xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STRATO AG 2011.  All rights reserved.
4  */
5 
6 /*
7  * This module can be used to catch cases when the btrfs kernel
8  * code executes write requests to the disk that bring the file
9  * system in an inconsistent state. In such a state, a power-loss
10  * or kernel panic event would cause that the data on disk is
11  * lost or at least damaged.
12  *
13  * Code is added that examines all block write requests during
14  * runtime (including writes of the super block). Three rules
15  * are verified and an error is printed on violation of the
16  * rules:
17  * 1. It is not allowed to write a disk block which is
18  *    currently referenced by the super block (either directly
19  *    or indirectly).
20  * 2. When a super block is written, it is verified that all
21  *    referenced (directly or indirectly) blocks fulfill the
22  *    following requirements:
23  *    2a. All referenced blocks have either been present when
24  *        the file system was mounted, (i.e., they have been
25  *        referenced by the super block) or they have been
26  *        written since then and the write completion callback
27  *        was called and no write error was indicated and a
28  *        FLUSH request to the device where these blocks are
29  *        located was received and completed.
30  *    2b. All referenced blocks need to have a generation
31  *        number which is equal to the parent's number.
32  *
33  * One issue that was found using this module was that the log
34  * tree on disk became temporarily corrupted because disk blocks
35  * that had been in use for the log tree had been freed and
36  * reused too early, while being referenced by the written super
37  * block.
38  *
39  * The search term in the kernel log that can be used to filter
40  * on the existence of detected integrity issues is
41  * "btrfs: attempt".
42  *
43  * The integrity check is enabled via mount options. These
44  * mount options are only supported if the integrity check
45  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
46  *
47  * Example #1, apply integrity checks to all metadata:
48  * mount /dev/sdb1 /mnt -o check_int
49  *
50  * Example #2, apply integrity checks to all metadata and
51  * to data extents:
52  * mount /dev/sdb1 /mnt -o check_int_data
53  *
54  * Example #3, apply integrity checks to all metadata and dump
55  * the tree that the super block references to kernel messages
56  * each time after a super block was written:
57  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
58  *
59  * If the integrity check tool is included and activated in
60  * the mount options, plenty of kernel memory is used, and
61  * plenty of additional CPU cycles are spent. Enabling this
62  * functionality is not intended for normal use. In most
63  * cases, unless you are a btrfs developer who needs to verify
64  * the integrity of (super)-block write requests, do not
65  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
66  * include and compile the integrity check tool.
67  *
68  * Expect millions of lines of information in the kernel log with an
69  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
70  * kernel config to at least 26 (which is 64MB). Usually the value is
71  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
72  * changed like this before LOG_BUF_SHIFT can be set to a high value:
73  * config LOG_BUF_SHIFT
74  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
75  *       range 12 30
76  */
77 
78 #include <linux/sched.h>
79 #include <linux/slab.h>
80 #include <linux/mutex.h>
81 #include <linux/genhd.h>
82 #include <linux/blkdev.h>
83 #include <linux/mm.h>
84 #include <linux/string.h>
85 #include <crypto/hash.h>
86 #include "ctree.h"
87 #include "disk-io.h"
88 #include "transaction.h"
89 #include "extent_io.h"
90 #include "volumes.h"
91 #include "print-tree.h"
92 #include "locking.h"
93 #include "check-integrity.h"
94 #include "rcu-string.h"
95 #include "compression.h"
96 
97 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
98 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
99 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
100 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
101 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
102 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
103 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
104 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
105 							 * excluding " [...]" */
106 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
107 
108 /*
109  * The definition of the bitmask fields for the print_mask.
110  * They are specified with the mount option check_integrity_print_mask.
111  */
112 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
113 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
114 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
115 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
116 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
117 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
118 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
119 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
120 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
121 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
122 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
123 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
124 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
125 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
126 
127 struct btrfsic_dev_state;
128 struct btrfsic_state;
129 
130 struct btrfsic_block {
131 	u32 magic_num;		/* only used for debug purposes */
132 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
133 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
134 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
135 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
136 	unsigned int never_written:1;	/* block was added because it was
137 					 * referenced, not because it was
138 					 * written */
139 	unsigned int mirror_num;	/* large enough to hold
140 					 * BTRFS_SUPER_MIRROR_MAX */
141 	struct btrfsic_dev_state *dev_state;
142 	u64 dev_bytenr;		/* key, physical byte num on disk */
143 	u64 logical_bytenr;	/* logical byte num on disk */
144 	u64 generation;
145 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
146 					 * issues, will not always be correct */
147 	struct list_head collision_resolving_node;	/* list node */
148 	struct list_head all_blocks_node;	/* list node */
149 
150 	/* the following two lists contain block_link items */
151 	struct list_head ref_to_list;	/* list */
152 	struct list_head ref_from_list;	/* list */
153 	struct btrfsic_block *next_in_same_bio;
154 	void *orig_bio_private;
155 	bio_end_io_t *orig_bio_end_io;
156 	int submit_bio_bh_rw;
157 	u64 flush_gen; /* only valid if !never_written */
158 };
159 
160 /*
161  * Elements of this type are allocated dynamically and required because
162  * each block object can refer to and can be ref from multiple blocks.
163  * The key to lookup them in the hashtable is the dev_bytenr of
164  * the block ref to plus the one from the block referred from.
165  * The fact that they are searchable via a hashtable and that a
166  * ref_cnt is maintained is not required for the btrfs integrity
167  * check algorithm itself, it is only used to make the output more
168  * beautiful in case that an error is detected (an error is defined
169  * as a write operation to a block while that block is still referenced).
170  */
171 struct btrfsic_block_link {
172 	u32 magic_num;		/* only used for debug purposes */
173 	u32 ref_cnt;
174 	struct list_head node_ref_to;	/* list node */
175 	struct list_head node_ref_from;	/* list node */
176 	struct list_head collision_resolving_node;	/* list node */
177 	struct btrfsic_block *block_ref_to;
178 	struct btrfsic_block *block_ref_from;
179 	u64 parent_generation;
180 };
181 
182 struct btrfsic_dev_state {
183 	u32 magic_num;		/* only used for debug purposes */
184 	struct block_device *bdev;
185 	struct btrfsic_state *state;
186 	struct list_head collision_resolving_node;	/* list node */
187 	struct btrfsic_block dummy_block_for_bio_bh_flush;
188 	u64 last_flush_gen;
189 	char name[BDEVNAME_SIZE];
190 };
191 
192 struct btrfsic_block_hashtable {
193 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
194 };
195 
196 struct btrfsic_block_link_hashtable {
197 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
198 };
199 
200 struct btrfsic_dev_state_hashtable {
201 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
202 };
203 
204 struct btrfsic_block_data_ctx {
205 	u64 start;		/* virtual bytenr */
206 	u64 dev_bytenr;		/* physical bytenr on device */
207 	u32 len;
208 	struct btrfsic_dev_state *dev;
209 	char **datav;
210 	struct page **pagev;
211 	void *mem_to_free;
212 };
213 
214 /* This structure is used to implement recursion without occupying
215  * any stack space, refer to btrfsic_process_metablock() */
216 struct btrfsic_stack_frame {
217 	u32 magic;
218 	u32 nr;
219 	int error;
220 	int i;
221 	int limit_nesting;
222 	int num_copies;
223 	int mirror_num;
224 	struct btrfsic_block *block;
225 	struct btrfsic_block_data_ctx *block_ctx;
226 	struct btrfsic_block *next_block;
227 	struct btrfsic_block_data_ctx next_block_ctx;
228 	struct btrfs_header *hdr;
229 	struct btrfsic_stack_frame *prev;
230 };
231 
232 /* Some state per mounted filesystem */
233 struct btrfsic_state {
234 	u32 print_mask;
235 	int include_extent_data;
236 	struct list_head all_blocks_list;
237 	struct btrfsic_block_hashtable block_hashtable;
238 	struct btrfsic_block_link_hashtable block_link_hashtable;
239 	struct btrfs_fs_info *fs_info;
240 	u64 max_superblock_generation;
241 	struct btrfsic_block *latest_superblock;
242 	u32 metablock_size;
243 	u32 datablock_size;
244 };
245 
246 static void btrfsic_block_init(struct btrfsic_block *b);
247 static struct btrfsic_block *btrfsic_block_alloc(void);
248 static void btrfsic_block_free(struct btrfsic_block *b);
249 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
250 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
251 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
252 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
253 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
254 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
255 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
256 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
257 					struct btrfsic_block_hashtable *h);
258 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
259 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
260 		struct block_device *bdev,
261 		u64 dev_bytenr,
262 		struct btrfsic_block_hashtable *h);
263 static void btrfsic_block_link_hashtable_init(
264 		struct btrfsic_block_link_hashtable *h);
265 static void btrfsic_block_link_hashtable_add(
266 		struct btrfsic_block_link *l,
267 		struct btrfsic_block_link_hashtable *h);
268 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
269 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
270 		struct block_device *bdev_ref_to,
271 		u64 dev_bytenr_ref_to,
272 		struct block_device *bdev_ref_from,
273 		u64 dev_bytenr_ref_from,
274 		struct btrfsic_block_link_hashtable *h);
275 static void btrfsic_dev_state_hashtable_init(
276 		struct btrfsic_dev_state_hashtable *h);
277 static void btrfsic_dev_state_hashtable_add(
278 		struct btrfsic_dev_state *ds,
279 		struct btrfsic_dev_state_hashtable *h);
280 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
281 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
282 		struct btrfsic_dev_state_hashtable *h);
283 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
284 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
285 static int btrfsic_process_superblock(struct btrfsic_state *state,
286 				      struct btrfs_fs_devices *fs_devices);
287 static int btrfsic_process_metablock(struct btrfsic_state *state,
288 				     struct btrfsic_block *block,
289 				     struct btrfsic_block_data_ctx *block_ctx,
290 				     int limit_nesting, int force_iodone_flag);
291 static void btrfsic_read_from_block_data(
292 	struct btrfsic_block_data_ctx *block_ctx,
293 	void *dst, u32 offset, size_t len);
294 static int btrfsic_create_link_to_next_block(
295 		struct btrfsic_state *state,
296 		struct btrfsic_block *block,
297 		struct btrfsic_block_data_ctx
298 		*block_ctx, u64 next_bytenr,
299 		int limit_nesting,
300 		struct btrfsic_block_data_ctx *next_block_ctx,
301 		struct btrfsic_block **next_blockp,
302 		int force_iodone_flag,
303 		int *num_copiesp, int *mirror_nump,
304 		struct btrfs_disk_key *disk_key,
305 		u64 parent_generation);
306 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
307 				      struct btrfsic_block *block,
308 				      struct btrfsic_block_data_ctx *block_ctx,
309 				      u32 item_offset, int force_iodone_flag);
310 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
311 			     struct btrfsic_block_data_ctx *block_ctx_out,
312 			     int mirror_num);
313 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
314 static int btrfsic_read_block(struct btrfsic_state *state,
315 			      struct btrfsic_block_data_ctx *block_ctx);
316 static void btrfsic_dump_database(struct btrfsic_state *state);
317 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
318 				     char **datav, unsigned int num_pages);
319 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
320 					  u64 dev_bytenr, char **mapped_datav,
321 					  unsigned int num_pages,
322 					  struct bio *bio, int *bio_is_patched,
323 					  int submit_bio_bh_rw);
324 static int btrfsic_process_written_superblock(
325 		struct btrfsic_state *state,
326 		struct btrfsic_block *const block,
327 		struct btrfs_super_block *const super_hdr);
328 static void btrfsic_bio_end_io(struct bio *bp);
329 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
330 					      const struct btrfsic_block *block,
331 					      int recursion_level);
332 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
333 					struct btrfsic_block *const block,
334 					int recursion_level);
335 static void btrfsic_print_add_link(const struct btrfsic_state *state,
336 				   const struct btrfsic_block_link *l);
337 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
338 				   const struct btrfsic_block_link *l);
339 static char btrfsic_get_block_type(const struct btrfsic_state *state,
340 				   const struct btrfsic_block *block);
341 static void btrfsic_dump_tree(const struct btrfsic_state *state);
342 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
343 				  const struct btrfsic_block *block,
344 				  int indent_level);
345 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
346 		struct btrfsic_state *state,
347 		struct btrfsic_block_data_ctx *next_block_ctx,
348 		struct btrfsic_block *next_block,
349 		struct btrfsic_block *from_block,
350 		u64 parent_generation);
351 static struct btrfsic_block *btrfsic_block_lookup_or_add(
352 		struct btrfsic_state *state,
353 		struct btrfsic_block_data_ctx *block_ctx,
354 		const char *additional_string,
355 		int is_metadata,
356 		int is_iodone,
357 		int never_written,
358 		int mirror_num,
359 		int *was_created);
360 static int btrfsic_process_superblock_dev_mirror(
361 		struct btrfsic_state *state,
362 		struct btrfsic_dev_state *dev_state,
363 		struct btrfs_device *device,
364 		int superblock_mirror_num,
365 		struct btrfsic_dev_state **selected_dev_state,
366 		struct btrfs_super_block *selected_super);
367 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
368 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
369 					   u64 bytenr,
370 					   struct btrfsic_dev_state *dev_state,
371 					   u64 dev_bytenr);
372 
373 static struct mutex btrfsic_mutex;
374 static int btrfsic_is_initialized;
375 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
376 
377 
378 static void btrfsic_block_init(struct btrfsic_block *b)
379 {
380 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
381 	b->dev_state = NULL;
382 	b->dev_bytenr = 0;
383 	b->logical_bytenr = 0;
384 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
385 	b->disk_key.objectid = 0;
386 	b->disk_key.type = 0;
387 	b->disk_key.offset = 0;
388 	b->is_metadata = 0;
389 	b->is_superblock = 0;
390 	b->is_iodone = 0;
391 	b->iodone_w_error = 0;
392 	b->never_written = 0;
393 	b->mirror_num = 0;
394 	b->next_in_same_bio = NULL;
395 	b->orig_bio_private = NULL;
396 	b->orig_bio_end_io = NULL;
397 	INIT_LIST_HEAD(&b->collision_resolving_node);
398 	INIT_LIST_HEAD(&b->all_blocks_node);
399 	INIT_LIST_HEAD(&b->ref_to_list);
400 	INIT_LIST_HEAD(&b->ref_from_list);
401 	b->submit_bio_bh_rw = 0;
402 	b->flush_gen = 0;
403 }
404 
405 static struct btrfsic_block *btrfsic_block_alloc(void)
406 {
407 	struct btrfsic_block *b;
408 
409 	b = kzalloc(sizeof(*b), GFP_NOFS);
410 	if (NULL != b)
411 		btrfsic_block_init(b);
412 
413 	return b;
414 }
415 
416 static void btrfsic_block_free(struct btrfsic_block *b)
417 {
418 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
419 	kfree(b);
420 }
421 
422 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
423 {
424 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
425 	l->ref_cnt = 1;
426 	INIT_LIST_HEAD(&l->node_ref_to);
427 	INIT_LIST_HEAD(&l->node_ref_from);
428 	INIT_LIST_HEAD(&l->collision_resolving_node);
429 	l->block_ref_to = NULL;
430 	l->block_ref_from = NULL;
431 }
432 
433 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
434 {
435 	struct btrfsic_block_link *l;
436 
437 	l = kzalloc(sizeof(*l), GFP_NOFS);
438 	if (NULL != l)
439 		btrfsic_block_link_init(l);
440 
441 	return l;
442 }
443 
444 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
445 {
446 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
447 	kfree(l);
448 }
449 
450 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
451 {
452 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
453 	ds->bdev = NULL;
454 	ds->state = NULL;
455 	ds->name[0] = '\0';
456 	INIT_LIST_HEAD(&ds->collision_resolving_node);
457 	ds->last_flush_gen = 0;
458 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
459 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
460 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
461 }
462 
463 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
464 {
465 	struct btrfsic_dev_state *ds;
466 
467 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
468 	if (NULL != ds)
469 		btrfsic_dev_state_init(ds);
470 
471 	return ds;
472 }
473 
474 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
475 {
476 	BUG_ON(!(NULL == ds ||
477 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
478 	kfree(ds);
479 }
480 
481 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
482 {
483 	int i;
484 
485 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
486 		INIT_LIST_HEAD(h->table + i);
487 }
488 
489 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
490 					struct btrfsic_block_hashtable *h)
491 {
492 	const unsigned int hashval =
493 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
494 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
495 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
496 
497 	list_add(&b->collision_resolving_node, h->table + hashval);
498 }
499 
500 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
501 {
502 	list_del(&b->collision_resolving_node);
503 }
504 
505 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
506 		struct block_device *bdev,
507 		u64 dev_bytenr,
508 		struct btrfsic_block_hashtable *h)
509 {
510 	const unsigned int hashval =
511 	    (((unsigned int)(dev_bytenr >> 16)) ^
512 	     ((unsigned int)((uintptr_t)bdev))) &
513 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
514 	struct btrfsic_block *b;
515 
516 	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
517 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
518 			return b;
519 	}
520 
521 	return NULL;
522 }
523 
524 static void btrfsic_block_link_hashtable_init(
525 		struct btrfsic_block_link_hashtable *h)
526 {
527 	int i;
528 
529 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
530 		INIT_LIST_HEAD(h->table + i);
531 }
532 
533 static void btrfsic_block_link_hashtable_add(
534 		struct btrfsic_block_link *l,
535 		struct btrfsic_block_link_hashtable *h)
536 {
537 	const unsigned int hashval =
538 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
539 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
540 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
541 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
542 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
543 
544 	BUG_ON(NULL == l->block_ref_to);
545 	BUG_ON(NULL == l->block_ref_from);
546 	list_add(&l->collision_resolving_node, h->table + hashval);
547 }
548 
549 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
550 {
551 	list_del(&l->collision_resolving_node);
552 }
553 
554 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
555 		struct block_device *bdev_ref_to,
556 		u64 dev_bytenr_ref_to,
557 		struct block_device *bdev_ref_from,
558 		u64 dev_bytenr_ref_from,
559 		struct btrfsic_block_link_hashtable *h)
560 {
561 	const unsigned int hashval =
562 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
563 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
564 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
565 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
566 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
567 	struct btrfsic_block_link *l;
568 
569 	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
570 		BUG_ON(NULL == l->block_ref_to);
571 		BUG_ON(NULL == l->block_ref_from);
572 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
573 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
574 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
575 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
576 			return l;
577 	}
578 
579 	return NULL;
580 }
581 
582 static void btrfsic_dev_state_hashtable_init(
583 		struct btrfsic_dev_state_hashtable *h)
584 {
585 	int i;
586 
587 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
588 		INIT_LIST_HEAD(h->table + i);
589 }
590 
591 static void btrfsic_dev_state_hashtable_add(
592 		struct btrfsic_dev_state *ds,
593 		struct btrfsic_dev_state_hashtable *h)
594 {
595 	const unsigned int hashval =
596 	    (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
597 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
598 
599 	list_add(&ds->collision_resolving_node, h->table + hashval);
600 }
601 
602 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
603 {
604 	list_del(&ds->collision_resolving_node);
605 }
606 
607 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
608 		struct btrfsic_dev_state_hashtable *h)
609 {
610 	const unsigned int hashval =
611 		dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
612 	struct btrfsic_dev_state *ds;
613 
614 	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
615 		if (ds->bdev->bd_dev == dev)
616 			return ds;
617 	}
618 
619 	return NULL;
620 }
621 
622 static int btrfsic_process_superblock(struct btrfsic_state *state,
623 				      struct btrfs_fs_devices *fs_devices)
624 {
625 	struct btrfs_super_block *selected_super;
626 	struct list_head *dev_head = &fs_devices->devices;
627 	struct btrfs_device *device;
628 	struct btrfsic_dev_state *selected_dev_state = NULL;
629 	int ret = 0;
630 	int pass;
631 
632 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
633 	if (!selected_super)
634 		return -ENOMEM;
635 
636 	list_for_each_entry(device, dev_head, dev_list) {
637 		int i;
638 		struct btrfsic_dev_state *dev_state;
639 
640 		if (!device->bdev || !device->name)
641 			continue;
642 
643 		dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
644 		BUG_ON(NULL == dev_state);
645 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
646 			ret = btrfsic_process_superblock_dev_mirror(
647 					state, dev_state, device, i,
648 					&selected_dev_state, selected_super);
649 			if (0 != ret && 0 == i) {
650 				kfree(selected_super);
651 				return ret;
652 			}
653 		}
654 	}
655 
656 	if (NULL == state->latest_superblock) {
657 		pr_info("btrfsic: no superblock found!\n");
658 		kfree(selected_super);
659 		return -1;
660 	}
661 
662 	for (pass = 0; pass < 3; pass++) {
663 		int num_copies;
664 		int mirror_num;
665 		u64 next_bytenr;
666 
667 		switch (pass) {
668 		case 0:
669 			next_bytenr = btrfs_super_root(selected_super);
670 			if (state->print_mask &
671 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
672 				pr_info("root@%llu\n", next_bytenr);
673 			break;
674 		case 1:
675 			next_bytenr = btrfs_super_chunk_root(selected_super);
676 			if (state->print_mask &
677 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
678 				pr_info("chunk@%llu\n", next_bytenr);
679 			break;
680 		case 2:
681 			next_bytenr = btrfs_super_log_root(selected_super);
682 			if (0 == next_bytenr)
683 				continue;
684 			if (state->print_mask &
685 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
686 				pr_info("log@%llu\n", next_bytenr);
687 			break;
688 		}
689 
690 		num_copies = btrfs_num_copies(state->fs_info, next_bytenr,
691 					      state->metablock_size);
692 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
693 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
694 			       next_bytenr, num_copies);
695 
696 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
697 			struct btrfsic_block *next_block;
698 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
699 			struct btrfsic_block_link *l;
700 
701 			ret = btrfsic_map_block(state, next_bytenr,
702 						state->metablock_size,
703 						&tmp_next_block_ctx,
704 						mirror_num);
705 			if (ret) {
706 				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
707 				       next_bytenr, mirror_num);
708 				kfree(selected_super);
709 				return -1;
710 			}
711 
712 			next_block = btrfsic_block_hashtable_lookup(
713 					tmp_next_block_ctx.dev->bdev,
714 					tmp_next_block_ctx.dev_bytenr,
715 					&state->block_hashtable);
716 			BUG_ON(NULL == next_block);
717 
718 			l = btrfsic_block_link_hashtable_lookup(
719 					tmp_next_block_ctx.dev->bdev,
720 					tmp_next_block_ctx.dev_bytenr,
721 					state->latest_superblock->dev_state->
722 					bdev,
723 					state->latest_superblock->dev_bytenr,
724 					&state->block_link_hashtable);
725 			BUG_ON(NULL == l);
726 
727 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
728 			if (ret < (int)PAGE_SIZE) {
729 				pr_info("btrfsic: read @logical %llu failed!\n",
730 				       tmp_next_block_ctx.start);
731 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
732 				kfree(selected_super);
733 				return -1;
734 			}
735 
736 			ret = btrfsic_process_metablock(state,
737 							next_block,
738 							&tmp_next_block_ctx,
739 							BTRFS_MAX_LEVEL + 3, 1);
740 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
741 		}
742 	}
743 
744 	kfree(selected_super);
745 	return ret;
746 }
747 
748 static int btrfsic_process_superblock_dev_mirror(
749 		struct btrfsic_state *state,
750 		struct btrfsic_dev_state *dev_state,
751 		struct btrfs_device *device,
752 		int superblock_mirror_num,
753 		struct btrfsic_dev_state **selected_dev_state,
754 		struct btrfs_super_block *selected_super)
755 {
756 	struct btrfs_fs_info *fs_info = state->fs_info;
757 	struct btrfs_super_block *super_tmp;
758 	u64 dev_bytenr;
759 	struct btrfsic_block *superblock_tmp;
760 	int pass;
761 	struct block_device *const superblock_bdev = device->bdev;
762 	struct page *page;
763 	struct address_space *mapping = superblock_bdev->bd_inode->i_mapping;
764 	int ret = 0;
765 
766 	/* super block bytenr is always the unmapped device bytenr */
767 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
768 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
769 		return -1;
770 
771 	page = read_cache_page_gfp(mapping, dev_bytenr >> PAGE_SHIFT, GFP_NOFS);
772 	if (IS_ERR(page))
773 		return -1;
774 
775 	super_tmp = page_address(page);
776 
777 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
778 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
779 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
780 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
781 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
782 		ret = 0;
783 		goto out;
784 	}
785 
786 	superblock_tmp =
787 	    btrfsic_block_hashtable_lookup(superblock_bdev,
788 					   dev_bytenr,
789 					   &state->block_hashtable);
790 	if (NULL == superblock_tmp) {
791 		superblock_tmp = btrfsic_block_alloc();
792 		if (NULL == superblock_tmp) {
793 			ret = -1;
794 			goto out;
795 		}
796 		/* for superblock, only the dev_bytenr makes sense */
797 		superblock_tmp->dev_bytenr = dev_bytenr;
798 		superblock_tmp->dev_state = dev_state;
799 		superblock_tmp->logical_bytenr = dev_bytenr;
800 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
801 		superblock_tmp->is_metadata = 1;
802 		superblock_tmp->is_superblock = 1;
803 		superblock_tmp->is_iodone = 1;
804 		superblock_tmp->never_written = 0;
805 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
806 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
807 			btrfs_info_in_rcu(fs_info,
808 				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
809 				     superblock_bdev,
810 				     rcu_str_deref(device->name), dev_bytenr,
811 				     dev_state->name, dev_bytenr,
812 				     superblock_mirror_num);
813 		list_add(&superblock_tmp->all_blocks_node,
814 			 &state->all_blocks_list);
815 		btrfsic_block_hashtable_add(superblock_tmp,
816 					    &state->block_hashtable);
817 	}
818 
819 	/* select the one with the highest generation field */
820 	if (btrfs_super_generation(super_tmp) >
821 	    state->max_superblock_generation ||
822 	    0 == state->max_superblock_generation) {
823 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
824 		*selected_dev_state = dev_state;
825 		state->max_superblock_generation =
826 		    btrfs_super_generation(super_tmp);
827 		state->latest_superblock = superblock_tmp;
828 	}
829 
830 	for (pass = 0; pass < 3; pass++) {
831 		u64 next_bytenr;
832 		int num_copies;
833 		int mirror_num;
834 		const char *additional_string = NULL;
835 		struct btrfs_disk_key tmp_disk_key;
836 
837 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
838 		tmp_disk_key.offset = 0;
839 		switch (pass) {
840 		case 0:
841 			btrfs_set_disk_key_objectid(&tmp_disk_key,
842 						    BTRFS_ROOT_TREE_OBJECTID);
843 			additional_string = "initial root ";
844 			next_bytenr = btrfs_super_root(super_tmp);
845 			break;
846 		case 1:
847 			btrfs_set_disk_key_objectid(&tmp_disk_key,
848 						    BTRFS_CHUNK_TREE_OBJECTID);
849 			additional_string = "initial chunk ";
850 			next_bytenr = btrfs_super_chunk_root(super_tmp);
851 			break;
852 		case 2:
853 			btrfs_set_disk_key_objectid(&tmp_disk_key,
854 						    BTRFS_TREE_LOG_OBJECTID);
855 			additional_string = "initial log ";
856 			next_bytenr = btrfs_super_log_root(super_tmp);
857 			if (0 == next_bytenr)
858 				continue;
859 			break;
860 		}
861 
862 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
863 					      state->metablock_size);
864 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
865 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
866 			       next_bytenr, num_copies);
867 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
868 			struct btrfsic_block *next_block;
869 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
870 			struct btrfsic_block_link *l;
871 
872 			if (btrfsic_map_block(state, next_bytenr,
873 					      state->metablock_size,
874 					      &tmp_next_block_ctx,
875 					      mirror_num)) {
876 				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
877 				       next_bytenr, mirror_num);
878 				ret = -1;
879 				goto out;
880 			}
881 
882 			next_block = btrfsic_block_lookup_or_add(
883 					state, &tmp_next_block_ctx,
884 					additional_string, 1, 1, 0,
885 					mirror_num, NULL);
886 			if (NULL == next_block) {
887 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
888 				ret = -1;
889 				goto out;
890 			}
891 
892 			next_block->disk_key = tmp_disk_key;
893 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
894 			l = btrfsic_block_link_lookup_or_add(
895 					state, &tmp_next_block_ctx,
896 					next_block, superblock_tmp,
897 					BTRFSIC_GENERATION_UNKNOWN);
898 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
899 			if (NULL == l) {
900 				ret = -1;
901 				goto out;
902 			}
903 		}
904 	}
905 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
906 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
907 
908 out:
909 	put_page(page);
910 	return ret;
911 }
912 
913 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
914 {
915 	struct btrfsic_stack_frame *sf;
916 
917 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
918 	if (sf)
919 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
920 	return sf;
921 }
922 
923 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
924 {
925 	BUG_ON(!(NULL == sf ||
926 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
927 	kfree(sf);
928 }
929 
930 static noinline_for_stack int btrfsic_process_metablock(
931 		struct btrfsic_state *state,
932 		struct btrfsic_block *const first_block,
933 		struct btrfsic_block_data_ctx *const first_block_ctx,
934 		int first_limit_nesting, int force_iodone_flag)
935 {
936 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
937 	struct btrfsic_stack_frame *sf;
938 	struct btrfsic_stack_frame *next_stack;
939 	struct btrfs_header *const first_hdr =
940 		(struct btrfs_header *)first_block_ctx->datav[0];
941 
942 	BUG_ON(!first_hdr);
943 	sf = &initial_stack_frame;
944 	sf->error = 0;
945 	sf->i = -1;
946 	sf->limit_nesting = first_limit_nesting;
947 	sf->block = first_block;
948 	sf->block_ctx = first_block_ctx;
949 	sf->next_block = NULL;
950 	sf->hdr = first_hdr;
951 	sf->prev = NULL;
952 
953 continue_with_new_stack_frame:
954 	sf->block->generation = btrfs_stack_header_generation(sf->hdr);
955 	if (0 == sf->hdr->level) {
956 		struct btrfs_leaf *const leafhdr =
957 		    (struct btrfs_leaf *)sf->hdr;
958 
959 		if (-1 == sf->i) {
960 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
961 
962 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
963 				pr_info("leaf %llu items %d generation %llu owner %llu\n",
964 				       sf->block_ctx->start, sf->nr,
965 				       btrfs_stack_header_generation(
966 					       &leafhdr->header),
967 				       btrfs_stack_header_owner(
968 					       &leafhdr->header));
969 		}
970 
971 continue_with_current_leaf_stack_frame:
972 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
973 			sf->i++;
974 			sf->num_copies = 0;
975 		}
976 
977 		if (sf->i < sf->nr) {
978 			struct btrfs_item disk_item;
979 			u32 disk_item_offset =
980 				(uintptr_t)(leafhdr->items + sf->i) -
981 				(uintptr_t)leafhdr;
982 			struct btrfs_disk_key *disk_key;
983 			u8 type;
984 			u32 item_offset;
985 			u32 item_size;
986 
987 			if (disk_item_offset + sizeof(struct btrfs_item) >
988 			    sf->block_ctx->len) {
989 leaf_item_out_of_bounce_error:
990 				pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
991 				       sf->block_ctx->start,
992 				       sf->block_ctx->dev->name);
993 				goto one_stack_frame_backwards;
994 			}
995 			btrfsic_read_from_block_data(sf->block_ctx,
996 						     &disk_item,
997 						     disk_item_offset,
998 						     sizeof(struct btrfs_item));
999 			item_offset = btrfs_stack_item_offset(&disk_item);
1000 			item_size = btrfs_stack_item_size(&disk_item);
1001 			disk_key = &disk_item.key;
1002 			type = btrfs_disk_key_type(disk_key);
1003 
1004 			if (BTRFS_ROOT_ITEM_KEY == type) {
1005 				struct btrfs_root_item root_item;
1006 				u32 root_item_offset;
1007 				u64 next_bytenr;
1008 
1009 				root_item_offset = item_offset +
1010 					offsetof(struct btrfs_leaf, items);
1011 				if (root_item_offset + item_size >
1012 				    sf->block_ctx->len)
1013 					goto leaf_item_out_of_bounce_error;
1014 				btrfsic_read_from_block_data(
1015 					sf->block_ctx, &root_item,
1016 					root_item_offset,
1017 					item_size);
1018 				next_bytenr = btrfs_root_bytenr(&root_item);
1019 
1020 				sf->error =
1021 				    btrfsic_create_link_to_next_block(
1022 						state,
1023 						sf->block,
1024 						sf->block_ctx,
1025 						next_bytenr,
1026 						sf->limit_nesting,
1027 						&sf->next_block_ctx,
1028 						&sf->next_block,
1029 						force_iodone_flag,
1030 						&sf->num_copies,
1031 						&sf->mirror_num,
1032 						disk_key,
1033 						btrfs_root_generation(
1034 						&root_item));
1035 				if (sf->error)
1036 					goto one_stack_frame_backwards;
1037 
1038 				if (NULL != sf->next_block) {
1039 					struct btrfs_header *const next_hdr =
1040 					    (struct btrfs_header *)
1041 					    sf->next_block_ctx.datav[0];
1042 
1043 					next_stack =
1044 					    btrfsic_stack_frame_alloc();
1045 					if (NULL == next_stack) {
1046 						sf->error = -1;
1047 						btrfsic_release_block_ctx(
1048 								&sf->
1049 								next_block_ctx);
1050 						goto one_stack_frame_backwards;
1051 					}
1052 
1053 					next_stack->i = -1;
1054 					next_stack->block = sf->next_block;
1055 					next_stack->block_ctx =
1056 					    &sf->next_block_ctx;
1057 					next_stack->next_block = NULL;
1058 					next_stack->hdr = next_hdr;
1059 					next_stack->limit_nesting =
1060 					    sf->limit_nesting - 1;
1061 					next_stack->prev = sf;
1062 					sf = next_stack;
1063 					goto continue_with_new_stack_frame;
1064 				}
1065 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1066 				   state->include_extent_data) {
1067 				sf->error = btrfsic_handle_extent_data(
1068 						state,
1069 						sf->block,
1070 						sf->block_ctx,
1071 						item_offset,
1072 						force_iodone_flag);
1073 				if (sf->error)
1074 					goto one_stack_frame_backwards;
1075 			}
1076 
1077 			goto continue_with_current_leaf_stack_frame;
1078 		}
1079 	} else {
1080 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1081 
1082 		if (-1 == sf->i) {
1083 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1084 
1085 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1086 				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1087 				       sf->block_ctx->start,
1088 				       nodehdr->header.level, sf->nr,
1089 				       btrfs_stack_header_generation(
1090 				       &nodehdr->header),
1091 				       btrfs_stack_header_owner(
1092 				       &nodehdr->header));
1093 		}
1094 
1095 continue_with_current_node_stack_frame:
1096 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1097 			sf->i++;
1098 			sf->num_copies = 0;
1099 		}
1100 
1101 		if (sf->i < sf->nr) {
1102 			struct btrfs_key_ptr key_ptr;
1103 			u32 key_ptr_offset;
1104 			u64 next_bytenr;
1105 
1106 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1107 					  (uintptr_t)nodehdr;
1108 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1109 			    sf->block_ctx->len) {
1110 				pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1111 				       sf->block_ctx->start,
1112 				       sf->block_ctx->dev->name);
1113 				goto one_stack_frame_backwards;
1114 			}
1115 			btrfsic_read_from_block_data(
1116 				sf->block_ctx, &key_ptr, key_ptr_offset,
1117 				sizeof(struct btrfs_key_ptr));
1118 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1119 
1120 			sf->error = btrfsic_create_link_to_next_block(
1121 					state,
1122 					sf->block,
1123 					sf->block_ctx,
1124 					next_bytenr,
1125 					sf->limit_nesting,
1126 					&sf->next_block_ctx,
1127 					&sf->next_block,
1128 					force_iodone_flag,
1129 					&sf->num_copies,
1130 					&sf->mirror_num,
1131 					&key_ptr.key,
1132 					btrfs_stack_key_generation(&key_ptr));
1133 			if (sf->error)
1134 				goto one_stack_frame_backwards;
1135 
1136 			if (NULL != sf->next_block) {
1137 				struct btrfs_header *const next_hdr =
1138 				    (struct btrfs_header *)
1139 				    sf->next_block_ctx.datav[0];
1140 
1141 				next_stack = btrfsic_stack_frame_alloc();
1142 				if (NULL == next_stack) {
1143 					sf->error = -1;
1144 					goto one_stack_frame_backwards;
1145 				}
1146 
1147 				next_stack->i = -1;
1148 				next_stack->block = sf->next_block;
1149 				next_stack->block_ctx = &sf->next_block_ctx;
1150 				next_stack->next_block = NULL;
1151 				next_stack->hdr = next_hdr;
1152 				next_stack->limit_nesting =
1153 				    sf->limit_nesting - 1;
1154 				next_stack->prev = sf;
1155 				sf = next_stack;
1156 				goto continue_with_new_stack_frame;
1157 			}
1158 
1159 			goto continue_with_current_node_stack_frame;
1160 		}
1161 	}
1162 
1163 one_stack_frame_backwards:
1164 	if (NULL != sf->prev) {
1165 		struct btrfsic_stack_frame *const prev = sf->prev;
1166 
1167 		/* the one for the initial block is freed in the caller */
1168 		btrfsic_release_block_ctx(sf->block_ctx);
1169 
1170 		if (sf->error) {
1171 			prev->error = sf->error;
1172 			btrfsic_stack_frame_free(sf);
1173 			sf = prev;
1174 			goto one_stack_frame_backwards;
1175 		}
1176 
1177 		btrfsic_stack_frame_free(sf);
1178 		sf = prev;
1179 		goto continue_with_new_stack_frame;
1180 	} else {
1181 		BUG_ON(&initial_stack_frame != sf);
1182 	}
1183 
1184 	return sf->error;
1185 }
1186 
1187 static void btrfsic_read_from_block_data(
1188 	struct btrfsic_block_data_ctx *block_ctx,
1189 	void *dstv, u32 offset, size_t len)
1190 {
1191 	size_t cur;
1192 	size_t pgoff;
1193 	char *kaddr;
1194 	char *dst = (char *)dstv;
1195 	size_t start_offset = offset_in_page(block_ctx->start);
1196 	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1197 
1198 	WARN_ON(offset + len > block_ctx->len);
1199 	pgoff = offset_in_page(start_offset + offset);
1200 
1201 	while (len > 0) {
1202 		cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1203 		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1204 		kaddr = block_ctx->datav[i];
1205 		memcpy(dst, kaddr + pgoff, cur);
1206 
1207 		dst += cur;
1208 		len -= cur;
1209 		pgoff = 0;
1210 		i++;
1211 	}
1212 }
1213 
1214 static int btrfsic_create_link_to_next_block(
1215 		struct btrfsic_state *state,
1216 		struct btrfsic_block *block,
1217 		struct btrfsic_block_data_ctx *block_ctx,
1218 		u64 next_bytenr,
1219 		int limit_nesting,
1220 		struct btrfsic_block_data_ctx *next_block_ctx,
1221 		struct btrfsic_block **next_blockp,
1222 		int force_iodone_flag,
1223 		int *num_copiesp, int *mirror_nump,
1224 		struct btrfs_disk_key *disk_key,
1225 		u64 parent_generation)
1226 {
1227 	struct btrfs_fs_info *fs_info = state->fs_info;
1228 	struct btrfsic_block *next_block = NULL;
1229 	int ret;
1230 	struct btrfsic_block_link *l;
1231 	int did_alloc_block_link;
1232 	int block_was_created;
1233 
1234 	*next_blockp = NULL;
1235 	if (0 == *num_copiesp) {
1236 		*num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1237 						state->metablock_size);
1238 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1239 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1240 			       next_bytenr, *num_copiesp);
1241 		*mirror_nump = 1;
1242 	}
1243 
1244 	if (*mirror_nump > *num_copiesp)
1245 		return 0;
1246 
1247 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1248 		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1249 		       *mirror_nump);
1250 	ret = btrfsic_map_block(state, next_bytenr,
1251 				state->metablock_size,
1252 				next_block_ctx, *mirror_nump);
1253 	if (ret) {
1254 		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1255 		       next_bytenr, *mirror_nump);
1256 		btrfsic_release_block_ctx(next_block_ctx);
1257 		*next_blockp = NULL;
1258 		return -1;
1259 	}
1260 
1261 	next_block = btrfsic_block_lookup_or_add(state,
1262 						 next_block_ctx, "referenced ",
1263 						 1, force_iodone_flag,
1264 						 !force_iodone_flag,
1265 						 *mirror_nump,
1266 						 &block_was_created);
1267 	if (NULL == next_block) {
1268 		btrfsic_release_block_ctx(next_block_ctx);
1269 		*next_blockp = NULL;
1270 		return -1;
1271 	}
1272 	if (block_was_created) {
1273 		l = NULL;
1274 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1275 	} else {
1276 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1277 			if (next_block->logical_bytenr != next_bytenr &&
1278 			    !(!next_block->is_metadata &&
1279 			      0 == next_block->logical_bytenr))
1280 				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1281 				       next_bytenr, next_block_ctx->dev->name,
1282 				       next_block_ctx->dev_bytenr, *mirror_nump,
1283 				       btrfsic_get_block_type(state,
1284 							      next_block),
1285 				       next_block->logical_bytenr);
1286 			else
1287 				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1288 				       next_bytenr, next_block_ctx->dev->name,
1289 				       next_block_ctx->dev_bytenr, *mirror_nump,
1290 				       btrfsic_get_block_type(state,
1291 							      next_block));
1292 		}
1293 		next_block->logical_bytenr = next_bytenr;
1294 
1295 		next_block->mirror_num = *mirror_nump;
1296 		l = btrfsic_block_link_hashtable_lookup(
1297 				next_block_ctx->dev->bdev,
1298 				next_block_ctx->dev_bytenr,
1299 				block_ctx->dev->bdev,
1300 				block_ctx->dev_bytenr,
1301 				&state->block_link_hashtable);
1302 	}
1303 
1304 	next_block->disk_key = *disk_key;
1305 	if (NULL == l) {
1306 		l = btrfsic_block_link_alloc();
1307 		if (NULL == l) {
1308 			btrfsic_release_block_ctx(next_block_ctx);
1309 			*next_blockp = NULL;
1310 			return -1;
1311 		}
1312 
1313 		did_alloc_block_link = 1;
1314 		l->block_ref_to = next_block;
1315 		l->block_ref_from = block;
1316 		l->ref_cnt = 1;
1317 		l->parent_generation = parent_generation;
1318 
1319 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1320 			btrfsic_print_add_link(state, l);
1321 
1322 		list_add(&l->node_ref_to, &block->ref_to_list);
1323 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1324 
1325 		btrfsic_block_link_hashtable_add(l,
1326 						 &state->block_link_hashtable);
1327 	} else {
1328 		did_alloc_block_link = 0;
1329 		if (0 == limit_nesting) {
1330 			l->ref_cnt++;
1331 			l->parent_generation = parent_generation;
1332 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1333 				btrfsic_print_add_link(state, l);
1334 		}
1335 	}
1336 
1337 	if (limit_nesting > 0 && did_alloc_block_link) {
1338 		ret = btrfsic_read_block(state, next_block_ctx);
1339 		if (ret < (int)next_block_ctx->len) {
1340 			pr_info("btrfsic: read block @logical %llu failed!\n",
1341 			       next_bytenr);
1342 			btrfsic_release_block_ctx(next_block_ctx);
1343 			*next_blockp = NULL;
1344 			return -1;
1345 		}
1346 
1347 		*next_blockp = next_block;
1348 	} else {
1349 		*next_blockp = NULL;
1350 	}
1351 	(*mirror_nump)++;
1352 
1353 	return 0;
1354 }
1355 
1356 static int btrfsic_handle_extent_data(
1357 		struct btrfsic_state *state,
1358 		struct btrfsic_block *block,
1359 		struct btrfsic_block_data_ctx *block_ctx,
1360 		u32 item_offset, int force_iodone_flag)
1361 {
1362 	struct btrfs_fs_info *fs_info = state->fs_info;
1363 	struct btrfs_file_extent_item file_extent_item;
1364 	u64 file_extent_item_offset;
1365 	u64 next_bytenr;
1366 	u64 num_bytes;
1367 	u64 generation;
1368 	struct btrfsic_block_link *l;
1369 	int ret;
1370 
1371 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1372 				  item_offset;
1373 	if (file_extent_item_offset +
1374 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1375 	    block_ctx->len) {
1376 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1377 		       block_ctx->start, block_ctx->dev->name);
1378 		return -1;
1379 	}
1380 
1381 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1382 		file_extent_item_offset,
1383 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1384 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1385 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1386 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1387 			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1388 			       file_extent_item.type,
1389 			       btrfs_stack_file_extent_disk_bytenr(
1390 			       &file_extent_item));
1391 		return 0;
1392 	}
1393 
1394 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1395 	    block_ctx->len) {
1396 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1397 		       block_ctx->start, block_ctx->dev->name);
1398 		return -1;
1399 	}
1400 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1401 				     file_extent_item_offset,
1402 				     sizeof(struct btrfs_file_extent_item));
1403 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1404 	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1405 	    BTRFS_COMPRESS_NONE) {
1406 		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1407 		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1408 	} else {
1409 		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1410 	}
1411 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1412 
1413 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1414 		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1415 		       file_extent_item.type,
1416 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1417 		       btrfs_stack_file_extent_offset(&file_extent_item),
1418 		       num_bytes);
1419 	while (num_bytes > 0) {
1420 		u32 chunk_len;
1421 		int num_copies;
1422 		int mirror_num;
1423 
1424 		if (num_bytes > state->datablock_size)
1425 			chunk_len = state->datablock_size;
1426 		else
1427 			chunk_len = num_bytes;
1428 
1429 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
1430 					      state->datablock_size);
1431 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1432 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1433 			       next_bytenr, num_copies);
1434 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1435 			struct btrfsic_block_data_ctx next_block_ctx;
1436 			struct btrfsic_block *next_block;
1437 			int block_was_created;
1438 
1439 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1440 				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1441 					mirror_num);
1442 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1443 				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1444 				       next_bytenr, chunk_len);
1445 			ret = btrfsic_map_block(state, next_bytenr,
1446 						chunk_len, &next_block_ctx,
1447 						mirror_num);
1448 			if (ret) {
1449 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1450 				       next_bytenr, mirror_num);
1451 				return -1;
1452 			}
1453 
1454 			next_block = btrfsic_block_lookup_or_add(
1455 					state,
1456 					&next_block_ctx,
1457 					"referenced ",
1458 					0,
1459 					force_iodone_flag,
1460 					!force_iodone_flag,
1461 					mirror_num,
1462 					&block_was_created);
1463 			if (NULL == next_block) {
1464 				btrfsic_release_block_ctx(&next_block_ctx);
1465 				return -1;
1466 			}
1467 			if (!block_was_created) {
1468 				if ((state->print_mask &
1469 				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1470 				    next_block->logical_bytenr != next_bytenr &&
1471 				    !(!next_block->is_metadata &&
1472 				      0 == next_block->logical_bytenr)) {
1473 					pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1474 					       next_bytenr,
1475 					       next_block_ctx.dev->name,
1476 					       next_block_ctx.dev_bytenr,
1477 					       mirror_num,
1478 					       next_block->logical_bytenr);
1479 				}
1480 				next_block->logical_bytenr = next_bytenr;
1481 				next_block->mirror_num = mirror_num;
1482 			}
1483 
1484 			l = btrfsic_block_link_lookup_or_add(state,
1485 							     &next_block_ctx,
1486 							     next_block, block,
1487 							     generation);
1488 			btrfsic_release_block_ctx(&next_block_ctx);
1489 			if (NULL == l)
1490 				return -1;
1491 		}
1492 
1493 		next_bytenr += chunk_len;
1494 		num_bytes -= chunk_len;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1501 			     struct btrfsic_block_data_ctx *block_ctx_out,
1502 			     int mirror_num)
1503 {
1504 	struct btrfs_fs_info *fs_info = state->fs_info;
1505 	int ret;
1506 	u64 length;
1507 	struct btrfs_bio *multi = NULL;
1508 	struct btrfs_device *device;
1509 
1510 	length = len;
1511 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1512 			      bytenr, &length, &multi, mirror_num);
1513 
1514 	if (ret) {
1515 		block_ctx_out->start = 0;
1516 		block_ctx_out->dev_bytenr = 0;
1517 		block_ctx_out->len = 0;
1518 		block_ctx_out->dev = NULL;
1519 		block_ctx_out->datav = NULL;
1520 		block_ctx_out->pagev = NULL;
1521 		block_ctx_out->mem_to_free = NULL;
1522 
1523 		return ret;
1524 	}
1525 
1526 	device = multi->stripes[0].dev;
1527 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1528 	    !device->bdev || !device->name)
1529 		block_ctx_out->dev = NULL;
1530 	else
1531 		block_ctx_out->dev = btrfsic_dev_state_lookup(
1532 							device->bdev->bd_dev);
1533 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1534 	block_ctx_out->start = bytenr;
1535 	block_ctx_out->len = len;
1536 	block_ctx_out->datav = NULL;
1537 	block_ctx_out->pagev = NULL;
1538 	block_ctx_out->mem_to_free = NULL;
1539 
1540 	kfree(multi);
1541 	if (NULL == block_ctx_out->dev) {
1542 		ret = -ENXIO;
1543 		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1544 	}
1545 
1546 	return ret;
1547 }
1548 
1549 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1550 {
1551 	if (block_ctx->mem_to_free) {
1552 		unsigned int num_pages;
1553 
1554 		BUG_ON(!block_ctx->datav);
1555 		BUG_ON(!block_ctx->pagev);
1556 		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1557 			    PAGE_SHIFT;
1558 		while (num_pages > 0) {
1559 			num_pages--;
1560 			if (block_ctx->datav[num_pages]) {
1561 				kunmap(block_ctx->pagev[num_pages]);
1562 				block_ctx->datav[num_pages] = NULL;
1563 			}
1564 			if (block_ctx->pagev[num_pages]) {
1565 				__free_page(block_ctx->pagev[num_pages]);
1566 				block_ctx->pagev[num_pages] = NULL;
1567 			}
1568 		}
1569 
1570 		kfree(block_ctx->mem_to_free);
1571 		block_ctx->mem_to_free = NULL;
1572 		block_ctx->pagev = NULL;
1573 		block_ctx->datav = NULL;
1574 	}
1575 }
1576 
1577 static int btrfsic_read_block(struct btrfsic_state *state,
1578 			      struct btrfsic_block_data_ctx *block_ctx)
1579 {
1580 	unsigned int num_pages;
1581 	unsigned int i;
1582 	size_t size;
1583 	u64 dev_bytenr;
1584 	int ret;
1585 
1586 	BUG_ON(block_ctx->datav);
1587 	BUG_ON(block_ctx->pagev);
1588 	BUG_ON(block_ctx->mem_to_free);
1589 	if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1590 		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1591 		       block_ctx->dev_bytenr);
1592 		return -1;
1593 	}
1594 
1595 	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1596 		    PAGE_SHIFT;
1597 	size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1598 	block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
1599 	if (!block_ctx->mem_to_free)
1600 		return -ENOMEM;
1601 	block_ctx->datav = block_ctx->mem_to_free;
1602 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1603 	for (i = 0; i < num_pages; i++) {
1604 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1605 		if (!block_ctx->pagev[i])
1606 			return -1;
1607 	}
1608 
1609 	dev_bytenr = block_ctx->dev_bytenr;
1610 	for (i = 0; i < num_pages;) {
1611 		struct bio *bio;
1612 		unsigned int j;
1613 
1614 		bio = btrfs_io_bio_alloc(num_pages - i);
1615 		bio_set_dev(bio, block_ctx->dev->bdev);
1616 		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1617 		bio->bi_opf = REQ_OP_READ;
1618 
1619 		for (j = i; j < num_pages; j++) {
1620 			ret = bio_add_page(bio, block_ctx->pagev[j],
1621 					   PAGE_SIZE, 0);
1622 			if (PAGE_SIZE != ret)
1623 				break;
1624 		}
1625 		if (j == i) {
1626 			pr_info("btrfsic: error, failed to add a single page!\n");
1627 			return -1;
1628 		}
1629 		if (submit_bio_wait(bio)) {
1630 			pr_info("btrfsic: read error at logical %llu dev %s!\n",
1631 			       block_ctx->start, block_ctx->dev->name);
1632 			bio_put(bio);
1633 			return -1;
1634 		}
1635 		bio_put(bio);
1636 		dev_bytenr += (j - i) * PAGE_SIZE;
1637 		i = j;
1638 	}
1639 	for (i = 0; i < num_pages; i++)
1640 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1641 
1642 	return block_ctx->len;
1643 }
1644 
1645 static void btrfsic_dump_database(struct btrfsic_state *state)
1646 {
1647 	const struct btrfsic_block *b_all;
1648 
1649 	BUG_ON(NULL == state);
1650 
1651 	pr_info("all_blocks_list:\n");
1652 	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1653 		const struct btrfsic_block_link *l;
1654 
1655 		pr_info("%c-block @%llu (%s/%llu/%d)\n",
1656 		       btrfsic_get_block_type(state, b_all),
1657 		       b_all->logical_bytenr, b_all->dev_state->name,
1658 		       b_all->dev_bytenr, b_all->mirror_num);
1659 
1660 		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1661 			pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1662 			       btrfsic_get_block_type(state, b_all),
1663 			       b_all->logical_bytenr, b_all->dev_state->name,
1664 			       b_all->dev_bytenr, b_all->mirror_num,
1665 			       l->ref_cnt,
1666 			       btrfsic_get_block_type(state, l->block_ref_to),
1667 			       l->block_ref_to->logical_bytenr,
1668 			       l->block_ref_to->dev_state->name,
1669 			       l->block_ref_to->dev_bytenr,
1670 			       l->block_ref_to->mirror_num);
1671 		}
1672 
1673 		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1674 			pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1675 			       btrfsic_get_block_type(state, b_all),
1676 			       b_all->logical_bytenr, b_all->dev_state->name,
1677 			       b_all->dev_bytenr, b_all->mirror_num,
1678 			       l->ref_cnt,
1679 			       btrfsic_get_block_type(state, l->block_ref_from),
1680 			       l->block_ref_from->logical_bytenr,
1681 			       l->block_ref_from->dev_state->name,
1682 			       l->block_ref_from->dev_bytenr,
1683 			       l->block_ref_from->mirror_num);
1684 		}
1685 
1686 		pr_info("\n");
1687 	}
1688 }
1689 
1690 /*
1691  * Test whether the disk block contains a tree block (leaf or node)
1692  * (note that this test fails for the super block)
1693  */
1694 static noinline_for_stack int btrfsic_test_for_metadata(
1695 		struct btrfsic_state *state,
1696 		char **datav, unsigned int num_pages)
1697 {
1698 	struct btrfs_fs_info *fs_info = state->fs_info;
1699 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1700 	struct btrfs_header *h;
1701 	u8 csum[BTRFS_CSUM_SIZE];
1702 	unsigned int i;
1703 
1704 	if (num_pages * PAGE_SIZE < state->metablock_size)
1705 		return 1; /* not metadata */
1706 	num_pages = state->metablock_size >> PAGE_SHIFT;
1707 	h = (struct btrfs_header *)datav[0];
1708 
1709 	if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1710 		return 1;
1711 
1712 	shash->tfm = fs_info->csum_shash;
1713 	crypto_shash_init(shash);
1714 
1715 	for (i = 0; i < num_pages; i++) {
1716 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1717 		size_t sublen = i ? PAGE_SIZE :
1718 				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1719 
1720 		crypto_shash_update(shash, data, sublen);
1721 	}
1722 	crypto_shash_final(shash, csum);
1723 	if (memcmp(csum, h->csum, fs_info->csum_size))
1724 		return 1;
1725 
1726 	return 0; /* is metadata */
1727 }
1728 
1729 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1730 					  u64 dev_bytenr, char **mapped_datav,
1731 					  unsigned int num_pages,
1732 					  struct bio *bio, int *bio_is_patched,
1733 					  int submit_bio_bh_rw)
1734 {
1735 	int is_metadata;
1736 	struct btrfsic_block *block;
1737 	struct btrfsic_block_data_ctx block_ctx;
1738 	int ret;
1739 	struct btrfsic_state *state = dev_state->state;
1740 	struct block_device *bdev = dev_state->bdev;
1741 	unsigned int processed_len;
1742 
1743 	if (NULL != bio_is_patched)
1744 		*bio_is_patched = 0;
1745 
1746 again:
1747 	if (num_pages == 0)
1748 		return;
1749 
1750 	processed_len = 0;
1751 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1752 						      num_pages));
1753 
1754 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1755 					       &state->block_hashtable);
1756 	if (NULL != block) {
1757 		u64 bytenr = 0;
1758 		struct btrfsic_block_link *l, *tmp;
1759 
1760 		if (block->is_superblock) {
1761 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1762 						    mapped_datav[0]);
1763 			if (num_pages * PAGE_SIZE <
1764 			    BTRFS_SUPER_INFO_SIZE) {
1765 				pr_info("btrfsic: cannot work with too short bios!\n");
1766 				return;
1767 			}
1768 			is_metadata = 1;
1769 			BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1770 			processed_len = BTRFS_SUPER_INFO_SIZE;
1771 			if (state->print_mask &
1772 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1773 				pr_info("[before new superblock is written]:\n");
1774 				btrfsic_dump_tree_sub(state, block, 0);
1775 			}
1776 		}
1777 		if (is_metadata) {
1778 			if (!block->is_superblock) {
1779 				if (num_pages * PAGE_SIZE <
1780 				    state->metablock_size) {
1781 					pr_info("btrfsic: cannot work with too short bios!\n");
1782 					return;
1783 				}
1784 				processed_len = state->metablock_size;
1785 				bytenr = btrfs_stack_header_bytenr(
1786 						(struct btrfs_header *)
1787 						mapped_datav[0]);
1788 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1789 							       dev_state,
1790 							       dev_bytenr);
1791 			}
1792 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1793 				if (block->logical_bytenr != bytenr &&
1794 				    !(!block->is_metadata &&
1795 				      block->logical_bytenr == 0))
1796 					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1797 					       bytenr, dev_state->name,
1798 					       dev_bytenr,
1799 					       block->mirror_num,
1800 					       btrfsic_get_block_type(state,
1801 								      block),
1802 					       block->logical_bytenr);
1803 				else
1804 					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1805 					       bytenr, dev_state->name,
1806 					       dev_bytenr, block->mirror_num,
1807 					       btrfsic_get_block_type(state,
1808 								      block));
1809 			}
1810 			block->logical_bytenr = bytenr;
1811 		} else {
1812 			if (num_pages * PAGE_SIZE <
1813 			    state->datablock_size) {
1814 				pr_info("btrfsic: cannot work with too short bios!\n");
1815 				return;
1816 			}
1817 			processed_len = state->datablock_size;
1818 			bytenr = block->logical_bytenr;
1819 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1820 				pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1821 				       bytenr, dev_state->name, dev_bytenr,
1822 				       block->mirror_num,
1823 				       btrfsic_get_block_type(state, block));
1824 		}
1825 
1826 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1827 			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1828 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1829 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1830 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1831 			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1832 			       btrfsic_get_block_type(state, block), bytenr,
1833 			       dev_state->name, dev_bytenr, block->mirror_num,
1834 			       block->generation,
1835 			       btrfs_disk_key_objectid(&block->disk_key),
1836 			       block->disk_key.type,
1837 			       btrfs_disk_key_offset(&block->disk_key),
1838 			       btrfs_stack_header_generation(
1839 				       (struct btrfs_header *) mapped_datav[0]),
1840 			       state->max_superblock_generation);
1841 			btrfsic_dump_tree(state);
1842 		}
1843 
1844 		if (!block->is_iodone && !block->never_written) {
1845 			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1846 			       btrfsic_get_block_type(state, block), bytenr,
1847 			       dev_state->name, dev_bytenr, block->mirror_num,
1848 			       block->generation,
1849 			       btrfs_stack_header_generation(
1850 				       (struct btrfs_header *)
1851 				       mapped_datav[0]));
1852 			/* it would not be safe to go on */
1853 			btrfsic_dump_tree(state);
1854 			goto continue_loop;
1855 		}
1856 
1857 		/*
1858 		 * Clear all references of this block. Do not free
1859 		 * the block itself even if is not referenced anymore
1860 		 * because it still carries valuable information
1861 		 * like whether it was ever written and IO completed.
1862 		 */
1863 		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1864 					 node_ref_to) {
1865 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1866 				btrfsic_print_rem_link(state, l);
1867 			l->ref_cnt--;
1868 			if (0 == l->ref_cnt) {
1869 				list_del(&l->node_ref_to);
1870 				list_del(&l->node_ref_from);
1871 				btrfsic_block_link_hashtable_remove(l);
1872 				btrfsic_block_link_free(l);
1873 			}
1874 		}
1875 
1876 		block_ctx.dev = dev_state;
1877 		block_ctx.dev_bytenr = dev_bytenr;
1878 		block_ctx.start = bytenr;
1879 		block_ctx.len = processed_len;
1880 		block_ctx.pagev = NULL;
1881 		block_ctx.mem_to_free = NULL;
1882 		block_ctx.datav = mapped_datav;
1883 
1884 		if (is_metadata || state->include_extent_data) {
1885 			block->never_written = 0;
1886 			block->iodone_w_error = 0;
1887 			if (NULL != bio) {
1888 				block->is_iodone = 0;
1889 				BUG_ON(NULL == bio_is_patched);
1890 				if (!*bio_is_patched) {
1891 					block->orig_bio_private =
1892 					    bio->bi_private;
1893 					block->orig_bio_end_io =
1894 					    bio->bi_end_io;
1895 					block->next_in_same_bio = NULL;
1896 					bio->bi_private = block;
1897 					bio->bi_end_io = btrfsic_bio_end_io;
1898 					*bio_is_patched = 1;
1899 				} else {
1900 					struct btrfsic_block *chained_block =
1901 					    (struct btrfsic_block *)
1902 					    bio->bi_private;
1903 
1904 					BUG_ON(NULL == chained_block);
1905 					block->orig_bio_private =
1906 					    chained_block->orig_bio_private;
1907 					block->orig_bio_end_io =
1908 					    chained_block->orig_bio_end_io;
1909 					block->next_in_same_bio = chained_block;
1910 					bio->bi_private = block;
1911 				}
1912 			} else {
1913 				block->is_iodone = 1;
1914 				block->orig_bio_private = NULL;
1915 				block->orig_bio_end_io = NULL;
1916 				block->next_in_same_bio = NULL;
1917 			}
1918 		}
1919 
1920 		block->flush_gen = dev_state->last_flush_gen + 1;
1921 		block->submit_bio_bh_rw = submit_bio_bh_rw;
1922 		if (is_metadata) {
1923 			block->logical_bytenr = bytenr;
1924 			block->is_metadata = 1;
1925 			if (block->is_superblock) {
1926 				BUG_ON(PAGE_SIZE !=
1927 				       BTRFS_SUPER_INFO_SIZE);
1928 				ret = btrfsic_process_written_superblock(
1929 						state,
1930 						block,
1931 						(struct btrfs_super_block *)
1932 						mapped_datav[0]);
1933 				if (state->print_mask &
1934 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1935 					pr_info("[after new superblock is written]:\n");
1936 					btrfsic_dump_tree_sub(state, block, 0);
1937 				}
1938 			} else {
1939 				block->mirror_num = 0;	/* unknown */
1940 				ret = btrfsic_process_metablock(
1941 						state,
1942 						block,
1943 						&block_ctx,
1944 						0, 0);
1945 			}
1946 			if (ret)
1947 				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1948 				       dev_bytenr);
1949 		} else {
1950 			block->is_metadata = 0;
1951 			block->mirror_num = 0;	/* unknown */
1952 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1953 			if (!state->include_extent_data
1954 			    && list_empty(&block->ref_from_list)) {
1955 				/*
1956 				 * disk block is overwritten with extent
1957 				 * data (not meta data) and we are configured
1958 				 * to not include extent data: take the
1959 				 * chance and free the block's memory
1960 				 */
1961 				btrfsic_block_hashtable_remove(block);
1962 				list_del(&block->all_blocks_node);
1963 				btrfsic_block_free(block);
1964 			}
1965 		}
1966 		btrfsic_release_block_ctx(&block_ctx);
1967 	} else {
1968 		/* block has not been found in hash table */
1969 		u64 bytenr;
1970 
1971 		if (!is_metadata) {
1972 			processed_len = state->datablock_size;
1973 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1974 				pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
1975 				       dev_state->name, dev_bytenr);
1976 			if (!state->include_extent_data) {
1977 				/* ignore that written D block */
1978 				goto continue_loop;
1979 			}
1980 
1981 			/* this is getting ugly for the
1982 			 * include_extent_data case... */
1983 			bytenr = 0;	/* unknown */
1984 		} else {
1985 			processed_len = state->metablock_size;
1986 			bytenr = btrfs_stack_header_bytenr(
1987 					(struct btrfs_header *)
1988 					mapped_datav[0]);
1989 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
1990 						       dev_bytenr);
1991 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1992 				pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
1993 				       bytenr, dev_state->name, dev_bytenr);
1994 		}
1995 
1996 		block_ctx.dev = dev_state;
1997 		block_ctx.dev_bytenr = dev_bytenr;
1998 		block_ctx.start = bytenr;
1999 		block_ctx.len = processed_len;
2000 		block_ctx.pagev = NULL;
2001 		block_ctx.mem_to_free = NULL;
2002 		block_ctx.datav = mapped_datav;
2003 
2004 		block = btrfsic_block_alloc();
2005 		if (NULL == block) {
2006 			btrfsic_release_block_ctx(&block_ctx);
2007 			goto continue_loop;
2008 		}
2009 		block->dev_state = dev_state;
2010 		block->dev_bytenr = dev_bytenr;
2011 		block->logical_bytenr = bytenr;
2012 		block->is_metadata = is_metadata;
2013 		block->never_written = 0;
2014 		block->iodone_w_error = 0;
2015 		block->mirror_num = 0;	/* unknown */
2016 		block->flush_gen = dev_state->last_flush_gen + 1;
2017 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2018 		if (NULL != bio) {
2019 			block->is_iodone = 0;
2020 			BUG_ON(NULL == bio_is_patched);
2021 			if (!*bio_is_patched) {
2022 				block->orig_bio_private = bio->bi_private;
2023 				block->orig_bio_end_io = bio->bi_end_io;
2024 				block->next_in_same_bio = NULL;
2025 				bio->bi_private = block;
2026 				bio->bi_end_io = btrfsic_bio_end_io;
2027 				*bio_is_patched = 1;
2028 			} else {
2029 				struct btrfsic_block *chained_block =
2030 				    (struct btrfsic_block *)
2031 				    bio->bi_private;
2032 
2033 				BUG_ON(NULL == chained_block);
2034 				block->orig_bio_private =
2035 				    chained_block->orig_bio_private;
2036 				block->orig_bio_end_io =
2037 				    chained_block->orig_bio_end_io;
2038 				block->next_in_same_bio = chained_block;
2039 				bio->bi_private = block;
2040 			}
2041 		} else {
2042 			block->is_iodone = 1;
2043 			block->orig_bio_private = NULL;
2044 			block->orig_bio_end_io = NULL;
2045 			block->next_in_same_bio = NULL;
2046 		}
2047 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2048 			pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2049 			       is_metadata ? 'M' : 'D',
2050 			       block->logical_bytenr, block->dev_state->name,
2051 			       block->dev_bytenr, block->mirror_num);
2052 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2053 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2054 
2055 		if (is_metadata) {
2056 			ret = btrfsic_process_metablock(state, block,
2057 							&block_ctx, 0, 0);
2058 			if (ret)
2059 				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2060 				       dev_bytenr);
2061 		}
2062 		btrfsic_release_block_ctx(&block_ctx);
2063 	}
2064 
2065 continue_loop:
2066 	BUG_ON(!processed_len);
2067 	dev_bytenr += processed_len;
2068 	mapped_datav += processed_len >> PAGE_SHIFT;
2069 	num_pages -= processed_len >> PAGE_SHIFT;
2070 	goto again;
2071 }
2072 
2073 static void btrfsic_bio_end_io(struct bio *bp)
2074 {
2075 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2076 	int iodone_w_error;
2077 
2078 	/* mutex is not held! This is not save if IO is not yet completed
2079 	 * on umount */
2080 	iodone_w_error = 0;
2081 	if (bp->bi_status)
2082 		iodone_w_error = 1;
2083 
2084 	BUG_ON(NULL == block);
2085 	bp->bi_private = block->orig_bio_private;
2086 	bp->bi_end_io = block->orig_bio_end_io;
2087 
2088 	do {
2089 		struct btrfsic_block *next_block;
2090 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2091 
2092 		if ((dev_state->state->print_mask &
2093 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2094 			pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2095 			       bp->bi_status,
2096 			       btrfsic_get_block_type(dev_state->state, block),
2097 			       block->logical_bytenr, dev_state->name,
2098 			       block->dev_bytenr, block->mirror_num);
2099 		next_block = block->next_in_same_bio;
2100 		block->iodone_w_error = iodone_w_error;
2101 		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2102 			dev_state->last_flush_gen++;
2103 			if ((dev_state->state->print_mask &
2104 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2105 				pr_info("bio_end_io() new %s flush_gen=%llu\n",
2106 				       dev_state->name,
2107 				       dev_state->last_flush_gen);
2108 		}
2109 		if (block->submit_bio_bh_rw & REQ_FUA)
2110 			block->flush_gen = 0; /* FUA completed means block is
2111 					       * on disk */
2112 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2113 		block = next_block;
2114 	} while (NULL != block);
2115 
2116 	bp->bi_end_io(bp);
2117 }
2118 
2119 static int btrfsic_process_written_superblock(
2120 		struct btrfsic_state *state,
2121 		struct btrfsic_block *const superblock,
2122 		struct btrfs_super_block *const super_hdr)
2123 {
2124 	struct btrfs_fs_info *fs_info = state->fs_info;
2125 	int pass;
2126 
2127 	superblock->generation = btrfs_super_generation(super_hdr);
2128 	if (!(superblock->generation > state->max_superblock_generation ||
2129 	      0 == state->max_superblock_generation)) {
2130 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2131 			pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2132 			       superblock->logical_bytenr,
2133 			       superblock->dev_state->name,
2134 			       superblock->dev_bytenr, superblock->mirror_num,
2135 			       btrfs_super_generation(super_hdr),
2136 			       state->max_superblock_generation);
2137 	} else {
2138 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2139 			pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2140 			       superblock->logical_bytenr,
2141 			       superblock->dev_state->name,
2142 			       superblock->dev_bytenr, superblock->mirror_num,
2143 			       btrfs_super_generation(super_hdr),
2144 			       state->max_superblock_generation);
2145 
2146 		state->max_superblock_generation =
2147 		    btrfs_super_generation(super_hdr);
2148 		state->latest_superblock = superblock;
2149 	}
2150 
2151 	for (pass = 0; pass < 3; pass++) {
2152 		int ret;
2153 		u64 next_bytenr;
2154 		struct btrfsic_block *next_block;
2155 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2156 		struct btrfsic_block_link *l;
2157 		int num_copies;
2158 		int mirror_num;
2159 		const char *additional_string = NULL;
2160 		struct btrfs_disk_key tmp_disk_key = {0};
2161 
2162 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2163 					    BTRFS_ROOT_ITEM_KEY);
2164 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2165 
2166 		switch (pass) {
2167 		case 0:
2168 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2169 						    BTRFS_ROOT_TREE_OBJECTID);
2170 			additional_string = "root ";
2171 			next_bytenr = btrfs_super_root(super_hdr);
2172 			if (state->print_mask &
2173 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2174 				pr_info("root@%llu\n", next_bytenr);
2175 			break;
2176 		case 1:
2177 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2178 						    BTRFS_CHUNK_TREE_OBJECTID);
2179 			additional_string = "chunk ";
2180 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2181 			if (state->print_mask &
2182 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2183 				pr_info("chunk@%llu\n", next_bytenr);
2184 			break;
2185 		case 2:
2186 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2187 						    BTRFS_TREE_LOG_OBJECTID);
2188 			additional_string = "log ";
2189 			next_bytenr = btrfs_super_log_root(super_hdr);
2190 			if (0 == next_bytenr)
2191 				continue;
2192 			if (state->print_mask &
2193 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2194 				pr_info("log@%llu\n", next_bytenr);
2195 			break;
2196 		}
2197 
2198 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
2199 					      BTRFS_SUPER_INFO_SIZE);
2200 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2201 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2202 			       next_bytenr, num_copies);
2203 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2204 			int was_created;
2205 
2206 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2207 				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2208 			ret = btrfsic_map_block(state, next_bytenr,
2209 						BTRFS_SUPER_INFO_SIZE,
2210 						&tmp_next_block_ctx,
2211 						mirror_num);
2212 			if (ret) {
2213 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2214 				       next_bytenr, mirror_num);
2215 				return -1;
2216 			}
2217 
2218 			next_block = btrfsic_block_lookup_or_add(
2219 					state,
2220 					&tmp_next_block_ctx,
2221 					additional_string,
2222 					1, 0, 1,
2223 					mirror_num,
2224 					&was_created);
2225 			if (NULL == next_block) {
2226 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2227 				return -1;
2228 			}
2229 
2230 			next_block->disk_key = tmp_disk_key;
2231 			if (was_created)
2232 				next_block->generation =
2233 				    BTRFSIC_GENERATION_UNKNOWN;
2234 			l = btrfsic_block_link_lookup_or_add(
2235 					state,
2236 					&tmp_next_block_ctx,
2237 					next_block,
2238 					superblock,
2239 					BTRFSIC_GENERATION_UNKNOWN);
2240 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2241 			if (NULL == l)
2242 				return -1;
2243 		}
2244 	}
2245 
2246 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2247 		btrfsic_dump_tree(state);
2248 
2249 	return 0;
2250 }
2251 
2252 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2253 					struct btrfsic_block *const block,
2254 					int recursion_level)
2255 {
2256 	const struct btrfsic_block_link *l;
2257 	int ret = 0;
2258 
2259 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2260 		/*
2261 		 * Note that this situation can happen and does not
2262 		 * indicate an error in regular cases. It happens
2263 		 * when disk blocks are freed and later reused.
2264 		 * The check-integrity module is not aware of any
2265 		 * block free operations, it just recognizes block
2266 		 * write operations. Therefore it keeps the linkage
2267 		 * information for a block until a block is
2268 		 * rewritten. This can temporarily cause incorrect
2269 		 * and even circular linkage information. This
2270 		 * causes no harm unless such blocks are referenced
2271 		 * by the most recent super block.
2272 		 */
2273 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2274 			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2275 
2276 		return ret;
2277 	}
2278 
2279 	/*
2280 	 * This algorithm is recursive because the amount of used stack
2281 	 * space is very small and the max recursion depth is limited.
2282 	 */
2283 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2284 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2285 			pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2286 			       recursion_level,
2287 			       btrfsic_get_block_type(state, block),
2288 			       block->logical_bytenr, block->dev_state->name,
2289 			       block->dev_bytenr, block->mirror_num,
2290 			       l->ref_cnt,
2291 			       btrfsic_get_block_type(state, l->block_ref_to),
2292 			       l->block_ref_to->logical_bytenr,
2293 			       l->block_ref_to->dev_state->name,
2294 			       l->block_ref_to->dev_bytenr,
2295 			       l->block_ref_to->mirror_num);
2296 		if (l->block_ref_to->never_written) {
2297 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2298 			       btrfsic_get_block_type(state, l->block_ref_to),
2299 			       l->block_ref_to->logical_bytenr,
2300 			       l->block_ref_to->dev_state->name,
2301 			       l->block_ref_to->dev_bytenr,
2302 			       l->block_ref_to->mirror_num);
2303 			ret = -1;
2304 		} else if (!l->block_ref_to->is_iodone) {
2305 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2306 			       btrfsic_get_block_type(state, l->block_ref_to),
2307 			       l->block_ref_to->logical_bytenr,
2308 			       l->block_ref_to->dev_state->name,
2309 			       l->block_ref_to->dev_bytenr,
2310 			       l->block_ref_to->mirror_num);
2311 			ret = -1;
2312 		} else if (l->block_ref_to->iodone_w_error) {
2313 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2314 			       btrfsic_get_block_type(state, l->block_ref_to),
2315 			       l->block_ref_to->logical_bytenr,
2316 			       l->block_ref_to->dev_state->name,
2317 			       l->block_ref_to->dev_bytenr,
2318 			       l->block_ref_to->mirror_num);
2319 			ret = -1;
2320 		} else if (l->parent_generation !=
2321 			   l->block_ref_to->generation &&
2322 			   BTRFSIC_GENERATION_UNKNOWN !=
2323 			   l->parent_generation &&
2324 			   BTRFSIC_GENERATION_UNKNOWN !=
2325 			   l->block_ref_to->generation) {
2326 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2327 			       btrfsic_get_block_type(state, l->block_ref_to),
2328 			       l->block_ref_to->logical_bytenr,
2329 			       l->block_ref_to->dev_state->name,
2330 			       l->block_ref_to->dev_bytenr,
2331 			       l->block_ref_to->mirror_num,
2332 			       l->block_ref_to->generation,
2333 			       l->parent_generation);
2334 			ret = -1;
2335 		} else if (l->block_ref_to->flush_gen >
2336 			   l->block_ref_to->dev_state->last_flush_gen) {
2337 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2338 			       btrfsic_get_block_type(state, l->block_ref_to),
2339 			       l->block_ref_to->logical_bytenr,
2340 			       l->block_ref_to->dev_state->name,
2341 			       l->block_ref_to->dev_bytenr,
2342 			       l->block_ref_to->mirror_num, block->flush_gen,
2343 			       l->block_ref_to->dev_state->last_flush_gen);
2344 			ret = -1;
2345 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2346 							      l->block_ref_to,
2347 							      recursion_level +
2348 							      1)) {
2349 			ret = -1;
2350 		}
2351 	}
2352 
2353 	return ret;
2354 }
2355 
2356 static int btrfsic_is_block_ref_by_superblock(
2357 		const struct btrfsic_state *state,
2358 		const struct btrfsic_block *block,
2359 		int recursion_level)
2360 {
2361 	const struct btrfsic_block_link *l;
2362 
2363 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2364 		/* refer to comment at "abort cyclic linkage (case 1)" */
2365 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2366 			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2367 
2368 		return 0;
2369 	}
2370 
2371 	/*
2372 	 * This algorithm is recursive because the amount of used stack space
2373 	 * is very small and the max recursion depth is limited.
2374 	 */
2375 	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2376 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2377 			pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2378 			       recursion_level,
2379 			       btrfsic_get_block_type(state, block),
2380 			       block->logical_bytenr, block->dev_state->name,
2381 			       block->dev_bytenr, block->mirror_num,
2382 			       l->ref_cnt,
2383 			       btrfsic_get_block_type(state, l->block_ref_from),
2384 			       l->block_ref_from->logical_bytenr,
2385 			       l->block_ref_from->dev_state->name,
2386 			       l->block_ref_from->dev_bytenr,
2387 			       l->block_ref_from->mirror_num);
2388 		if (l->block_ref_from->is_superblock &&
2389 		    state->latest_superblock->dev_bytenr ==
2390 		    l->block_ref_from->dev_bytenr &&
2391 		    state->latest_superblock->dev_state->bdev ==
2392 		    l->block_ref_from->dev_state->bdev)
2393 			return 1;
2394 		else if (btrfsic_is_block_ref_by_superblock(state,
2395 							    l->block_ref_from,
2396 							    recursion_level +
2397 							    1))
2398 			return 1;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2405 				   const struct btrfsic_block_link *l)
2406 {
2407 	pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2408 	       l->ref_cnt,
2409 	       btrfsic_get_block_type(state, l->block_ref_from),
2410 	       l->block_ref_from->logical_bytenr,
2411 	       l->block_ref_from->dev_state->name,
2412 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2413 	       btrfsic_get_block_type(state, l->block_ref_to),
2414 	       l->block_ref_to->logical_bytenr,
2415 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2416 	       l->block_ref_to->mirror_num);
2417 }
2418 
2419 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2420 				   const struct btrfsic_block_link *l)
2421 {
2422 	pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2423 	       l->ref_cnt,
2424 	       btrfsic_get_block_type(state, l->block_ref_from),
2425 	       l->block_ref_from->logical_bytenr,
2426 	       l->block_ref_from->dev_state->name,
2427 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2428 	       btrfsic_get_block_type(state, l->block_ref_to),
2429 	       l->block_ref_to->logical_bytenr,
2430 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2431 	       l->block_ref_to->mirror_num);
2432 }
2433 
2434 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2435 				   const struct btrfsic_block *block)
2436 {
2437 	if (block->is_superblock &&
2438 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2439 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2440 		return 'S';
2441 	else if (block->is_superblock)
2442 		return 's';
2443 	else if (block->is_metadata)
2444 		return 'M';
2445 	else
2446 		return 'D';
2447 }
2448 
2449 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2450 {
2451 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2452 }
2453 
2454 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2455 				  const struct btrfsic_block *block,
2456 				  int indent_level)
2457 {
2458 	const struct btrfsic_block_link *l;
2459 	int indent_add;
2460 	static char buf[80];
2461 	int cursor_position;
2462 
2463 	/*
2464 	 * Should better fill an on-stack buffer with a complete line and
2465 	 * dump it at once when it is time to print a newline character.
2466 	 */
2467 
2468 	/*
2469 	 * This algorithm is recursive because the amount of used stack space
2470 	 * is very small and the max recursion depth is limited.
2471 	 */
2472 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2473 			     btrfsic_get_block_type(state, block),
2474 			     block->logical_bytenr, block->dev_state->name,
2475 			     block->dev_bytenr, block->mirror_num);
2476 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2477 		printk("[...]\n");
2478 		return;
2479 	}
2480 	printk(buf);
2481 	indent_level += indent_add;
2482 	if (list_empty(&block->ref_to_list)) {
2483 		printk("\n");
2484 		return;
2485 	}
2486 	if (block->mirror_num > 1 &&
2487 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2488 		printk(" [...]\n");
2489 		return;
2490 	}
2491 
2492 	cursor_position = indent_level;
2493 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2494 		while (cursor_position < indent_level) {
2495 			printk(" ");
2496 			cursor_position++;
2497 		}
2498 		if (l->ref_cnt > 1)
2499 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2500 		else
2501 			indent_add = sprintf(buf, " --> ");
2502 		if (indent_level + indent_add >
2503 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2504 			printk("[...]\n");
2505 			cursor_position = 0;
2506 			continue;
2507 		}
2508 
2509 		printk(buf);
2510 
2511 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2512 				      indent_level + indent_add);
2513 		cursor_position = 0;
2514 	}
2515 }
2516 
2517 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2518 		struct btrfsic_state *state,
2519 		struct btrfsic_block_data_ctx *next_block_ctx,
2520 		struct btrfsic_block *next_block,
2521 		struct btrfsic_block *from_block,
2522 		u64 parent_generation)
2523 {
2524 	struct btrfsic_block_link *l;
2525 
2526 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2527 						next_block_ctx->dev_bytenr,
2528 						from_block->dev_state->bdev,
2529 						from_block->dev_bytenr,
2530 						&state->block_link_hashtable);
2531 	if (NULL == l) {
2532 		l = btrfsic_block_link_alloc();
2533 		if (!l)
2534 			return NULL;
2535 
2536 		l->block_ref_to = next_block;
2537 		l->block_ref_from = from_block;
2538 		l->ref_cnt = 1;
2539 		l->parent_generation = parent_generation;
2540 
2541 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2542 			btrfsic_print_add_link(state, l);
2543 
2544 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2545 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2546 
2547 		btrfsic_block_link_hashtable_add(l,
2548 						 &state->block_link_hashtable);
2549 	} else {
2550 		l->ref_cnt++;
2551 		l->parent_generation = parent_generation;
2552 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2553 			btrfsic_print_add_link(state, l);
2554 	}
2555 
2556 	return l;
2557 }
2558 
2559 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2560 		struct btrfsic_state *state,
2561 		struct btrfsic_block_data_ctx *block_ctx,
2562 		const char *additional_string,
2563 		int is_metadata,
2564 		int is_iodone,
2565 		int never_written,
2566 		int mirror_num,
2567 		int *was_created)
2568 {
2569 	struct btrfsic_block *block;
2570 
2571 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2572 					       block_ctx->dev_bytenr,
2573 					       &state->block_hashtable);
2574 	if (NULL == block) {
2575 		struct btrfsic_dev_state *dev_state;
2576 
2577 		block = btrfsic_block_alloc();
2578 		if (!block)
2579 			return NULL;
2580 
2581 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2582 		if (NULL == dev_state) {
2583 			pr_info("btrfsic: error, lookup dev_state failed!\n");
2584 			btrfsic_block_free(block);
2585 			return NULL;
2586 		}
2587 		block->dev_state = dev_state;
2588 		block->dev_bytenr = block_ctx->dev_bytenr;
2589 		block->logical_bytenr = block_ctx->start;
2590 		block->is_metadata = is_metadata;
2591 		block->is_iodone = is_iodone;
2592 		block->never_written = never_written;
2593 		block->mirror_num = mirror_num;
2594 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2595 			pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2596 			       additional_string,
2597 			       btrfsic_get_block_type(state, block),
2598 			       block->logical_bytenr, dev_state->name,
2599 			       block->dev_bytenr, mirror_num);
2600 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2601 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2602 		if (NULL != was_created)
2603 			*was_created = 1;
2604 	} else {
2605 		if (NULL != was_created)
2606 			*was_created = 0;
2607 	}
2608 
2609 	return block;
2610 }
2611 
2612 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2613 					   u64 bytenr,
2614 					   struct btrfsic_dev_state *dev_state,
2615 					   u64 dev_bytenr)
2616 {
2617 	struct btrfs_fs_info *fs_info = state->fs_info;
2618 	struct btrfsic_block_data_ctx block_ctx;
2619 	int num_copies;
2620 	int mirror_num;
2621 	int match = 0;
2622 	int ret;
2623 
2624 	num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2625 
2626 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2627 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2628 					&block_ctx, mirror_num);
2629 		if (ret) {
2630 			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2631 			       bytenr, mirror_num);
2632 			continue;
2633 		}
2634 
2635 		if (dev_state->bdev == block_ctx.dev->bdev &&
2636 		    dev_bytenr == block_ctx.dev_bytenr) {
2637 			match++;
2638 			btrfsic_release_block_ctx(&block_ctx);
2639 			break;
2640 		}
2641 		btrfsic_release_block_ctx(&block_ctx);
2642 	}
2643 
2644 	if (WARN_ON(!match)) {
2645 		pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2646 		       bytenr, dev_state->name, dev_bytenr);
2647 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2648 			ret = btrfsic_map_block(state, bytenr,
2649 						state->metablock_size,
2650 						&block_ctx, mirror_num);
2651 			if (ret)
2652 				continue;
2653 
2654 			pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2655 			       bytenr, block_ctx.dev->name,
2656 			       block_ctx.dev_bytenr, mirror_num);
2657 		}
2658 	}
2659 }
2660 
2661 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
2662 {
2663 	return btrfsic_dev_state_hashtable_lookup(dev,
2664 						  &btrfsic_dev_state_hashtable);
2665 }
2666 
2667 static void __btrfsic_submit_bio(struct bio *bio)
2668 {
2669 	struct btrfsic_dev_state *dev_state;
2670 
2671 	if (!btrfsic_is_initialized)
2672 		return;
2673 
2674 	mutex_lock(&btrfsic_mutex);
2675 	/* since btrfsic_submit_bio() is also called before
2676 	 * btrfsic_mount(), this might return NULL */
2677 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev->bd_dev);
2678 	if (NULL != dev_state &&
2679 	    (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2680 		unsigned int i = 0;
2681 		u64 dev_bytenr;
2682 		u64 cur_bytenr;
2683 		struct bio_vec bvec;
2684 		struct bvec_iter iter;
2685 		int bio_is_patched;
2686 		char **mapped_datav;
2687 		unsigned int segs = bio_segments(bio);
2688 
2689 		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2690 		bio_is_patched = 0;
2691 		if (dev_state->state->print_mask &
2692 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2693 			pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2694 			       bio_op(bio), bio->bi_opf, segs,
2695 			       bio->bi_iter.bi_sector, dev_bytenr, bio->bi_bdev);
2696 
2697 		mapped_datav = kmalloc_array(segs,
2698 					     sizeof(*mapped_datav), GFP_NOFS);
2699 		if (!mapped_datav)
2700 			goto leave;
2701 		cur_bytenr = dev_bytenr;
2702 
2703 		bio_for_each_segment(bvec, bio, iter) {
2704 			BUG_ON(bvec.bv_len != PAGE_SIZE);
2705 			mapped_datav[i] = kmap(bvec.bv_page);
2706 			i++;
2707 
2708 			if (dev_state->state->print_mask &
2709 			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2710 				pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2711 				       i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2712 			cur_bytenr += bvec.bv_len;
2713 		}
2714 		btrfsic_process_written_block(dev_state, dev_bytenr,
2715 					      mapped_datav, segs,
2716 					      bio, &bio_is_patched,
2717 					      bio->bi_opf);
2718 		bio_for_each_segment(bvec, bio, iter)
2719 			kunmap(bvec.bv_page);
2720 		kfree(mapped_datav);
2721 	} else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2722 		if (dev_state->state->print_mask &
2723 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2724 			pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2725 			       bio_op(bio), bio->bi_opf, bio->bi_bdev);
2726 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2727 			if ((dev_state->state->print_mask &
2728 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2729 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2730 				pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2731 				       dev_state->name);
2732 		} else {
2733 			struct btrfsic_block *const block =
2734 				&dev_state->dummy_block_for_bio_bh_flush;
2735 
2736 			block->is_iodone = 0;
2737 			block->never_written = 0;
2738 			block->iodone_w_error = 0;
2739 			block->flush_gen = dev_state->last_flush_gen + 1;
2740 			block->submit_bio_bh_rw = bio->bi_opf;
2741 			block->orig_bio_private = bio->bi_private;
2742 			block->orig_bio_end_io = bio->bi_end_io;
2743 			block->next_in_same_bio = NULL;
2744 			bio->bi_private = block;
2745 			bio->bi_end_io = btrfsic_bio_end_io;
2746 		}
2747 	}
2748 leave:
2749 	mutex_unlock(&btrfsic_mutex);
2750 }
2751 
2752 void btrfsic_submit_bio(struct bio *bio)
2753 {
2754 	__btrfsic_submit_bio(bio);
2755 	submit_bio(bio);
2756 }
2757 
2758 int btrfsic_submit_bio_wait(struct bio *bio)
2759 {
2760 	__btrfsic_submit_bio(bio);
2761 	return submit_bio_wait(bio);
2762 }
2763 
2764 int btrfsic_mount(struct btrfs_fs_info *fs_info,
2765 		  struct btrfs_fs_devices *fs_devices,
2766 		  int including_extent_data, u32 print_mask)
2767 {
2768 	int ret;
2769 	struct btrfsic_state *state;
2770 	struct list_head *dev_head = &fs_devices->devices;
2771 	struct btrfs_device *device;
2772 
2773 	if (!PAGE_ALIGNED(fs_info->nodesize)) {
2774 		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2775 		       fs_info->nodesize, PAGE_SIZE);
2776 		return -1;
2777 	}
2778 	if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2779 		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2780 		       fs_info->sectorsize, PAGE_SIZE);
2781 		return -1;
2782 	}
2783 	state = kvzalloc(sizeof(*state), GFP_KERNEL);
2784 	if (!state)
2785 		return -ENOMEM;
2786 
2787 	if (!btrfsic_is_initialized) {
2788 		mutex_init(&btrfsic_mutex);
2789 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2790 		btrfsic_is_initialized = 1;
2791 	}
2792 	mutex_lock(&btrfsic_mutex);
2793 	state->fs_info = fs_info;
2794 	state->print_mask = print_mask;
2795 	state->include_extent_data = including_extent_data;
2796 	state->metablock_size = fs_info->nodesize;
2797 	state->datablock_size = fs_info->sectorsize;
2798 	INIT_LIST_HEAD(&state->all_blocks_list);
2799 	btrfsic_block_hashtable_init(&state->block_hashtable);
2800 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2801 	state->max_superblock_generation = 0;
2802 	state->latest_superblock = NULL;
2803 
2804 	list_for_each_entry(device, dev_head, dev_list) {
2805 		struct btrfsic_dev_state *ds;
2806 		const char *p;
2807 
2808 		if (!device->bdev || !device->name)
2809 			continue;
2810 
2811 		ds = btrfsic_dev_state_alloc();
2812 		if (NULL == ds) {
2813 			mutex_unlock(&btrfsic_mutex);
2814 			return -ENOMEM;
2815 		}
2816 		ds->bdev = device->bdev;
2817 		ds->state = state;
2818 		bdevname(ds->bdev, ds->name);
2819 		ds->name[BDEVNAME_SIZE - 1] = '\0';
2820 		p = kbasename(ds->name);
2821 		strlcpy(ds->name, p, sizeof(ds->name));
2822 		btrfsic_dev_state_hashtable_add(ds,
2823 						&btrfsic_dev_state_hashtable);
2824 	}
2825 
2826 	ret = btrfsic_process_superblock(state, fs_devices);
2827 	if (0 != ret) {
2828 		mutex_unlock(&btrfsic_mutex);
2829 		btrfsic_unmount(fs_devices);
2830 		return ret;
2831 	}
2832 
2833 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2834 		btrfsic_dump_database(state);
2835 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2836 		btrfsic_dump_tree(state);
2837 
2838 	mutex_unlock(&btrfsic_mutex);
2839 	return 0;
2840 }
2841 
2842 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2843 {
2844 	struct btrfsic_block *b_all, *tmp_all;
2845 	struct btrfsic_state *state;
2846 	struct list_head *dev_head = &fs_devices->devices;
2847 	struct btrfs_device *device;
2848 
2849 	if (!btrfsic_is_initialized)
2850 		return;
2851 
2852 	mutex_lock(&btrfsic_mutex);
2853 
2854 	state = NULL;
2855 	list_for_each_entry(device, dev_head, dev_list) {
2856 		struct btrfsic_dev_state *ds;
2857 
2858 		if (!device->bdev || !device->name)
2859 			continue;
2860 
2861 		ds = btrfsic_dev_state_hashtable_lookup(
2862 				device->bdev->bd_dev,
2863 				&btrfsic_dev_state_hashtable);
2864 		if (NULL != ds) {
2865 			state = ds->state;
2866 			btrfsic_dev_state_hashtable_remove(ds);
2867 			btrfsic_dev_state_free(ds);
2868 		}
2869 	}
2870 
2871 	if (NULL == state) {
2872 		pr_info("btrfsic: error, cannot find state information on umount!\n");
2873 		mutex_unlock(&btrfsic_mutex);
2874 		return;
2875 	}
2876 
2877 	/*
2878 	 * Don't care about keeping the lists' state up to date,
2879 	 * just free all memory that was allocated dynamically.
2880 	 * Free the blocks and the block_links.
2881 	 */
2882 	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
2883 				 all_blocks_node) {
2884 		struct btrfsic_block_link *l, *tmp;
2885 
2886 		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
2887 					 node_ref_to) {
2888 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2889 				btrfsic_print_rem_link(state, l);
2890 
2891 			l->ref_cnt--;
2892 			if (0 == l->ref_cnt)
2893 				btrfsic_block_link_free(l);
2894 		}
2895 
2896 		if (b_all->is_iodone || b_all->never_written)
2897 			btrfsic_block_free(b_all);
2898 		else
2899 			pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
2900 			       btrfsic_get_block_type(state, b_all),
2901 			       b_all->logical_bytenr, b_all->dev_state->name,
2902 			       b_all->dev_bytenr, b_all->mirror_num);
2903 	}
2904 
2905 	mutex_unlock(&btrfsic_mutex);
2906 
2907 	kvfree(state);
2908 }
2909