_len;
2126 		block_ctx.pagev = NULL;
2127 		block_ctx.mem_to_free = NULL;
2128 		block_ctx.datav = mapped_datav;
2129 
2130 		block = btrfsic_block_alloc();
2131 		if (NULL == block) {
2132 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2133 			btrfsic_release_block_ctx(&block_ctx);
2134 			goto continue_loop;
2135 		}
2136 		block->dev_state = dev_state;
2137 		block->dev_bytenr = dev_bytenr;
2138 		block->logical_bytenr = bytenr;
2139 		block->is_metadata = is_metadata;
2140 		block->never_written = 0;
2141 		block->iodone_w_error = 0;
2142 		block->mirror_num = 0;	/* unknown */
2143 		block->flush_gen = dev_state->last_flush_gen + 1;
2144 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2145 		if (NULL != bio) {
2146 			block->is_iodone = 0;
2147 			BUG_ON(NULL == bio_is_patched);
2148 			if (!*bio_is_patched) {
2149 				block->orig_bio_bh_private = bio->bi_private;
2150 				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2151 				block->next_in_same_bio = NULL;
2152 				bio->bi_private = block;
2153 				bio->bi_end_io = btrfsic_bio_end_io;
2154 				*bio_is_patched = 1;
2155 			} else {
2156 				struct btrfsic_block *chained_block =
2157 				    (struct btrfsic_block *)
2158 				    bio->bi_private;
2159 
2160 				BUG_ON(NULL == chained_block);
2161 				block->orig_bio_bh_private =
2162 				    chained_block->orig_bio_bh_private;
2163 				block->orig_bio_bh_end_io.bio =
2164 				    chained_block->orig_bio_bh_end_io.bio;
2165 				block->next_in_same_bio = chained_block;
2166 				bio->bi_private = block;
2167 			}
2168 		} else if (NULL != bh) {
2169 			block->is_iodone = 0;
2170 			block->orig_bio_bh_private = bh->b_private;
2171 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2172 			block->next_in_same_bio = NULL;
2173 			bh->b_private = block;
2174 			bh->b_end_io = btrfsic_bh_end_io;
2175 		} else {
2176 			block->is_iodone = 1;
2177 			block->orig_bio_bh_private = NULL;
2178 			block->orig_bio_bh_end_io.bio = NULL;
2179 			block->next_in_same_bio = NULL;
2180 		}
2181 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2182 			printk(KERN_INFO
2183 			       "New written %c-block @%llu (%s/%llu/%d)\n",
2184 			       is_metadata ? 'M' : 'D',
2185 			       block->logical_bytenr, block->dev_state->name,
2186 			       block->dev_bytenr, block->mirror_num);
2187 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2188 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2189 
2190 		if (is_metadata) {
2191 			ret = btrfsic_process_metablock(state, block,
2192 							&block_ctx, 0, 0);
2193 			if (ret)
2194 				printk(KERN_INFO
2195 				       "btrfsic: process_metablock(root @%llu)"
2196 				       " failed!\n",
2197 				       dev_bytenr);
2198 		}
2199 		btrfsic_release_block_ctx(&block_ctx);
2200 	}
2201 
2202 continue_loop:
2203 	BUG_ON(!processed_len);
2204 	dev_bytenr += processed_len;
2205 	mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2206 	num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2207 	goto again;
2208 }
2209 
2210 static void btrfsic_bio_end_io(struct bio *bp)
2211 {
2212 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2213 	int iodone_w_error;
2214 
2215 	/* mutex is not held! This is not save if IO is not yet completed
2216 	 * on umount */
2217 	iodone_w_error = 0;
2218 	if (bp->bi_error)
2219 		iodone_w_error = 1;
2220 
2221 	BUG_ON(NULL == block);
2222 	bp->bi_private = block->orig_bio_bh_private;
2223 	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2224 
2225 	do {
2226 		struct btrfsic_block *next_block;
2227 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2228 
2229 		if ((dev_state->state->print_mask &
2230 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2231 			printk(KERN_INFO
2232 			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2233 			       bp->bi_error,
2234 			       btrfsic_get_block_type(dev_state->state, block),
2235 			       block->logical_bytenr, dev_state->name,
2236 			       block->dev_bytenr, block->mirror_num);
2237 		next_block = block->next_in_same_bio;
2238 		block->iodone_w_error = iodone_w_error;
2239 		if (block->submit_bio_bh_rw & REQ_FLUSH) {
2240 			dev_state->last_flush_gen++;
2241 			if ((dev_state->state->print_mask &
2242 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2243 				printk(KERN_INFO
2244 				       "bio_end_io() new %s flush_gen=%llu\n",
2245 				       dev_state->name,
2246 				       dev_state->last_flush_gen);
2247 		}
2248 		if (block->submit_bio_bh_rw & REQ_FUA)
2249 			block->flush_gen = 0; /* FUA completed means block is
2250 					       * on disk */
2251 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2252 		block = next_block;
2253 	} while (NULL != block);
2254 
2255 	bp->bi_end_io(bp);
2256 }
2257 
2258 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2259 {
2260 	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2261 	int iodone_w_error = !uptodate;
2262 	struct btrfsic_dev_state *dev_state;
2263 
2264 	BUG_ON(NULL == block);
2265 	dev_state = block->dev_state;
2266 	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2267 		printk(KERN_INFO
2268 		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2269 		       iodone_w_error,
2270 		       btrfsic_get_block_type(dev_state->state, block),
2271 		       block->logical_bytenr, block->dev_state->name,
2272 		       block->dev_bytenr, block->mirror_num);
2273 
2274 	block->iodone_w_error = iodone_w_error;
2275 	if (block->submit_bio_bh_rw & REQ_FLUSH) {
2276 		dev_state->last_flush_gen++;
2277 		if ((dev_state->state->print_mask &
2278 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2279 			printk(KERN_INFO
2280 			       "bh_end_io() new %s flush_gen=%llu\n",
2281 			       dev_state->name, dev_state->last_flush_gen);
2282 	}
2283 	if (block->submit_bio_bh_rw & REQ_FUA)
2284 		block->flush_gen = 0; /* FUA completed means block is on disk */
2285 
2286 	bh->b_private = block->orig_bio_bh_private;
2287 	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2288 	block->is_iodone = 1; /* for FLUSH, this releases the block */
2289 	bh->b_end_io(bh, uptodate);
2290 }
2291 
2292 static int btrfsic_process_written_superblock(
2293 		struct btrfsic_state *state,
2294 		struct btrfsic_block *const superblock,
2295 		struct btrfs_super_block *const super_hdr)
2296 {
2297 	int pass;
2298 
2299 	superblock->generation = btrfs_super_generation(super_hdr);
2300 	if (!(superblock->generation > state->max_superblock_generation ||
2301 	      0 == state->max_superblock_generation)) {
2302 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2303 			printk(KERN_INFO
2304 			       "btrfsic: superblock @%llu (%s/%llu/%d)"
2305 			       " with old gen %llu <= %llu\n",
2306 			       superblock->logical_bytenr,
2307 			       superblock->dev_state->name,
2308 			       superblock->dev_bytenr, superblock->mirror_num,
2309 			       btrfs_super_generation(super_hdr),
2310 			       state->max_superblock_generation);
2311 	} else {
2312 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2313 			printk(KERN_INFO
2314 			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2315 			       " with new gen %llu > %llu\n",
2316 			       superblock->logical_bytenr,
2317 			       superblock->dev_state->name,
2318 			       superblock->dev_bytenr, superblock->mirror_num,
2319 			       btrfs_super_generation(super_hdr),
2320 			       state->max_superblock_generation);
2321 
2322 		state->max_superblock_generation =
2323 		    btrfs_super_generation(super_hdr);
2324 		state->latest_superblock = superblock;
2325 	}
2326 
2327 	for (pass = 0; pass < 3; pass++) {
2328 		int ret;
2329 		u64 next_bytenr;
2330 		struct btrfsic_block *next_block;
2331 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2332 		struct btrfsic_block_link *l;
2333 		int num_copies;
2334 		int mirror_num;
2335 		const char *additional_string = NULL;
2336 		struct btrfs_disk_key tmp_disk_key = {0};
2337 
2338 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2339 					    BTRFS_ROOT_ITEM_KEY);
2340 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2341 
2342 		switch (pass) {
2343 		case 0:
2344 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2345 						    BTRFS_ROOT_TREE_OBJECTID);
2346 			additional_string = "root ";
2347 			next_bytenr = btrfs_super_root(super_hdr);
2348 			if (state->print_mask &
2349 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2350 				printk(KERN_INFO "root@%llu\n", next_bytenr);
2351 			break;
2352 		case 1:
2353 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2354 						    BTRFS_CHUNK_TREE_OBJECTID);
2355 			additional_string = "chunk ";
2356 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2357 			if (state->print_mask &
2358 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2359 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2360 			break;
2361 		case 2:
2362 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2363 						    BTRFS_TREE_LOG_OBJECTID);
2364 			additional_string = "log ";
2365 			next_bytenr = btrfs_super_log_root(super_hdr);
2366 			if (0 == next_bytenr)
2367 				continue;
2368 			if (state->print_mask &
2369 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2370 				printk(KERN_INFO "log@%llu\n", next_bytenr);
2371 			break;
2372 		}
2373 
2374 		num_copies =
2375 		    btrfs_num_copies(state->root->fs_info,
2376 				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2377 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2378 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2379 			       next_bytenr, num_copies);
2380 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2381 			int was_created;
2382 
2383 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2384 				printk(KERN_INFO
2385 				       "btrfsic_process_written_superblock("
2386 				       "mirror_num=%d)\n", mirror_num);
2387 			ret = btrfsic_map_block(state, next_bytenr,
2388 						BTRFS_SUPER_INFO_SIZE,
2389 						&tmp_next_block_ctx,
2390 						mirror_num);
2391 			if (ret) {
2392 				printk(KERN_INFO
2393 				       "btrfsic: btrfsic_map_block(@%llu,"
2394 				       " mirror=%d) failed!\n",
2395 				       next_bytenr, mirror_num);
2396 				return -1;
2397 			}
2398 
2399 			next_block = btrfsic_block_lookup_or_add(
2400 					state,
2401 					&tmp_next_block_ctx,
2402 					additional_string,
2403 					1, 0, 1,
2404 					mirror_num,
2405 					&was_created);
2406 			if (NULL == next_block) {
2407 				printk(KERN_INFO
2408 				       "btrfsic: error, kmalloc failed!\n");
2409 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2410 				return -1;
2411 			}
2412 
2413 			next_block->disk_key = tmp_disk_key;
2414 			if (was_created)
2415 				next_block->generation =
2416 				    BTRFSIC_GENERATION_UNKNOWN;
2417 			l = btrfsic_block_link_lookup_or_add(
2418 					state,
2419 					&tmp_next_block_ctx,
2420 					next_block,
2421 					superblock,
2422 					BTRFSIC_GENERATION_UNKNOWN);
2423 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2424 			if (NULL == l)
2425 				return -1;
2426 		}
2427 	}
2428 
2429 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2430 		btrfsic_dump_tree(state);
2431 
2432 	return 0;
2433 }
2434 
2435 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2436 					struct btrfsic_block *const block,
2437 					int recursion_level)
2438 {
2439 	struct list_head *elem_ref_to;
2440 	int ret = 0;
2441 
2442 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2443 		/*
2444 		 * Note that this situation can happen and does not
2445 		 * indicate an error in regular cases. It happens
2446 		 * when disk blocks are freed and later reused.
2447 		 * The check-integrity module is not aware of any
2448 		 * block free operations, it just recognizes block
2449 		 * write operations. Therefore it keeps the linkage
2450 		 * information for a block until a block is
2451 		 * rewritten. This can temporarily cause incorrect
2452 		 * and even circular linkage informations. This
2453 		 * causes no harm unless such blocks are referenced
2454 		 * by the most recent super block.
2455 		 */
2456 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2457 			printk(KERN_INFO
2458 			       "btrfsic: abort cyclic linkage (case 1).\n");
2459 
2460 		return ret;
2461 	}
2462 
2463 	/*
2464 	 * This algorithm is recursive because the amount of used stack
2465 	 * space is very small and the max recursion depth is limited.
2466 	 */
2467 	list_for_each(elem_ref_to, &block->ref_to_list) {
2468 		const struct btrfsic_block_link *const l =
2469 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2470 			       node_ref_to);
2471 
2472 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2473 			printk(KERN_INFO
2474 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2475 			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
2476 			       recursion_level,
2477 			       btrfsic_get_block_type(state, block),
2478 			       block->logical_bytenr, block->dev_state->name,
2479 			       block->dev_bytenr, block->mirror_num,
2480 			       l->ref_cnt,
2481 			       btrfsic_get_block_type(state, l->block_ref_to),
2482 			       l->block_ref_to->logical_bytenr,
2483 			       l->block_ref_to->dev_state->name,
2484 			       l->block_ref_to->dev_bytenr,
2485 			       l->block_ref_to->mirror_num);
2486 		if (l->block_ref_to->never_written) {
2487 			printk(KERN_INFO "btrfs: attempt to write superblock"
2488 			       " which references block %c @%llu (%s/%llu/%d)"
2489 			       " which is never written!\n",
2490 			       btrfsic_get_block_type(state, l->block_ref_to),
2491 			       l->block_ref_to->logical_bytenr,
2492 			       l->block_ref_to->dev_state->name,
2493 			       l->block_ref_to->dev_bytenr,
2494 			       l->block_ref_to->mirror_num);
2495 			ret = -1;
2496 		} else if (!l->block_ref_to->is_iodone) {
2497 			printk(KERN_INFO "btrfs: attempt to write superblock"
2498 			       " which references block %c @%llu (%s/%llu/%d)"
2499 			       " which is not yet iodone!\n",
2500 			       btrfsic_get_block_type(state, l->block_ref_to),
2501 			       l->block_ref_to->logical_bytenr,
2502 			       l->block_ref_to->dev_state->name,
2503 			       l->block_ref_to->dev_bytenr,
2504 			       l->block_ref_to->mirror_num);
2505 			ret = -1;
2506 		} else if (l->block_ref_to->iodone_w_error) {
2507 			printk(KERN_INFO "btrfs: attempt to write superblock"
2508 			       " which references block %c @%llu (%s/%llu/%d)"
2509 			       " which has write error!\n",
2510 			       btrfsic_get_block_type(state, l->block_ref_to),
2511 			       l->block_ref_to->logical_bytenr,
2512 			       l->block_ref_to->dev_state->name,
2513 			       l->block_ref_to->dev_bytenr,
2514 			       l->block_ref_to->mirror_num);
2515 			ret = -1;
2516 		} else if (l->parent_generation !=
2517 			   l->block_ref_to->generation &&
2518 			   BTRFSIC_GENERATION_UNKNOWN !=
2519 			   l->parent_generation &&
2520 			   BTRFSIC_GENERATION_UNKNOWN !=
2521 			   l->block_ref_to->generation) {
2522 			printk(KERN_INFO "btrfs: attempt to write superblock"
2523 			       " which references block %c @%llu (%s/%llu/%d)"
2524 			       " with generation %llu !="
2525 			       " parent generation %llu!\n",
2526 			       btrfsic_get_block_type(state, l->block_ref_to),
2527 			       l->block_ref_to->logical_bytenr,
2528 			       l->block_ref_to->dev_state->name,
2529 			       l->block_ref_to->dev_bytenr,
2530 			       l->block_ref_to->mirror_num,
2531 			       l->block_ref_to->generation,
2532 			       l->parent_generation);
2533 			ret = -1;
2534 		} else if (l->block_ref_to->flush_gen >
2535 			   l->block_ref_to->dev_state->last_flush_gen) {
2536 			printk(KERN_INFO "btrfs: attempt to write superblock"
2537 			       " which references block %c @%llu (%s/%llu/%d)"
2538 			       " which is not flushed out of disk's write cache"
2539 			       " (block flush_gen=%llu,"
2540 			       " dev->flush_gen=%llu)!\n",
2541 			       btrfsic_get_block_type(state, l->block_ref_to),
2542 			       l->block_ref_to->logical_bytenr,
2543 			       l->block_ref_to->dev_state->name,
2544 			       l->block_ref_to->dev_bytenr,
2545 			       l->block_ref_to->mirror_num, block->flush_gen,
2546 			       l->block_ref_to->dev_state->last_flush_gen);
2547 			ret = -1;
2548 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2549 							      l->block_ref_to,
2550 							      recursion_level +
2551 							      1)) {
2552 			ret = -1;
2553 		}
2554 	}
2555 
2556 	return ret;
2557 }
2558 
2559 static int btrfsic_is_block_ref_by_superblock(
2560 		const struct btrfsic_state *state,
2561 		const struct btrfsic_block *block,
2562 		int recursion_level)
2563 {
2564 	struct list_head *elem_ref_from;
2565 
2566 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2567 		/* refer to comment at "abort cyclic linkage (case 1)" */
2568 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2569 			printk(KERN_INFO
2570 			       "btrfsic: abort cyclic linkage (case 2).\n");
2571 
2572 		return 0;
2573 	}
2574 
2575 	/*
2576 	 * This algorithm is recursive because the amount of used stack space
2577 	 * is very small and the max recursion depth is limited.
2578 	 */
2579 	list_for_each(elem_ref_from, &block->ref_from_list) {
2580 		const struct btrfsic_block_link *const l =
2581 		    list_entry(elem_ref_from, struct btrfsic_block_link,
2582 			       node_ref_from);
2583 
2584 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2585 			printk(KERN_INFO
2586 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2587 			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2588 			       recursion_level,
2589 			       btrfsic_get_block_type(state, block),
2590 			       block->logical_bytenr, block->dev_state->name,
2591 			       block->dev_bytenr, block->mirror_num,
2592 			       l->ref_cnt,
2593 			       btrfsic_get_block_type(state, l->block_ref_from),
2594 			       l->block_ref_from->logical_bytenr,
2595 			       l->block_ref_from->dev_state->name,
2596 			       l->block_ref_from->dev_bytenr,
2597 			       l->block_ref_from->mirror_num);
2598 		if (l->block_ref_from->is_superblock &&
2599 		    state->latest_superblock->dev_bytenr ==
2600 		    l->block_ref_from->dev_bytenr &&
2601 		    state->latest_superblock->dev_state->bdev ==
2602 		    l->block_ref_from->dev_state->bdev)
2603 			return 1;
2604 		else if (btrfsic_is_block_ref_by_superblock(state,
2605 							    l->block_ref_from,
2606 							    recursion_level +
2607 							    1))
2608 			return 1;
2609 	}
2610 
2611 	return 0;
2612 }
2613 
2614 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2615 				   const struct btrfsic_block_link *l)
2616 {
2617 	printk(KERN_INFO
2618 	       "Add %u* link from %c @%llu (%s/%llu/%d)"
2619 	       " to %c @%llu (%s/%llu/%d).\n",
2620 	       l->ref_cnt,
2621 	       btrfsic_get_block_type(state, l->block_ref_from),
2622 	       l->block_ref_from->logical_bytenr,
2623 	       l->block_ref_from->dev_state->name,
2624 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2625 	       btrfsic_get_block_type(state, l->block_ref_to),
2626 	       l->block_ref_to->logical_bytenr,
2627 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2628 	       l->block_ref_to->mirror_num);
2629 }
2630 
2631 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2632 				   const struct btrfsic_block_link *l)
2633 {
2634 	printk(KERN_INFO
2635 	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
2636 	       " to %c @%llu (%s/%llu/%d).\n",
2637 	       l->ref_cnt,
2638 	       btrfsic_get_block_type(state, l->block_ref_from),
2639 	       l->block_ref_from->logical_bytenr,
2640 	       l->block_ref_from->dev_state->name,
2641 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2642 	       btrfsic_get_block_type(state, l->block_ref_to),
2643 	       l->block_ref_to->logical_bytenr,
2644 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2645 	       l->block_ref_to->mirror_num);
2646 }
2647 
2648 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2649 				   const struct btrfsic_block *block)
2650 {
2651 	if (block->is_superblock &&
2652 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2653 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2654 		return 'S';
2655 	else if (block->is_superblock)
2656 		return 's';
2657 	else if (block->is_metadata)
2658 		return 'M';
2659 	else
2660 		return 'D';
2661 }
2662 
2663 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2664 {
2665 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2666 }
2667 
2668 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2669 				  const struct btrfsic_block *block,
2670 				  int indent_level)
2671 {
2672 	struct list_head *elem_ref_to;
2673 	int indent_add;
2674 	static char buf[80];
2675 	int cursor_position;
2676 
2677 	/*
2678 	 * Should better fill an on-stack buffer with a complete line and
2679 	 * dump it at once when it is time to print a newline character.
2680 	 */
2681 
2682 	/*
2683 	 * This algorithm is recursive because the amount of used stack space
2684 	 * is very small and the max recursion depth is limited.
2685 	 */
2686 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2687 			     btrfsic_get_block_type(state, block),
2688 			     block->logical_bytenr, block->dev_state->name,
2689 			     block->dev_bytenr, block->mirror_num);
2690 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2691 		printk("[...]\n");
2692 		return;
2693 	}
2694 	printk(buf);
2695 	indent_level += indent_add;
2696 	if (list_empty(&block->ref_to_list)) {
2697 		printk("\n");
2698 		return;
2699 	}
2700 	if (block->mirror_num > 1 &&
2701 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2702 		printk(" [...]\n");
2703 		return;
2704 	}
2705 
2706 	cursor_position = indent_level;
2707 	list_for_each(elem_ref_to, &block->ref_to_list) {
2708 		const struct btrfsic_block_link *const l =
2709 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2710 			       node_ref_to);
2711 
2712 		while (cursor_position < indent_level) {
2713 			printk(" ");
2714 			cursor_position++;
2715 		}
2716 		if (l->ref_cnt > 1)
2717 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2718 		else
2719 			indent_add = sprintf(buf, " --> ");
2720 		if (indent_level + indent_add >
2721 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2722 			printk("[...]\n");
2723 			cursor_position = 0;
2724 			continue;
2725 		}
2726 
2727 		printk(buf);
2728 
2729 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2730 				      indent_level + indent_add);
2731 		cursor_position = 0;
2732 	}
2733 }
2734 
2735 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2736 		struct btrfsic_state *state,
2737 		struct btrfsic_block_data_ctx *next_block_ctx,
2738 		struct btrfsic_block *next_block,
2739 		struct btrfsic_block *from_block,
2740 		u64 parent_generation)
2741 {
2742 	struct btrfsic_block_link *l;
2743 
2744 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2745 						next_block_ctx->dev_bytenr,
2746 						from_block->dev_state->bdev,
2747 						from_block->dev_bytenr,
2748 						&state->block_link_hashtable);
2749 	if (NULL == l) {
2750 		l = btrfsic_block_link_alloc();
2751 		if (NULL == l) {
2752 			printk(KERN_INFO
2753 			       "btrfsic: error, kmalloc" " failed!\n");
2754 			return NULL;
2755 		}
2756 
2757 		l->block_ref_to = next_block;
2758 		l->block_ref_from = from_block;
2759 		l->ref_cnt = 1;
2760 		l->parent_generation = parent_generation;
2761 
2762 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2763 			btrfsic_print_add_link(state, l);
2764 
2765 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2766 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2767 
2768 		btrfsic_block_link_hashtable_add(l,
2769 						 &state->block_link_hashtable);
2770 	} else {
2771 		l->ref_cnt++;
2772 		l->parent_generation = parent_generation;
2773 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2774 			btrfsic_print_add_link(state, l);
2775 	}
2776 
2777 	return l;
2778 }
2779 
2780 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2781 		struct btrfsic_state *state,
2782 		struct btrfsic_block_data_ctx *block_ctx,
2783 		const char *additional_string,
2784 		int is_metadata,
2785 		int is_iodone,
2786 		int never_written,
2787 		int mirror_num,
2788 		int *was_created)
2789 {
2790 	struct btrfsic_block *block;
2791 
2792 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2793 					       block_ctx->dev_bytenr,
2794 					       &state->block_hashtable);
2795 	if (NULL == block) {
2796 		struct btrfsic_dev_state *dev_state;
2797 
2798 		block = btrfsic_block_alloc();
2799 		if (NULL == block) {
2800 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2801 			return NULL;
2802 		}
2803 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2804 		if (NULL == dev_state) {
2805 			printk(KERN_INFO
2806 			       "btrfsic: error, lookup dev_state failed!\n");
2807 			btrfsic_block_free(block);
2808 			return NULL;
2809 		}
2810 		block->dev_state = dev_state;
2811 		block->dev_bytenr = block_ctx->dev_bytenr;
2812 		block->logical_bytenr = block_ctx->start;
2813 		block->is_metadata = is_metadata;
2814 		block->is_iodone = is_iodone;
2815 		block->never_written = never_written;
2816 		block->mirror_num = mirror_num;
2817 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2818 			printk(KERN_INFO
2819 			       "New %s%c-block @%llu (%s/%llu/%d)\n",
2820 			       additional_string,
2821 			       btrfsic_get_block_type(state, block),
2822 			       block->logical_bytenr, dev_state->name,
2823 			       block->dev_bytenr, mirror_num);
2824 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2825 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2826 		if (NULL != was_created)
2827 			*was_created = 1;
2828 	} else {
2829 		if (NULL != was_created)
2830 			*was_created = 0;
2831 	}
2832 
2833 	return block;
2834 }
2835 
2836 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2837 					   u64 bytenr,
2838 					   struct btrfsic_dev_state *dev_state,
2839 					   u64 dev_bytenr)
2840 {
2841 	int num_copies;
2842 	int mirror_num;
2843 	int ret;
2844 	struct btrfsic_block_data_ctx block_ctx;
2845 	int match = 0;
2846 
2847 	num_copies = btrfs_num_copies(state->root->fs_info,
2848 				      bytenr, state->metablock_size);
2849 
2850 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2851 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2852 					&block_ctx, mirror_num);
2853 		if (ret) {
2854 			printk(KERN_INFO "btrfsic:"
2855 			       " btrfsic_map_block(logical @%llu,"
2856 			       " mirror %d) failed!\n",
2857 			       bytenr, mirror_num);
2858 			continue;
2859 		}
2860 
2861 		if (dev_state->bdev == block_ctx.dev->bdev &&
2862 		    dev_bytenr == block_ctx.dev_bytenr) {
2863 			match++;
2864 			btrfsic_release_block_ctx(&block_ctx);
2865 			break;
2866 		}
2867 		btrfsic_release_block_ctx(&block_ctx);
2868 	}
2869 
2870 	if (WARN_ON(!match)) {
2871 		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2872 		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2873 		       " phys_bytenr=%llu)!\n",
2874 		       bytenr, dev_state->name, dev_bytenr);
2875 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2876 			ret = btrfsic_map_block(state, bytenr,
2877 						state->metablock_size,
2878 						&block_ctx, mirror_num);
2879 			if (ret)
2880 				continue;
2881 
2882 			printk(KERN_INFO "Read logical bytenr @%llu maps to"
2883 			       " (%s/%llu/%d)\n",
2884 			       bytenr, block_ctx.dev->name,
2885 			       block_ctx.dev_bytenr, mirror_num);
2886 		}
2887 	}
2888 }
2889 
2890 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2891 		struct block_device *bdev)
2892 {
2893 	struct btrfsic_dev_state *ds;
2894 
2895 	ds = btrfsic_dev_state_hashtable_lookup(bdev,
2896 						&btrfsic_dev_state_hashtable);
2897 	return ds;
2898 }
2899 
2900 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2901 {
2902 	struct btrfsic_dev_state *dev_state;
2903 
2904 	if (!btrfsic_is_initialized)
2905 		return submit_bh(rw, bh);
2906 
2907 	mutex_lock(&btrfsic_mutex);
2908 	/* since btrfsic_submit_bh() might also be called before
2909 	 * btrfsic_mount(), this might return NULL */
2910 	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2911 
2912 	/* Only called to write the superblock (incl. FLUSH/FUA) */
2913 	if (NULL != dev_state &&
2914 	    (rw & WRITE) && bh->b_size > 0) {
2915 		u64 dev_bytenr;
2916 
2917 		dev_bytenr = 4096 * bh->b_blocknr;
2918 		if (dev_state->state->print_mask &
2919 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2920 			printk(KERN_INFO
2921 			       "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2922 			       " size=%zu, data=%p, bdev=%p)\n",
2923 			       rw, (unsigned long long)bh->b_blocknr,
2924 			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2925 		btrfsic_process_written_block(dev_state, dev_bytenr,
2926 					      &bh->b_data, 1, NULL,
2927 					      NULL, bh, rw);
2928 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2929 		if (dev_state->state->print_mask &
2930 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2931 			printk(KERN_INFO
2932 			       "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2933 			       rw, bh->b_bdev);
2934 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2935 			if ((dev_state->state->print_mask &
2936 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2937 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2938 				printk(KERN_INFO
2939 				       "btrfsic_submit_bh(%s) with FLUSH"
2940 				       " but dummy block already in use"
2941 				       " (ignored)!\n",
2942 				       dev_state->name);
2943 		} else {
2944 			struct btrfsic_block *const block =
2945 				&dev_state->dummy_block_for_bio_bh_flush;
2946 
2947 			block->is_iodone = 0;
2948 			block->never_written = 0;
2949 			block->iodone_w_error = 0;
2950 			block->flush_gen = dev_state->last_flush_gen + 1;
2951 			block->submit_bio_bh_rw = rw;
2952 			block->orig_bio_bh_private = bh->b_private;
2953 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2954 			block->next_in_same_bio = NULL;
2955 			bh->b_private = block;
2956 			bh->b_end_io = btrfsic_bh_end_io;
2957 		}
2958 	}
2959 	mutex_unlock(&btrfsic_mutex);
2960 	return submit_bh(rw, bh);
2961 }
2962 
2963 static void __btrfsic_submit_bio(int rw, struct bio *bio)
2964 {
2965 	struct btrfsic_dev_state *dev_state;
2966 
2967 	if (!btrfsic_is_initialized)
2968 		return;
2969 
2970 	mutex_lock(&btrfsic_mutex);
2971 	/* since btrfsic_submit_bio() is also called before
2972 	 * btrfsic_mount(), this might return NULL */
2973 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2974 	if (NULL != dev_state &&
2975 	    (rw & WRITE) && NULL != bio->bi_io_vec) {
2976 		unsigned int i;
2977 		u64 dev_bytenr;
2978 		u64 cur_bytenr;
2979 		int bio_is_patched;
2980 		char **mapped_datav;
2981 
2982 		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2983 		bio_is_patched = 0;
2984 		if (dev_state->state->print_mask &
2985 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2986 			printk(KERN_INFO
2987 			       "submit_bio(rw=0x%x, bi_vcnt=%u,"
2988 			       " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2989 			       rw, bio->bi_vcnt,
2990 			       (unsigned long long)bio->bi_iter.bi_sector,
2991 			       dev_bytenr, bio->bi_bdev);
2992 
2993 		mapped_datav = kmalloc_array(bio->bi_vcnt,
2994 					     sizeof(*mapped_datav), GFP_NOFS);
2995 		if (!mapped_datav)
2996 			goto leave;
2997 		cur_bytenr = dev_bytenr;
2998 		for (i = 0; i < bio->bi_vcnt; i++) {
2999 			BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3000 			mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3001 			if (!mapped_datav[i]) {
3002 				while (i > 0) {
3003 					i--;
3004 					kunmap(bio->bi_io_vec[i].bv_page);
3005 				}
3006 				kfree(mapped_datav);
3007 				goto leave;
3008 			}
3009 			if (dev_state->state->print_mask &
3010 			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3011 				printk(KERN_INFO
3012 				       "#%u: bytenr=%llu, len=%u, offset=%u\n",
3013 				       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3014 				       bio->bi_io_vec[i].bv_offset);
3015 			cur_bytenr += bio->bi_io_vec[i].bv_len;
3016 		}
3017 		btrfsic_process_written_block(dev_state, dev_bytenr,
3018 					      mapped_datav, bio->bi_vcnt,
3019 					      bio, &bio_is_patched,
3020 					      NULL, rw);
3021 		while (i > 0) {
3022 			i--;
3023 			kunmap(bio->bi_io_vec[i].bv_page);
3024 		}
3025 		kfree(mapped_datav);
3026 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3027 		if (dev_state->state->print_mask &
3028 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3029 			printk(KERN_INFO
3030 			       "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3031 			       rw, bio->bi_bdev);
3032 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3033 			if ((dev_state->state->print_mask &
3034 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3035 			      BTRFSIC_PRINT_MASK_VERBOSE)))
3036 				printk(KERN_INFO
3037 				       "btrfsic_submit_bio(%s) with FLUSH"
3038 				       " but dummy block already in use"
3039 				       " (ignored)!\n",
3040 				       dev_state->name);
3041 		} else {
3042 			struct btrfsic_block *const block =
3043 				&dev_state->dummy_block_for_bio_bh_flush;
3044 
3045 			block->is_iodone = 0;
3046 			block->never_written = 0;
3047 			block->iodone_w_error = 0;
3048 			block->flush_gen = dev_state->last_flush_gen + 1;
3049 			block->submit_bio_bh_rw = rw;
3050 			block->orig_bio_bh_private = bio->bi_private;
3051 			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3052 			block->next_in_same_bio = NULL;
3053 			bio->bi_private = block;
3054 			bio->bi_end_io = btrfsic_bio_end_io;
3055 		}
3056 	}
3057 leave:
3058 	mutex_unlock(&btrfsic_mutex);
3059 }
3060 
3061 void btrfsic_submit_bio(int rw, struct bio *bio)
3062 {
3063 	__btrfsic_submit_bio(rw, bio);
3064 	submit_bio(rw, bio);
3065 }
3066 
3067 int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3068 {
3069 	__btrfsic_submit_bio(rw, bio);
3070 	return submit_bio_wait(rw, bio);
3071 }
3072 
3073 int btrfsic_mount(struct btrfs_root *root,
3074 		  struct btrfs_fs_devices *fs_devices,
3075 		  int including_extent_data, u32 print_mask)
3076 {
3077 	int ret;
3078 	struct btrfsic_state *state;
3079 	struct list_head *dev_head = &fs_devices->devices;
3080 	struct btrfs_device *device;
3081 
3082 	if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3083 		printk(KERN_INFO
3084 		       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3085 		       root->nodesize, PAGE_CACHE_SIZE);
3086 		return -1;
3087 	}
3088 	if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3089 		printk(KERN_INFO
3090 		       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3091 		       root->sectorsize, PAGE_CACHE_SIZE);
3092 		return -1;
3093 	}
3094 	state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
3095 	if (!state) {
3096 		state = vzalloc(sizeof(*state));
3097 		if (!state) {
3098 			printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
3099 			return -1;
3100 		}
3101 	}
3102 
3103 	if (!btrfsic_is_initialized) {
3104 		mutex_init(&btrfsic_mutex);
3105 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3106 		btrfsic_is_initialized = 1;
3107 	}
3108 	mutex_lock(&btrfsic_mutex);
3109 	state->root = root;
3110 	state->print_mask = print_mask;
3111 	state->include_extent_data = including_extent_data;
3112 	state->csum_size = 0;
3113 	state->metablock_size = root->nodesize;
3114 	state->datablock_size = root->sectorsize;
3115 	INIT_LIST_HEAD(&state->all_blocks_list);
3116 	btrfsic_block_hashtable_init(&state->block_hashtable);
3117 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3118 	state->max_superblock_generation = 0;
3119 	state->latest_superblock = NULL;
3120 
3121 	list_for_each_entry(device, dev_head, dev_list) {
3122 		struct btrfsic_dev_state *ds;
3123 		char *p;
3124 
3125 		if (!device->bdev || !device->name)
3126 			continue;
3127 
3128 		ds = btrfsic_dev_state_alloc();
3129 		if (NULL == ds) {
3130 			printk(KERN_INFO
3131 			       "btrfs check-integrity: kmalloc() failed!\n");
3132 			mutex_unlock(&btrfsic_mutex);
3133 			return -1;
3134 		}
3135 		ds->bdev = device->bdev;
3136 		ds->state = state;
3137 		bdevname(ds->bdev, ds->name);
3138 		ds->name[BDEVNAME_SIZE - 1] = '\0';
3139 		for (p = ds->name; *p != '\0'; p++);
3140 		while (p > ds->name && *p != '/')
3141 			p--;
3142 		if (*p == '/')
3143 			p++;
3144 		strlcpy(ds->name, p, sizeof(ds->name));
3145 		btrfsic_dev_state_hashtable_add(ds,
3146 						&btrfsic_dev_state_hashtable);
3147 	}
3148 
3149 	ret = btrfsic_process_superblock(state, fs_devices);
3150 	if (0 != ret) {
3151 		mutex_unlock(&btrfsic_mutex);
3152 		btrfsic_unmount(root, fs_devices);
3153 		return ret;
3154 	}
3155 
3156 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3157 		btrfsic_dump_database(state);
3158 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3159 		btrfsic_dump_tree(state);
3160 
3161 	mutex_unlock(&btrfsic_mutex);
3162 	return 0;
3163 }
3164 
3165 void btrfsic_unmount(struct btrfs_root *root,
3166 		     struct btrfs_fs_devices *fs_devices)
3167 {
3168 	struct list_head *elem_all;
3169 	struct list_head *tmp_all;
3170 	struct btrfsic_state *state;
3171 	struct list_head *dev_head = &fs_devices->devices;
3172 	struct btrfs_device *device;
3173 
3174 	if (!btrfsic_is_initialized)
3175 		return;
3176 
3177 	mutex_lock(&btrfsic_mutex);
3178 
3179 	state = NULL;
3180 	list_for_each_entry(device, dev_head, dev_list) {
3181 		struct btrfsic_dev_state *ds;
3182 
3183 		if (!device->bdev || !device->name)
3184 			continue;
3185 
3186 		ds = btrfsic_dev_state_hashtable_lookup(
3187 				device->bdev,
3188 				&btrfsic_dev_state_hashtable);
3189 		if (NULL != ds) {
3190 			state = ds->state;
3191 			btrfsic_dev_state_hashtable_remove(ds);
3192 			btrfsic_dev_state_free(ds);
3193 		}
3194 	}
3195 
3196 	if (NULL == state) {
3197 		printk(KERN_INFO
3198 		       "btrfsic: error, cannot find state information"
3199 		       " on umount!\n");
3200 		mutex_unlock(&btrfsic_mutex);
3201 		return;
3202 	}
3203 
3204 	/*
3205 	 * Don't care about keeping the lists' state up to date,
3206 	 * just free all memory that was allocated dynamically.
3207 	 * Free the blocks and the block_links.
3208 	 */
3209 	list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3210 		struct btrfsic_block *const b_all =
3211 		    list_entry(elem_all, struct btrfsic_block,
3212 			       all_blocks_node);
3213 		struct list_head *elem_ref_to;
3214 		struct list_head *tmp_ref_to;
3215 
3216 		list_for_each_safe(elem_ref_to, tmp_ref_to,
3217 				   &b_all->ref_to_list) {
3218 			struct btrfsic_block_link *const l =
3219 			    list_entry(elem_ref_to,
3220 				       struct btrfsic_block_link,
3221 				       node_ref_to);
3222 
3223 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3224 				btrfsic_print_rem_link(state, l);
3225 
3226 			l->ref_cnt--;
3227 			if (0 == l->ref_cnt)
3228 				btrfsic_block_link_free(l);
3229 		}
3230 
3231 		if (b_all->is_iodone || b_all->never_written)
3232 			btrfsic_block_free(b_all);
3233 		else
3234 			printk(KERN_INFO "btrfs: attempt to free %c-block"
3235 			       " @%llu (%s/%llu/%d) on umount which is"
3236 			       " not yet iodone!\n",
3237 			       btrfsic_get_block_type(state, b_all),
3238 			       b_all->logical_bytenr, b_all->dev_state->name,
3239 			       b_all->dev_bytenr, b_all->mirror_num);
3240 	}
3241 
3242 	mutex_unlock(&btrfsic_mutex);
3243 
3244 	kvfree(state);
3245 }
3246