1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STRATO AG 2011. All rights reserved. 4 */ 5 6 /* 7 * This module can be used to catch cases when the btrfs kernel 8 * code executes write requests to the disk that bring the file 9 * system in an inconsistent state. In such a state, a power-loss 10 * or kernel panic event would cause that the data on disk is 11 * lost or at least damaged. 12 * 13 * Code is added that examines all block write requests during 14 * runtime (including writes of the super block). Three rules 15 * are verified and an error is printed on violation of the 16 * rules: 17 * 1. It is not allowed to write a disk block which is 18 * currently referenced by the super block (either directly 19 * or indirectly). 20 * 2. When a super block is written, it is verified that all 21 * referenced (directly or indirectly) blocks fulfill the 22 * following requirements: 23 * 2a. All referenced blocks have either been present when 24 * the file system was mounted, (i.e., they have been 25 * referenced by the super block) or they have been 26 * written since then and the write completion callback 27 * was called and no write error was indicated and a 28 * FLUSH request to the device where these blocks are 29 * located was received and completed. 30 * 2b. All referenced blocks need to have a generation 31 * number which is equal to the parent's number. 32 * 33 * One issue that was found using this module was that the log 34 * tree on disk became temporarily corrupted because disk blocks 35 * that had been in use for the log tree had been freed and 36 * reused too early, while being referenced by the written super 37 * block. 38 * 39 * The search term in the kernel log that can be used to filter 40 * on the existence of detected integrity issues is 41 * "btrfs: attempt". 42 * 43 * The integrity check is enabled via mount options. These 44 * mount options are only supported if the integrity check 45 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY. 46 * 47 * Example #1, apply integrity checks to all metadata: 48 * mount /dev/sdb1 /mnt -o check_int 49 * 50 * Example #2, apply integrity checks to all metadata and 51 * to data extents: 52 * mount /dev/sdb1 /mnt -o check_int_data 53 * 54 * Example #3, apply integrity checks to all metadata and dump 55 * the tree that the super block references to kernel messages 56 * each time after a super block was written: 57 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263 58 * 59 * If the integrity check tool is included and activated in 60 * the mount options, plenty of kernel memory is used, and 61 * plenty of additional CPU cycles are spent. Enabling this 62 * functionality is not intended for normal use. In most 63 * cases, unless you are a btrfs developer who needs to verify 64 * the integrity of (super)-block write requests, do not 65 * enable the config option BTRFS_FS_CHECK_INTEGRITY to 66 * include and compile the integrity check tool. 67 * 68 * Expect millions of lines of information in the kernel log with an 69 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the 70 * kernel config to at least 26 (which is 64MB). Usually the value is 71 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be 72 * changed like this before LOG_BUF_SHIFT can be set to a high value: 73 * config LOG_BUF_SHIFT 74 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" 75 * range 12 30 76 */ 77 78 #include <linux/sched.h> 79 #include <linux/slab.h> 80 #include <linux/buffer_head.h> 81 #include <linux/mutex.h> 82 #include <linux/genhd.h> 83 #include <linux/blkdev.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <crypto/hash.h> 87 #include "ctree.h" 88 #include "disk-io.h" 89 #include "transaction.h" 90 #include "extent_io.h" 91 #include "volumes.h" 92 #include "print-tree.h" 93 #include "locking.h" 94 #include "check-integrity.h" 95 #include "rcu-string.h" 96 #include "compression.h" 97 98 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000 99 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000 100 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100 101 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051 102 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807 103 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530 104 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300 105 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters, 106 * excluding " [...]" */ 107 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1) 108 109 /* 110 * The definition of the bitmask fields for the print_mask. 111 * They are specified with the mount option check_integrity_print_mask. 112 */ 113 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001 114 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002 115 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004 116 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008 117 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010 118 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020 119 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040 120 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080 121 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100 122 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200 123 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400 124 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800 125 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000 126 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000 127 128 struct btrfsic_dev_state; 129 struct btrfsic_state; 130 131 struct btrfsic_block { 132 u32 magic_num; /* only used for debug purposes */ 133 unsigned int is_metadata:1; /* if it is meta-data, not data-data */ 134 unsigned int is_superblock:1; /* if it is one of the superblocks */ 135 unsigned int is_iodone:1; /* if is done by lower subsystem */ 136 unsigned int iodone_w_error:1; /* error was indicated to endio */ 137 unsigned int never_written:1; /* block was added because it was 138 * referenced, not because it was 139 * written */ 140 unsigned int mirror_num; /* large enough to hold 141 * BTRFS_SUPER_MIRROR_MAX */ 142 struct btrfsic_dev_state *dev_state; 143 u64 dev_bytenr; /* key, physical byte num on disk */ 144 u64 logical_bytenr; /* logical byte num on disk */ 145 u64 generation; 146 struct btrfs_disk_key disk_key; /* extra info to print in case of 147 * issues, will not always be correct */ 148 struct list_head collision_resolving_node; /* list node */ 149 struct list_head all_blocks_node; /* list node */ 150 151 /* the following two lists contain block_link items */ 152 struct list_head ref_to_list; /* list */ 153 struct list_head ref_from_list; /* list */ 154 struct btrfsic_block *next_in_same_bio; 155 void *orig_bio_bh_private; 156 union { 157 bio_end_io_t *bio; 158 bh_end_io_t *bh; 159 } orig_bio_bh_end_io; 160 int submit_bio_bh_rw; 161 u64 flush_gen; /* only valid if !never_written */ 162 }; 163 164 /* 165 * Elements of this type are allocated dynamically and required because 166 * each block object can refer to and can be ref from multiple blocks. 167 * The key to lookup them in the hashtable is the dev_bytenr of 168 * the block ref to plus the one from the block referred from. 169 * The fact that they are searchable via a hashtable and that a 170 * ref_cnt is maintained is not required for the btrfs integrity 171 * check algorithm itself, it is only used to make the output more 172 * beautiful in case that an error is detected (an error is defined 173 * as a write operation to a block while that block is still referenced). 174 */ 175 struct btrfsic_block_link { 176 u32 magic_num; /* only used for debug purposes */ 177 u32 ref_cnt; 178 struct list_head node_ref_to; /* list node */ 179 struct list_head node_ref_from; /* list node */ 180 struct list_head collision_resolving_node; /* list node */ 181 struct btrfsic_block *block_ref_to; 182 struct btrfsic_block *block_ref_from; 183 u64 parent_generation; 184 }; 185 186 struct btrfsic_dev_state { 187 u32 magic_num; /* only used for debug purposes */ 188 struct block_device *bdev; 189 struct btrfsic_state *state; 190 struct list_head collision_resolving_node; /* list node */ 191 struct btrfsic_block dummy_block_for_bio_bh_flush; 192 u64 last_flush_gen; 193 char name[BDEVNAME_SIZE]; 194 }; 195 196 struct btrfsic_block_hashtable { 197 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE]; 198 }; 199 200 struct btrfsic_block_link_hashtable { 201 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE]; 202 }; 203 204 struct btrfsic_dev_state_hashtable { 205 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE]; 206 }; 207 208 struct btrfsic_block_data_ctx { 209 u64 start; /* virtual bytenr */ 210 u64 dev_bytenr; /* physical bytenr on device */ 211 u32 len; 212 struct btrfsic_dev_state *dev; 213 char **datav; 214 struct page **pagev; 215 void *mem_to_free; 216 }; 217 218 /* This structure is used to implement recursion without occupying 219 * any stack space, refer to btrfsic_process_metablock() */ 220 struct btrfsic_stack_frame { 221 u32 magic; 222 u32 nr; 223 int error; 224 int i; 225 int limit_nesting; 226 int num_copies; 227 int mirror_num; 228 struct btrfsic_block *block; 229 struct btrfsic_block_data_ctx *block_ctx; 230 struct btrfsic_block *next_block; 231 struct btrfsic_block_data_ctx next_block_ctx; 232 struct btrfs_header *hdr; 233 struct btrfsic_stack_frame *prev; 234 }; 235 236 /* Some state per mounted filesystem */ 237 struct btrfsic_state { 238 u32 print_mask; 239 int include_extent_data; 240 int csum_size; 241 struct list_head all_blocks_list; 242 struct btrfsic_block_hashtable block_hashtable; 243 struct btrfsic_block_link_hashtable block_link_hashtable; 244 struct btrfs_fs_info *fs_info; 245 u64 max_superblock_generation; 246 struct btrfsic_block *latest_superblock; 247 u32 metablock_size; 248 u32 datablock_size; 249 }; 250 251 static void btrfsic_block_init(struct btrfsic_block *b); 252 static struct btrfsic_block *btrfsic_block_alloc(void); 253 static void btrfsic_block_free(struct btrfsic_block *b); 254 static void btrfsic_block_link_init(struct btrfsic_block_link *n); 255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void); 256 static void btrfsic_block_link_free(struct btrfsic_block_link *n); 257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds); 258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void); 259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds); 260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h); 261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 262 struct btrfsic_block_hashtable *h); 263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b); 264 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 265 struct block_device *bdev, 266 u64 dev_bytenr, 267 struct btrfsic_block_hashtable *h); 268 static void btrfsic_block_link_hashtable_init( 269 struct btrfsic_block_link_hashtable *h); 270 static void btrfsic_block_link_hashtable_add( 271 struct btrfsic_block_link *l, 272 struct btrfsic_block_link_hashtable *h); 273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l); 274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 275 struct block_device *bdev_ref_to, 276 u64 dev_bytenr_ref_to, 277 struct block_device *bdev_ref_from, 278 u64 dev_bytenr_ref_from, 279 struct btrfsic_block_link_hashtable *h); 280 static void btrfsic_dev_state_hashtable_init( 281 struct btrfsic_dev_state_hashtable *h); 282 static void btrfsic_dev_state_hashtable_add( 283 struct btrfsic_dev_state *ds, 284 struct btrfsic_dev_state_hashtable *h); 285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds); 286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev, 287 struct btrfsic_dev_state_hashtable *h); 288 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void); 289 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf); 290 static int btrfsic_process_superblock(struct btrfsic_state *state, 291 struct btrfs_fs_devices *fs_devices); 292 static int btrfsic_process_metablock(struct btrfsic_state *state, 293 struct btrfsic_block *block, 294 struct btrfsic_block_data_ctx *block_ctx, 295 int limit_nesting, int force_iodone_flag); 296 static void btrfsic_read_from_block_data( 297 struct btrfsic_block_data_ctx *block_ctx, 298 void *dst, u32 offset, size_t len); 299 static int btrfsic_create_link_to_next_block( 300 struct btrfsic_state *state, 301 struct btrfsic_block *block, 302 struct btrfsic_block_data_ctx 303 *block_ctx, u64 next_bytenr, 304 int limit_nesting, 305 struct btrfsic_block_data_ctx *next_block_ctx, 306 struct btrfsic_block **next_blockp, 307 int force_iodone_flag, 308 int *num_copiesp, int *mirror_nump, 309 struct btrfs_disk_key *disk_key, 310 u64 parent_generation); 311 static int btrfsic_handle_extent_data(struct btrfsic_state *state, 312 struct btrfsic_block *block, 313 struct btrfsic_block_data_ctx *block_ctx, 314 u32 item_offset, int force_iodone_flag); 315 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 316 struct btrfsic_block_data_ctx *block_ctx_out, 317 int mirror_num); 318 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx); 319 static int btrfsic_read_block(struct btrfsic_state *state, 320 struct btrfsic_block_data_ctx *block_ctx); 321 static void btrfsic_dump_database(struct btrfsic_state *state); 322 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 323 char **datav, unsigned int num_pages); 324 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 325 u64 dev_bytenr, char **mapped_datav, 326 unsigned int num_pages, 327 struct bio *bio, int *bio_is_patched, 328 struct buffer_head *bh, 329 int submit_bio_bh_rw); 330 static int btrfsic_process_written_superblock( 331 struct btrfsic_state *state, 332 struct btrfsic_block *const block, 333 struct btrfs_super_block *const super_hdr); 334 static void btrfsic_bio_end_io(struct bio *bp); 335 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate); 336 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state, 337 const struct btrfsic_block *block, 338 int recursion_level); 339 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 340 struct btrfsic_block *const block, 341 int recursion_level); 342 static void btrfsic_print_add_link(const struct btrfsic_state *state, 343 const struct btrfsic_block_link *l); 344 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 345 const struct btrfsic_block_link *l); 346 static char btrfsic_get_block_type(const struct btrfsic_state *state, 347 const struct btrfsic_block *block); 348 static void btrfsic_dump_tree(const struct btrfsic_state *state); 349 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 350 const struct btrfsic_block *block, 351 int indent_level); 352 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 353 struct btrfsic_state *state, 354 struct btrfsic_block_data_ctx *next_block_ctx, 355 struct btrfsic_block *next_block, 356 struct btrfsic_block *from_block, 357 u64 parent_generation); 358 static struct btrfsic_block *btrfsic_block_lookup_or_add( 359 struct btrfsic_state *state, 360 struct btrfsic_block_data_ctx *block_ctx, 361 const char *additional_string, 362 int is_metadata, 363 int is_iodone, 364 int never_written, 365 int mirror_num, 366 int *was_created); 367 static int btrfsic_process_superblock_dev_mirror( 368 struct btrfsic_state *state, 369 struct btrfsic_dev_state *dev_state, 370 struct btrfs_device *device, 371 int superblock_mirror_num, 372 struct btrfsic_dev_state **selected_dev_state, 373 struct btrfs_super_block *selected_super); 374 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev); 375 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 376 u64 bytenr, 377 struct btrfsic_dev_state *dev_state, 378 u64 dev_bytenr); 379 380 static struct mutex btrfsic_mutex; 381 static int btrfsic_is_initialized; 382 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable; 383 384 385 static void btrfsic_block_init(struct btrfsic_block *b) 386 { 387 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER; 388 b->dev_state = NULL; 389 b->dev_bytenr = 0; 390 b->logical_bytenr = 0; 391 b->generation = BTRFSIC_GENERATION_UNKNOWN; 392 b->disk_key.objectid = 0; 393 b->disk_key.type = 0; 394 b->disk_key.offset = 0; 395 b->is_metadata = 0; 396 b->is_superblock = 0; 397 b->is_iodone = 0; 398 b->iodone_w_error = 0; 399 b->never_written = 0; 400 b->mirror_num = 0; 401 b->next_in_same_bio = NULL; 402 b->orig_bio_bh_private = NULL; 403 b->orig_bio_bh_end_io.bio = NULL; 404 INIT_LIST_HEAD(&b->collision_resolving_node); 405 INIT_LIST_HEAD(&b->all_blocks_node); 406 INIT_LIST_HEAD(&b->ref_to_list); 407 INIT_LIST_HEAD(&b->ref_from_list); 408 b->submit_bio_bh_rw = 0; 409 b->flush_gen = 0; 410 } 411 412 static struct btrfsic_block *btrfsic_block_alloc(void) 413 { 414 struct btrfsic_block *b; 415 416 b = kzalloc(sizeof(*b), GFP_NOFS); 417 if (NULL != b) 418 btrfsic_block_init(b); 419 420 return b; 421 } 422 423 static void btrfsic_block_free(struct btrfsic_block *b) 424 { 425 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num)); 426 kfree(b); 427 } 428 429 static void btrfsic_block_link_init(struct btrfsic_block_link *l) 430 { 431 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER; 432 l->ref_cnt = 1; 433 INIT_LIST_HEAD(&l->node_ref_to); 434 INIT_LIST_HEAD(&l->node_ref_from); 435 INIT_LIST_HEAD(&l->collision_resolving_node); 436 l->block_ref_to = NULL; 437 l->block_ref_from = NULL; 438 } 439 440 static struct btrfsic_block_link *btrfsic_block_link_alloc(void) 441 { 442 struct btrfsic_block_link *l; 443 444 l = kzalloc(sizeof(*l), GFP_NOFS); 445 if (NULL != l) 446 btrfsic_block_link_init(l); 447 448 return l; 449 } 450 451 static void btrfsic_block_link_free(struct btrfsic_block_link *l) 452 { 453 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num)); 454 kfree(l); 455 } 456 457 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds) 458 { 459 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER; 460 ds->bdev = NULL; 461 ds->state = NULL; 462 ds->name[0] = '\0'; 463 INIT_LIST_HEAD(&ds->collision_resolving_node); 464 ds->last_flush_gen = 0; 465 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush); 466 ds->dummy_block_for_bio_bh_flush.is_iodone = 1; 467 ds->dummy_block_for_bio_bh_flush.dev_state = ds; 468 } 469 470 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void) 471 { 472 struct btrfsic_dev_state *ds; 473 474 ds = kzalloc(sizeof(*ds), GFP_NOFS); 475 if (NULL != ds) 476 btrfsic_dev_state_init(ds); 477 478 return ds; 479 } 480 481 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds) 482 { 483 BUG_ON(!(NULL == ds || 484 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num)); 485 kfree(ds); 486 } 487 488 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h) 489 { 490 int i; 491 492 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++) 493 INIT_LIST_HEAD(h->table + i); 494 } 495 496 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 497 struct btrfsic_block_hashtable *h) 498 { 499 const unsigned int hashval = 500 (((unsigned int)(b->dev_bytenr >> 16)) ^ 501 ((unsigned int)((uintptr_t)b->dev_state->bdev))) & 502 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 503 504 list_add(&b->collision_resolving_node, h->table + hashval); 505 } 506 507 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b) 508 { 509 list_del(&b->collision_resolving_node); 510 } 511 512 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 513 struct block_device *bdev, 514 u64 dev_bytenr, 515 struct btrfsic_block_hashtable *h) 516 { 517 const unsigned int hashval = 518 (((unsigned int)(dev_bytenr >> 16)) ^ 519 ((unsigned int)((uintptr_t)bdev))) & 520 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 521 struct btrfsic_block *b; 522 523 list_for_each_entry(b, h->table + hashval, collision_resolving_node) { 524 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr) 525 return b; 526 } 527 528 return NULL; 529 } 530 531 static void btrfsic_block_link_hashtable_init( 532 struct btrfsic_block_link_hashtable *h) 533 { 534 int i; 535 536 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++) 537 INIT_LIST_HEAD(h->table + i); 538 } 539 540 static void btrfsic_block_link_hashtable_add( 541 struct btrfsic_block_link *l, 542 struct btrfsic_block_link_hashtable *h) 543 { 544 const unsigned int hashval = 545 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^ 546 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^ 547 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^ 548 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev))) 549 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 550 551 BUG_ON(NULL == l->block_ref_to); 552 BUG_ON(NULL == l->block_ref_from); 553 list_add(&l->collision_resolving_node, h->table + hashval); 554 } 555 556 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l) 557 { 558 list_del(&l->collision_resolving_node); 559 } 560 561 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 562 struct block_device *bdev_ref_to, 563 u64 dev_bytenr_ref_to, 564 struct block_device *bdev_ref_from, 565 u64 dev_bytenr_ref_from, 566 struct btrfsic_block_link_hashtable *h) 567 { 568 const unsigned int hashval = 569 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^ 570 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^ 571 ((unsigned int)((uintptr_t)bdev_ref_to)) ^ 572 ((unsigned int)((uintptr_t)bdev_ref_from))) & 573 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 574 struct btrfsic_block_link *l; 575 576 list_for_each_entry(l, h->table + hashval, collision_resolving_node) { 577 BUG_ON(NULL == l->block_ref_to); 578 BUG_ON(NULL == l->block_ref_from); 579 if (l->block_ref_to->dev_state->bdev == bdev_ref_to && 580 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to && 581 l->block_ref_from->dev_state->bdev == bdev_ref_from && 582 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from) 583 return l; 584 } 585 586 return NULL; 587 } 588 589 static void btrfsic_dev_state_hashtable_init( 590 struct btrfsic_dev_state_hashtable *h) 591 { 592 int i; 593 594 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++) 595 INIT_LIST_HEAD(h->table + i); 596 } 597 598 static void btrfsic_dev_state_hashtable_add( 599 struct btrfsic_dev_state *ds, 600 struct btrfsic_dev_state_hashtable *h) 601 { 602 const unsigned int hashval = 603 (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) & 604 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 605 606 list_add(&ds->collision_resolving_node, h->table + hashval); 607 } 608 609 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds) 610 { 611 list_del(&ds->collision_resolving_node); 612 } 613 614 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev, 615 struct btrfsic_dev_state_hashtable *h) 616 { 617 const unsigned int hashval = 618 dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1); 619 struct btrfsic_dev_state *ds; 620 621 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) { 622 if (ds->bdev->bd_dev == dev) 623 return ds; 624 } 625 626 return NULL; 627 } 628 629 static int btrfsic_process_superblock(struct btrfsic_state *state, 630 struct btrfs_fs_devices *fs_devices) 631 { 632 struct btrfs_super_block *selected_super; 633 struct list_head *dev_head = &fs_devices->devices; 634 struct btrfs_device *device; 635 struct btrfsic_dev_state *selected_dev_state = NULL; 636 int ret = 0; 637 int pass; 638 639 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS); 640 if (NULL == selected_super) { 641 pr_info("btrfsic: error, kmalloc failed!\n"); 642 return -ENOMEM; 643 } 644 645 list_for_each_entry(device, dev_head, dev_list) { 646 int i; 647 struct btrfsic_dev_state *dev_state; 648 649 if (!device->bdev || !device->name) 650 continue; 651 652 dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev); 653 BUG_ON(NULL == dev_state); 654 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 655 ret = btrfsic_process_superblock_dev_mirror( 656 state, dev_state, device, i, 657 &selected_dev_state, selected_super); 658 if (0 != ret && 0 == i) { 659 kfree(selected_super); 660 return ret; 661 } 662 } 663 } 664 665 if (NULL == state->latest_superblock) { 666 pr_info("btrfsic: no superblock found!\n"); 667 kfree(selected_super); 668 return -1; 669 } 670 671 state->csum_size = btrfs_super_csum_size(selected_super); 672 673 for (pass = 0; pass < 3; pass++) { 674 int num_copies; 675 int mirror_num; 676 u64 next_bytenr; 677 678 switch (pass) { 679 case 0: 680 next_bytenr = btrfs_super_root(selected_super); 681 if (state->print_mask & 682 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 683 pr_info("root@%llu\n", next_bytenr); 684 break; 685 case 1: 686 next_bytenr = btrfs_super_chunk_root(selected_super); 687 if (state->print_mask & 688 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 689 pr_info("chunk@%llu\n", next_bytenr); 690 break; 691 case 2: 692 next_bytenr = btrfs_super_log_root(selected_super); 693 if (0 == next_bytenr) 694 continue; 695 if (state->print_mask & 696 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 697 pr_info("log@%llu\n", next_bytenr); 698 break; 699 } 700 701 num_copies = btrfs_num_copies(state->fs_info, next_bytenr, 702 state->metablock_size); 703 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 704 pr_info("num_copies(log_bytenr=%llu) = %d\n", 705 next_bytenr, num_copies); 706 707 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 708 struct btrfsic_block *next_block; 709 struct btrfsic_block_data_ctx tmp_next_block_ctx; 710 struct btrfsic_block_link *l; 711 712 ret = btrfsic_map_block(state, next_bytenr, 713 state->metablock_size, 714 &tmp_next_block_ctx, 715 mirror_num); 716 if (ret) { 717 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n", 718 next_bytenr, mirror_num); 719 kfree(selected_super); 720 return -1; 721 } 722 723 next_block = btrfsic_block_hashtable_lookup( 724 tmp_next_block_ctx.dev->bdev, 725 tmp_next_block_ctx.dev_bytenr, 726 &state->block_hashtable); 727 BUG_ON(NULL == next_block); 728 729 l = btrfsic_block_link_hashtable_lookup( 730 tmp_next_block_ctx.dev->bdev, 731 tmp_next_block_ctx.dev_bytenr, 732 state->latest_superblock->dev_state-> 733 bdev, 734 state->latest_superblock->dev_bytenr, 735 &state->block_link_hashtable); 736 BUG_ON(NULL == l); 737 738 ret = btrfsic_read_block(state, &tmp_next_block_ctx); 739 if (ret < (int)PAGE_SIZE) { 740 pr_info("btrfsic: read @logical %llu failed!\n", 741 tmp_next_block_ctx.start); 742 btrfsic_release_block_ctx(&tmp_next_block_ctx); 743 kfree(selected_super); 744 return -1; 745 } 746 747 ret = btrfsic_process_metablock(state, 748 next_block, 749 &tmp_next_block_ctx, 750 BTRFS_MAX_LEVEL + 3, 1); 751 btrfsic_release_block_ctx(&tmp_next_block_ctx); 752 } 753 } 754 755 kfree(selected_super); 756 return ret; 757 } 758 759 static int btrfsic_process_superblock_dev_mirror( 760 struct btrfsic_state *state, 761 struct btrfsic_dev_state *dev_state, 762 struct btrfs_device *device, 763 int superblock_mirror_num, 764 struct btrfsic_dev_state **selected_dev_state, 765 struct btrfs_super_block *selected_super) 766 { 767 struct btrfs_fs_info *fs_info = state->fs_info; 768 struct btrfs_super_block *super_tmp; 769 u64 dev_bytenr; 770 struct buffer_head *bh; 771 struct btrfsic_block *superblock_tmp; 772 int pass; 773 struct block_device *const superblock_bdev = device->bdev; 774 775 /* super block bytenr is always the unmapped device bytenr */ 776 dev_bytenr = btrfs_sb_offset(superblock_mirror_num); 777 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes) 778 return -1; 779 bh = __bread(superblock_bdev, dev_bytenr / BTRFS_BDEV_BLOCKSIZE, 780 BTRFS_SUPER_INFO_SIZE); 781 if (NULL == bh) 782 return -1; 783 super_tmp = (struct btrfs_super_block *) 784 (bh->b_data + (dev_bytenr & (BTRFS_BDEV_BLOCKSIZE - 1))); 785 786 if (btrfs_super_bytenr(super_tmp) != dev_bytenr || 787 btrfs_super_magic(super_tmp) != BTRFS_MAGIC || 788 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) || 789 btrfs_super_nodesize(super_tmp) != state->metablock_size || 790 btrfs_super_sectorsize(super_tmp) != state->datablock_size) { 791 brelse(bh); 792 return 0; 793 } 794 795 superblock_tmp = 796 btrfsic_block_hashtable_lookup(superblock_bdev, 797 dev_bytenr, 798 &state->block_hashtable); 799 if (NULL == superblock_tmp) { 800 superblock_tmp = btrfsic_block_alloc(); 801 if (NULL == superblock_tmp) { 802 pr_info("btrfsic: error, kmalloc failed!\n"); 803 brelse(bh); 804 return -1; 805 } 806 /* for superblock, only the dev_bytenr makes sense */ 807 superblock_tmp->dev_bytenr = dev_bytenr; 808 superblock_tmp->dev_state = dev_state; 809 superblock_tmp->logical_bytenr = dev_bytenr; 810 superblock_tmp->generation = btrfs_super_generation(super_tmp); 811 superblock_tmp->is_metadata = 1; 812 superblock_tmp->is_superblock = 1; 813 superblock_tmp->is_iodone = 1; 814 superblock_tmp->never_written = 0; 815 superblock_tmp->mirror_num = 1 + superblock_mirror_num; 816 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 817 btrfs_info_in_rcu(fs_info, 818 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)", 819 superblock_bdev, 820 rcu_str_deref(device->name), dev_bytenr, 821 dev_state->name, dev_bytenr, 822 superblock_mirror_num); 823 list_add(&superblock_tmp->all_blocks_node, 824 &state->all_blocks_list); 825 btrfsic_block_hashtable_add(superblock_tmp, 826 &state->block_hashtable); 827 } 828 829 /* select the one with the highest generation field */ 830 if (btrfs_super_generation(super_tmp) > 831 state->max_superblock_generation || 832 0 == state->max_superblock_generation) { 833 memcpy(selected_super, super_tmp, sizeof(*selected_super)); 834 *selected_dev_state = dev_state; 835 state->max_superblock_generation = 836 btrfs_super_generation(super_tmp); 837 state->latest_superblock = superblock_tmp; 838 } 839 840 for (pass = 0; pass < 3; pass++) { 841 u64 next_bytenr; 842 int num_copies; 843 int mirror_num; 844 const char *additional_string = NULL; 845 struct btrfs_disk_key tmp_disk_key; 846 847 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; 848 tmp_disk_key.offset = 0; 849 switch (pass) { 850 case 0: 851 btrfs_set_disk_key_objectid(&tmp_disk_key, 852 BTRFS_ROOT_TREE_OBJECTID); 853 additional_string = "initial root "; 854 next_bytenr = btrfs_super_root(super_tmp); 855 break; 856 case 1: 857 btrfs_set_disk_key_objectid(&tmp_disk_key, 858 BTRFS_CHUNK_TREE_OBJECTID); 859 additional_string = "initial chunk "; 860 next_bytenr = btrfs_super_chunk_root(super_tmp); 861 break; 862 case 2: 863 btrfs_set_disk_key_objectid(&tmp_disk_key, 864 BTRFS_TREE_LOG_OBJECTID); 865 additional_string = "initial log "; 866 next_bytenr = btrfs_super_log_root(super_tmp); 867 if (0 == next_bytenr) 868 continue; 869 break; 870 } 871 872 num_copies = btrfs_num_copies(fs_info, next_bytenr, 873 state->metablock_size); 874 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 875 pr_info("num_copies(log_bytenr=%llu) = %d\n", 876 next_bytenr, num_copies); 877 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 878 struct btrfsic_block *next_block; 879 struct btrfsic_block_data_ctx tmp_next_block_ctx; 880 struct btrfsic_block_link *l; 881 882 if (btrfsic_map_block(state, next_bytenr, 883 state->metablock_size, 884 &tmp_next_block_ctx, 885 mirror_num)) { 886 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n", 887 next_bytenr, mirror_num); 888 brelse(bh); 889 return -1; 890 } 891 892 next_block = btrfsic_block_lookup_or_add( 893 state, &tmp_next_block_ctx, 894 additional_string, 1, 1, 0, 895 mirror_num, NULL); 896 if (NULL == next_block) { 897 btrfsic_release_block_ctx(&tmp_next_block_ctx); 898 brelse(bh); 899 return -1; 900 } 901 902 next_block->disk_key = tmp_disk_key; 903 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 904 l = btrfsic_block_link_lookup_or_add( 905 state, &tmp_next_block_ctx, 906 next_block, superblock_tmp, 907 BTRFSIC_GENERATION_UNKNOWN); 908 btrfsic_release_block_ctx(&tmp_next_block_ctx); 909 if (NULL == l) { 910 brelse(bh); 911 return -1; 912 } 913 } 914 } 915 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES) 916 btrfsic_dump_tree_sub(state, superblock_tmp, 0); 917 918 brelse(bh); 919 return 0; 920 } 921 922 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void) 923 { 924 struct btrfsic_stack_frame *sf; 925 926 sf = kzalloc(sizeof(*sf), GFP_NOFS); 927 if (NULL == sf) 928 pr_info("btrfsic: alloc memory failed!\n"); 929 else 930 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER; 931 return sf; 932 } 933 934 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf) 935 { 936 BUG_ON(!(NULL == sf || 937 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic)); 938 kfree(sf); 939 } 940 941 static noinline_for_stack int btrfsic_process_metablock( 942 struct btrfsic_state *state, 943 struct btrfsic_block *const first_block, 944 struct btrfsic_block_data_ctx *const first_block_ctx, 945 int first_limit_nesting, int force_iodone_flag) 946 { 947 struct btrfsic_stack_frame initial_stack_frame = { 0 }; 948 struct btrfsic_stack_frame *sf; 949 struct btrfsic_stack_frame *next_stack; 950 struct btrfs_header *const first_hdr = 951 (struct btrfs_header *)first_block_ctx->datav[0]; 952 953 BUG_ON(!first_hdr); 954 sf = &initial_stack_frame; 955 sf->error = 0; 956 sf->i = -1; 957 sf->limit_nesting = first_limit_nesting; 958 sf->block = first_block; 959 sf->block_ctx = first_block_ctx; 960 sf->next_block = NULL; 961 sf->hdr = first_hdr; 962 sf->prev = NULL; 963 964 continue_with_new_stack_frame: 965 sf->block->generation = le64_to_cpu(sf->hdr->generation); 966 if (0 == sf->hdr->level) { 967 struct btrfs_leaf *const leafhdr = 968 (struct btrfs_leaf *)sf->hdr; 969 970 if (-1 == sf->i) { 971 sf->nr = btrfs_stack_header_nritems(&leafhdr->header); 972 973 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 974 pr_info("leaf %llu items %d generation %llu owner %llu\n", 975 sf->block_ctx->start, sf->nr, 976 btrfs_stack_header_generation( 977 &leafhdr->header), 978 btrfs_stack_header_owner( 979 &leafhdr->header)); 980 } 981 982 continue_with_current_leaf_stack_frame: 983 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 984 sf->i++; 985 sf->num_copies = 0; 986 } 987 988 if (sf->i < sf->nr) { 989 struct btrfs_item disk_item; 990 u32 disk_item_offset = 991 (uintptr_t)(leafhdr->items + sf->i) - 992 (uintptr_t)leafhdr; 993 struct btrfs_disk_key *disk_key; 994 u8 type; 995 u32 item_offset; 996 u32 item_size; 997 998 if (disk_item_offset + sizeof(struct btrfs_item) > 999 sf->block_ctx->len) { 1000 leaf_item_out_of_bounce_error: 1001 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n", 1002 sf->block_ctx->start, 1003 sf->block_ctx->dev->name); 1004 goto one_stack_frame_backwards; 1005 } 1006 btrfsic_read_from_block_data(sf->block_ctx, 1007 &disk_item, 1008 disk_item_offset, 1009 sizeof(struct btrfs_item)); 1010 item_offset = btrfs_stack_item_offset(&disk_item); 1011 item_size = btrfs_stack_item_size(&disk_item); 1012 disk_key = &disk_item.key; 1013 type = btrfs_disk_key_type(disk_key); 1014 1015 if (BTRFS_ROOT_ITEM_KEY == type) { 1016 struct btrfs_root_item root_item; 1017 u32 root_item_offset; 1018 u64 next_bytenr; 1019 1020 root_item_offset = item_offset + 1021 offsetof(struct btrfs_leaf, items); 1022 if (root_item_offset + item_size > 1023 sf->block_ctx->len) 1024 goto leaf_item_out_of_bounce_error; 1025 btrfsic_read_from_block_data( 1026 sf->block_ctx, &root_item, 1027 root_item_offset, 1028 item_size); 1029 next_bytenr = btrfs_root_bytenr(&root_item); 1030 1031 sf->error = 1032 btrfsic_create_link_to_next_block( 1033 state, 1034 sf->block, 1035 sf->block_ctx, 1036 next_bytenr, 1037 sf->limit_nesting, 1038 &sf->next_block_ctx, 1039 &sf->next_block, 1040 force_iodone_flag, 1041 &sf->num_copies, 1042 &sf->mirror_num, 1043 disk_key, 1044 btrfs_root_generation( 1045 &root_item)); 1046 if (sf->error) 1047 goto one_stack_frame_backwards; 1048 1049 if (NULL != sf->next_block) { 1050 struct btrfs_header *const next_hdr = 1051 (struct btrfs_header *) 1052 sf->next_block_ctx.datav[0]; 1053 1054 next_stack = 1055 btrfsic_stack_frame_alloc(); 1056 if (NULL == next_stack) { 1057 sf->error = -1; 1058 btrfsic_release_block_ctx( 1059 &sf-> 1060 next_block_ctx); 1061 goto one_stack_frame_backwards; 1062 } 1063 1064 next_stack->i = -1; 1065 next_stack->block = sf->next_block; 1066 next_stack->block_ctx = 1067 &sf->next_block_ctx; 1068 next_stack->next_block = NULL; 1069 next_stack->hdr = next_hdr; 1070 next_stack->limit_nesting = 1071 sf->limit_nesting - 1; 1072 next_stack->prev = sf; 1073 sf = next_stack; 1074 goto continue_with_new_stack_frame; 1075 } 1076 } else if (BTRFS_EXTENT_DATA_KEY == type && 1077 state->include_extent_data) { 1078 sf->error = btrfsic_handle_extent_data( 1079 state, 1080 sf->block, 1081 sf->block_ctx, 1082 item_offset, 1083 force_iodone_flag); 1084 if (sf->error) 1085 goto one_stack_frame_backwards; 1086 } 1087 1088 goto continue_with_current_leaf_stack_frame; 1089 } 1090 } else { 1091 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr; 1092 1093 if (-1 == sf->i) { 1094 sf->nr = btrfs_stack_header_nritems(&nodehdr->header); 1095 1096 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1097 pr_info("node %llu level %d items %d generation %llu owner %llu\n", 1098 sf->block_ctx->start, 1099 nodehdr->header.level, sf->nr, 1100 btrfs_stack_header_generation( 1101 &nodehdr->header), 1102 btrfs_stack_header_owner( 1103 &nodehdr->header)); 1104 } 1105 1106 continue_with_current_node_stack_frame: 1107 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1108 sf->i++; 1109 sf->num_copies = 0; 1110 } 1111 1112 if (sf->i < sf->nr) { 1113 struct btrfs_key_ptr key_ptr; 1114 u32 key_ptr_offset; 1115 u64 next_bytenr; 1116 1117 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) - 1118 (uintptr_t)nodehdr; 1119 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) > 1120 sf->block_ctx->len) { 1121 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n", 1122 sf->block_ctx->start, 1123 sf->block_ctx->dev->name); 1124 goto one_stack_frame_backwards; 1125 } 1126 btrfsic_read_from_block_data( 1127 sf->block_ctx, &key_ptr, key_ptr_offset, 1128 sizeof(struct btrfs_key_ptr)); 1129 next_bytenr = btrfs_stack_key_blockptr(&key_ptr); 1130 1131 sf->error = btrfsic_create_link_to_next_block( 1132 state, 1133 sf->block, 1134 sf->block_ctx, 1135 next_bytenr, 1136 sf->limit_nesting, 1137 &sf->next_block_ctx, 1138 &sf->next_block, 1139 force_iodone_flag, 1140 &sf->num_copies, 1141 &sf->mirror_num, 1142 &key_ptr.key, 1143 btrfs_stack_key_generation(&key_ptr)); 1144 if (sf->error) 1145 goto one_stack_frame_backwards; 1146 1147 if (NULL != sf->next_block) { 1148 struct btrfs_header *const next_hdr = 1149 (struct btrfs_header *) 1150 sf->next_block_ctx.datav[0]; 1151 1152 next_stack = btrfsic_stack_frame_alloc(); 1153 if (NULL == next_stack) { 1154 sf->error = -1; 1155 goto one_stack_frame_backwards; 1156 } 1157 1158 next_stack->i = -1; 1159 next_stack->block = sf->next_block; 1160 next_stack->block_ctx = &sf->next_block_ctx; 1161 next_stack->next_block = NULL; 1162 next_stack->hdr = next_hdr; 1163 next_stack->limit_nesting = 1164 sf->limit_nesting - 1; 1165 next_stack->prev = sf; 1166 sf = next_stack; 1167 goto continue_with_new_stack_frame; 1168 } 1169 1170 goto continue_with_current_node_stack_frame; 1171 } 1172 } 1173 1174 one_stack_frame_backwards: 1175 if (NULL != sf->prev) { 1176 struct btrfsic_stack_frame *const prev = sf->prev; 1177 1178 /* the one for the initial block is freed in the caller */ 1179 btrfsic_release_block_ctx(sf->block_ctx); 1180 1181 if (sf->error) { 1182 prev->error = sf->error; 1183 btrfsic_stack_frame_free(sf); 1184 sf = prev; 1185 goto one_stack_frame_backwards; 1186 } 1187 1188 btrfsic_stack_frame_free(sf); 1189 sf = prev; 1190 goto continue_with_new_stack_frame; 1191 } else { 1192 BUG_ON(&initial_stack_frame != sf); 1193 } 1194 1195 return sf->error; 1196 } 1197 1198 static void btrfsic_read_from_block_data( 1199 struct btrfsic_block_data_ctx *block_ctx, 1200 void *dstv, u32 offset, size_t len) 1201 { 1202 size_t cur; 1203 size_t pgoff; 1204 char *kaddr; 1205 char *dst = (char *)dstv; 1206 size_t start_offset = offset_in_page(block_ctx->start); 1207 unsigned long i = (start_offset + offset) >> PAGE_SHIFT; 1208 1209 WARN_ON(offset + len > block_ctx->len); 1210 pgoff = offset_in_page(start_offset + offset); 1211 1212 while (len > 0) { 1213 cur = min(len, ((size_t)PAGE_SIZE - pgoff)); 1214 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE)); 1215 kaddr = block_ctx->datav[i]; 1216 memcpy(dst, kaddr + pgoff, cur); 1217 1218 dst += cur; 1219 len -= cur; 1220 pgoff = 0; 1221 i++; 1222 } 1223 } 1224 1225 static int btrfsic_create_link_to_next_block( 1226 struct btrfsic_state *state, 1227 struct btrfsic_block *block, 1228 struct btrfsic_block_data_ctx *block_ctx, 1229 u64 next_bytenr, 1230 int limit_nesting, 1231 struct btrfsic_block_data_ctx *next_block_ctx, 1232 struct btrfsic_block **next_blockp, 1233 int force_iodone_flag, 1234 int *num_copiesp, int *mirror_nump, 1235 struct btrfs_disk_key *disk_key, 1236 u64 parent_generation) 1237 { 1238 struct btrfs_fs_info *fs_info = state->fs_info; 1239 struct btrfsic_block *next_block = NULL; 1240 int ret; 1241 struct btrfsic_block_link *l; 1242 int did_alloc_block_link; 1243 int block_was_created; 1244 1245 *next_blockp = NULL; 1246 if (0 == *num_copiesp) { 1247 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr, 1248 state->metablock_size); 1249 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1250 pr_info("num_copies(log_bytenr=%llu) = %d\n", 1251 next_bytenr, *num_copiesp); 1252 *mirror_nump = 1; 1253 } 1254 1255 if (*mirror_nump > *num_copiesp) 1256 return 0; 1257 1258 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1259 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n", 1260 *mirror_nump); 1261 ret = btrfsic_map_block(state, next_bytenr, 1262 state->metablock_size, 1263 next_block_ctx, *mirror_nump); 1264 if (ret) { 1265 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1266 next_bytenr, *mirror_nump); 1267 btrfsic_release_block_ctx(next_block_ctx); 1268 *next_blockp = NULL; 1269 return -1; 1270 } 1271 1272 next_block = btrfsic_block_lookup_or_add(state, 1273 next_block_ctx, "referenced ", 1274 1, force_iodone_flag, 1275 !force_iodone_flag, 1276 *mirror_nump, 1277 &block_was_created); 1278 if (NULL == next_block) { 1279 btrfsic_release_block_ctx(next_block_ctx); 1280 *next_blockp = NULL; 1281 return -1; 1282 } 1283 if (block_was_created) { 1284 l = NULL; 1285 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 1286 } else { 1287 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1288 if (next_block->logical_bytenr != next_bytenr && 1289 !(!next_block->is_metadata && 1290 0 == next_block->logical_bytenr)) 1291 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1292 next_bytenr, next_block_ctx->dev->name, 1293 next_block_ctx->dev_bytenr, *mirror_nump, 1294 btrfsic_get_block_type(state, 1295 next_block), 1296 next_block->logical_bytenr); 1297 else 1298 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1299 next_bytenr, next_block_ctx->dev->name, 1300 next_block_ctx->dev_bytenr, *mirror_nump, 1301 btrfsic_get_block_type(state, 1302 next_block)); 1303 } 1304 next_block->logical_bytenr = next_bytenr; 1305 1306 next_block->mirror_num = *mirror_nump; 1307 l = btrfsic_block_link_hashtable_lookup( 1308 next_block_ctx->dev->bdev, 1309 next_block_ctx->dev_bytenr, 1310 block_ctx->dev->bdev, 1311 block_ctx->dev_bytenr, 1312 &state->block_link_hashtable); 1313 } 1314 1315 next_block->disk_key = *disk_key; 1316 if (NULL == l) { 1317 l = btrfsic_block_link_alloc(); 1318 if (NULL == l) { 1319 pr_info("btrfsic: error, kmalloc failed!\n"); 1320 btrfsic_release_block_ctx(next_block_ctx); 1321 *next_blockp = NULL; 1322 return -1; 1323 } 1324 1325 did_alloc_block_link = 1; 1326 l->block_ref_to = next_block; 1327 l->block_ref_from = block; 1328 l->ref_cnt = 1; 1329 l->parent_generation = parent_generation; 1330 1331 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1332 btrfsic_print_add_link(state, l); 1333 1334 list_add(&l->node_ref_to, &block->ref_to_list); 1335 list_add(&l->node_ref_from, &next_block->ref_from_list); 1336 1337 btrfsic_block_link_hashtable_add(l, 1338 &state->block_link_hashtable); 1339 } else { 1340 did_alloc_block_link = 0; 1341 if (0 == limit_nesting) { 1342 l->ref_cnt++; 1343 l->parent_generation = parent_generation; 1344 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1345 btrfsic_print_add_link(state, l); 1346 } 1347 } 1348 1349 if (limit_nesting > 0 && did_alloc_block_link) { 1350 ret = btrfsic_read_block(state, next_block_ctx); 1351 if (ret < (int)next_block_ctx->len) { 1352 pr_info("btrfsic: read block @logical %llu failed!\n", 1353 next_bytenr); 1354 btrfsic_release_block_ctx(next_block_ctx); 1355 *next_blockp = NULL; 1356 return -1; 1357 } 1358 1359 *next_blockp = next_block; 1360 } else { 1361 *next_blockp = NULL; 1362 } 1363 (*mirror_nump)++; 1364 1365 return 0; 1366 } 1367 1368 static int btrfsic_handle_extent_data( 1369 struct btrfsic_state *state, 1370 struct btrfsic_block *block, 1371 struct btrfsic_block_data_ctx *block_ctx, 1372 u32 item_offset, int force_iodone_flag) 1373 { 1374 struct btrfs_fs_info *fs_info = state->fs_info; 1375 struct btrfs_file_extent_item file_extent_item; 1376 u64 file_extent_item_offset; 1377 u64 next_bytenr; 1378 u64 num_bytes; 1379 u64 generation; 1380 struct btrfsic_block_link *l; 1381 int ret; 1382 1383 file_extent_item_offset = offsetof(struct btrfs_leaf, items) + 1384 item_offset; 1385 if (file_extent_item_offset + 1386 offsetof(struct btrfs_file_extent_item, disk_num_bytes) > 1387 block_ctx->len) { 1388 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n", 1389 block_ctx->start, block_ctx->dev->name); 1390 return -1; 1391 } 1392 1393 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1394 file_extent_item_offset, 1395 offsetof(struct btrfs_file_extent_item, disk_num_bytes)); 1396 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type || 1397 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) { 1398 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1399 pr_info("extent_data: type %u, disk_bytenr = %llu\n", 1400 file_extent_item.type, 1401 btrfs_stack_file_extent_disk_bytenr( 1402 &file_extent_item)); 1403 return 0; 1404 } 1405 1406 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) > 1407 block_ctx->len) { 1408 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n", 1409 block_ctx->start, block_ctx->dev->name); 1410 return -1; 1411 } 1412 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1413 file_extent_item_offset, 1414 sizeof(struct btrfs_file_extent_item)); 1415 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item); 1416 if (btrfs_stack_file_extent_compression(&file_extent_item) == 1417 BTRFS_COMPRESS_NONE) { 1418 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item); 1419 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item); 1420 } else { 1421 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item); 1422 } 1423 generation = btrfs_stack_file_extent_generation(&file_extent_item); 1424 1425 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1426 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n", 1427 file_extent_item.type, 1428 btrfs_stack_file_extent_disk_bytenr(&file_extent_item), 1429 btrfs_stack_file_extent_offset(&file_extent_item), 1430 num_bytes); 1431 while (num_bytes > 0) { 1432 u32 chunk_len; 1433 int num_copies; 1434 int mirror_num; 1435 1436 if (num_bytes > state->datablock_size) 1437 chunk_len = state->datablock_size; 1438 else 1439 chunk_len = num_bytes; 1440 1441 num_copies = btrfs_num_copies(fs_info, next_bytenr, 1442 state->datablock_size); 1443 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1444 pr_info("num_copies(log_bytenr=%llu) = %d\n", 1445 next_bytenr, num_copies); 1446 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 1447 struct btrfsic_block_data_ctx next_block_ctx; 1448 struct btrfsic_block *next_block; 1449 int block_was_created; 1450 1451 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1452 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n", 1453 mirror_num); 1454 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1455 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n", 1456 next_bytenr, chunk_len); 1457 ret = btrfsic_map_block(state, next_bytenr, 1458 chunk_len, &next_block_ctx, 1459 mirror_num); 1460 if (ret) { 1461 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1462 next_bytenr, mirror_num); 1463 return -1; 1464 } 1465 1466 next_block = btrfsic_block_lookup_or_add( 1467 state, 1468 &next_block_ctx, 1469 "referenced ", 1470 0, 1471 force_iodone_flag, 1472 !force_iodone_flag, 1473 mirror_num, 1474 &block_was_created); 1475 if (NULL == next_block) { 1476 pr_info("btrfsic: error, kmalloc failed!\n"); 1477 btrfsic_release_block_ctx(&next_block_ctx); 1478 return -1; 1479 } 1480 if (!block_was_created) { 1481 if ((state->print_mask & 1482 BTRFSIC_PRINT_MASK_VERBOSE) && 1483 next_block->logical_bytenr != next_bytenr && 1484 !(!next_block->is_metadata && 1485 0 == next_block->logical_bytenr)) { 1486 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n", 1487 next_bytenr, 1488 next_block_ctx.dev->name, 1489 next_block_ctx.dev_bytenr, 1490 mirror_num, 1491 next_block->logical_bytenr); 1492 } 1493 next_block->logical_bytenr = next_bytenr; 1494 next_block->mirror_num = mirror_num; 1495 } 1496 1497 l = btrfsic_block_link_lookup_or_add(state, 1498 &next_block_ctx, 1499 next_block, block, 1500 generation); 1501 btrfsic_release_block_ctx(&next_block_ctx); 1502 if (NULL == l) 1503 return -1; 1504 } 1505 1506 next_bytenr += chunk_len; 1507 num_bytes -= chunk_len; 1508 } 1509 1510 return 0; 1511 } 1512 1513 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 1514 struct btrfsic_block_data_ctx *block_ctx_out, 1515 int mirror_num) 1516 { 1517 struct btrfs_fs_info *fs_info = state->fs_info; 1518 int ret; 1519 u64 length; 1520 struct btrfs_bio *multi = NULL; 1521 struct btrfs_device *device; 1522 1523 length = len; 1524 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 1525 bytenr, &length, &multi, mirror_num); 1526 1527 if (ret) { 1528 block_ctx_out->start = 0; 1529 block_ctx_out->dev_bytenr = 0; 1530 block_ctx_out->len = 0; 1531 block_ctx_out->dev = NULL; 1532 block_ctx_out->datav = NULL; 1533 block_ctx_out->pagev = NULL; 1534 block_ctx_out->mem_to_free = NULL; 1535 1536 return ret; 1537 } 1538 1539 device = multi->stripes[0].dev; 1540 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) || 1541 !device->bdev || !device->name) 1542 block_ctx_out->dev = NULL; 1543 else 1544 block_ctx_out->dev = btrfsic_dev_state_lookup( 1545 device->bdev->bd_dev); 1546 block_ctx_out->dev_bytenr = multi->stripes[0].physical; 1547 block_ctx_out->start = bytenr; 1548 block_ctx_out->len = len; 1549 block_ctx_out->datav = NULL; 1550 block_ctx_out->pagev = NULL; 1551 block_ctx_out->mem_to_free = NULL; 1552 1553 kfree(multi); 1554 if (NULL == block_ctx_out->dev) { 1555 ret = -ENXIO; 1556 pr_info("btrfsic: error, cannot lookup dev (#1)!\n"); 1557 } 1558 1559 return ret; 1560 } 1561 1562 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx) 1563 { 1564 if (block_ctx->mem_to_free) { 1565 unsigned int num_pages; 1566 1567 BUG_ON(!block_ctx->datav); 1568 BUG_ON(!block_ctx->pagev); 1569 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >> 1570 PAGE_SHIFT; 1571 while (num_pages > 0) { 1572 num_pages--; 1573 if (block_ctx->datav[num_pages]) { 1574 kunmap(block_ctx->pagev[num_pages]); 1575 block_ctx->datav[num_pages] = NULL; 1576 } 1577 if (block_ctx->pagev[num_pages]) { 1578 __free_page(block_ctx->pagev[num_pages]); 1579 block_ctx->pagev[num_pages] = NULL; 1580 } 1581 } 1582 1583 kfree(block_ctx->mem_to_free); 1584 block_ctx->mem_to_free = NULL; 1585 block_ctx->pagev = NULL; 1586 block_ctx->datav = NULL; 1587 } 1588 } 1589 1590 static int btrfsic_read_block(struct btrfsic_state *state, 1591 struct btrfsic_block_data_ctx *block_ctx) 1592 { 1593 unsigned int num_pages; 1594 unsigned int i; 1595 size_t size; 1596 u64 dev_bytenr; 1597 int ret; 1598 1599 BUG_ON(block_ctx->datav); 1600 BUG_ON(block_ctx->pagev); 1601 BUG_ON(block_ctx->mem_to_free); 1602 if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) { 1603 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n", 1604 block_ctx->dev_bytenr); 1605 return -1; 1606 } 1607 1608 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >> 1609 PAGE_SHIFT; 1610 size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev); 1611 block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS); 1612 if (!block_ctx->mem_to_free) 1613 return -ENOMEM; 1614 block_ctx->datav = block_ctx->mem_to_free; 1615 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages); 1616 for (i = 0; i < num_pages; i++) { 1617 block_ctx->pagev[i] = alloc_page(GFP_NOFS); 1618 if (!block_ctx->pagev[i]) 1619 return -1; 1620 } 1621 1622 dev_bytenr = block_ctx->dev_bytenr; 1623 for (i = 0; i < num_pages;) { 1624 struct bio *bio; 1625 unsigned int j; 1626 1627 bio = btrfs_io_bio_alloc(num_pages - i); 1628 bio_set_dev(bio, block_ctx->dev->bdev); 1629 bio->bi_iter.bi_sector = dev_bytenr >> 9; 1630 bio->bi_opf = REQ_OP_READ; 1631 1632 for (j = i; j < num_pages; j++) { 1633 ret = bio_add_page(bio, block_ctx->pagev[j], 1634 PAGE_SIZE, 0); 1635 if (PAGE_SIZE != ret) 1636 break; 1637 } 1638 if (j == i) { 1639 pr_info("btrfsic: error, failed to add a single page!\n"); 1640 return -1; 1641 } 1642 if (submit_bio_wait(bio)) { 1643 pr_info("btrfsic: read error at logical %llu dev %s!\n", 1644 block_ctx->start, block_ctx->dev->name); 1645 bio_put(bio); 1646 return -1; 1647 } 1648 bio_put(bio); 1649 dev_bytenr += (j - i) * PAGE_SIZE; 1650 i = j; 1651 } 1652 for (i = 0; i < num_pages; i++) 1653 block_ctx->datav[i] = kmap(block_ctx->pagev[i]); 1654 1655 return block_ctx->len; 1656 } 1657 1658 static void btrfsic_dump_database(struct btrfsic_state *state) 1659 { 1660 const struct btrfsic_block *b_all; 1661 1662 BUG_ON(NULL == state); 1663 1664 pr_info("all_blocks_list:\n"); 1665 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) { 1666 const struct btrfsic_block_link *l; 1667 1668 pr_info("%c-block @%llu (%s/%llu/%d)\n", 1669 btrfsic_get_block_type(state, b_all), 1670 b_all->logical_bytenr, b_all->dev_state->name, 1671 b_all->dev_bytenr, b_all->mirror_num); 1672 1673 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) { 1674 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n", 1675 btrfsic_get_block_type(state, b_all), 1676 b_all->logical_bytenr, b_all->dev_state->name, 1677 b_all->dev_bytenr, b_all->mirror_num, 1678 l->ref_cnt, 1679 btrfsic_get_block_type(state, l->block_ref_to), 1680 l->block_ref_to->logical_bytenr, 1681 l->block_ref_to->dev_state->name, 1682 l->block_ref_to->dev_bytenr, 1683 l->block_ref_to->mirror_num); 1684 } 1685 1686 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) { 1687 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n", 1688 btrfsic_get_block_type(state, b_all), 1689 b_all->logical_bytenr, b_all->dev_state->name, 1690 b_all->dev_bytenr, b_all->mirror_num, 1691 l->ref_cnt, 1692 btrfsic_get_block_type(state, l->block_ref_from), 1693 l->block_ref_from->logical_bytenr, 1694 l->block_ref_from->dev_state->name, 1695 l->block_ref_from->dev_bytenr, 1696 l->block_ref_from->mirror_num); 1697 } 1698 1699 pr_info("\n"); 1700 } 1701 } 1702 1703 /* 1704 * Test whether the disk block contains a tree block (leaf or node) 1705 * (note that this test fails for the super block) 1706 */ 1707 static noinline_for_stack int btrfsic_test_for_metadata( 1708 struct btrfsic_state *state, 1709 char **datav, unsigned int num_pages) 1710 { 1711 struct btrfs_fs_info *fs_info = state->fs_info; 1712 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1713 struct btrfs_header *h; 1714 u8 csum[BTRFS_CSUM_SIZE]; 1715 unsigned int i; 1716 1717 if (num_pages * PAGE_SIZE < state->metablock_size) 1718 return 1; /* not metadata */ 1719 num_pages = state->metablock_size >> PAGE_SHIFT; 1720 h = (struct btrfs_header *)datav[0]; 1721 1722 if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE)) 1723 return 1; 1724 1725 shash->tfm = fs_info->csum_shash; 1726 crypto_shash_init(shash); 1727 1728 for (i = 0; i < num_pages; i++) { 1729 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE); 1730 size_t sublen = i ? PAGE_SIZE : 1731 (PAGE_SIZE - BTRFS_CSUM_SIZE); 1732 1733 crypto_shash_update(shash, data, sublen); 1734 } 1735 crypto_shash_final(shash, csum); 1736 if (memcmp(csum, h->csum, state->csum_size)) 1737 return 1; 1738 1739 return 0; /* is metadata */ 1740 } 1741 1742 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 1743 u64 dev_bytenr, char **mapped_datav, 1744 unsigned int num_pages, 1745 struct bio *bio, int *bio_is_patched, 1746 struct buffer_head *bh, 1747 int submit_bio_bh_rw) 1748 { 1749 int is_metadata; 1750 struct btrfsic_block *block; 1751 struct btrfsic_block_data_ctx block_ctx; 1752 int ret; 1753 struct btrfsic_state *state = dev_state->state; 1754 struct block_device *bdev = dev_state->bdev; 1755 unsigned int processed_len; 1756 1757 if (NULL != bio_is_patched) 1758 *bio_is_patched = 0; 1759 1760 again: 1761 if (num_pages == 0) 1762 return; 1763 1764 processed_len = 0; 1765 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav, 1766 num_pages)); 1767 1768 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr, 1769 &state->block_hashtable); 1770 if (NULL != block) { 1771 u64 bytenr = 0; 1772 struct btrfsic_block_link *l, *tmp; 1773 1774 if (block->is_superblock) { 1775 bytenr = btrfs_super_bytenr((struct btrfs_super_block *) 1776 mapped_datav[0]); 1777 if (num_pages * PAGE_SIZE < 1778 BTRFS_SUPER_INFO_SIZE) { 1779 pr_info("btrfsic: cannot work with too short bios!\n"); 1780 return; 1781 } 1782 is_metadata = 1; 1783 BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE)); 1784 processed_len = BTRFS_SUPER_INFO_SIZE; 1785 if (state->print_mask & 1786 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) { 1787 pr_info("[before new superblock is written]:\n"); 1788 btrfsic_dump_tree_sub(state, block, 0); 1789 } 1790 } 1791 if (is_metadata) { 1792 if (!block->is_superblock) { 1793 if (num_pages * PAGE_SIZE < 1794 state->metablock_size) { 1795 pr_info("btrfsic: cannot work with too short bios!\n"); 1796 return; 1797 } 1798 processed_len = state->metablock_size; 1799 bytenr = btrfs_stack_header_bytenr( 1800 (struct btrfs_header *) 1801 mapped_datav[0]); 1802 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, 1803 dev_state, 1804 dev_bytenr); 1805 } 1806 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1807 if (block->logical_bytenr != bytenr && 1808 !(!block->is_metadata && 1809 block->logical_bytenr == 0)) 1810 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1811 bytenr, dev_state->name, 1812 dev_bytenr, 1813 block->mirror_num, 1814 btrfsic_get_block_type(state, 1815 block), 1816 block->logical_bytenr); 1817 else 1818 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1819 bytenr, dev_state->name, 1820 dev_bytenr, block->mirror_num, 1821 btrfsic_get_block_type(state, 1822 block)); 1823 } 1824 block->logical_bytenr = bytenr; 1825 } else { 1826 if (num_pages * PAGE_SIZE < 1827 state->datablock_size) { 1828 pr_info("btrfsic: cannot work with too short bios!\n"); 1829 return; 1830 } 1831 processed_len = state->datablock_size; 1832 bytenr = block->logical_bytenr; 1833 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1834 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1835 bytenr, dev_state->name, dev_bytenr, 1836 block->mirror_num, 1837 btrfsic_get_block_type(state, block)); 1838 } 1839 1840 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1841 pr_info("ref_to_list: %cE, ref_from_list: %cE\n", 1842 list_empty(&block->ref_to_list) ? ' ' : '!', 1843 list_empty(&block->ref_from_list) ? ' ' : '!'); 1844 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) { 1845 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n", 1846 btrfsic_get_block_type(state, block), bytenr, 1847 dev_state->name, dev_bytenr, block->mirror_num, 1848 block->generation, 1849 btrfs_disk_key_objectid(&block->disk_key), 1850 block->disk_key.type, 1851 btrfs_disk_key_offset(&block->disk_key), 1852 btrfs_stack_header_generation( 1853 (struct btrfs_header *) mapped_datav[0]), 1854 state->max_superblock_generation); 1855 btrfsic_dump_tree(state); 1856 } 1857 1858 if (!block->is_iodone && !block->never_written) { 1859 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n", 1860 btrfsic_get_block_type(state, block), bytenr, 1861 dev_state->name, dev_bytenr, block->mirror_num, 1862 block->generation, 1863 btrfs_stack_header_generation( 1864 (struct btrfs_header *) 1865 mapped_datav[0])); 1866 /* it would not be safe to go on */ 1867 btrfsic_dump_tree(state); 1868 goto continue_loop; 1869 } 1870 1871 /* 1872 * Clear all references of this block. Do not free 1873 * the block itself even if is not referenced anymore 1874 * because it still carries valuable information 1875 * like whether it was ever written and IO completed. 1876 */ 1877 list_for_each_entry_safe(l, tmp, &block->ref_to_list, 1878 node_ref_to) { 1879 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1880 btrfsic_print_rem_link(state, l); 1881 l->ref_cnt--; 1882 if (0 == l->ref_cnt) { 1883 list_del(&l->node_ref_to); 1884 list_del(&l->node_ref_from); 1885 btrfsic_block_link_hashtable_remove(l); 1886 btrfsic_block_link_free(l); 1887 } 1888 } 1889 1890 block_ctx.dev = dev_state; 1891 block_ctx.dev_bytenr = dev_bytenr; 1892 block_ctx.start = bytenr; 1893 block_ctx.len = processed_len; 1894 block_ctx.pagev = NULL; 1895 block_ctx.mem_to_free = NULL; 1896 block_ctx.datav = mapped_datav; 1897 1898 if (is_metadata || state->include_extent_data) { 1899 block->never_written = 0; 1900 block->iodone_w_error = 0; 1901 if (NULL != bio) { 1902 block->is_iodone = 0; 1903 BUG_ON(NULL == bio_is_patched); 1904 if (!*bio_is_patched) { 1905 block->orig_bio_bh_private = 1906 bio->bi_private; 1907 block->orig_bio_bh_end_io.bio = 1908 bio->bi_end_io; 1909 block->next_in_same_bio = NULL; 1910 bio->bi_private = block; 1911 bio->bi_end_io = btrfsic_bio_end_io; 1912 *bio_is_patched = 1; 1913 } else { 1914 struct btrfsic_block *chained_block = 1915 (struct btrfsic_block *) 1916 bio->bi_private; 1917 1918 BUG_ON(NULL == chained_block); 1919 block->orig_bio_bh_private = 1920 chained_block->orig_bio_bh_private; 1921 block->orig_bio_bh_end_io.bio = 1922 chained_block->orig_bio_bh_end_io. 1923 bio; 1924 block->next_in_same_bio = chained_block; 1925 bio->bi_private = block; 1926 } 1927 } else if (NULL != bh) { 1928 block->is_iodone = 0; 1929 block->orig_bio_bh_private = bh->b_private; 1930 block->orig_bio_bh_end_io.bh = bh->b_end_io; 1931 block->next_in_same_bio = NULL; 1932 bh->b_private = block; 1933 bh->b_end_io = btrfsic_bh_end_io; 1934 } else { 1935 block->is_iodone = 1; 1936 block->orig_bio_bh_private = NULL; 1937 block->orig_bio_bh_end_io.bio = NULL; 1938 block->next_in_same_bio = NULL; 1939 } 1940 } 1941 1942 block->flush_gen = dev_state->last_flush_gen + 1; 1943 block->submit_bio_bh_rw = submit_bio_bh_rw; 1944 if (is_metadata) { 1945 block->logical_bytenr = bytenr; 1946 block->is_metadata = 1; 1947 if (block->is_superblock) { 1948 BUG_ON(PAGE_SIZE != 1949 BTRFS_SUPER_INFO_SIZE); 1950 ret = btrfsic_process_written_superblock( 1951 state, 1952 block, 1953 (struct btrfs_super_block *) 1954 mapped_datav[0]); 1955 if (state->print_mask & 1956 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) { 1957 pr_info("[after new superblock is written]:\n"); 1958 btrfsic_dump_tree_sub(state, block, 0); 1959 } 1960 } else { 1961 block->mirror_num = 0; /* unknown */ 1962 ret = btrfsic_process_metablock( 1963 state, 1964 block, 1965 &block_ctx, 1966 0, 0); 1967 } 1968 if (ret) 1969 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n", 1970 dev_bytenr); 1971 } else { 1972 block->is_metadata = 0; 1973 block->mirror_num = 0; /* unknown */ 1974 block->generation = BTRFSIC_GENERATION_UNKNOWN; 1975 if (!state->include_extent_data 1976 && list_empty(&block->ref_from_list)) { 1977 /* 1978 * disk block is overwritten with extent 1979 * data (not meta data) and we are configured 1980 * to not include extent data: take the 1981 * chance and free the block's memory 1982 */ 1983 btrfsic_block_hashtable_remove(block); 1984 list_del(&block->all_blocks_node); 1985 btrfsic_block_free(block); 1986 } 1987 } 1988 btrfsic_release_block_ctx(&block_ctx); 1989 } else { 1990 /* block has not been found in hash table */ 1991 u64 bytenr; 1992 1993 if (!is_metadata) { 1994 processed_len = state->datablock_size; 1995 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1996 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n", 1997 dev_state->name, dev_bytenr); 1998 if (!state->include_extent_data) { 1999 /* ignore that written D block */ 2000 goto continue_loop; 2001 } 2002 2003 /* this is getting ugly for the 2004 * include_extent_data case... */ 2005 bytenr = 0; /* unknown */ 2006 } else { 2007 processed_len = state->metablock_size; 2008 bytenr = btrfs_stack_header_bytenr( 2009 (struct btrfs_header *) 2010 mapped_datav[0]); 2011 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, 2012 dev_bytenr); 2013 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2014 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n", 2015 bytenr, dev_state->name, dev_bytenr); 2016 } 2017 2018 block_ctx.dev = dev_state; 2019 block_ctx.dev_bytenr = dev_bytenr; 2020 block_ctx.start = bytenr; 2021 block_ctx.len = processed_len; 2022 block_ctx.pagev = NULL; 2023 block_ctx.mem_to_free = NULL; 2024 block_ctx.datav = mapped_datav; 2025 2026 block = btrfsic_block_alloc(); 2027 if (NULL == block) { 2028 pr_info("btrfsic: error, kmalloc failed!\n"); 2029 btrfsic_release_block_ctx(&block_ctx); 2030 goto continue_loop; 2031 } 2032 block->dev_state = dev_state; 2033 block->dev_bytenr = dev_bytenr; 2034 block->logical_bytenr = bytenr; 2035 block->is_metadata = is_metadata; 2036 block->never_written = 0; 2037 block->iodone_w_error = 0; 2038 block->mirror_num = 0; /* unknown */ 2039 block->flush_gen = dev_state->last_flush_gen + 1; 2040 block->submit_bio_bh_rw = submit_bio_bh_rw; 2041 if (NULL != bio) { 2042 block->is_iodone = 0; 2043 BUG_ON(NULL == bio_is_patched); 2044 if (!*bio_is_patched) { 2045 block->orig_bio_bh_private = bio->bi_private; 2046 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2047 block->next_in_same_bio = NULL; 2048 bio->bi_private = block; 2049 bio->bi_end_io = btrfsic_bio_end_io; 2050 *bio_is_patched = 1; 2051 } else { 2052 struct btrfsic_block *chained_block = 2053 (struct btrfsic_block *) 2054 bio->bi_private; 2055 2056 BUG_ON(NULL == chained_block); 2057 block->orig_bio_bh_private = 2058 chained_block->orig_bio_bh_private; 2059 block->orig_bio_bh_end_io.bio = 2060 chained_block->orig_bio_bh_end_io.bio; 2061 block->next_in_same_bio = chained_block; 2062 bio->bi_private = block; 2063 } 2064 } else if (NULL != bh) { 2065 block->is_iodone = 0; 2066 block->orig_bio_bh_private = bh->b_private; 2067 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2068 block->next_in_same_bio = NULL; 2069 bh->b_private = block; 2070 bh->b_end_io = btrfsic_bh_end_io; 2071 } else { 2072 block->is_iodone = 1; 2073 block->orig_bio_bh_private = NULL; 2074 block->orig_bio_bh_end_io.bio = NULL; 2075 block->next_in_same_bio = NULL; 2076 } 2077 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2078 pr_info("New written %c-block @%llu (%s/%llu/%d)\n", 2079 is_metadata ? 'M' : 'D', 2080 block->logical_bytenr, block->dev_state->name, 2081 block->dev_bytenr, block->mirror_num); 2082 list_add(&block->all_blocks_node, &state->all_blocks_list); 2083 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2084 2085 if (is_metadata) { 2086 ret = btrfsic_process_metablock(state, block, 2087 &block_ctx, 0, 0); 2088 if (ret) 2089 pr_info("btrfsic: process_metablock(root @%llu) failed!\n", 2090 dev_bytenr); 2091 } 2092 btrfsic_release_block_ctx(&block_ctx); 2093 } 2094 2095 continue_loop: 2096 BUG_ON(!processed_len); 2097 dev_bytenr += processed_len; 2098 mapped_datav += processed_len >> PAGE_SHIFT; 2099 num_pages -= processed_len >> PAGE_SHIFT; 2100 goto again; 2101 } 2102 2103 static void btrfsic_bio_end_io(struct bio *bp) 2104 { 2105 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private; 2106 int iodone_w_error; 2107 2108 /* mutex is not held! This is not save if IO is not yet completed 2109 * on umount */ 2110 iodone_w_error = 0; 2111 if (bp->bi_status) 2112 iodone_w_error = 1; 2113 2114 BUG_ON(NULL == block); 2115 bp->bi_private = block->orig_bio_bh_private; 2116 bp->bi_end_io = block->orig_bio_bh_end_io.bio; 2117 2118 do { 2119 struct btrfsic_block *next_block; 2120 struct btrfsic_dev_state *const dev_state = block->dev_state; 2121 2122 if ((dev_state->state->print_mask & 2123 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2124 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n", 2125 bp->bi_status, 2126 btrfsic_get_block_type(dev_state->state, block), 2127 block->logical_bytenr, dev_state->name, 2128 block->dev_bytenr, block->mirror_num); 2129 next_block = block->next_in_same_bio; 2130 block->iodone_w_error = iodone_w_error; 2131 if (block->submit_bio_bh_rw & REQ_PREFLUSH) { 2132 dev_state->last_flush_gen++; 2133 if ((dev_state->state->print_mask & 2134 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2135 pr_info("bio_end_io() new %s flush_gen=%llu\n", 2136 dev_state->name, 2137 dev_state->last_flush_gen); 2138 } 2139 if (block->submit_bio_bh_rw & REQ_FUA) 2140 block->flush_gen = 0; /* FUA completed means block is 2141 * on disk */ 2142 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2143 block = next_block; 2144 } while (NULL != block); 2145 2146 bp->bi_end_io(bp); 2147 } 2148 2149 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate) 2150 { 2151 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private; 2152 int iodone_w_error = !uptodate; 2153 struct btrfsic_dev_state *dev_state; 2154 2155 BUG_ON(NULL == block); 2156 dev_state = block->dev_state; 2157 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2158 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n", 2159 iodone_w_error, 2160 btrfsic_get_block_type(dev_state->state, block), 2161 block->logical_bytenr, block->dev_state->name, 2162 block->dev_bytenr, block->mirror_num); 2163 2164 block->iodone_w_error = iodone_w_error; 2165 if (block->submit_bio_bh_rw & REQ_PREFLUSH) { 2166 dev_state->last_flush_gen++; 2167 if ((dev_state->state->print_mask & 2168 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2169 pr_info("bh_end_io() new %s flush_gen=%llu\n", 2170 dev_state->name, dev_state->last_flush_gen); 2171 } 2172 if (block->submit_bio_bh_rw & REQ_FUA) 2173 block->flush_gen = 0; /* FUA completed means block is on disk */ 2174 2175 bh->b_private = block->orig_bio_bh_private; 2176 bh->b_end_io = block->orig_bio_bh_end_io.bh; 2177 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2178 bh->b_end_io(bh, uptodate); 2179 } 2180 2181 static int btrfsic_process_written_superblock( 2182 struct btrfsic_state *state, 2183 struct btrfsic_block *const superblock, 2184 struct btrfs_super_block *const super_hdr) 2185 { 2186 struct btrfs_fs_info *fs_info = state->fs_info; 2187 int pass; 2188 2189 superblock->generation = btrfs_super_generation(super_hdr); 2190 if (!(superblock->generation > state->max_superblock_generation || 2191 0 == state->max_superblock_generation)) { 2192 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2193 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n", 2194 superblock->logical_bytenr, 2195 superblock->dev_state->name, 2196 superblock->dev_bytenr, superblock->mirror_num, 2197 btrfs_super_generation(super_hdr), 2198 state->max_superblock_generation); 2199 } else { 2200 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2201 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n", 2202 superblock->logical_bytenr, 2203 superblock->dev_state->name, 2204 superblock->dev_bytenr, superblock->mirror_num, 2205 btrfs_super_generation(super_hdr), 2206 state->max_superblock_generation); 2207 2208 state->max_superblock_generation = 2209 btrfs_super_generation(super_hdr); 2210 state->latest_superblock = superblock; 2211 } 2212 2213 for (pass = 0; pass < 3; pass++) { 2214 int ret; 2215 u64 next_bytenr; 2216 struct btrfsic_block *next_block; 2217 struct btrfsic_block_data_ctx tmp_next_block_ctx; 2218 struct btrfsic_block_link *l; 2219 int num_copies; 2220 int mirror_num; 2221 const char *additional_string = NULL; 2222 struct btrfs_disk_key tmp_disk_key = {0}; 2223 2224 btrfs_set_disk_key_objectid(&tmp_disk_key, 2225 BTRFS_ROOT_ITEM_KEY); 2226 btrfs_set_disk_key_objectid(&tmp_disk_key, 0); 2227 2228 switch (pass) { 2229 case 0: 2230 btrfs_set_disk_key_objectid(&tmp_disk_key, 2231 BTRFS_ROOT_TREE_OBJECTID); 2232 additional_string = "root "; 2233 next_bytenr = btrfs_super_root(super_hdr); 2234 if (state->print_mask & 2235 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2236 pr_info("root@%llu\n", next_bytenr); 2237 break; 2238 case 1: 2239 btrfs_set_disk_key_objectid(&tmp_disk_key, 2240 BTRFS_CHUNK_TREE_OBJECTID); 2241 additional_string = "chunk "; 2242 next_bytenr = btrfs_super_chunk_root(super_hdr); 2243 if (state->print_mask & 2244 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2245 pr_info("chunk@%llu\n", next_bytenr); 2246 break; 2247 case 2: 2248 btrfs_set_disk_key_objectid(&tmp_disk_key, 2249 BTRFS_TREE_LOG_OBJECTID); 2250 additional_string = "log "; 2251 next_bytenr = btrfs_super_log_root(super_hdr); 2252 if (0 == next_bytenr) 2253 continue; 2254 if (state->print_mask & 2255 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2256 pr_info("log@%llu\n", next_bytenr); 2257 break; 2258 } 2259 2260 num_copies = btrfs_num_copies(fs_info, next_bytenr, 2261 BTRFS_SUPER_INFO_SIZE); 2262 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 2263 pr_info("num_copies(log_bytenr=%llu) = %d\n", 2264 next_bytenr, num_copies); 2265 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2266 int was_created; 2267 2268 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2269 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num); 2270 ret = btrfsic_map_block(state, next_bytenr, 2271 BTRFS_SUPER_INFO_SIZE, 2272 &tmp_next_block_ctx, 2273 mirror_num); 2274 if (ret) { 2275 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 2276 next_bytenr, mirror_num); 2277 return -1; 2278 } 2279 2280 next_block = btrfsic_block_lookup_or_add( 2281 state, 2282 &tmp_next_block_ctx, 2283 additional_string, 2284 1, 0, 1, 2285 mirror_num, 2286 &was_created); 2287 if (NULL == next_block) { 2288 pr_info("btrfsic: error, kmalloc failed!\n"); 2289 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2290 return -1; 2291 } 2292 2293 next_block->disk_key = tmp_disk_key; 2294 if (was_created) 2295 next_block->generation = 2296 BTRFSIC_GENERATION_UNKNOWN; 2297 l = btrfsic_block_link_lookup_or_add( 2298 state, 2299 &tmp_next_block_ctx, 2300 next_block, 2301 superblock, 2302 BTRFSIC_GENERATION_UNKNOWN); 2303 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2304 if (NULL == l) 2305 return -1; 2306 } 2307 } 2308 2309 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0))) 2310 btrfsic_dump_tree(state); 2311 2312 return 0; 2313 } 2314 2315 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 2316 struct btrfsic_block *const block, 2317 int recursion_level) 2318 { 2319 const struct btrfsic_block_link *l; 2320 int ret = 0; 2321 2322 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2323 /* 2324 * Note that this situation can happen and does not 2325 * indicate an error in regular cases. It happens 2326 * when disk blocks are freed and later reused. 2327 * The check-integrity module is not aware of any 2328 * block free operations, it just recognizes block 2329 * write operations. Therefore it keeps the linkage 2330 * information for a block until a block is 2331 * rewritten. This can temporarily cause incorrect 2332 * and even circular linkage information. This 2333 * causes no harm unless such blocks are referenced 2334 * by the most recent super block. 2335 */ 2336 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2337 pr_info("btrfsic: abort cyclic linkage (case 1).\n"); 2338 2339 return ret; 2340 } 2341 2342 /* 2343 * This algorithm is recursive because the amount of used stack 2344 * space is very small and the max recursion depth is limited. 2345 */ 2346 list_for_each_entry(l, &block->ref_to_list, node_ref_to) { 2347 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2348 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n", 2349 recursion_level, 2350 btrfsic_get_block_type(state, block), 2351 block->logical_bytenr, block->dev_state->name, 2352 block->dev_bytenr, block->mirror_num, 2353 l->ref_cnt, 2354 btrfsic_get_block_type(state, l->block_ref_to), 2355 l->block_ref_to->logical_bytenr, 2356 l->block_ref_to->dev_state->name, 2357 l->block_ref_to->dev_bytenr, 2358 l->block_ref_to->mirror_num); 2359 if (l->block_ref_to->never_written) { 2360 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n", 2361 btrfsic_get_block_type(state, l->block_ref_to), 2362 l->block_ref_to->logical_bytenr, 2363 l->block_ref_to->dev_state->name, 2364 l->block_ref_to->dev_bytenr, 2365 l->block_ref_to->mirror_num); 2366 ret = -1; 2367 } else if (!l->block_ref_to->is_iodone) { 2368 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n", 2369 btrfsic_get_block_type(state, l->block_ref_to), 2370 l->block_ref_to->logical_bytenr, 2371 l->block_ref_to->dev_state->name, 2372 l->block_ref_to->dev_bytenr, 2373 l->block_ref_to->mirror_num); 2374 ret = -1; 2375 } else if (l->block_ref_to->iodone_w_error) { 2376 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n", 2377 btrfsic_get_block_type(state, l->block_ref_to), 2378 l->block_ref_to->logical_bytenr, 2379 l->block_ref_to->dev_state->name, 2380 l->block_ref_to->dev_bytenr, 2381 l->block_ref_to->mirror_num); 2382 ret = -1; 2383 } else if (l->parent_generation != 2384 l->block_ref_to->generation && 2385 BTRFSIC_GENERATION_UNKNOWN != 2386 l->parent_generation && 2387 BTRFSIC_GENERATION_UNKNOWN != 2388 l->block_ref_to->generation) { 2389 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n", 2390 btrfsic_get_block_type(state, l->block_ref_to), 2391 l->block_ref_to->logical_bytenr, 2392 l->block_ref_to->dev_state->name, 2393 l->block_ref_to->dev_bytenr, 2394 l->block_ref_to->mirror_num, 2395 l->block_ref_to->generation, 2396 l->parent_generation); 2397 ret = -1; 2398 } else if (l->block_ref_to->flush_gen > 2399 l->block_ref_to->dev_state->last_flush_gen) { 2400 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n", 2401 btrfsic_get_block_type(state, l->block_ref_to), 2402 l->block_ref_to->logical_bytenr, 2403 l->block_ref_to->dev_state->name, 2404 l->block_ref_to->dev_bytenr, 2405 l->block_ref_to->mirror_num, block->flush_gen, 2406 l->block_ref_to->dev_state->last_flush_gen); 2407 ret = -1; 2408 } else if (-1 == btrfsic_check_all_ref_blocks(state, 2409 l->block_ref_to, 2410 recursion_level + 2411 1)) { 2412 ret = -1; 2413 } 2414 } 2415 2416 return ret; 2417 } 2418 2419 static int btrfsic_is_block_ref_by_superblock( 2420 const struct btrfsic_state *state, 2421 const struct btrfsic_block *block, 2422 int recursion_level) 2423 { 2424 const struct btrfsic_block_link *l; 2425 2426 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2427 /* refer to comment at "abort cyclic linkage (case 1)" */ 2428 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2429 pr_info("btrfsic: abort cyclic linkage (case 2).\n"); 2430 2431 return 0; 2432 } 2433 2434 /* 2435 * This algorithm is recursive because the amount of used stack space 2436 * is very small and the max recursion depth is limited. 2437 */ 2438 list_for_each_entry(l, &block->ref_from_list, node_ref_from) { 2439 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2440 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n", 2441 recursion_level, 2442 btrfsic_get_block_type(state, block), 2443 block->logical_bytenr, block->dev_state->name, 2444 block->dev_bytenr, block->mirror_num, 2445 l->ref_cnt, 2446 btrfsic_get_block_type(state, l->block_ref_from), 2447 l->block_ref_from->logical_bytenr, 2448 l->block_ref_from->dev_state->name, 2449 l->block_ref_from->dev_bytenr, 2450 l->block_ref_from->mirror_num); 2451 if (l->block_ref_from->is_superblock && 2452 state->latest_superblock->dev_bytenr == 2453 l->block_ref_from->dev_bytenr && 2454 state->latest_superblock->dev_state->bdev == 2455 l->block_ref_from->dev_state->bdev) 2456 return 1; 2457 else if (btrfsic_is_block_ref_by_superblock(state, 2458 l->block_ref_from, 2459 recursion_level + 2460 1)) 2461 return 1; 2462 } 2463 2464 return 0; 2465 } 2466 2467 static void btrfsic_print_add_link(const struct btrfsic_state *state, 2468 const struct btrfsic_block_link *l) 2469 { 2470 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n", 2471 l->ref_cnt, 2472 btrfsic_get_block_type(state, l->block_ref_from), 2473 l->block_ref_from->logical_bytenr, 2474 l->block_ref_from->dev_state->name, 2475 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2476 btrfsic_get_block_type(state, l->block_ref_to), 2477 l->block_ref_to->logical_bytenr, 2478 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2479 l->block_ref_to->mirror_num); 2480 } 2481 2482 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 2483 const struct btrfsic_block_link *l) 2484 { 2485 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n", 2486 l->ref_cnt, 2487 btrfsic_get_block_type(state, l->block_ref_from), 2488 l->block_ref_from->logical_bytenr, 2489 l->block_ref_from->dev_state->name, 2490 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2491 btrfsic_get_block_type(state, l->block_ref_to), 2492 l->block_ref_to->logical_bytenr, 2493 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2494 l->block_ref_to->mirror_num); 2495 } 2496 2497 static char btrfsic_get_block_type(const struct btrfsic_state *state, 2498 const struct btrfsic_block *block) 2499 { 2500 if (block->is_superblock && 2501 state->latest_superblock->dev_bytenr == block->dev_bytenr && 2502 state->latest_superblock->dev_state->bdev == block->dev_state->bdev) 2503 return 'S'; 2504 else if (block->is_superblock) 2505 return 's'; 2506 else if (block->is_metadata) 2507 return 'M'; 2508 else 2509 return 'D'; 2510 } 2511 2512 static void btrfsic_dump_tree(const struct btrfsic_state *state) 2513 { 2514 btrfsic_dump_tree_sub(state, state->latest_superblock, 0); 2515 } 2516 2517 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 2518 const struct btrfsic_block *block, 2519 int indent_level) 2520 { 2521 const struct btrfsic_block_link *l; 2522 int indent_add; 2523 static char buf[80]; 2524 int cursor_position; 2525 2526 /* 2527 * Should better fill an on-stack buffer with a complete line and 2528 * dump it at once when it is time to print a newline character. 2529 */ 2530 2531 /* 2532 * This algorithm is recursive because the amount of used stack space 2533 * is very small and the max recursion depth is limited. 2534 */ 2535 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)", 2536 btrfsic_get_block_type(state, block), 2537 block->logical_bytenr, block->dev_state->name, 2538 block->dev_bytenr, block->mirror_num); 2539 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2540 printk("[...]\n"); 2541 return; 2542 } 2543 printk(buf); 2544 indent_level += indent_add; 2545 if (list_empty(&block->ref_to_list)) { 2546 printk("\n"); 2547 return; 2548 } 2549 if (block->mirror_num > 1 && 2550 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) { 2551 printk(" [...]\n"); 2552 return; 2553 } 2554 2555 cursor_position = indent_level; 2556 list_for_each_entry(l, &block->ref_to_list, node_ref_to) { 2557 while (cursor_position < indent_level) { 2558 printk(" "); 2559 cursor_position++; 2560 } 2561 if (l->ref_cnt > 1) 2562 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt); 2563 else 2564 indent_add = sprintf(buf, " --> "); 2565 if (indent_level + indent_add > 2566 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2567 printk("[...]\n"); 2568 cursor_position = 0; 2569 continue; 2570 } 2571 2572 printk(buf); 2573 2574 btrfsic_dump_tree_sub(state, l->block_ref_to, 2575 indent_level + indent_add); 2576 cursor_position = 0; 2577 } 2578 } 2579 2580 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 2581 struct btrfsic_state *state, 2582 struct btrfsic_block_data_ctx *next_block_ctx, 2583 struct btrfsic_block *next_block, 2584 struct btrfsic_block *from_block, 2585 u64 parent_generation) 2586 { 2587 struct btrfsic_block_link *l; 2588 2589 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev, 2590 next_block_ctx->dev_bytenr, 2591 from_block->dev_state->bdev, 2592 from_block->dev_bytenr, 2593 &state->block_link_hashtable); 2594 if (NULL == l) { 2595 l = btrfsic_block_link_alloc(); 2596 if (NULL == l) { 2597 pr_info("btrfsic: error, kmalloc failed!\n"); 2598 return NULL; 2599 } 2600 2601 l->block_ref_to = next_block; 2602 l->block_ref_from = from_block; 2603 l->ref_cnt = 1; 2604 l->parent_generation = parent_generation; 2605 2606 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2607 btrfsic_print_add_link(state, l); 2608 2609 list_add(&l->node_ref_to, &from_block->ref_to_list); 2610 list_add(&l->node_ref_from, &next_block->ref_from_list); 2611 2612 btrfsic_block_link_hashtable_add(l, 2613 &state->block_link_hashtable); 2614 } else { 2615 l->ref_cnt++; 2616 l->parent_generation = parent_generation; 2617 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2618 btrfsic_print_add_link(state, l); 2619 } 2620 2621 return l; 2622 } 2623 2624 static struct btrfsic_block *btrfsic_block_lookup_or_add( 2625 struct btrfsic_state *state, 2626 struct btrfsic_block_data_ctx *block_ctx, 2627 const char *additional_string, 2628 int is_metadata, 2629 int is_iodone, 2630 int never_written, 2631 int mirror_num, 2632 int *was_created) 2633 { 2634 struct btrfsic_block *block; 2635 2636 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev, 2637 block_ctx->dev_bytenr, 2638 &state->block_hashtable); 2639 if (NULL == block) { 2640 struct btrfsic_dev_state *dev_state; 2641 2642 block = btrfsic_block_alloc(); 2643 if (NULL == block) { 2644 pr_info("btrfsic: error, kmalloc failed!\n"); 2645 return NULL; 2646 } 2647 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev); 2648 if (NULL == dev_state) { 2649 pr_info("btrfsic: error, lookup dev_state failed!\n"); 2650 btrfsic_block_free(block); 2651 return NULL; 2652 } 2653 block->dev_state = dev_state; 2654 block->dev_bytenr = block_ctx->dev_bytenr; 2655 block->logical_bytenr = block_ctx->start; 2656 block->is_metadata = is_metadata; 2657 block->is_iodone = is_iodone; 2658 block->never_written = never_written; 2659 block->mirror_num = mirror_num; 2660 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2661 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n", 2662 additional_string, 2663 btrfsic_get_block_type(state, block), 2664 block->logical_bytenr, dev_state->name, 2665 block->dev_bytenr, mirror_num); 2666 list_add(&block->all_blocks_node, &state->all_blocks_list); 2667 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2668 if (NULL != was_created) 2669 *was_created = 1; 2670 } else { 2671 if (NULL != was_created) 2672 *was_created = 0; 2673 } 2674 2675 return block; 2676 } 2677 2678 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 2679 u64 bytenr, 2680 struct btrfsic_dev_state *dev_state, 2681 u64 dev_bytenr) 2682 { 2683 struct btrfs_fs_info *fs_info = state->fs_info; 2684 struct btrfsic_block_data_ctx block_ctx; 2685 int num_copies; 2686 int mirror_num; 2687 int match = 0; 2688 int ret; 2689 2690 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size); 2691 2692 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2693 ret = btrfsic_map_block(state, bytenr, state->metablock_size, 2694 &block_ctx, mirror_num); 2695 if (ret) { 2696 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n", 2697 bytenr, mirror_num); 2698 continue; 2699 } 2700 2701 if (dev_state->bdev == block_ctx.dev->bdev && 2702 dev_bytenr == block_ctx.dev_bytenr) { 2703 match++; 2704 btrfsic_release_block_ctx(&block_ctx); 2705 break; 2706 } 2707 btrfsic_release_block_ctx(&block_ctx); 2708 } 2709 2710 if (WARN_ON(!match)) { 2711 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n", 2712 bytenr, dev_state->name, dev_bytenr); 2713 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2714 ret = btrfsic_map_block(state, bytenr, 2715 state->metablock_size, 2716 &block_ctx, mirror_num); 2717 if (ret) 2718 continue; 2719 2720 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n", 2721 bytenr, block_ctx.dev->name, 2722 block_ctx.dev_bytenr, mirror_num); 2723 } 2724 } 2725 } 2726 2727 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev) 2728 { 2729 return btrfsic_dev_state_hashtable_lookup(dev, 2730 &btrfsic_dev_state_hashtable); 2731 } 2732 2733 int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh) 2734 { 2735 struct btrfsic_dev_state *dev_state; 2736 2737 if (!btrfsic_is_initialized) 2738 return submit_bh(op, op_flags, bh); 2739 2740 mutex_lock(&btrfsic_mutex); 2741 /* since btrfsic_submit_bh() might also be called before 2742 * btrfsic_mount(), this might return NULL */ 2743 dev_state = btrfsic_dev_state_lookup(bh->b_bdev->bd_dev); 2744 2745 /* Only called to write the superblock (incl. FLUSH/FUA) */ 2746 if (NULL != dev_state && 2747 (op == REQ_OP_WRITE) && bh->b_size > 0) { 2748 u64 dev_bytenr; 2749 2750 dev_bytenr = BTRFS_BDEV_BLOCKSIZE * bh->b_blocknr; 2751 if (dev_state->state->print_mask & 2752 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2753 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n", 2754 op, op_flags, (unsigned long long)bh->b_blocknr, 2755 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev); 2756 btrfsic_process_written_block(dev_state, dev_bytenr, 2757 &bh->b_data, 1, NULL, 2758 NULL, bh, op_flags); 2759 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) { 2760 if (dev_state->state->print_mask & 2761 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2762 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n", 2763 op, op_flags, bh->b_bdev); 2764 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2765 if ((dev_state->state->print_mask & 2766 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2767 BTRFSIC_PRINT_MASK_VERBOSE))) 2768 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n", 2769 dev_state->name); 2770 } else { 2771 struct btrfsic_block *const block = 2772 &dev_state->dummy_block_for_bio_bh_flush; 2773 2774 block->is_iodone = 0; 2775 block->never_written = 0; 2776 block->iodone_w_error = 0; 2777 block->flush_gen = dev_state->last_flush_gen + 1; 2778 block->submit_bio_bh_rw = op_flags; 2779 block->orig_bio_bh_private = bh->b_private; 2780 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2781 block->next_in_same_bio = NULL; 2782 bh->b_private = block; 2783 bh->b_end_io = btrfsic_bh_end_io; 2784 } 2785 } 2786 mutex_unlock(&btrfsic_mutex); 2787 return submit_bh(op, op_flags, bh); 2788 } 2789 2790 static void __btrfsic_submit_bio(struct bio *bio) 2791 { 2792 struct btrfsic_dev_state *dev_state; 2793 2794 if (!btrfsic_is_initialized) 2795 return; 2796 2797 mutex_lock(&btrfsic_mutex); 2798 /* since btrfsic_submit_bio() is also called before 2799 * btrfsic_mount(), this might return NULL */ 2800 dev_state = btrfsic_dev_state_lookup(bio_dev(bio) + bio->bi_partno); 2801 if (NULL != dev_state && 2802 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) { 2803 unsigned int i = 0; 2804 u64 dev_bytenr; 2805 u64 cur_bytenr; 2806 struct bio_vec bvec; 2807 struct bvec_iter iter; 2808 int bio_is_patched; 2809 char **mapped_datav; 2810 unsigned int segs = bio_segments(bio); 2811 2812 dev_bytenr = 512 * bio->bi_iter.bi_sector; 2813 bio_is_patched = 0; 2814 if (dev_state->state->print_mask & 2815 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2816 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_disk=%p)\n", 2817 bio_op(bio), bio->bi_opf, segs, 2818 (unsigned long long)bio->bi_iter.bi_sector, 2819 dev_bytenr, bio->bi_disk); 2820 2821 mapped_datav = kmalloc_array(segs, 2822 sizeof(*mapped_datav), GFP_NOFS); 2823 if (!mapped_datav) 2824 goto leave; 2825 cur_bytenr = dev_bytenr; 2826 2827 bio_for_each_segment(bvec, bio, iter) { 2828 BUG_ON(bvec.bv_len != PAGE_SIZE); 2829 mapped_datav[i] = kmap(bvec.bv_page); 2830 i++; 2831 2832 if (dev_state->state->print_mask & 2833 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE) 2834 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n", 2835 i, cur_bytenr, bvec.bv_len, bvec.bv_offset); 2836 cur_bytenr += bvec.bv_len; 2837 } 2838 btrfsic_process_written_block(dev_state, dev_bytenr, 2839 mapped_datav, segs, 2840 bio, &bio_is_patched, 2841 NULL, bio->bi_opf); 2842 bio_for_each_segment(bvec, bio, iter) 2843 kunmap(bvec.bv_page); 2844 kfree(mapped_datav); 2845 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) { 2846 if (dev_state->state->print_mask & 2847 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2848 pr_info("submit_bio(rw=%d,0x%x FLUSH, disk=%p)\n", 2849 bio_op(bio), bio->bi_opf, bio->bi_disk); 2850 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2851 if ((dev_state->state->print_mask & 2852 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2853 BTRFSIC_PRINT_MASK_VERBOSE))) 2854 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n", 2855 dev_state->name); 2856 } else { 2857 struct btrfsic_block *const block = 2858 &dev_state->dummy_block_for_bio_bh_flush; 2859 2860 block->is_iodone = 0; 2861 block->never_written = 0; 2862 block->iodone_w_error = 0; 2863 block->flush_gen = dev_state->last_flush_gen + 1; 2864 block->submit_bio_bh_rw = bio->bi_opf; 2865 block->orig_bio_bh_private = bio->bi_private; 2866 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2867 block->next_in_same_bio = NULL; 2868 bio->bi_private = block; 2869 bio->bi_end_io = btrfsic_bio_end_io; 2870 } 2871 } 2872 leave: 2873 mutex_unlock(&btrfsic_mutex); 2874 } 2875 2876 void btrfsic_submit_bio(struct bio *bio) 2877 { 2878 __btrfsic_submit_bio(bio); 2879 submit_bio(bio); 2880 } 2881 2882 int btrfsic_submit_bio_wait(struct bio *bio) 2883 { 2884 __btrfsic_submit_bio(bio); 2885 return submit_bio_wait(bio); 2886 } 2887 2888 int btrfsic_mount(struct btrfs_fs_info *fs_info, 2889 struct btrfs_fs_devices *fs_devices, 2890 int including_extent_data, u32 print_mask) 2891 { 2892 int ret; 2893 struct btrfsic_state *state; 2894 struct list_head *dev_head = &fs_devices->devices; 2895 struct btrfs_device *device; 2896 2897 if (!PAGE_ALIGNED(fs_info->nodesize)) { 2898 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n", 2899 fs_info->nodesize, PAGE_SIZE); 2900 return -1; 2901 } 2902 if (!PAGE_ALIGNED(fs_info->sectorsize)) { 2903 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n", 2904 fs_info->sectorsize, PAGE_SIZE); 2905 return -1; 2906 } 2907 state = kvzalloc(sizeof(*state), GFP_KERNEL); 2908 if (!state) { 2909 pr_info("btrfs check-integrity: allocation failed!\n"); 2910 return -ENOMEM; 2911 } 2912 2913 if (!btrfsic_is_initialized) { 2914 mutex_init(&btrfsic_mutex); 2915 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable); 2916 btrfsic_is_initialized = 1; 2917 } 2918 mutex_lock(&btrfsic_mutex); 2919 state->fs_info = fs_info; 2920 state->print_mask = print_mask; 2921 state->include_extent_data = including_extent_data; 2922 state->csum_size = 0; 2923 state->metablock_size = fs_info->nodesize; 2924 state->datablock_size = fs_info->sectorsize; 2925 INIT_LIST_HEAD(&state->all_blocks_list); 2926 btrfsic_block_hashtable_init(&state->block_hashtable); 2927 btrfsic_block_link_hashtable_init(&state->block_link_hashtable); 2928 state->max_superblock_generation = 0; 2929 state->latest_superblock = NULL; 2930 2931 list_for_each_entry(device, dev_head, dev_list) { 2932 struct btrfsic_dev_state *ds; 2933 const char *p; 2934 2935 if (!device->bdev || !device->name) 2936 continue; 2937 2938 ds = btrfsic_dev_state_alloc(); 2939 if (NULL == ds) { 2940 pr_info("btrfs check-integrity: kmalloc() failed!\n"); 2941 mutex_unlock(&btrfsic_mutex); 2942 return -ENOMEM; 2943 } 2944 ds->bdev = device->bdev; 2945 ds->state = state; 2946 bdevname(ds->bdev, ds->name); 2947 ds->name[BDEVNAME_SIZE - 1] = '\0'; 2948 p = kbasename(ds->name); 2949 strlcpy(ds->name, p, sizeof(ds->name)); 2950 btrfsic_dev_state_hashtable_add(ds, 2951 &btrfsic_dev_state_hashtable); 2952 } 2953 2954 ret = btrfsic_process_superblock(state, fs_devices); 2955 if (0 != ret) { 2956 mutex_unlock(&btrfsic_mutex); 2957 btrfsic_unmount(fs_devices); 2958 return ret; 2959 } 2960 2961 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE) 2962 btrfsic_dump_database(state); 2963 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE) 2964 btrfsic_dump_tree(state); 2965 2966 mutex_unlock(&btrfsic_mutex); 2967 return 0; 2968 } 2969 2970 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices) 2971 { 2972 struct btrfsic_block *b_all, *tmp_all; 2973 struct btrfsic_state *state; 2974 struct list_head *dev_head = &fs_devices->devices; 2975 struct btrfs_device *device; 2976 2977 if (!btrfsic_is_initialized) 2978 return; 2979 2980 mutex_lock(&btrfsic_mutex); 2981 2982 state = NULL; 2983 list_for_each_entry(device, dev_head, dev_list) { 2984 struct btrfsic_dev_state *ds; 2985 2986 if (!device->bdev || !device->name) 2987 continue; 2988 2989 ds = btrfsic_dev_state_hashtable_lookup( 2990 device->bdev->bd_dev, 2991 &btrfsic_dev_state_hashtable); 2992 if (NULL != ds) { 2993 state = ds->state; 2994 btrfsic_dev_state_hashtable_remove(ds); 2995 btrfsic_dev_state_free(ds); 2996 } 2997 } 2998 2999 if (NULL == state) { 3000 pr_info("btrfsic: error, cannot find state information on umount!\n"); 3001 mutex_unlock(&btrfsic_mutex); 3002 return; 3003 } 3004 3005 /* 3006 * Don't care about keeping the lists' state up to date, 3007 * just free all memory that was allocated dynamically. 3008 * Free the blocks and the block_links. 3009 */ 3010 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list, 3011 all_blocks_node) { 3012 struct btrfsic_block_link *l, *tmp; 3013 3014 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list, 3015 node_ref_to) { 3016 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 3017 btrfsic_print_rem_link(state, l); 3018 3019 l->ref_cnt--; 3020 if (0 == l->ref_cnt) 3021 btrfsic_block_link_free(l); 3022 } 3023 3024 if (b_all->is_iodone || b_all->never_written) 3025 btrfsic_block_free(b_all); 3026 else 3027 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n", 3028 btrfsic_get_block_type(state, b_all), 3029 b_all->logical_bytenr, b_all->dev_state->name, 3030 b_all->dev_bytenr, b_all->mirror_num); 3031 } 3032 3033 mutex_unlock(&btrfsic_mutex); 3034 3035 kvfree(state); 3036 } 3037