1 /* 2 * Copyright (C) STRATO AG 2011. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 /* 20 * This module can be used to catch cases when the btrfs kernel 21 * code executes write requests to the disk that bring the file 22 * system in an inconsistent state. In such a state, a power-loss 23 * or kernel panic event would cause that the data on disk is 24 * lost or at least damaged. 25 * 26 * Code is added that examines all block write requests during 27 * runtime (including writes of the super block). Three rules 28 * are verified and an error is printed on violation of the 29 * rules: 30 * 1. It is not allowed to write a disk block which is 31 * currently referenced by the super block (either directly 32 * or indirectly). 33 * 2. When a super block is written, it is verified that all 34 * referenced (directly or indirectly) blocks fulfill the 35 * following requirements: 36 * 2a. All referenced blocks have either been present when 37 * the file system was mounted, (i.e., they have been 38 * referenced by the super block) or they have been 39 * written since then and the write completion callback 40 * was called and no write error was indicated and a 41 * FLUSH request to the device where these blocks are 42 * located was received and completed. 43 * 2b. All referenced blocks need to have a generation 44 * number which is equal to the parent's number. 45 * 46 * One issue that was found using this module was that the log 47 * tree on disk became temporarily corrupted because disk blocks 48 * that had been in use for the log tree had been freed and 49 * reused too early, while being referenced by the written super 50 * block. 51 * 52 * The search term in the kernel log that can be used to filter 53 * on the existence of detected integrity issues is 54 * "btrfs: attempt". 55 * 56 * The integrity check is enabled via mount options. These 57 * mount options are only supported if the integrity check 58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY. 59 * 60 * Example #1, apply integrity checks to all metadata: 61 * mount /dev/sdb1 /mnt -o check_int 62 * 63 * Example #2, apply integrity checks to all metadata and 64 * to data extents: 65 * mount /dev/sdb1 /mnt -o check_int_data 66 * 67 * Example #3, apply integrity checks to all metadata and dump 68 * the tree that the super block references to kernel messages 69 * each time after a super block was written: 70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263 71 * 72 * If the integrity check tool is included and activated in 73 * the mount options, plenty of kernel memory is used, and 74 * plenty of additional CPU cycles are spent. Enabling this 75 * functionality is not intended for normal use. In most 76 * cases, unless you are a btrfs developer who needs to verify 77 * the integrity of (super)-block write requests, do not 78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to 79 * include and compile the integrity check tool. 80 * 81 * Expect millions of lines of information in the kernel log with an 82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the 83 * kernel config to at least 26 (which is 64MB). Usually the value is 84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be 85 * changed like this before LOG_BUF_SHIFT can be set to a high value: 86 * config LOG_BUF_SHIFT 87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" 88 * range 12 30 89 */ 90 91 #include <linux/sched.h> 92 #include <linux/slab.h> 93 #include <linux/buffer_head.h> 94 #include <linux/mutex.h> 95 #include <linux/genhd.h> 96 #include <linux/blkdev.h> 97 #include "ctree.h" 98 #include "disk-io.h" 99 #include "hash.h" 100 #include "transaction.h" 101 #include "extent_io.h" 102 #include "volumes.h" 103 #include "print-tree.h" 104 #include "locking.h" 105 #include "check-integrity.h" 106 #include "rcu-string.h" 107 108 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000 109 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000 110 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100 111 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051 112 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807 113 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530 114 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300 115 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters, 116 * excluding " [...]" */ 117 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1) 118 119 /* 120 * The definition of the bitmask fields for the print_mask. 121 * They are specified with the mount option check_integrity_print_mask. 122 */ 123 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001 124 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002 125 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004 126 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008 127 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010 128 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020 129 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040 130 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080 131 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100 132 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200 133 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400 134 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800 135 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000 136 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000 137 138 struct btrfsic_dev_state; 139 struct btrfsic_state; 140 141 struct btrfsic_block { 142 u32 magic_num; /* only used for debug purposes */ 143 unsigned int is_metadata:1; /* if it is meta-data, not data-data */ 144 unsigned int is_superblock:1; /* if it is one of the superblocks */ 145 unsigned int is_iodone:1; /* if is done by lower subsystem */ 146 unsigned int iodone_w_error:1; /* error was indicated to endio */ 147 unsigned int never_written:1; /* block was added because it was 148 * referenced, not because it was 149 * written */ 150 unsigned int mirror_num; /* large enough to hold 151 * BTRFS_SUPER_MIRROR_MAX */ 152 struct btrfsic_dev_state *dev_state; 153 u64 dev_bytenr; /* key, physical byte num on disk */ 154 u64 logical_bytenr; /* logical byte num on disk */ 155 u64 generation; 156 struct btrfs_disk_key disk_key; /* extra info to print in case of 157 * issues, will not always be correct */ 158 struct list_head collision_resolving_node; /* list node */ 159 struct list_head all_blocks_node; /* list node */ 160 161 /* the following two lists contain block_link items */ 162 struct list_head ref_to_list; /* list */ 163 struct list_head ref_from_list; /* list */ 164 struct btrfsic_block *next_in_same_bio; 165 void *orig_bio_bh_private; 166 union { 167 bio_end_io_t *bio; 168 bh_end_io_t *bh; 169 } orig_bio_bh_end_io; 170 int submit_bio_bh_rw; 171 u64 flush_gen; /* only valid if !never_written */ 172 }; 173 174 /* 175 * Elements of this type are allocated dynamically and required because 176 * each block object can refer to and can be ref from multiple blocks. 177 * The key to lookup them in the hashtable is the dev_bytenr of 178 * the block ref to plus the one from the block refered from. 179 * The fact that they are searchable via a hashtable and that a 180 * ref_cnt is maintained is not required for the btrfs integrity 181 * check algorithm itself, it is only used to make the output more 182 * beautiful in case that an error is detected (an error is defined 183 * as a write operation to a block while that block is still referenced). 184 */ 185 struct btrfsic_block_link { 186 u32 magic_num; /* only used for debug purposes */ 187 u32 ref_cnt; 188 struct list_head node_ref_to; /* list node */ 189 struct list_head node_ref_from; /* list node */ 190 struct list_head collision_resolving_node; /* list node */ 191 struct btrfsic_block *block_ref_to; 192 struct btrfsic_block *block_ref_from; 193 u64 parent_generation; 194 }; 195 196 struct btrfsic_dev_state { 197 u32 magic_num; /* only used for debug purposes */ 198 struct block_device *bdev; 199 struct btrfsic_state *state; 200 struct list_head collision_resolving_node; /* list node */ 201 struct btrfsic_block dummy_block_for_bio_bh_flush; 202 u64 last_flush_gen; 203 char name[BDEVNAME_SIZE]; 204 }; 205 206 struct btrfsic_block_hashtable { 207 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE]; 208 }; 209 210 struct btrfsic_block_link_hashtable { 211 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE]; 212 }; 213 214 struct btrfsic_dev_state_hashtable { 215 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE]; 216 }; 217 218 struct btrfsic_block_data_ctx { 219 u64 start; /* virtual bytenr */ 220 u64 dev_bytenr; /* physical bytenr on device */ 221 u32 len; 222 struct btrfsic_dev_state *dev; 223 char **datav; 224 struct page **pagev; 225 void *mem_to_free; 226 }; 227 228 /* This structure is used to implement recursion without occupying 229 * any stack space, refer to btrfsic_process_metablock() */ 230 struct btrfsic_stack_frame { 231 u32 magic; 232 u32 nr; 233 int error; 234 int i; 235 int limit_nesting; 236 int num_copies; 237 int mirror_num; 238 struct btrfsic_block *block; 239 struct btrfsic_block_data_ctx *block_ctx; 240 struct btrfsic_block *next_block; 241 struct btrfsic_block_data_ctx next_block_ctx; 242 struct btrfs_header *hdr; 243 struct btrfsic_stack_frame *prev; 244 }; 245 246 /* Some state per mounted filesystem */ 247 struct btrfsic_state { 248 u32 print_mask; 249 int include_extent_data; 250 int csum_size; 251 struct list_head all_blocks_list; 252 struct btrfsic_block_hashtable block_hashtable; 253 struct btrfsic_block_link_hashtable block_link_hashtable; 254 struct btrfs_root *root; 255 u64 max_superblock_generation; 256 struct btrfsic_block *latest_superblock; 257 u32 metablock_size; 258 u32 datablock_size; 259 }; 260 261 static void btrfsic_block_init(struct btrfsic_block *b); 262 static struct btrfsic_block *btrfsic_block_alloc(void); 263 static void btrfsic_block_free(struct btrfsic_block *b); 264 static void btrfsic_block_link_init(struct btrfsic_block_link *n); 265 static struct btrfsic_block_link *btrfsic_block_link_alloc(void); 266 static void btrfsic_block_link_free(struct btrfsic_block_link *n); 267 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds); 268 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void); 269 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds); 270 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h); 271 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 272 struct btrfsic_block_hashtable *h); 273 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b); 274 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 275 struct block_device *bdev, 276 u64 dev_bytenr, 277 struct btrfsic_block_hashtable *h); 278 static void btrfsic_block_link_hashtable_init( 279 struct btrfsic_block_link_hashtable *h); 280 static void btrfsic_block_link_hashtable_add( 281 struct btrfsic_block_link *l, 282 struct btrfsic_block_link_hashtable *h); 283 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l); 284 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 285 struct block_device *bdev_ref_to, 286 u64 dev_bytenr_ref_to, 287 struct block_device *bdev_ref_from, 288 u64 dev_bytenr_ref_from, 289 struct btrfsic_block_link_hashtable *h); 290 static void btrfsic_dev_state_hashtable_init( 291 struct btrfsic_dev_state_hashtable *h); 292 static void btrfsic_dev_state_hashtable_add( 293 struct btrfsic_dev_state *ds, 294 struct btrfsic_dev_state_hashtable *h); 295 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds); 296 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 297 struct block_device *bdev, 298 struct btrfsic_dev_state_hashtable *h); 299 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void); 300 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf); 301 static int btrfsic_process_superblock(struct btrfsic_state *state, 302 struct btrfs_fs_devices *fs_devices); 303 static int btrfsic_process_metablock(struct btrfsic_state *state, 304 struct btrfsic_block *block, 305 struct btrfsic_block_data_ctx *block_ctx, 306 int limit_nesting, int force_iodone_flag); 307 static void btrfsic_read_from_block_data( 308 struct btrfsic_block_data_ctx *block_ctx, 309 void *dst, u32 offset, size_t len); 310 static int btrfsic_create_link_to_next_block( 311 struct btrfsic_state *state, 312 struct btrfsic_block *block, 313 struct btrfsic_block_data_ctx 314 *block_ctx, u64 next_bytenr, 315 int limit_nesting, 316 struct btrfsic_block_data_ctx *next_block_ctx, 317 struct btrfsic_block **next_blockp, 318 int force_iodone_flag, 319 int *num_copiesp, int *mirror_nump, 320 struct btrfs_disk_key *disk_key, 321 u64 parent_generation); 322 static int btrfsic_handle_extent_data(struct btrfsic_state *state, 323 struct btrfsic_block *block, 324 struct btrfsic_block_data_ctx *block_ctx, 325 u32 item_offset, int force_iodone_flag); 326 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 327 struct btrfsic_block_data_ctx *block_ctx_out, 328 int mirror_num); 329 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr, 330 u32 len, struct block_device *bdev, 331 struct btrfsic_block_data_ctx *block_ctx_out); 332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx); 333 static int btrfsic_read_block(struct btrfsic_state *state, 334 struct btrfsic_block_data_ctx *block_ctx); 335 static void btrfsic_dump_database(struct btrfsic_state *state); 336 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 337 char **datav, unsigned int num_pages); 338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 339 u64 dev_bytenr, char **mapped_datav, 340 unsigned int num_pages, 341 struct bio *bio, int *bio_is_patched, 342 struct buffer_head *bh, 343 int submit_bio_bh_rw); 344 static int btrfsic_process_written_superblock( 345 struct btrfsic_state *state, 346 struct btrfsic_block *const block, 347 struct btrfs_super_block *const super_hdr); 348 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status); 349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate); 350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state, 351 const struct btrfsic_block *block, 352 int recursion_level); 353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 354 struct btrfsic_block *const block, 355 int recursion_level); 356 static void btrfsic_print_add_link(const struct btrfsic_state *state, 357 const struct btrfsic_block_link *l); 358 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 359 const struct btrfsic_block_link *l); 360 static char btrfsic_get_block_type(const struct btrfsic_state *state, 361 const struct btrfsic_block *block); 362 static void btrfsic_dump_tree(const struct btrfsic_state *state); 363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 364 const struct btrfsic_block *block, 365 int indent_level); 366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 367 struct btrfsic_state *state, 368 struct btrfsic_block_data_ctx *next_block_ctx, 369 struct btrfsic_block *next_block, 370 struct btrfsic_block *from_block, 371 u64 parent_generation); 372 static struct btrfsic_block *btrfsic_block_lookup_or_add( 373 struct btrfsic_state *state, 374 struct btrfsic_block_data_ctx *block_ctx, 375 const char *additional_string, 376 int is_metadata, 377 int is_iodone, 378 int never_written, 379 int mirror_num, 380 int *was_created); 381 static int btrfsic_process_superblock_dev_mirror( 382 struct btrfsic_state *state, 383 struct btrfsic_dev_state *dev_state, 384 struct btrfs_device *device, 385 int superblock_mirror_num, 386 struct btrfsic_dev_state **selected_dev_state, 387 struct btrfs_super_block *selected_super); 388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 389 struct block_device *bdev); 390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 391 u64 bytenr, 392 struct btrfsic_dev_state *dev_state, 393 u64 dev_bytenr); 394 395 static struct mutex btrfsic_mutex; 396 static int btrfsic_is_initialized; 397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable; 398 399 400 static void btrfsic_block_init(struct btrfsic_block *b) 401 { 402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER; 403 b->dev_state = NULL; 404 b->dev_bytenr = 0; 405 b->logical_bytenr = 0; 406 b->generation = BTRFSIC_GENERATION_UNKNOWN; 407 b->disk_key.objectid = 0; 408 b->disk_key.type = 0; 409 b->disk_key.offset = 0; 410 b->is_metadata = 0; 411 b->is_superblock = 0; 412 b->is_iodone = 0; 413 b->iodone_w_error = 0; 414 b->never_written = 0; 415 b->mirror_num = 0; 416 b->next_in_same_bio = NULL; 417 b->orig_bio_bh_private = NULL; 418 b->orig_bio_bh_end_io.bio = NULL; 419 INIT_LIST_HEAD(&b->collision_resolving_node); 420 INIT_LIST_HEAD(&b->all_blocks_node); 421 INIT_LIST_HEAD(&b->ref_to_list); 422 INIT_LIST_HEAD(&b->ref_from_list); 423 b->submit_bio_bh_rw = 0; 424 b->flush_gen = 0; 425 } 426 427 static struct btrfsic_block *btrfsic_block_alloc(void) 428 { 429 struct btrfsic_block *b; 430 431 b = kzalloc(sizeof(*b), GFP_NOFS); 432 if (NULL != b) 433 btrfsic_block_init(b); 434 435 return b; 436 } 437 438 static void btrfsic_block_free(struct btrfsic_block *b) 439 { 440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num)); 441 kfree(b); 442 } 443 444 static void btrfsic_block_link_init(struct btrfsic_block_link *l) 445 { 446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER; 447 l->ref_cnt = 1; 448 INIT_LIST_HEAD(&l->node_ref_to); 449 INIT_LIST_HEAD(&l->node_ref_from); 450 INIT_LIST_HEAD(&l->collision_resolving_node); 451 l->block_ref_to = NULL; 452 l->block_ref_from = NULL; 453 } 454 455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void) 456 { 457 struct btrfsic_block_link *l; 458 459 l = kzalloc(sizeof(*l), GFP_NOFS); 460 if (NULL != l) 461 btrfsic_block_link_init(l); 462 463 return l; 464 } 465 466 static void btrfsic_block_link_free(struct btrfsic_block_link *l) 467 { 468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num)); 469 kfree(l); 470 } 471 472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds) 473 { 474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER; 475 ds->bdev = NULL; 476 ds->state = NULL; 477 ds->name[0] = '\0'; 478 INIT_LIST_HEAD(&ds->collision_resolving_node); 479 ds->last_flush_gen = 0; 480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush); 481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1; 482 ds->dummy_block_for_bio_bh_flush.dev_state = ds; 483 } 484 485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void) 486 { 487 struct btrfsic_dev_state *ds; 488 489 ds = kzalloc(sizeof(*ds), GFP_NOFS); 490 if (NULL != ds) 491 btrfsic_dev_state_init(ds); 492 493 return ds; 494 } 495 496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds) 497 { 498 BUG_ON(!(NULL == ds || 499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num)); 500 kfree(ds); 501 } 502 503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h) 504 { 505 int i; 506 507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++) 508 INIT_LIST_HEAD(h->table + i); 509 } 510 511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 512 struct btrfsic_block_hashtable *h) 513 { 514 const unsigned int hashval = 515 (((unsigned int)(b->dev_bytenr >> 16)) ^ 516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) & 517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 518 519 list_add(&b->collision_resolving_node, h->table + hashval); 520 } 521 522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b) 523 { 524 list_del(&b->collision_resolving_node); 525 } 526 527 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 528 struct block_device *bdev, 529 u64 dev_bytenr, 530 struct btrfsic_block_hashtable *h) 531 { 532 const unsigned int hashval = 533 (((unsigned int)(dev_bytenr >> 16)) ^ 534 ((unsigned int)((uintptr_t)bdev))) & 535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 536 struct list_head *elem; 537 538 list_for_each(elem, h->table + hashval) { 539 struct btrfsic_block *const b = 540 list_entry(elem, struct btrfsic_block, 541 collision_resolving_node); 542 543 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr) 544 return b; 545 } 546 547 return NULL; 548 } 549 550 static void btrfsic_block_link_hashtable_init( 551 struct btrfsic_block_link_hashtable *h) 552 { 553 int i; 554 555 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++) 556 INIT_LIST_HEAD(h->table + i); 557 } 558 559 static void btrfsic_block_link_hashtable_add( 560 struct btrfsic_block_link *l, 561 struct btrfsic_block_link_hashtable *h) 562 { 563 const unsigned int hashval = 564 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^ 565 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^ 566 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^ 567 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev))) 568 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 569 570 BUG_ON(NULL == l->block_ref_to); 571 BUG_ON(NULL == l->block_ref_from); 572 list_add(&l->collision_resolving_node, h->table + hashval); 573 } 574 575 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l) 576 { 577 list_del(&l->collision_resolving_node); 578 } 579 580 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 581 struct block_device *bdev_ref_to, 582 u64 dev_bytenr_ref_to, 583 struct block_device *bdev_ref_from, 584 u64 dev_bytenr_ref_from, 585 struct btrfsic_block_link_hashtable *h) 586 { 587 const unsigned int hashval = 588 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^ 589 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^ 590 ((unsigned int)((uintptr_t)bdev_ref_to)) ^ 591 ((unsigned int)((uintptr_t)bdev_ref_from))) & 592 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 593 struct list_head *elem; 594 595 list_for_each(elem, h->table + hashval) { 596 struct btrfsic_block_link *const l = 597 list_entry(elem, struct btrfsic_block_link, 598 collision_resolving_node); 599 600 BUG_ON(NULL == l->block_ref_to); 601 BUG_ON(NULL == l->block_ref_from); 602 if (l->block_ref_to->dev_state->bdev == bdev_ref_to && 603 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to && 604 l->block_ref_from->dev_state->bdev == bdev_ref_from && 605 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from) 606 return l; 607 } 608 609 return NULL; 610 } 611 612 static void btrfsic_dev_state_hashtable_init( 613 struct btrfsic_dev_state_hashtable *h) 614 { 615 int i; 616 617 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++) 618 INIT_LIST_HEAD(h->table + i); 619 } 620 621 static void btrfsic_dev_state_hashtable_add( 622 struct btrfsic_dev_state *ds, 623 struct btrfsic_dev_state_hashtable *h) 624 { 625 const unsigned int hashval = 626 (((unsigned int)((uintptr_t)ds->bdev)) & 627 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 628 629 list_add(&ds->collision_resolving_node, h->table + hashval); 630 } 631 632 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds) 633 { 634 list_del(&ds->collision_resolving_node); 635 } 636 637 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 638 struct block_device *bdev, 639 struct btrfsic_dev_state_hashtable *h) 640 { 641 const unsigned int hashval = 642 (((unsigned int)((uintptr_t)bdev)) & 643 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 644 struct list_head *elem; 645 646 list_for_each(elem, h->table + hashval) { 647 struct btrfsic_dev_state *const ds = 648 list_entry(elem, struct btrfsic_dev_state, 649 collision_resolving_node); 650 651 if (ds->bdev == bdev) 652 return ds; 653 } 654 655 return NULL; 656 } 657 658 static int btrfsic_process_superblock(struct btrfsic_state *state, 659 struct btrfs_fs_devices *fs_devices) 660 { 661 int ret = 0; 662 struct btrfs_super_block *selected_super; 663 struct list_head *dev_head = &fs_devices->devices; 664 struct btrfs_device *device; 665 struct btrfsic_dev_state *selected_dev_state = NULL; 666 int pass; 667 668 BUG_ON(NULL == state); 669 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS); 670 if (NULL == selected_super) { 671 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 672 return -1; 673 } 674 675 list_for_each_entry(device, dev_head, dev_list) { 676 int i; 677 struct btrfsic_dev_state *dev_state; 678 679 if (!device->bdev || !device->name) 680 continue; 681 682 dev_state = btrfsic_dev_state_lookup(device->bdev); 683 BUG_ON(NULL == dev_state); 684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 685 ret = btrfsic_process_superblock_dev_mirror( 686 state, dev_state, device, i, 687 &selected_dev_state, selected_super); 688 if (0 != ret && 0 == i) { 689 kfree(selected_super); 690 return ret; 691 } 692 } 693 } 694 695 if (NULL == state->latest_superblock) { 696 printk(KERN_INFO "btrfsic: no superblock found!\n"); 697 kfree(selected_super); 698 return -1; 699 } 700 701 state->csum_size = btrfs_super_csum_size(selected_super); 702 703 for (pass = 0; pass < 3; pass++) { 704 int num_copies; 705 int mirror_num; 706 u64 next_bytenr; 707 708 switch (pass) { 709 case 0: 710 next_bytenr = btrfs_super_root(selected_super); 711 if (state->print_mask & 712 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 713 printk(KERN_INFO "root@%llu\n", next_bytenr); 714 break; 715 case 1: 716 next_bytenr = btrfs_super_chunk_root(selected_super); 717 if (state->print_mask & 718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 719 printk(KERN_INFO "chunk@%llu\n", next_bytenr); 720 break; 721 case 2: 722 next_bytenr = btrfs_super_log_root(selected_super); 723 if (0 == next_bytenr) 724 continue; 725 if (state->print_mask & 726 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 727 printk(KERN_INFO "log@%llu\n", next_bytenr); 728 break; 729 } 730 731 num_copies = 732 btrfs_num_copies(state->root->fs_info, 733 next_bytenr, state->metablock_size); 734 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 735 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 736 next_bytenr, num_copies); 737 738 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 739 struct btrfsic_block *next_block; 740 struct btrfsic_block_data_ctx tmp_next_block_ctx; 741 struct btrfsic_block_link *l; 742 743 ret = btrfsic_map_block(state, next_bytenr, 744 state->metablock_size, 745 &tmp_next_block_ctx, 746 mirror_num); 747 if (ret) { 748 printk(KERN_INFO "btrfsic:" 749 " btrfsic_map_block(root @%llu," 750 " mirror %d) failed!\n", 751 next_bytenr, mirror_num); 752 kfree(selected_super); 753 return -1; 754 } 755 756 next_block = btrfsic_block_hashtable_lookup( 757 tmp_next_block_ctx.dev->bdev, 758 tmp_next_block_ctx.dev_bytenr, 759 &state->block_hashtable); 760 BUG_ON(NULL == next_block); 761 762 l = btrfsic_block_link_hashtable_lookup( 763 tmp_next_block_ctx.dev->bdev, 764 tmp_next_block_ctx.dev_bytenr, 765 state->latest_superblock->dev_state-> 766 bdev, 767 state->latest_superblock->dev_bytenr, 768 &state->block_link_hashtable); 769 BUG_ON(NULL == l); 770 771 ret = btrfsic_read_block(state, &tmp_next_block_ctx); 772 if (ret < (int)PAGE_CACHE_SIZE) { 773 printk(KERN_INFO 774 "btrfsic: read @logical %llu failed!\n", 775 tmp_next_block_ctx.start); 776 btrfsic_release_block_ctx(&tmp_next_block_ctx); 777 kfree(selected_super); 778 return -1; 779 } 780 781 ret = btrfsic_process_metablock(state, 782 next_block, 783 &tmp_next_block_ctx, 784 BTRFS_MAX_LEVEL + 3, 1); 785 btrfsic_release_block_ctx(&tmp_next_block_ctx); 786 } 787 } 788 789 kfree(selected_super); 790 return ret; 791 } 792 793 static int btrfsic_process_superblock_dev_mirror( 794 struct btrfsic_state *state, 795 struct btrfsic_dev_state *dev_state, 796 struct btrfs_device *device, 797 int superblock_mirror_num, 798 struct btrfsic_dev_state **selected_dev_state, 799 struct btrfs_super_block *selected_super) 800 { 801 struct btrfs_super_block *super_tmp; 802 u64 dev_bytenr; 803 struct buffer_head *bh; 804 struct btrfsic_block *superblock_tmp; 805 int pass; 806 struct block_device *const superblock_bdev = device->bdev; 807 808 /* super block bytenr is always the unmapped device bytenr */ 809 dev_bytenr = btrfs_sb_offset(superblock_mirror_num); 810 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes) 811 return -1; 812 bh = __bread(superblock_bdev, dev_bytenr / 4096, 813 BTRFS_SUPER_INFO_SIZE); 814 if (NULL == bh) 815 return -1; 816 super_tmp = (struct btrfs_super_block *) 817 (bh->b_data + (dev_bytenr & 4095)); 818 819 if (btrfs_super_bytenr(super_tmp) != dev_bytenr || 820 btrfs_super_magic(super_tmp) != BTRFS_MAGIC || 821 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) || 822 btrfs_super_nodesize(super_tmp) != state->metablock_size || 823 btrfs_super_leafsize(super_tmp) != state->metablock_size || 824 btrfs_super_sectorsize(super_tmp) != state->datablock_size) { 825 brelse(bh); 826 return 0; 827 } 828 829 superblock_tmp = 830 btrfsic_block_hashtable_lookup(superblock_bdev, 831 dev_bytenr, 832 &state->block_hashtable); 833 if (NULL == superblock_tmp) { 834 superblock_tmp = btrfsic_block_alloc(); 835 if (NULL == superblock_tmp) { 836 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 837 brelse(bh); 838 return -1; 839 } 840 /* for superblock, only the dev_bytenr makes sense */ 841 superblock_tmp->dev_bytenr = dev_bytenr; 842 superblock_tmp->dev_state = dev_state; 843 superblock_tmp->logical_bytenr = dev_bytenr; 844 superblock_tmp->generation = btrfs_super_generation(super_tmp); 845 superblock_tmp->is_metadata = 1; 846 superblock_tmp->is_superblock = 1; 847 superblock_tmp->is_iodone = 1; 848 superblock_tmp->never_written = 0; 849 superblock_tmp->mirror_num = 1 + superblock_mirror_num; 850 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 851 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)" 852 " @%llu (%s/%llu/%d)\n", 853 superblock_bdev, 854 rcu_str_deref(device->name), dev_bytenr, 855 dev_state->name, dev_bytenr, 856 superblock_mirror_num); 857 list_add(&superblock_tmp->all_blocks_node, 858 &state->all_blocks_list); 859 btrfsic_block_hashtable_add(superblock_tmp, 860 &state->block_hashtable); 861 } 862 863 /* select the one with the highest generation field */ 864 if (btrfs_super_generation(super_tmp) > 865 state->max_superblock_generation || 866 0 == state->max_superblock_generation) { 867 memcpy(selected_super, super_tmp, sizeof(*selected_super)); 868 *selected_dev_state = dev_state; 869 state->max_superblock_generation = 870 btrfs_super_generation(super_tmp); 871 state->latest_superblock = superblock_tmp; 872 } 873 874 for (pass = 0; pass < 3; pass++) { 875 u64 next_bytenr; 876 int num_copies; 877 int mirror_num; 878 const char *additional_string = NULL; 879 struct btrfs_disk_key tmp_disk_key; 880 881 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; 882 tmp_disk_key.offset = 0; 883 switch (pass) { 884 case 0: 885 btrfs_set_disk_key_objectid(&tmp_disk_key, 886 BTRFS_ROOT_TREE_OBJECTID); 887 additional_string = "initial root "; 888 next_bytenr = btrfs_super_root(super_tmp); 889 break; 890 case 1: 891 btrfs_set_disk_key_objectid(&tmp_disk_key, 892 BTRFS_CHUNK_TREE_OBJECTID); 893 additional_string = "initial chunk "; 894 next_bytenr = btrfs_super_chunk_root(super_tmp); 895 break; 896 case 2: 897 btrfs_set_disk_key_objectid(&tmp_disk_key, 898 BTRFS_TREE_LOG_OBJECTID); 899 additional_string = "initial log "; 900 next_bytenr = btrfs_super_log_root(super_tmp); 901 if (0 == next_bytenr) 902 continue; 903 break; 904 } 905 906 num_copies = 907 btrfs_num_copies(state->root->fs_info, 908 next_bytenr, state->metablock_size); 909 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 910 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 911 next_bytenr, num_copies); 912 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 913 struct btrfsic_block *next_block; 914 struct btrfsic_block_data_ctx tmp_next_block_ctx; 915 struct btrfsic_block_link *l; 916 917 if (btrfsic_map_block(state, next_bytenr, 918 state->metablock_size, 919 &tmp_next_block_ctx, 920 mirror_num)) { 921 printk(KERN_INFO "btrfsic: btrfsic_map_block(" 922 "bytenr @%llu, mirror %d) failed!\n", 923 next_bytenr, mirror_num); 924 brelse(bh); 925 return -1; 926 } 927 928 next_block = btrfsic_block_lookup_or_add( 929 state, &tmp_next_block_ctx, 930 additional_string, 1, 1, 0, 931 mirror_num, NULL); 932 if (NULL == next_block) { 933 btrfsic_release_block_ctx(&tmp_next_block_ctx); 934 brelse(bh); 935 return -1; 936 } 937 938 next_block->disk_key = tmp_disk_key; 939 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 940 l = btrfsic_block_link_lookup_or_add( 941 state, &tmp_next_block_ctx, 942 next_block, superblock_tmp, 943 BTRFSIC_GENERATION_UNKNOWN); 944 btrfsic_release_block_ctx(&tmp_next_block_ctx); 945 if (NULL == l) { 946 brelse(bh); 947 return -1; 948 } 949 } 950 } 951 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES) 952 btrfsic_dump_tree_sub(state, superblock_tmp, 0); 953 954 brelse(bh); 955 return 0; 956 } 957 958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void) 959 { 960 struct btrfsic_stack_frame *sf; 961 962 sf = kzalloc(sizeof(*sf), GFP_NOFS); 963 if (NULL == sf) 964 printk(KERN_INFO "btrfsic: alloc memory failed!\n"); 965 else 966 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER; 967 return sf; 968 } 969 970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf) 971 { 972 BUG_ON(!(NULL == sf || 973 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic)); 974 kfree(sf); 975 } 976 977 static int btrfsic_process_metablock( 978 struct btrfsic_state *state, 979 struct btrfsic_block *const first_block, 980 struct btrfsic_block_data_ctx *const first_block_ctx, 981 int first_limit_nesting, int force_iodone_flag) 982 { 983 struct btrfsic_stack_frame initial_stack_frame = { 0 }; 984 struct btrfsic_stack_frame *sf; 985 struct btrfsic_stack_frame *next_stack; 986 struct btrfs_header *const first_hdr = 987 (struct btrfs_header *)first_block_ctx->datav[0]; 988 989 BUG_ON(!first_hdr); 990 sf = &initial_stack_frame; 991 sf->error = 0; 992 sf->i = -1; 993 sf->limit_nesting = first_limit_nesting; 994 sf->block = first_block; 995 sf->block_ctx = first_block_ctx; 996 sf->next_block = NULL; 997 sf->hdr = first_hdr; 998 sf->prev = NULL; 999 1000 continue_with_new_stack_frame: 1001 sf->block->generation = le64_to_cpu(sf->hdr->generation); 1002 if (0 == sf->hdr->level) { 1003 struct btrfs_leaf *const leafhdr = 1004 (struct btrfs_leaf *)sf->hdr; 1005 1006 if (-1 == sf->i) { 1007 sf->nr = btrfs_stack_header_nritems(&leafhdr->header); 1008 1009 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1010 printk(KERN_INFO 1011 "leaf %llu items %d generation %llu" 1012 " owner %llu\n", 1013 sf->block_ctx->start, sf->nr, 1014 btrfs_stack_header_generation( 1015 &leafhdr->header), 1016 btrfs_stack_header_owner( 1017 &leafhdr->header)); 1018 } 1019 1020 continue_with_current_leaf_stack_frame: 1021 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1022 sf->i++; 1023 sf->num_copies = 0; 1024 } 1025 1026 if (sf->i < sf->nr) { 1027 struct btrfs_item disk_item; 1028 u32 disk_item_offset = 1029 (uintptr_t)(leafhdr->items + sf->i) - 1030 (uintptr_t)leafhdr; 1031 struct btrfs_disk_key *disk_key; 1032 u8 type; 1033 u32 item_offset; 1034 u32 item_size; 1035 1036 if (disk_item_offset + sizeof(struct btrfs_item) > 1037 sf->block_ctx->len) { 1038 leaf_item_out_of_bounce_error: 1039 printk(KERN_INFO 1040 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n", 1041 sf->block_ctx->start, 1042 sf->block_ctx->dev->name); 1043 goto one_stack_frame_backwards; 1044 } 1045 btrfsic_read_from_block_data(sf->block_ctx, 1046 &disk_item, 1047 disk_item_offset, 1048 sizeof(struct btrfs_item)); 1049 item_offset = btrfs_stack_item_offset(&disk_item); 1050 item_size = btrfs_stack_item_size(&disk_item); 1051 disk_key = &disk_item.key; 1052 type = btrfs_disk_key_type(disk_key); 1053 1054 if (BTRFS_ROOT_ITEM_KEY == type) { 1055 struct btrfs_root_item root_item; 1056 u32 root_item_offset; 1057 u64 next_bytenr; 1058 1059 root_item_offset = item_offset + 1060 offsetof(struct btrfs_leaf, items); 1061 if (root_item_offset + item_size > 1062 sf->block_ctx->len) 1063 goto leaf_item_out_of_bounce_error; 1064 btrfsic_read_from_block_data( 1065 sf->block_ctx, &root_item, 1066 root_item_offset, 1067 item_size); 1068 next_bytenr = btrfs_root_bytenr(&root_item); 1069 1070 sf->error = 1071 btrfsic_create_link_to_next_block( 1072 state, 1073 sf->block, 1074 sf->block_ctx, 1075 next_bytenr, 1076 sf->limit_nesting, 1077 &sf->next_block_ctx, 1078 &sf->next_block, 1079 force_iodone_flag, 1080 &sf->num_copies, 1081 &sf->mirror_num, 1082 disk_key, 1083 btrfs_root_generation( 1084 &root_item)); 1085 if (sf->error) 1086 goto one_stack_frame_backwards; 1087 1088 if (NULL != sf->next_block) { 1089 struct btrfs_header *const next_hdr = 1090 (struct btrfs_header *) 1091 sf->next_block_ctx.datav[0]; 1092 1093 next_stack = 1094 btrfsic_stack_frame_alloc(); 1095 if (NULL == next_stack) { 1096 sf->error = -1; 1097 btrfsic_release_block_ctx( 1098 &sf-> 1099 next_block_ctx); 1100 goto one_stack_frame_backwards; 1101 } 1102 1103 next_stack->i = -1; 1104 next_stack->block = sf->next_block; 1105 next_stack->block_ctx = 1106 &sf->next_block_ctx; 1107 next_stack->next_block = NULL; 1108 next_stack->hdr = next_hdr; 1109 next_stack->limit_nesting = 1110 sf->limit_nesting - 1; 1111 next_stack->prev = sf; 1112 sf = next_stack; 1113 goto continue_with_new_stack_frame; 1114 } 1115 } else if (BTRFS_EXTENT_DATA_KEY == type && 1116 state->include_extent_data) { 1117 sf->error = btrfsic_handle_extent_data( 1118 state, 1119 sf->block, 1120 sf->block_ctx, 1121 item_offset, 1122 force_iodone_flag); 1123 if (sf->error) 1124 goto one_stack_frame_backwards; 1125 } 1126 1127 goto continue_with_current_leaf_stack_frame; 1128 } 1129 } else { 1130 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr; 1131 1132 if (-1 == sf->i) { 1133 sf->nr = btrfs_stack_header_nritems(&nodehdr->header); 1134 1135 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1136 printk(KERN_INFO "node %llu level %d items %d" 1137 " generation %llu owner %llu\n", 1138 sf->block_ctx->start, 1139 nodehdr->header.level, sf->nr, 1140 btrfs_stack_header_generation( 1141 &nodehdr->header), 1142 btrfs_stack_header_owner( 1143 &nodehdr->header)); 1144 } 1145 1146 continue_with_current_node_stack_frame: 1147 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1148 sf->i++; 1149 sf->num_copies = 0; 1150 } 1151 1152 if (sf->i < sf->nr) { 1153 struct btrfs_key_ptr key_ptr; 1154 u32 key_ptr_offset; 1155 u64 next_bytenr; 1156 1157 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) - 1158 (uintptr_t)nodehdr; 1159 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) > 1160 sf->block_ctx->len) { 1161 printk(KERN_INFO 1162 "btrfsic: node item out of bounce at logical %llu, dev %s\n", 1163 sf->block_ctx->start, 1164 sf->block_ctx->dev->name); 1165 goto one_stack_frame_backwards; 1166 } 1167 btrfsic_read_from_block_data( 1168 sf->block_ctx, &key_ptr, key_ptr_offset, 1169 sizeof(struct btrfs_key_ptr)); 1170 next_bytenr = btrfs_stack_key_blockptr(&key_ptr); 1171 1172 sf->error = btrfsic_create_link_to_next_block( 1173 state, 1174 sf->block, 1175 sf->block_ctx, 1176 next_bytenr, 1177 sf->limit_nesting, 1178 &sf->next_block_ctx, 1179 &sf->next_block, 1180 force_iodone_flag, 1181 &sf->num_copies, 1182 &sf->mirror_num, 1183 &key_ptr.key, 1184 btrfs_stack_key_generation(&key_ptr)); 1185 if (sf->error) 1186 goto one_stack_frame_backwards; 1187 1188 if (NULL != sf->next_block) { 1189 struct btrfs_header *const next_hdr = 1190 (struct btrfs_header *) 1191 sf->next_block_ctx.datav[0]; 1192 1193 next_stack = btrfsic_stack_frame_alloc(); 1194 if (NULL == next_stack) { 1195 sf->error = -1; 1196 goto one_stack_frame_backwards; 1197 } 1198 1199 next_stack->i = -1; 1200 next_stack->block = sf->next_block; 1201 next_stack->block_ctx = &sf->next_block_ctx; 1202 next_stack->next_block = NULL; 1203 next_stack->hdr = next_hdr; 1204 next_stack->limit_nesting = 1205 sf->limit_nesting - 1; 1206 next_stack->prev = sf; 1207 sf = next_stack; 1208 goto continue_with_new_stack_frame; 1209 } 1210 1211 goto continue_with_current_node_stack_frame; 1212 } 1213 } 1214 1215 one_stack_frame_backwards: 1216 if (NULL != sf->prev) { 1217 struct btrfsic_stack_frame *const prev = sf->prev; 1218 1219 /* the one for the initial block is freed in the caller */ 1220 btrfsic_release_block_ctx(sf->block_ctx); 1221 1222 if (sf->error) { 1223 prev->error = sf->error; 1224 btrfsic_stack_frame_free(sf); 1225 sf = prev; 1226 goto one_stack_frame_backwards; 1227 } 1228 1229 btrfsic_stack_frame_free(sf); 1230 sf = prev; 1231 goto continue_with_new_stack_frame; 1232 } else { 1233 BUG_ON(&initial_stack_frame != sf); 1234 } 1235 1236 return sf->error; 1237 } 1238 1239 static void btrfsic_read_from_block_data( 1240 struct btrfsic_block_data_ctx *block_ctx, 1241 void *dstv, u32 offset, size_t len) 1242 { 1243 size_t cur; 1244 size_t offset_in_page; 1245 char *kaddr; 1246 char *dst = (char *)dstv; 1247 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1); 1248 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT; 1249 1250 WARN_ON(offset + len > block_ctx->len); 1251 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1); 1252 1253 while (len > 0) { 1254 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page)); 1255 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >> 1256 PAGE_CACHE_SHIFT); 1257 kaddr = block_ctx->datav[i]; 1258 memcpy(dst, kaddr + offset_in_page, cur); 1259 1260 dst += cur; 1261 len -= cur; 1262 offset_in_page = 0; 1263 i++; 1264 } 1265 } 1266 1267 static int btrfsic_create_link_to_next_block( 1268 struct btrfsic_state *state, 1269 struct btrfsic_block *block, 1270 struct btrfsic_block_data_ctx *block_ctx, 1271 u64 next_bytenr, 1272 int limit_nesting, 1273 struct btrfsic_block_data_ctx *next_block_ctx, 1274 struct btrfsic_block **next_blockp, 1275 int force_iodone_flag, 1276 int *num_copiesp, int *mirror_nump, 1277 struct btrfs_disk_key *disk_key, 1278 u64 parent_generation) 1279 { 1280 struct btrfsic_block *next_block = NULL; 1281 int ret; 1282 struct btrfsic_block_link *l; 1283 int did_alloc_block_link; 1284 int block_was_created; 1285 1286 *next_blockp = NULL; 1287 if (0 == *num_copiesp) { 1288 *num_copiesp = 1289 btrfs_num_copies(state->root->fs_info, 1290 next_bytenr, state->metablock_size); 1291 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1292 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 1293 next_bytenr, *num_copiesp); 1294 *mirror_nump = 1; 1295 } 1296 1297 if (*mirror_nump > *num_copiesp) 1298 return 0; 1299 1300 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1301 printk(KERN_INFO 1302 "btrfsic_create_link_to_next_block(mirror_num=%d)\n", 1303 *mirror_nump); 1304 ret = btrfsic_map_block(state, next_bytenr, 1305 state->metablock_size, 1306 next_block_ctx, *mirror_nump); 1307 if (ret) { 1308 printk(KERN_INFO 1309 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1310 next_bytenr, *mirror_nump); 1311 btrfsic_release_block_ctx(next_block_ctx); 1312 *next_blockp = NULL; 1313 return -1; 1314 } 1315 1316 next_block = btrfsic_block_lookup_or_add(state, 1317 next_block_ctx, "referenced ", 1318 1, force_iodone_flag, 1319 !force_iodone_flag, 1320 *mirror_nump, 1321 &block_was_created); 1322 if (NULL == next_block) { 1323 btrfsic_release_block_ctx(next_block_ctx); 1324 *next_blockp = NULL; 1325 return -1; 1326 } 1327 if (block_was_created) { 1328 l = NULL; 1329 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 1330 } else { 1331 if (next_block->logical_bytenr != next_bytenr && 1332 !(!next_block->is_metadata && 1333 0 == next_block->logical_bytenr)) { 1334 printk(KERN_INFO 1335 "Referenced block @%llu (%s/%llu/%d)" 1336 " found in hash table, %c," 1337 " bytenr mismatch (!= stored %llu).\n", 1338 next_bytenr, next_block_ctx->dev->name, 1339 next_block_ctx->dev_bytenr, *mirror_nump, 1340 btrfsic_get_block_type(state, next_block), 1341 next_block->logical_bytenr); 1342 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1343 printk(KERN_INFO 1344 "Referenced block @%llu (%s/%llu/%d)" 1345 " found in hash table, %c.\n", 1346 next_bytenr, next_block_ctx->dev->name, 1347 next_block_ctx->dev_bytenr, *mirror_nump, 1348 btrfsic_get_block_type(state, next_block)); 1349 next_block->logical_bytenr = next_bytenr; 1350 1351 next_block->mirror_num = *mirror_nump; 1352 l = btrfsic_block_link_hashtable_lookup( 1353 next_block_ctx->dev->bdev, 1354 next_block_ctx->dev_bytenr, 1355 block_ctx->dev->bdev, 1356 block_ctx->dev_bytenr, 1357 &state->block_link_hashtable); 1358 } 1359 1360 next_block->disk_key = *disk_key; 1361 if (NULL == l) { 1362 l = btrfsic_block_link_alloc(); 1363 if (NULL == l) { 1364 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 1365 btrfsic_release_block_ctx(next_block_ctx); 1366 *next_blockp = NULL; 1367 return -1; 1368 } 1369 1370 did_alloc_block_link = 1; 1371 l->block_ref_to = next_block; 1372 l->block_ref_from = block; 1373 l->ref_cnt = 1; 1374 l->parent_generation = parent_generation; 1375 1376 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1377 btrfsic_print_add_link(state, l); 1378 1379 list_add(&l->node_ref_to, &block->ref_to_list); 1380 list_add(&l->node_ref_from, &next_block->ref_from_list); 1381 1382 btrfsic_block_link_hashtable_add(l, 1383 &state->block_link_hashtable); 1384 } else { 1385 did_alloc_block_link = 0; 1386 if (0 == limit_nesting) { 1387 l->ref_cnt++; 1388 l->parent_generation = parent_generation; 1389 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1390 btrfsic_print_add_link(state, l); 1391 } 1392 } 1393 1394 if (limit_nesting > 0 && did_alloc_block_link) { 1395 ret = btrfsic_read_block(state, next_block_ctx); 1396 if (ret < (int)next_block_ctx->len) { 1397 printk(KERN_INFO 1398 "btrfsic: read block @logical %llu failed!\n", 1399 next_bytenr); 1400 btrfsic_release_block_ctx(next_block_ctx); 1401 *next_blockp = NULL; 1402 return -1; 1403 } 1404 1405 *next_blockp = next_block; 1406 } else { 1407 *next_blockp = NULL; 1408 } 1409 (*mirror_nump)++; 1410 1411 return 0; 1412 } 1413 1414 static int btrfsic_handle_extent_data( 1415 struct btrfsic_state *state, 1416 struct btrfsic_block *block, 1417 struct btrfsic_block_data_ctx *block_ctx, 1418 u32 item_offset, int force_iodone_flag) 1419 { 1420 int ret; 1421 struct btrfs_file_extent_item file_extent_item; 1422 u64 file_extent_item_offset; 1423 u64 next_bytenr; 1424 u64 num_bytes; 1425 u64 generation; 1426 struct btrfsic_block_link *l; 1427 1428 file_extent_item_offset = offsetof(struct btrfs_leaf, items) + 1429 item_offset; 1430 if (file_extent_item_offset + 1431 offsetof(struct btrfs_file_extent_item, disk_num_bytes) > 1432 block_ctx->len) { 1433 printk(KERN_INFO 1434 "btrfsic: file item out of bounce at logical %llu, dev %s\n", 1435 block_ctx->start, block_ctx->dev->name); 1436 return -1; 1437 } 1438 1439 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1440 file_extent_item_offset, 1441 offsetof(struct btrfs_file_extent_item, disk_num_bytes)); 1442 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type || 1443 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) { 1444 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1445 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n", 1446 file_extent_item.type, 1447 btrfs_stack_file_extent_disk_bytenr( 1448 &file_extent_item)); 1449 return 0; 1450 } 1451 1452 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) > 1453 block_ctx->len) { 1454 printk(KERN_INFO 1455 "btrfsic: file item out of bounce at logical %llu, dev %s\n", 1456 block_ctx->start, block_ctx->dev->name); 1457 return -1; 1458 } 1459 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1460 file_extent_item_offset, 1461 sizeof(struct btrfs_file_extent_item)); 1462 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item); 1463 if (btrfs_stack_file_extent_compression(&file_extent_item) == 1464 BTRFS_COMPRESS_NONE) { 1465 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item); 1466 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item); 1467 } else { 1468 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item); 1469 } 1470 generation = btrfs_stack_file_extent_generation(&file_extent_item); 1471 1472 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1473 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu," 1474 " offset = %llu, num_bytes = %llu\n", 1475 file_extent_item.type, 1476 btrfs_stack_file_extent_disk_bytenr(&file_extent_item), 1477 btrfs_stack_file_extent_offset(&file_extent_item), 1478 num_bytes); 1479 while (num_bytes > 0) { 1480 u32 chunk_len; 1481 int num_copies; 1482 int mirror_num; 1483 1484 if (num_bytes > state->datablock_size) 1485 chunk_len = state->datablock_size; 1486 else 1487 chunk_len = num_bytes; 1488 1489 num_copies = 1490 btrfs_num_copies(state->root->fs_info, 1491 next_bytenr, state->datablock_size); 1492 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1493 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 1494 next_bytenr, num_copies); 1495 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 1496 struct btrfsic_block_data_ctx next_block_ctx; 1497 struct btrfsic_block *next_block; 1498 int block_was_created; 1499 1500 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1501 printk(KERN_INFO "btrfsic_handle_extent_data(" 1502 "mirror_num=%d)\n", mirror_num); 1503 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1504 printk(KERN_INFO 1505 "\tdisk_bytenr = %llu, num_bytes %u\n", 1506 next_bytenr, chunk_len); 1507 ret = btrfsic_map_block(state, next_bytenr, 1508 chunk_len, &next_block_ctx, 1509 mirror_num); 1510 if (ret) { 1511 printk(KERN_INFO 1512 "btrfsic: btrfsic_map_block(@%llu," 1513 " mirror=%d) failed!\n", 1514 next_bytenr, mirror_num); 1515 return -1; 1516 } 1517 1518 next_block = btrfsic_block_lookup_or_add( 1519 state, 1520 &next_block_ctx, 1521 "referenced ", 1522 0, 1523 force_iodone_flag, 1524 !force_iodone_flag, 1525 mirror_num, 1526 &block_was_created); 1527 if (NULL == next_block) { 1528 printk(KERN_INFO 1529 "btrfsic: error, kmalloc failed!\n"); 1530 btrfsic_release_block_ctx(&next_block_ctx); 1531 return -1; 1532 } 1533 if (!block_was_created) { 1534 if (next_block->logical_bytenr != next_bytenr && 1535 !(!next_block->is_metadata && 1536 0 == next_block->logical_bytenr)) { 1537 printk(KERN_INFO 1538 "Referenced block" 1539 " @%llu (%s/%llu/%d)" 1540 " found in hash table, D," 1541 " bytenr mismatch" 1542 " (!= stored %llu).\n", 1543 next_bytenr, 1544 next_block_ctx.dev->name, 1545 next_block_ctx.dev_bytenr, 1546 mirror_num, 1547 next_block->logical_bytenr); 1548 } 1549 next_block->logical_bytenr = next_bytenr; 1550 next_block->mirror_num = mirror_num; 1551 } 1552 1553 l = btrfsic_block_link_lookup_or_add(state, 1554 &next_block_ctx, 1555 next_block, block, 1556 generation); 1557 btrfsic_release_block_ctx(&next_block_ctx); 1558 if (NULL == l) 1559 return -1; 1560 } 1561 1562 next_bytenr += chunk_len; 1563 num_bytes -= chunk_len; 1564 } 1565 1566 return 0; 1567 } 1568 1569 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 1570 struct btrfsic_block_data_ctx *block_ctx_out, 1571 int mirror_num) 1572 { 1573 int ret; 1574 u64 length; 1575 struct btrfs_bio *multi = NULL; 1576 struct btrfs_device *device; 1577 1578 length = len; 1579 ret = btrfs_map_block(state->root->fs_info, READ, 1580 bytenr, &length, &multi, mirror_num); 1581 1582 if (ret) { 1583 block_ctx_out->start = 0; 1584 block_ctx_out->dev_bytenr = 0; 1585 block_ctx_out->len = 0; 1586 block_ctx_out->dev = NULL; 1587 block_ctx_out->datav = NULL; 1588 block_ctx_out->pagev = NULL; 1589 block_ctx_out->mem_to_free = NULL; 1590 1591 return ret; 1592 } 1593 1594 device = multi->stripes[0].dev; 1595 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev); 1596 block_ctx_out->dev_bytenr = multi->stripes[0].physical; 1597 block_ctx_out->start = bytenr; 1598 block_ctx_out->len = len; 1599 block_ctx_out->datav = NULL; 1600 block_ctx_out->pagev = NULL; 1601 block_ctx_out->mem_to_free = NULL; 1602 1603 kfree(multi); 1604 if (NULL == block_ctx_out->dev) { 1605 ret = -ENXIO; 1606 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n"); 1607 } 1608 1609 return ret; 1610 } 1611 1612 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr, 1613 u32 len, struct block_device *bdev, 1614 struct btrfsic_block_data_ctx *block_ctx_out) 1615 { 1616 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev); 1617 block_ctx_out->dev_bytenr = bytenr; 1618 block_ctx_out->start = bytenr; 1619 block_ctx_out->len = len; 1620 block_ctx_out->datav = NULL; 1621 block_ctx_out->pagev = NULL; 1622 block_ctx_out->mem_to_free = NULL; 1623 if (NULL != block_ctx_out->dev) { 1624 return 0; 1625 } else { 1626 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n"); 1627 return -ENXIO; 1628 } 1629 } 1630 1631 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx) 1632 { 1633 if (block_ctx->mem_to_free) { 1634 unsigned int num_pages; 1635 1636 BUG_ON(!block_ctx->datav); 1637 BUG_ON(!block_ctx->pagev); 1638 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >> 1639 PAGE_CACHE_SHIFT; 1640 while (num_pages > 0) { 1641 num_pages--; 1642 if (block_ctx->datav[num_pages]) { 1643 kunmap(block_ctx->pagev[num_pages]); 1644 block_ctx->datav[num_pages] = NULL; 1645 } 1646 if (block_ctx->pagev[num_pages]) { 1647 __free_page(block_ctx->pagev[num_pages]); 1648 block_ctx->pagev[num_pages] = NULL; 1649 } 1650 } 1651 1652 kfree(block_ctx->mem_to_free); 1653 block_ctx->mem_to_free = NULL; 1654 block_ctx->pagev = NULL; 1655 block_ctx->datav = NULL; 1656 } 1657 } 1658 1659 static int btrfsic_read_block(struct btrfsic_state *state, 1660 struct btrfsic_block_data_ctx *block_ctx) 1661 { 1662 unsigned int num_pages; 1663 unsigned int i; 1664 u64 dev_bytenr; 1665 int ret; 1666 1667 BUG_ON(block_ctx->datav); 1668 BUG_ON(block_ctx->pagev); 1669 BUG_ON(block_ctx->mem_to_free); 1670 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) { 1671 printk(KERN_INFO 1672 "btrfsic: read_block() with unaligned bytenr %llu\n", 1673 block_ctx->dev_bytenr); 1674 return -1; 1675 } 1676 1677 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >> 1678 PAGE_CACHE_SHIFT; 1679 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) + 1680 sizeof(*block_ctx->pagev)) * 1681 num_pages, GFP_NOFS); 1682 if (!block_ctx->mem_to_free) 1683 return -1; 1684 block_ctx->datav = block_ctx->mem_to_free; 1685 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages); 1686 for (i = 0; i < num_pages; i++) { 1687 block_ctx->pagev[i] = alloc_page(GFP_NOFS); 1688 if (!block_ctx->pagev[i]) 1689 return -1; 1690 } 1691 1692 dev_bytenr = block_ctx->dev_bytenr; 1693 for (i = 0; i < num_pages;) { 1694 struct bio *bio; 1695 unsigned int j; 1696 1697 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i); 1698 if (!bio) { 1699 printk(KERN_INFO 1700 "btrfsic: bio_alloc() for %u pages failed!\n", 1701 num_pages - i); 1702 return -1; 1703 } 1704 bio->bi_bdev = block_ctx->dev->bdev; 1705 bio->bi_iter.bi_sector = dev_bytenr >> 9; 1706 1707 for (j = i; j < num_pages; j++) { 1708 ret = bio_add_page(bio, block_ctx->pagev[j], 1709 PAGE_CACHE_SIZE, 0); 1710 if (PAGE_CACHE_SIZE != ret) 1711 break; 1712 } 1713 if (j == i) { 1714 printk(KERN_INFO 1715 "btrfsic: error, failed to add a single page!\n"); 1716 return -1; 1717 } 1718 if (submit_bio_wait(READ, bio)) { 1719 printk(KERN_INFO 1720 "btrfsic: read error at logical %llu dev %s!\n", 1721 block_ctx->start, block_ctx->dev->name); 1722 bio_put(bio); 1723 return -1; 1724 } 1725 bio_put(bio); 1726 dev_bytenr += (j - i) * PAGE_CACHE_SIZE; 1727 i = j; 1728 } 1729 for (i = 0; i < num_pages; i++) { 1730 block_ctx->datav[i] = kmap(block_ctx->pagev[i]); 1731 if (!block_ctx->datav[i]) { 1732 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n", 1733 block_ctx->dev->name); 1734 return -1; 1735 } 1736 } 1737 1738 return block_ctx->len; 1739 } 1740 1741 static void btrfsic_dump_database(struct btrfsic_state *state) 1742 { 1743 struct list_head *elem_all; 1744 1745 BUG_ON(NULL == state); 1746 1747 printk(KERN_INFO "all_blocks_list:\n"); 1748 list_for_each(elem_all, &state->all_blocks_list) { 1749 const struct btrfsic_block *const b_all = 1750 list_entry(elem_all, struct btrfsic_block, 1751 all_blocks_node); 1752 struct list_head *elem_ref_to; 1753 struct list_head *elem_ref_from; 1754 1755 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n", 1756 btrfsic_get_block_type(state, b_all), 1757 b_all->logical_bytenr, b_all->dev_state->name, 1758 b_all->dev_bytenr, b_all->mirror_num); 1759 1760 list_for_each(elem_ref_to, &b_all->ref_to_list) { 1761 const struct btrfsic_block_link *const l = 1762 list_entry(elem_ref_to, 1763 struct btrfsic_block_link, 1764 node_ref_to); 1765 1766 printk(KERN_INFO " %c @%llu (%s/%llu/%d)" 1767 " refers %u* to" 1768 " %c @%llu (%s/%llu/%d)\n", 1769 btrfsic_get_block_type(state, b_all), 1770 b_all->logical_bytenr, b_all->dev_state->name, 1771 b_all->dev_bytenr, b_all->mirror_num, 1772 l->ref_cnt, 1773 btrfsic_get_block_type(state, l->block_ref_to), 1774 l->block_ref_to->logical_bytenr, 1775 l->block_ref_to->dev_state->name, 1776 l->block_ref_to->dev_bytenr, 1777 l->block_ref_to->mirror_num); 1778 } 1779 1780 list_for_each(elem_ref_from, &b_all->ref_from_list) { 1781 const struct btrfsic_block_link *const l = 1782 list_entry(elem_ref_from, 1783 struct btrfsic_block_link, 1784 node_ref_from); 1785 1786 printk(KERN_INFO " %c @%llu (%s/%llu/%d)" 1787 " is ref %u* from" 1788 " %c @%llu (%s/%llu/%d)\n", 1789 btrfsic_get_block_type(state, b_all), 1790 b_all->logical_bytenr, b_all->dev_state->name, 1791 b_all->dev_bytenr, b_all->mirror_num, 1792 l->ref_cnt, 1793 btrfsic_get_block_type(state, l->block_ref_from), 1794 l->block_ref_from->logical_bytenr, 1795 l->block_ref_from->dev_state->name, 1796 l->block_ref_from->dev_bytenr, 1797 l->block_ref_from->mirror_num); 1798 } 1799 1800 printk(KERN_INFO "\n"); 1801 } 1802 } 1803 1804 /* 1805 * Test whether the disk block contains a tree block (leaf or node) 1806 * (note that this test fails for the super block) 1807 */ 1808 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 1809 char **datav, unsigned int num_pages) 1810 { 1811 struct btrfs_header *h; 1812 u8 csum[BTRFS_CSUM_SIZE]; 1813 u32 crc = ~(u32)0; 1814 unsigned int i; 1815 1816 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size) 1817 return 1; /* not metadata */ 1818 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT; 1819 h = (struct btrfs_header *)datav[0]; 1820 1821 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE)) 1822 return 1; 1823 1824 for (i = 0; i < num_pages; i++) { 1825 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE); 1826 size_t sublen = i ? PAGE_CACHE_SIZE : 1827 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE); 1828 1829 crc = btrfs_crc32c(crc, data, sublen); 1830 } 1831 btrfs_csum_final(crc, csum); 1832 if (memcmp(csum, h->csum, state->csum_size)) 1833 return 1; 1834 1835 return 0; /* is metadata */ 1836 } 1837 1838 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 1839 u64 dev_bytenr, char **mapped_datav, 1840 unsigned int num_pages, 1841 struct bio *bio, int *bio_is_patched, 1842 struct buffer_head *bh, 1843 int submit_bio_bh_rw) 1844 { 1845 int is_metadata; 1846 struct btrfsic_block *block; 1847 struct btrfsic_block_data_ctx block_ctx; 1848 int ret; 1849 struct btrfsic_state *state = dev_state->state; 1850 struct block_device *bdev = dev_state->bdev; 1851 unsigned int processed_len; 1852 1853 if (NULL != bio_is_patched) 1854 *bio_is_patched = 0; 1855 1856 again: 1857 if (num_pages == 0) 1858 return; 1859 1860 processed_len = 0; 1861 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav, 1862 num_pages)); 1863 1864 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr, 1865 &state->block_hashtable); 1866 if (NULL != block) { 1867 u64 bytenr = 0; 1868 struct list_head *elem_ref_to; 1869 struct list_head *tmp_ref_to; 1870 1871 if (block->is_superblock) { 1872 bytenr = btrfs_super_bytenr((struct btrfs_super_block *) 1873 mapped_datav[0]); 1874 if (num_pages * PAGE_CACHE_SIZE < 1875 BTRFS_SUPER_INFO_SIZE) { 1876 printk(KERN_INFO 1877 "btrfsic: cannot work with too short bios!\n"); 1878 return; 1879 } 1880 is_metadata = 1; 1881 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1)); 1882 processed_len = BTRFS_SUPER_INFO_SIZE; 1883 if (state->print_mask & 1884 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) { 1885 printk(KERN_INFO 1886 "[before new superblock is written]:\n"); 1887 btrfsic_dump_tree_sub(state, block, 0); 1888 } 1889 } 1890 if (is_metadata) { 1891 if (!block->is_superblock) { 1892 if (num_pages * PAGE_CACHE_SIZE < 1893 state->metablock_size) { 1894 printk(KERN_INFO 1895 "btrfsic: cannot work with too short bios!\n"); 1896 return; 1897 } 1898 processed_len = state->metablock_size; 1899 bytenr = btrfs_stack_header_bytenr( 1900 (struct btrfs_header *) 1901 mapped_datav[0]); 1902 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, 1903 dev_state, 1904 dev_bytenr); 1905 } 1906 if (block->logical_bytenr != bytenr && 1907 !(!block->is_metadata && 1908 block->logical_bytenr == 0)) 1909 printk(KERN_INFO 1910 "Written block @%llu (%s/%llu/%d)" 1911 " found in hash table, %c," 1912 " bytenr mismatch" 1913 " (!= stored %llu).\n", 1914 bytenr, dev_state->name, dev_bytenr, 1915 block->mirror_num, 1916 btrfsic_get_block_type(state, block), 1917 block->logical_bytenr); 1918 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1919 printk(KERN_INFO 1920 "Written block @%llu (%s/%llu/%d)" 1921 " found in hash table, %c.\n", 1922 bytenr, dev_state->name, dev_bytenr, 1923 block->mirror_num, 1924 btrfsic_get_block_type(state, block)); 1925 block->logical_bytenr = bytenr; 1926 } else { 1927 if (num_pages * PAGE_CACHE_SIZE < 1928 state->datablock_size) { 1929 printk(KERN_INFO 1930 "btrfsic: cannot work with too short bios!\n"); 1931 return; 1932 } 1933 processed_len = state->datablock_size; 1934 bytenr = block->logical_bytenr; 1935 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1936 printk(KERN_INFO 1937 "Written block @%llu (%s/%llu/%d)" 1938 " found in hash table, %c.\n", 1939 bytenr, dev_state->name, dev_bytenr, 1940 block->mirror_num, 1941 btrfsic_get_block_type(state, block)); 1942 } 1943 1944 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1945 printk(KERN_INFO 1946 "ref_to_list: %cE, ref_from_list: %cE\n", 1947 list_empty(&block->ref_to_list) ? ' ' : '!', 1948 list_empty(&block->ref_from_list) ? ' ' : '!'); 1949 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) { 1950 printk(KERN_INFO "btrfs: attempt to overwrite %c-block" 1951 " @%llu (%s/%llu/%d), old(gen=%llu," 1952 " objectid=%llu, type=%d, offset=%llu)," 1953 " new(gen=%llu)," 1954 " which is referenced by most recent superblock" 1955 " (superblockgen=%llu)!\n", 1956 btrfsic_get_block_type(state, block), bytenr, 1957 dev_state->name, dev_bytenr, block->mirror_num, 1958 block->generation, 1959 btrfs_disk_key_objectid(&block->disk_key), 1960 block->disk_key.type, 1961 btrfs_disk_key_offset(&block->disk_key), 1962 btrfs_stack_header_generation( 1963 (struct btrfs_header *) mapped_datav[0]), 1964 state->max_superblock_generation); 1965 btrfsic_dump_tree(state); 1966 } 1967 1968 if (!block->is_iodone && !block->never_written) { 1969 printk(KERN_INFO "btrfs: attempt to overwrite %c-block" 1970 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu," 1971 " which is not yet iodone!\n", 1972 btrfsic_get_block_type(state, block), bytenr, 1973 dev_state->name, dev_bytenr, block->mirror_num, 1974 block->generation, 1975 btrfs_stack_header_generation( 1976 (struct btrfs_header *) 1977 mapped_datav[0])); 1978 /* it would not be safe to go on */ 1979 btrfsic_dump_tree(state); 1980 goto continue_loop; 1981 } 1982 1983 /* 1984 * Clear all references of this block. Do not free 1985 * the block itself even if is not referenced anymore 1986 * because it still carries valueable information 1987 * like whether it was ever written and IO completed. 1988 */ 1989 list_for_each_safe(elem_ref_to, tmp_ref_to, 1990 &block->ref_to_list) { 1991 struct btrfsic_block_link *const l = 1992 list_entry(elem_ref_to, 1993 struct btrfsic_block_link, 1994 node_ref_to); 1995 1996 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1997 btrfsic_print_rem_link(state, l); 1998 l->ref_cnt--; 1999 if (0 == l->ref_cnt) { 2000 list_del(&l->node_ref_to); 2001 list_del(&l->node_ref_from); 2002 btrfsic_block_link_hashtable_remove(l); 2003 btrfsic_block_link_free(l); 2004 } 2005 } 2006 2007 if (block->is_superblock) 2008 ret = btrfsic_map_superblock(state, bytenr, 2009 processed_len, 2010 bdev, &block_ctx); 2011 else 2012 ret = btrfsic_map_block(state, bytenr, processed_len, 2013 &block_ctx, 0); 2014 if (ret) { 2015 printk(KERN_INFO 2016 "btrfsic: btrfsic_map_block(root @%llu)" 2017 " failed!\n", bytenr); 2018 goto continue_loop; 2019 } 2020 block_ctx.datav = mapped_datav; 2021 /* the following is required in case of writes to mirrors, 2022 * use the same that was used for the lookup */ 2023 block_ctx.dev = dev_state; 2024 block_ctx.dev_bytenr = dev_bytenr; 2025 2026 if (is_metadata || state->include_extent_data) { 2027 block->never_written = 0; 2028 block->iodone_w_error = 0; 2029 if (NULL != bio) { 2030 block->is_iodone = 0; 2031 BUG_ON(NULL == bio_is_patched); 2032 if (!*bio_is_patched) { 2033 block->orig_bio_bh_private = 2034 bio->bi_private; 2035 block->orig_bio_bh_end_io.bio = 2036 bio->bi_end_io; 2037 block->next_in_same_bio = NULL; 2038 bio->bi_private = block; 2039 bio->bi_end_io = btrfsic_bio_end_io; 2040 *bio_is_patched = 1; 2041 } else { 2042 struct btrfsic_block *chained_block = 2043 (struct btrfsic_block *) 2044 bio->bi_private; 2045 2046 BUG_ON(NULL == chained_block); 2047 block->orig_bio_bh_private = 2048 chained_block->orig_bio_bh_private; 2049 block->orig_bio_bh_end_io.bio = 2050 chained_block->orig_bio_bh_end_io. 2051 bio; 2052 block->next_in_same_bio = chained_block; 2053 bio->bi_private = block; 2054 } 2055 } else if (NULL != bh) { 2056 block->is_iodone = 0; 2057 block->orig_bio_bh_private = bh->b_private; 2058 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2059 block->next_in_same_bio = NULL; 2060 bh->b_private = block; 2061 bh->b_end_io = btrfsic_bh_end_io; 2062 } else { 2063 block->is_iodone = 1; 2064 block->orig_bio_bh_private = NULL; 2065 block->orig_bio_bh_end_io.bio = NULL; 2066 block->next_in_same_bio = NULL; 2067 } 2068 } 2069 2070 block->flush_gen = dev_state->last_flush_gen + 1; 2071 block->submit_bio_bh_rw = submit_bio_bh_rw; 2072 if (is_metadata) { 2073 block->logical_bytenr = bytenr; 2074 block->is_metadata = 1; 2075 if (block->is_superblock) { 2076 BUG_ON(PAGE_CACHE_SIZE != 2077 BTRFS_SUPER_INFO_SIZE); 2078 ret = btrfsic_process_written_superblock( 2079 state, 2080 block, 2081 (struct btrfs_super_block *) 2082 mapped_datav[0]); 2083 if (state->print_mask & 2084 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) { 2085 printk(KERN_INFO 2086 "[after new superblock is written]:\n"); 2087 btrfsic_dump_tree_sub(state, block, 0); 2088 } 2089 } else { 2090 block->mirror_num = 0; /* unknown */ 2091 ret = btrfsic_process_metablock( 2092 state, 2093 block, 2094 &block_ctx, 2095 0, 0); 2096 } 2097 if (ret) 2098 printk(KERN_INFO 2099 "btrfsic: btrfsic_process_metablock" 2100 "(root @%llu) failed!\n", 2101 dev_bytenr); 2102 } else { 2103 block->is_metadata = 0; 2104 block->mirror_num = 0; /* unknown */ 2105 block->generation = BTRFSIC_GENERATION_UNKNOWN; 2106 if (!state->include_extent_data 2107 && list_empty(&block->ref_from_list)) { 2108 /* 2109 * disk block is overwritten with extent 2110 * data (not meta data) and we are configured 2111 * to not include extent data: take the 2112 * chance and free the block's memory 2113 */ 2114 btrfsic_block_hashtable_remove(block); 2115 list_del(&block->all_blocks_node); 2116 btrfsic_block_free(block); 2117 } 2118 } 2119 btrfsic_release_block_ctx(&block_ctx); 2120 } else { 2121 /* block has not been found in hash table */ 2122 u64 bytenr; 2123 2124 if (!is_metadata) { 2125 processed_len = state->datablock_size; 2126 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2127 printk(KERN_INFO "Written block (%s/%llu/?)" 2128 " !found in hash table, D.\n", 2129 dev_state->name, dev_bytenr); 2130 if (!state->include_extent_data) { 2131 /* ignore that written D block */ 2132 goto continue_loop; 2133 } 2134 2135 /* this is getting ugly for the 2136 * include_extent_data case... */ 2137 bytenr = 0; /* unknown */ 2138 block_ctx.start = bytenr; 2139 block_ctx.len = processed_len; 2140 block_ctx.mem_to_free = NULL; 2141 block_ctx.pagev = NULL; 2142 } else { 2143 processed_len = state->metablock_size; 2144 bytenr = btrfs_stack_header_bytenr( 2145 (struct btrfs_header *) 2146 mapped_datav[0]); 2147 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, 2148 dev_bytenr); 2149 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2150 printk(KERN_INFO 2151 "Written block @%llu (%s/%llu/?)" 2152 " !found in hash table, M.\n", 2153 bytenr, dev_state->name, dev_bytenr); 2154 2155 ret = btrfsic_map_block(state, bytenr, processed_len, 2156 &block_ctx, 0); 2157 if (ret) { 2158 printk(KERN_INFO 2159 "btrfsic: btrfsic_map_block(root @%llu)" 2160 " failed!\n", 2161 dev_bytenr); 2162 goto continue_loop; 2163 } 2164 } 2165 block_ctx.datav = mapped_datav; 2166 /* the following is required in case of writes to mirrors, 2167 * use the same that was used for the lookup */ 2168 block_ctx.dev = dev_state; 2169 block_ctx.dev_bytenr = dev_bytenr; 2170 2171 block = btrfsic_block_alloc(); 2172 if (NULL == block) { 2173 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 2174 btrfsic_release_block_ctx(&block_ctx); 2175 goto continue_loop; 2176 } 2177 block->dev_state = dev_state; 2178 block->dev_bytenr = dev_bytenr; 2179 block->logical_bytenr = bytenr; 2180 block->is_metadata = is_metadata; 2181 block->never_written = 0; 2182 block->iodone_w_error = 0; 2183 block->mirror_num = 0; /* unknown */ 2184 block->flush_gen = dev_state->last_flush_gen + 1; 2185 block->submit_bio_bh_rw = submit_bio_bh_rw; 2186 if (NULL != bio) { 2187 block->is_iodone = 0; 2188 BUG_ON(NULL == bio_is_patched); 2189 if (!*bio_is_patched) { 2190 block->orig_bio_bh_private = bio->bi_private; 2191 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2192 block->next_in_same_bio = NULL; 2193 bio->bi_private = block; 2194 bio->bi_end_io = btrfsic_bio_end_io; 2195 *bio_is_patched = 1; 2196 } else { 2197 struct btrfsic_block *chained_block = 2198 (struct btrfsic_block *) 2199 bio->bi_private; 2200 2201 BUG_ON(NULL == chained_block); 2202 block->orig_bio_bh_private = 2203 chained_block->orig_bio_bh_private; 2204 block->orig_bio_bh_end_io.bio = 2205 chained_block->orig_bio_bh_end_io.bio; 2206 block->next_in_same_bio = chained_block; 2207 bio->bi_private = block; 2208 } 2209 } else if (NULL != bh) { 2210 block->is_iodone = 0; 2211 block->orig_bio_bh_private = bh->b_private; 2212 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2213 block->next_in_same_bio = NULL; 2214 bh->b_private = block; 2215 bh->b_end_io = btrfsic_bh_end_io; 2216 } else { 2217 block->is_iodone = 1; 2218 block->orig_bio_bh_private = NULL; 2219 block->orig_bio_bh_end_io.bio = NULL; 2220 block->next_in_same_bio = NULL; 2221 } 2222 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2223 printk(KERN_INFO 2224 "New written %c-block @%llu (%s/%llu/%d)\n", 2225 is_metadata ? 'M' : 'D', 2226 block->logical_bytenr, block->dev_state->name, 2227 block->dev_bytenr, block->mirror_num); 2228 list_add(&block->all_blocks_node, &state->all_blocks_list); 2229 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2230 2231 if (is_metadata) { 2232 ret = btrfsic_process_metablock(state, block, 2233 &block_ctx, 0, 0); 2234 if (ret) 2235 printk(KERN_INFO 2236 "btrfsic: process_metablock(root @%llu)" 2237 " failed!\n", 2238 dev_bytenr); 2239 } 2240 btrfsic_release_block_ctx(&block_ctx); 2241 } 2242 2243 continue_loop: 2244 BUG_ON(!processed_len); 2245 dev_bytenr += processed_len; 2246 mapped_datav += processed_len >> PAGE_CACHE_SHIFT; 2247 num_pages -= processed_len >> PAGE_CACHE_SHIFT; 2248 goto again; 2249 } 2250 2251 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status) 2252 { 2253 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private; 2254 int iodone_w_error; 2255 2256 /* mutex is not held! This is not save if IO is not yet completed 2257 * on umount */ 2258 iodone_w_error = 0; 2259 if (bio_error_status) 2260 iodone_w_error = 1; 2261 2262 BUG_ON(NULL == block); 2263 bp->bi_private = block->orig_bio_bh_private; 2264 bp->bi_end_io = block->orig_bio_bh_end_io.bio; 2265 2266 do { 2267 struct btrfsic_block *next_block; 2268 struct btrfsic_dev_state *const dev_state = block->dev_state; 2269 2270 if ((dev_state->state->print_mask & 2271 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2272 printk(KERN_INFO 2273 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n", 2274 bio_error_status, 2275 btrfsic_get_block_type(dev_state->state, block), 2276 block->logical_bytenr, dev_state->name, 2277 block->dev_bytenr, block->mirror_num); 2278 next_block = block->next_in_same_bio; 2279 block->iodone_w_error = iodone_w_error; 2280 if (block->submit_bio_bh_rw & REQ_FLUSH) { 2281 dev_state->last_flush_gen++; 2282 if ((dev_state->state->print_mask & 2283 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2284 printk(KERN_INFO 2285 "bio_end_io() new %s flush_gen=%llu\n", 2286 dev_state->name, 2287 dev_state->last_flush_gen); 2288 } 2289 if (block->submit_bio_bh_rw & REQ_FUA) 2290 block->flush_gen = 0; /* FUA completed means block is 2291 * on disk */ 2292 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2293 block = next_block; 2294 } while (NULL != block); 2295 2296 bp->bi_end_io(bp, bio_error_status); 2297 } 2298 2299 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate) 2300 { 2301 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private; 2302 int iodone_w_error = !uptodate; 2303 struct btrfsic_dev_state *dev_state; 2304 2305 BUG_ON(NULL == block); 2306 dev_state = block->dev_state; 2307 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2308 printk(KERN_INFO 2309 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n", 2310 iodone_w_error, 2311 btrfsic_get_block_type(dev_state->state, block), 2312 block->logical_bytenr, block->dev_state->name, 2313 block->dev_bytenr, block->mirror_num); 2314 2315 block->iodone_w_error = iodone_w_error; 2316 if (block->submit_bio_bh_rw & REQ_FLUSH) { 2317 dev_state->last_flush_gen++; 2318 if ((dev_state->state->print_mask & 2319 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2320 printk(KERN_INFO 2321 "bh_end_io() new %s flush_gen=%llu\n", 2322 dev_state->name, dev_state->last_flush_gen); 2323 } 2324 if (block->submit_bio_bh_rw & REQ_FUA) 2325 block->flush_gen = 0; /* FUA completed means block is on disk */ 2326 2327 bh->b_private = block->orig_bio_bh_private; 2328 bh->b_end_io = block->orig_bio_bh_end_io.bh; 2329 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2330 bh->b_end_io(bh, uptodate); 2331 } 2332 2333 static int btrfsic_process_written_superblock( 2334 struct btrfsic_state *state, 2335 struct btrfsic_block *const superblock, 2336 struct btrfs_super_block *const super_hdr) 2337 { 2338 int pass; 2339 2340 superblock->generation = btrfs_super_generation(super_hdr); 2341 if (!(superblock->generation > state->max_superblock_generation || 2342 0 == state->max_superblock_generation)) { 2343 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2344 printk(KERN_INFO 2345 "btrfsic: superblock @%llu (%s/%llu/%d)" 2346 " with old gen %llu <= %llu\n", 2347 superblock->logical_bytenr, 2348 superblock->dev_state->name, 2349 superblock->dev_bytenr, superblock->mirror_num, 2350 btrfs_super_generation(super_hdr), 2351 state->max_superblock_generation); 2352 } else { 2353 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2354 printk(KERN_INFO 2355 "btrfsic: got new superblock @%llu (%s/%llu/%d)" 2356 " with new gen %llu > %llu\n", 2357 superblock->logical_bytenr, 2358 superblock->dev_state->name, 2359 superblock->dev_bytenr, superblock->mirror_num, 2360 btrfs_super_generation(super_hdr), 2361 state->max_superblock_generation); 2362 2363 state->max_superblock_generation = 2364 btrfs_super_generation(super_hdr); 2365 state->latest_superblock = superblock; 2366 } 2367 2368 for (pass = 0; pass < 3; pass++) { 2369 int ret; 2370 u64 next_bytenr; 2371 struct btrfsic_block *next_block; 2372 struct btrfsic_block_data_ctx tmp_next_block_ctx; 2373 struct btrfsic_block_link *l; 2374 int num_copies; 2375 int mirror_num; 2376 const char *additional_string = NULL; 2377 struct btrfs_disk_key tmp_disk_key = {0}; 2378 2379 btrfs_set_disk_key_objectid(&tmp_disk_key, 2380 BTRFS_ROOT_ITEM_KEY); 2381 btrfs_set_disk_key_objectid(&tmp_disk_key, 0); 2382 2383 switch (pass) { 2384 case 0: 2385 btrfs_set_disk_key_objectid(&tmp_disk_key, 2386 BTRFS_ROOT_TREE_OBJECTID); 2387 additional_string = "root "; 2388 next_bytenr = btrfs_super_root(super_hdr); 2389 if (state->print_mask & 2390 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2391 printk(KERN_INFO "root@%llu\n", next_bytenr); 2392 break; 2393 case 1: 2394 btrfs_set_disk_key_objectid(&tmp_disk_key, 2395 BTRFS_CHUNK_TREE_OBJECTID); 2396 additional_string = "chunk "; 2397 next_bytenr = btrfs_super_chunk_root(super_hdr); 2398 if (state->print_mask & 2399 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2400 printk(KERN_INFO "chunk@%llu\n", next_bytenr); 2401 break; 2402 case 2: 2403 btrfs_set_disk_key_objectid(&tmp_disk_key, 2404 BTRFS_TREE_LOG_OBJECTID); 2405 additional_string = "log "; 2406 next_bytenr = btrfs_super_log_root(super_hdr); 2407 if (0 == next_bytenr) 2408 continue; 2409 if (state->print_mask & 2410 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2411 printk(KERN_INFO "log@%llu\n", next_bytenr); 2412 break; 2413 } 2414 2415 num_copies = 2416 btrfs_num_copies(state->root->fs_info, 2417 next_bytenr, BTRFS_SUPER_INFO_SIZE); 2418 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 2419 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 2420 next_bytenr, num_copies); 2421 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2422 int was_created; 2423 2424 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2425 printk(KERN_INFO 2426 "btrfsic_process_written_superblock(" 2427 "mirror_num=%d)\n", mirror_num); 2428 ret = btrfsic_map_block(state, next_bytenr, 2429 BTRFS_SUPER_INFO_SIZE, 2430 &tmp_next_block_ctx, 2431 mirror_num); 2432 if (ret) { 2433 printk(KERN_INFO 2434 "btrfsic: btrfsic_map_block(@%llu," 2435 " mirror=%d) failed!\n", 2436 next_bytenr, mirror_num); 2437 return -1; 2438 } 2439 2440 next_block = btrfsic_block_lookup_or_add( 2441 state, 2442 &tmp_next_block_ctx, 2443 additional_string, 2444 1, 0, 1, 2445 mirror_num, 2446 &was_created); 2447 if (NULL == next_block) { 2448 printk(KERN_INFO 2449 "btrfsic: error, kmalloc failed!\n"); 2450 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2451 return -1; 2452 } 2453 2454 next_block->disk_key = tmp_disk_key; 2455 if (was_created) 2456 next_block->generation = 2457 BTRFSIC_GENERATION_UNKNOWN; 2458 l = btrfsic_block_link_lookup_or_add( 2459 state, 2460 &tmp_next_block_ctx, 2461 next_block, 2462 superblock, 2463 BTRFSIC_GENERATION_UNKNOWN); 2464 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2465 if (NULL == l) 2466 return -1; 2467 } 2468 } 2469 2470 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0))) 2471 btrfsic_dump_tree(state); 2472 2473 return 0; 2474 } 2475 2476 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 2477 struct btrfsic_block *const block, 2478 int recursion_level) 2479 { 2480 struct list_head *elem_ref_to; 2481 int ret = 0; 2482 2483 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2484 /* 2485 * Note that this situation can happen and does not 2486 * indicate an error in regular cases. It happens 2487 * when disk blocks are freed and later reused. 2488 * The check-integrity module is not aware of any 2489 * block free operations, it just recognizes block 2490 * write operations. Therefore it keeps the linkage 2491 * information for a block until a block is 2492 * rewritten. This can temporarily cause incorrect 2493 * and even circular linkage informations. This 2494 * causes no harm unless such blocks are referenced 2495 * by the most recent super block. 2496 */ 2497 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2498 printk(KERN_INFO 2499 "btrfsic: abort cyclic linkage (case 1).\n"); 2500 2501 return ret; 2502 } 2503 2504 /* 2505 * This algorithm is recursive because the amount of used stack 2506 * space is very small and the max recursion depth is limited. 2507 */ 2508 list_for_each(elem_ref_to, &block->ref_to_list) { 2509 const struct btrfsic_block_link *const l = 2510 list_entry(elem_ref_to, struct btrfsic_block_link, 2511 node_ref_to); 2512 2513 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2514 printk(KERN_INFO 2515 "rl=%d, %c @%llu (%s/%llu/%d)" 2516 " %u* refers to %c @%llu (%s/%llu/%d)\n", 2517 recursion_level, 2518 btrfsic_get_block_type(state, block), 2519 block->logical_bytenr, block->dev_state->name, 2520 block->dev_bytenr, block->mirror_num, 2521 l->ref_cnt, 2522 btrfsic_get_block_type(state, l->block_ref_to), 2523 l->block_ref_to->logical_bytenr, 2524 l->block_ref_to->dev_state->name, 2525 l->block_ref_to->dev_bytenr, 2526 l->block_ref_to->mirror_num); 2527 if (l->block_ref_to->never_written) { 2528 printk(KERN_INFO "btrfs: attempt to write superblock" 2529 " which references block %c @%llu (%s/%llu/%d)" 2530 " which is never written!\n", 2531 btrfsic_get_block_type(state, l->block_ref_to), 2532 l->block_ref_to->logical_bytenr, 2533 l->block_ref_to->dev_state->name, 2534 l->block_ref_to->dev_bytenr, 2535 l->block_ref_to->mirror_num); 2536 ret = -1; 2537 } else if (!l->block_ref_to->is_iodone) { 2538 printk(KERN_INFO "btrfs: attempt to write superblock" 2539 " which references block %c @%llu (%s/%llu/%d)" 2540 " which is not yet iodone!\n", 2541 btrfsic_get_block_type(state, l->block_ref_to), 2542 l->block_ref_to->logical_bytenr, 2543 l->block_ref_to->dev_state->name, 2544 l->block_ref_to->dev_bytenr, 2545 l->block_ref_to->mirror_num); 2546 ret = -1; 2547 } else if (l->block_ref_to->iodone_w_error) { 2548 printk(KERN_INFO "btrfs: attempt to write superblock" 2549 " which references block %c @%llu (%s/%llu/%d)" 2550 " which has write error!\n", 2551 btrfsic_get_block_type(state, l->block_ref_to), 2552 l->block_ref_to->logical_bytenr, 2553 l->block_ref_to->dev_state->name, 2554 l->block_ref_to->dev_bytenr, 2555 l->block_ref_to->mirror_num); 2556 ret = -1; 2557 } else if (l->parent_generation != 2558 l->block_ref_to->generation && 2559 BTRFSIC_GENERATION_UNKNOWN != 2560 l->parent_generation && 2561 BTRFSIC_GENERATION_UNKNOWN != 2562 l->block_ref_to->generation) { 2563 printk(KERN_INFO "btrfs: attempt to write superblock" 2564 " which references block %c @%llu (%s/%llu/%d)" 2565 " with generation %llu !=" 2566 " parent generation %llu!\n", 2567 btrfsic_get_block_type(state, l->block_ref_to), 2568 l->block_ref_to->logical_bytenr, 2569 l->block_ref_to->dev_state->name, 2570 l->block_ref_to->dev_bytenr, 2571 l->block_ref_to->mirror_num, 2572 l->block_ref_to->generation, 2573 l->parent_generation); 2574 ret = -1; 2575 } else if (l->block_ref_to->flush_gen > 2576 l->block_ref_to->dev_state->last_flush_gen) { 2577 printk(KERN_INFO "btrfs: attempt to write superblock" 2578 " which references block %c @%llu (%s/%llu/%d)" 2579 " which is not flushed out of disk's write cache" 2580 " (block flush_gen=%llu," 2581 " dev->flush_gen=%llu)!\n", 2582 btrfsic_get_block_type(state, l->block_ref_to), 2583 l->block_ref_to->logical_bytenr, 2584 l->block_ref_to->dev_state->name, 2585 l->block_ref_to->dev_bytenr, 2586 l->block_ref_to->mirror_num, block->flush_gen, 2587 l->block_ref_to->dev_state->last_flush_gen); 2588 ret = -1; 2589 } else if (-1 == btrfsic_check_all_ref_blocks(state, 2590 l->block_ref_to, 2591 recursion_level + 2592 1)) { 2593 ret = -1; 2594 } 2595 } 2596 2597 return ret; 2598 } 2599 2600 static int btrfsic_is_block_ref_by_superblock( 2601 const struct btrfsic_state *state, 2602 const struct btrfsic_block *block, 2603 int recursion_level) 2604 { 2605 struct list_head *elem_ref_from; 2606 2607 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2608 /* refer to comment at "abort cyclic linkage (case 1)" */ 2609 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2610 printk(KERN_INFO 2611 "btrfsic: abort cyclic linkage (case 2).\n"); 2612 2613 return 0; 2614 } 2615 2616 /* 2617 * This algorithm is recursive because the amount of used stack space 2618 * is very small and the max recursion depth is limited. 2619 */ 2620 list_for_each(elem_ref_from, &block->ref_from_list) { 2621 const struct btrfsic_block_link *const l = 2622 list_entry(elem_ref_from, struct btrfsic_block_link, 2623 node_ref_from); 2624 2625 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2626 printk(KERN_INFO 2627 "rl=%d, %c @%llu (%s/%llu/%d)" 2628 " is ref %u* from %c @%llu (%s/%llu/%d)\n", 2629 recursion_level, 2630 btrfsic_get_block_type(state, block), 2631 block->logical_bytenr, block->dev_state->name, 2632 block->dev_bytenr, block->mirror_num, 2633 l->ref_cnt, 2634 btrfsic_get_block_type(state, l->block_ref_from), 2635 l->block_ref_from->logical_bytenr, 2636 l->block_ref_from->dev_state->name, 2637 l->block_ref_from->dev_bytenr, 2638 l->block_ref_from->mirror_num); 2639 if (l->block_ref_from->is_superblock && 2640 state->latest_superblock->dev_bytenr == 2641 l->block_ref_from->dev_bytenr && 2642 state->latest_superblock->dev_state->bdev == 2643 l->block_ref_from->dev_state->bdev) 2644 return 1; 2645 else if (btrfsic_is_block_ref_by_superblock(state, 2646 l->block_ref_from, 2647 recursion_level + 2648 1)) 2649 return 1; 2650 } 2651 2652 return 0; 2653 } 2654 2655 static void btrfsic_print_add_link(const struct btrfsic_state *state, 2656 const struct btrfsic_block_link *l) 2657 { 2658 printk(KERN_INFO 2659 "Add %u* link from %c @%llu (%s/%llu/%d)" 2660 " to %c @%llu (%s/%llu/%d).\n", 2661 l->ref_cnt, 2662 btrfsic_get_block_type(state, l->block_ref_from), 2663 l->block_ref_from->logical_bytenr, 2664 l->block_ref_from->dev_state->name, 2665 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2666 btrfsic_get_block_type(state, l->block_ref_to), 2667 l->block_ref_to->logical_bytenr, 2668 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2669 l->block_ref_to->mirror_num); 2670 } 2671 2672 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 2673 const struct btrfsic_block_link *l) 2674 { 2675 printk(KERN_INFO 2676 "Rem %u* link from %c @%llu (%s/%llu/%d)" 2677 " to %c @%llu (%s/%llu/%d).\n", 2678 l->ref_cnt, 2679 btrfsic_get_block_type(state, l->block_ref_from), 2680 l->block_ref_from->logical_bytenr, 2681 l->block_ref_from->dev_state->name, 2682 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2683 btrfsic_get_block_type(state, l->block_ref_to), 2684 l->block_ref_to->logical_bytenr, 2685 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2686 l->block_ref_to->mirror_num); 2687 } 2688 2689 static char btrfsic_get_block_type(const struct btrfsic_state *state, 2690 const struct btrfsic_block *block) 2691 { 2692 if (block->is_superblock && 2693 state->latest_superblock->dev_bytenr == block->dev_bytenr && 2694 state->latest_superblock->dev_state->bdev == block->dev_state->bdev) 2695 return 'S'; 2696 else if (block->is_superblock) 2697 return 's'; 2698 else if (block->is_metadata) 2699 return 'M'; 2700 else 2701 return 'D'; 2702 } 2703 2704 static void btrfsic_dump_tree(const struct btrfsic_state *state) 2705 { 2706 btrfsic_dump_tree_sub(state, state->latest_superblock, 0); 2707 } 2708 2709 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 2710 const struct btrfsic_block *block, 2711 int indent_level) 2712 { 2713 struct list_head *elem_ref_to; 2714 int indent_add; 2715 static char buf[80]; 2716 int cursor_position; 2717 2718 /* 2719 * Should better fill an on-stack buffer with a complete line and 2720 * dump it at once when it is time to print a newline character. 2721 */ 2722 2723 /* 2724 * This algorithm is recursive because the amount of used stack space 2725 * is very small and the max recursion depth is limited. 2726 */ 2727 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)", 2728 btrfsic_get_block_type(state, block), 2729 block->logical_bytenr, block->dev_state->name, 2730 block->dev_bytenr, block->mirror_num); 2731 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2732 printk("[...]\n"); 2733 return; 2734 } 2735 printk(buf); 2736 indent_level += indent_add; 2737 if (list_empty(&block->ref_to_list)) { 2738 printk("\n"); 2739 return; 2740 } 2741 if (block->mirror_num > 1 && 2742 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) { 2743 printk(" [...]\n"); 2744 return; 2745 } 2746 2747 cursor_position = indent_level; 2748 list_for_each(elem_ref_to, &block->ref_to_list) { 2749 const struct btrfsic_block_link *const l = 2750 list_entry(elem_ref_to, struct btrfsic_block_link, 2751 node_ref_to); 2752 2753 while (cursor_position < indent_level) { 2754 printk(" "); 2755 cursor_position++; 2756 } 2757 if (l->ref_cnt > 1) 2758 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt); 2759 else 2760 indent_add = sprintf(buf, " --> "); 2761 if (indent_level + indent_add > 2762 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2763 printk("[...]\n"); 2764 cursor_position = 0; 2765 continue; 2766 } 2767 2768 printk(buf); 2769 2770 btrfsic_dump_tree_sub(state, l->block_ref_to, 2771 indent_level + indent_add); 2772 cursor_position = 0; 2773 } 2774 } 2775 2776 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 2777 struct btrfsic_state *state, 2778 struct btrfsic_block_data_ctx *next_block_ctx, 2779 struct btrfsic_block *next_block, 2780 struct btrfsic_block *from_block, 2781 u64 parent_generation) 2782 { 2783 struct btrfsic_block_link *l; 2784 2785 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev, 2786 next_block_ctx->dev_bytenr, 2787 from_block->dev_state->bdev, 2788 from_block->dev_bytenr, 2789 &state->block_link_hashtable); 2790 if (NULL == l) { 2791 l = btrfsic_block_link_alloc(); 2792 if (NULL == l) { 2793 printk(KERN_INFO 2794 "btrfsic: error, kmalloc" " failed!\n"); 2795 return NULL; 2796 } 2797 2798 l->block_ref_to = next_block; 2799 l->block_ref_from = from_block; 2800 l->ref_cnt = 1; 2801 l->parent_generation = parent_generation; 2802 2803 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2804 btrfsic_print_add_link(state, l); 2805 2806 list_add(&l->node_ref_to, &from_block->ref_to_list); 2807 list_add(&l->node_ref_from, &next_block->ref_from_list); 2808 2809 btrfsic_block_link_hashtable_add(l, 2810 &state->block_link_hashtable); 2811 } else { 2812 l->ref_cnt++; 2813 l->parent_generation = parent_generation; 2814 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2815 btrfsic_print_add_link(state, l); 2816 } 2817 2818 return l; 2819 } 2820 2821 static struct btrfsic_block *btrfsic_block_lookup_or_add( 2822 struct btrfsic_state *state, 2823 struct btrfsic_block_data_ctx *block_ctx, 2824 const char *additional_string, 2825 int is_metadata, 2826 int is_iodone, 2827 int never_written, 2828 int mirror_num, 2829 int *was_created) 2830 { 2831 struct btrfsic_block *block; 2832 2833 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev, 2834 block_ctx->dev_bytenr, 2835 &state->block_hashtable); 2836 if (NULL == block) { 2837 struct btrfsic_dev_state *dev_state; 2838 2839 block = btrfsic_block_alloc(); 2840 if (NULL == block) { 2841 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 2842 return NULL; 2843 } 2844 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev); 2845 if (NULL == dev_state) { 2846 printk(KERN_INFO 2847 "btrfsic: error, lookup dev_state failed!\n"); 2848 btrfsic_block_free(block); 2849 return NULL; 2850 } 2851 block->dev_state = dev_state; 2852 block->dev_bytenr = block_ctx->dev_bytenr; 2853 block->logical_bytenr = block_ctx->start; 2854 block->is_metadata = is_metadata; 2855 block->is_iodone = is_iodone; 2856 block->never_written = never_written; 2857 block->mirror_num = mirror_num; 2858 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2859 printk(KERN_INFO 2860 "New %s%c-block @%llu (%s/%llu/%d)\n", 2861 additional_string, 2862 btrfsic_get_block_type(state, block), 2863 block->logical_bytenr, dev_state->name, 2864 block->dev_bytenr, mirror_num); 2865 list_add(&block->all_blocks_node, &state->all_blocks_list); 2866 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2867 if (NULL != was_created) 2868 *was_created = 1; 2869 } else { 2870 if (NULL != was_created) 2871 *was_created = 0; 2872 } 2873 2874 return block; 2875 } 2876 2877 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 2878 u64 bytenr, 2879 struct btrfsic_dev_state *dev_state, 2880 u64 dev_bytenr) 2881 { 2882 int num_copies; 2883 int mirror_num; 2884 int ret; 2885 struct btrfsic_block_data_ctx block_ctx; 2886 int match = 0; 2887 2888 num_copies = btrfs_num_copies(state->root->fs_info, 2889 bytenr, state->metablock_size); 2890 2891 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2892 ret = btrfsic_map_block(state, bytenr, state->metablock_size, 2893 &block_ctx, mirror_num); 2894 if (ret) { 2895 printk(KERN_INFO "btrfsic:" 2896 " btrfsic_map_block(logical @%llu," 2897 " mirror %d) failed!\n", 2898 bytenr, mirror_num); 2899 continue; 2900 } 2901 2902 if (dev_state->bdev == block_ctx.dev->bdev && 2903 dev_bytenr == block_ctx.dev_bytenr) { 2904 match++; 2905 btrfsic_release_block_ctx(&block_ctx); 2906 break; 2907 } 2908 btrfsic_release_block_ctx(&block_ctx); 2909 } 2910 2911 if (WARN_ON(!match)) { 2912 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio," 2913 " buffer->log_bytenr=%llu, submit_bio(bdev=%s," 2914 " phys_bytenr=%llu)!\n", 2915 bytenr, dev_state->name, dev_bytenr); 2916 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2917 ret = btrfsic_map_block(state, bytenr, 2918 state->metablock_size, 2919 &block_ctx, mirror_num); 2920 if (ret) 2921 continue; 2922 2923 printk(KERN_INFO "Read logical bytenr @%llu maps to" 2924 " (%s/%llu/%d)\n", 2925 bytenr, block_ctx.dev->name, 2926 block_ctx.dev_bytenr, mirror_num); 2927 } 2928 } 2929 } 2930 2931 static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 2932 struct block_device *bdev) 2933 { 2934 struct btrfsic_dev_state *ds; 2935 2936 ds = btrfsic_dev_state_hashtable_lookup(bdev, 2937 &btrfsic_dev_state_hashtable); 2938 return ds; 2939 } 2940 2941 int btrfsic_submit_bh(int rw, struct buffer_head *bh) 2942 { 2943 struct btrfsic_dev_state *dev_state; 2944 2945 if (!btrfsic_is_initialized) 2946 return submit_bh(rw, bh); 2947 2948 mutex_lock(&btrfsic_mutex); 2949 /* since btrfsic_submit_bh() might also be called before 2950 * btrfsic_mount(), this might return NULL */ 2951 dev_state = btrfsic_dev_state_lookup(bh->b_bdev); 2952 2953 /* Only called to write the superblock (incl. FLUSH/FUA) */ 2954 if (NULL != dev_state && 2955 (rw & WRITE) && bh->b_size > 0) { 2956 u64 dev_bytenr; 2957 2958 dev_bytenr = 4096 * bh->b_blocknr; 2959 if (dev_state->state->print_mask & 2960 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2961 printk(KERN_INFO 2962 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu)," 2963 " size=%zu, data=%p, bdev=%p)\n", 2964 rw, (unsigned long long)bh->b_blocknr, 2965 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev); 2966 btrfsic_process_written_block(dev_state, dev_bytenr, 2967 &bh->b_data, 1, NULL, 2968 NULL, bh, rw); 2969 } else if (NULL != dev_state && (rw & REQ_FLUSH)) { 2970 if (dev_state->state->print_mask & 2971 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2972 printk(KERN_INFO 2973 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n", 2974 rw, bh->b_bdev); 2975 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2976 if ((dev_state->state->print_mask & 2977 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2978 BTRFSIC_PRINT_MASK_VERBOSE))) 2979 printk(KERN_INFO 2980 "btrfsic_submit_bh(%s) with FLUSH" 2981 " but dummy block already in use" 2982 " (ignored)!\n", 2983 dev_state->name); 2984 } else { 2985 struct btrfsic_block *const block = 2986 &dev_state->dummy_block_for_bio_bh_flush; 2987 2988 block->is_iodone = 0; 2989 block->never_written = 0; 2990 block->iodone_w_error = 0; 2991 block->flush_gen = dev_state->last_flush_gen + 1; 2992 block->submit_bio_bh_rw = rw; 2993 block->orig_bio_bh_private = bh->b_private; 2994 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2995 block->next_in_same_bio = NULL; 2996 bh->b_private = block; 2997 bh->b_end_io = btrfsic_bh_end_io; 2998 } 2999 } 3000 mutex_unlock(&btrfsic_mutex); 3001 return submit_bh(rw, bh); 3002 } 3003 3004 static void __btrfsic_submit_bio(int rw, struct bio *bio) 3005 { 3006 struct btrfsic_dev_state *dev_state; 3007 3008 if (!btrfsic_is_initialized) 3009 return; 3010 3011 mutex_lock(&btrfsic_mutex); 3012 /* since btrfsic_submit_bio() is also called before 3013 * btrfsic_mount(), this might return NULL */ 3014 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev); 3015 if (NULL != dev_state && 3016 (rw & WRITE) && NULL != bio->bi_io_vec) { 3017 unsigned int i; 3018 u64 dev_bytenr; 3019 u64 cur_bytenr; 3020 int bio_is_patched; 3021 char **mapped_datav; 3022 3023 dev_bytenr = 512 * bio->bi_iter.bi_sector; 3024 bio_is_patched = 0; 3025 if (dev_state->state->print_mask & 3026 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 3027 printk(KERN_INFO 3028 "submit_bio(rw=0x%x, bi_vcnt=%u," 3029 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n", 3030 rw, bio->bi_vcnt, 3031 (unsigned long long)bio->bi_iter.bi_sector, 3032 dev_bytenr, bio->bi_bdev); 3033 3034 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt, 3035 GFP_NOFS); 3036 if (!mapped_datav) 3037 goto leave; 3038 cur_bytenr = dev_bytenr; 3039 for (i = 0; i < bio->bi_vcnt; i++) { 3040 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE); 3041 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page); 3042 if (!mapped_datav[i]) { 3043 while (i > 0) { 3044 i--; 3045 kunmap(bio->bi_io_vec[i].bv_page); 3046 } 3047 kfree(mapped_datav); 3048 goto leave; 3049 } 3050 if (dev_state->state->print_mask & 3051 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE) 3052 printk(KERN_INFO 3053 "#%u: bytenr=%llu, len=%u, offset=%u\n", 3054 i, cur_bytenr, bio->bi_io_vec[i].bv_len, 3055 bio->bi_io_vec[i].bv_offset); 3056 cur_bytenr += bio->bi_io_vec[i].bv_len; 3057 } 3058 btrfsic_process_written_block(dev_state, dev_bytenr, 3059 mapped_datav, bio->bi_vcnt, 3060 bio, &bio_is_patched, 3061 NULL, rw); 3062 while (i > 0) { 3063 i--; 3064 kunmap(bio->bi_io_vec[i].bv_page); 3065 } 3066 kfree(mapped_datav); 3067 } else if (NULL != dev_state && (rw & REQ_FLUSH)) { 3068 if (dev_state->state->print_mask & 3069 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 3070 printk(KERN_INFO 3071 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n", 3072 rw, bio->bi_bdev); 3073 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 3074 if ((dev_state->state->print_mask & 3075 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 3076 BTRFSIC_PRINT_MASK_VERBOSE))) 3077 printk(KERN_INFO 3078 "btrfsic_submit_bio(%s) with FLUSH" 3079 " but dummy block already in use" 3080 " (ignored)!\n", 3081 dev_state->name); 3082 } else { 3083 struct btrfsic_block *const block = 3084 &dev_state->dummy_block_for_bio_bh_flush; 3085 3086 block->is_iodone = 0; 3087 block->never_written = 0; 3088 block->iodone_w_error = 0; 3089 block->flush_gen = dev_state->last_flush_gen + 1; 3090 block->submit_bio_bh_rw = rw; 3091 block->orig_bio_bh_private = bio->bi_private; 3092 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 3093 block->next_in_same_bio = NULL; 3094 bio->bi_private = block; 3095 bio->bi_end_io = btrfsic_bio_end_io; 3096 } 3097 } 3098 leave: 3099 mutex_unlock(&btrfsic_mutex); 3100 } 3101 3102 void btrfsic_submit_bio(int rw, struct bio *bio) 3103 { 3104 __btrfsic_submit_bio(rw, bio); 3105 submit_bio(rw, bio); 3106 } 3107 3108 int btrfsic_submit_bio_wait(int rw, struct bio *bio) 3109 { 3110 __btrfsic_submit_bio(rw, bio); 3111 return submit_bio_wait(rw, bio); 3112 } 3113 3114 int btrfsic_mount(struct btrfs_root *root, 3115 struct btrfs_fs_devices *fs_devices, 3116 int including_extent_data, u32 print_mask) 3117 { 3118 int ret; 3119 struct btrfsic_state *state; 3120 struct list_head *dev_head = &fs_devices->devices; 3121 struct btrfs_device *device; 3122 3123 if (root->nodesize != root->leafsize) { 3124 printk(KERN_INFO 3125 "btrfsic: cannot handle nodesize %d != leafsize %d!\n", 3126 root->nodesize, root->leafsize); 3127 return -1; 3128 } 3129 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) { 3130 printk(KERN_INFO 3131 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3132 root->nodesize, PAGE_CACHE_SIZE); 3133 return -1; 3134 } 3135 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) { 3136 printk(KERN_INFO 3137 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3138 root->leafsize, PAGE_CACHE_SIZE); 3139 return -1; 3140 } 3141 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) { 3142 printk(KERN_INFO 3143 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3144 root->sectorsize, PAGE_CACHE_SIZE); 3145 return -1; 3146 } 3147 state = kzalloc(sizeof(*state), GFP_NOFS); 3148 if (NULL == state) { 3149 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n"); 3150 return -1; 3151 } 3152 3153 if (!btrfsic_is_initialized) { 3154 mutex_init(&btrfsic_mutex); 3155 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable); 3156 btrfsic_is_initialized = 1; 3157 } 3158 mutex_lock(&btrfsic_mutex); 3159 state->root = root; 3160 state->print_mask = print_mask; 3161 state->include_extent_data = including_extent_data; 3162 state->csum_size = 0; 3163 state->metablock_size = root->nodesize; 3164 state->datablock_size = root->sectorsize; 3165 INIT_LIST_HEAD(&state->all_blocks_list); 3166 btrfsic_block_hashtable_init(&state->block_hashtable); 3167 btrfsic_block_link_hashtable_init(&state->block_link_hashtable); 3168 state->max_superblock_generation = 0; 3169 state->latest_superblock = NULL; 3170 3171 list_for_each_entry(device, dev_head, dev_list) { 3172 struct btrfsic_dev_state *ds; 3173 char *p; 3174 3175 if (!device->bdev || !device->name) 3176 continue; 3177 3178 ds = btrfsic_dev_state_alloc(); 3179 if (NULL == ds) { 3180 printk(KERN_INFO 3181 "btrfs check-integrity: kmalloc() failed!\n"); 3182 mutex_unlock(&btrfsic_mutex); 3183 return -1; 3184 } 3185 ds->bdev = device->bdev; 3186 ds->state = state; 3187 bdevname(ds->bdev, ds->name); 3188 ds->name[BDEVNAME_SIZE - 1] = '\0'; 3189 for (p = ds->name; *p != '\0'; p++); 3190 while (p > ds->name && *p != '/') 3191 p--; 3192 if (*p == '/') 3193 p++; 3194 strlcpy(ds->name, p, sizeof(ds->name)); 3195 btrfsic_dev_state_hashtable_add(ds, 3196 &btrfsic_dev_state_hashtable); 3197 } 3198 3199 ret = btrfsic_process_superblock(state, fs_devices); 3200 if (0 != ret) { 3201 mutex_unlock(&btrfsic_mutex); 3202 btrfsic_unmount(root, fs_devices); 3203 return ret; 3204 } 3205 3206 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE) 3207 btrfsic_dump_database(state); 3208 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE) 3209 btrfsic_dump_tree(state); 3210 3211 mutex_unlock(&btrfsic_mutex); 3212 return 0; 3213 } 3214 3215 void btrfsic_unmount(struct btrfs_root *root, 3216 struct btrfs_fs_devices *fs_devices) 3217 { 3218 struct list_head *elem_all; 3219 struct list_head *tmp_all; 3220 struct btrfsic_state *state; 3221 struct list_head *dev_head = &fs_devices->devices; 3222 struct btrfs_device *device; 3223 3224 if (!btrfsic_is_initialized) 3225 return; 3226 3227 mutex_lock(&btrfsic_mutex); 3228 3229 state = NULL; 3230 list_for_each_entry(device, dev_head, dev_list) { 3231 struct btrfsic_dev_state *ds; 3232 3233 if (!device->bdev || !device->name) 3234 continue; 3235 3236 ds = btrfsic_dev_state_hashtable_lookup( 3237 device->bdev, 3238 &btrfsic_dev_state_hashtable); 3239 if (NULL != ds) { 3240 state = ds->state; 3241 btrfsic_dev_state_hashtable_remove(ds); 3242 btrfsic_dev_state_free(ds); 3243 } 3244 } 3245 3246 if (NULL == state) { 3247 printk(KERN_INFO 3248 "btrfsic: error, cannot find state information" 3249 " on umount!\n"); 3250 mutex_unlock(&btrfsic_mutex); 3251 return; 3252 } 3253 3254 /* 3255 * Don't care about keeping the lists' state up to date, 3256 * just free all memory that was allocated dynamically. 3257 * Free the blocks and the block_links. 3258 */ 3259 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) { 3260 struct btrfsic_block *const b_all = 3261 list_entry(elem_all, struct btrfsic_block, 3262 all_blocks_node); 3263 struct list_head *elem_ref_to; 3264 struct list_head *tmp_ref_to; 3265 3266 list_for_each_safe(elem_ref_to, tmp_ref_to, 3267 &b_all->ref_to_list) { 3268 struct btrfsic_block_link *const l = 3269 list_entry(elem_ref_to, 3270 struct btrfsic_block_link, 3271 node_ref_to); 3272 3273 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 3274 btrfsic_print_rem_link(state, l); 3275 3276 l->ref_cnt--; 3277 if (0 == l->ref_cnt) 3278 btrfsic_block_link_free(l); 3279 } 3280 3281 if (b_all->is_iodone || b_all->never_written) 3282 btrfsic_block_free(b_all); 3283 else 3284 printk(KERN_INFO "btrfs: attempt to free %c-block" 3285 " @%llu (%s/%llu/%d) on umount which is" 3286 " not yet iodone!\n", 3287 btrfsic_get_block_type(state, b_all), 3288 b_all->logical_bytenr, b_all->dev_state->name, 3289 b_all->dev_bytenr, b_all->mirror_num); 3290 } 3291 3292 mutex_unlock(&btrfsic_mutex); 3293 3294 kfree(state); 3295 } 3296