xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision d2999e1b)
1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and no write error was indicated and a
41  *        FLUSH request to the device where these blocks are
42  *        located was received and completed.
43  *    2b. All referenced blocks need to have a generation
44  *        number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  *
81  * Expect millions of lines of information in the kernel log with an
82  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83  * kernel config to at least 26 (which is 64MB). Usually the value is
84  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85  * changed like this before LOG_BUF_SHIFT can be set to a high value:
86  * config LOG_BUF_SHIFT
87  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88  *       range 12 30
89  */
90 
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include "ctree.h"
98 #include "disk-io.h"
99 #include "hash.h"
100 #include "transaction.h"
101 #include "extent_io.h"
102 #include "volumes.h"
103 #include "print-tree.h"
104 #include "locking.h"
105 #include "check-integrity.h"
106 #include "rcu-string.h"
107 
108 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
116 							 * excluding " [...]" */
117 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118 
119 /*
120  * The definition of the bitmask fields for the print_mask.
121  * They are specified with the mount option check_integrity_print_mask.
122  */
123 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
124 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
125 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
126 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
127 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
128 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
129 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
130 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
131 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
132 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
133 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
134 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
135 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
136 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
137 
138 struct btrfsic_dev_state;
139 struct btrfsic_state;
140 
141 struct btrfsic_block {
142 	u32 magic_num;		/* only used for debug purposes */
143 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
144 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
145 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
146 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
147 	unsigned int never_written:1;	/* block was added because it was
148 					 * referenced, not because it was
149 					 * written */
150 	unsigned int mirror_num;	/* large enough to hold
151 					 * BTRFS_SUPER_MIRROR_MAX */
152 	struct btrfsic_dev_state *dev_state;
153 	u64 dev_bytenr;		/* key, physical byte num on disk */
154 	u64 logical_bytenr;	/* logical byte num on disk */
155 	u64 generation;
156 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
157 					 * issues, will not always be correct */
158 	struct list_head collision_resolving_node;	/* list node */
159 	struct list_head all_blocks_node;	/* list node */
160 
161 	/* the following two lists contain block_link items */
162 	struct list_head ref_to_list;	/* list */
163 	struct list_head ref_from_list;	/* list */
164 	struct btrfsic_block *next_in_same_bio;
165 	void *orig_bio_bh_private;
166 	union {
167 		bio_end_io_t *bio;
168 		bh_end_io_t *bh;
169 	} orig_bio_bh_end_io;
170 	int submit_bio_bh_rw;
171 	u64 flush_gen; /* only valid if !never_written */
172 };
173 
174 /*
175  * Elements of this type are allocated dynamically and required because
176  * each block object can refer to and can be ref from multiple blocks.
177  * The key to lookup them in the hashtable is the dev_bytenr of
178  * the block ref to plus the one from the block refered from.
179  * The fact that they are searchable via a hashtable and that a
180  * ref_cnt is maintained is not required for the btrfs integrity
181  * check algorithm itself, it is only used to make the output more
182  * beautiful in case that an error is detected (an error is defined
183  * as a write operation to a block while that block is still referenced).
184  */
185 struct btrfsic_block_link {
186 	u32 magic_num;		/* only used for debug purposes */
187 	u32 ref_cnt;
188 	struct list_head node_ref_to;	/* list node */
189 	struct list_head node_ref_from;	/* list node */
190 	struct list_head collision_resolving_node;	/* list node */
191 	struct btrfsic_block *block_ref_to;
192 	struct btrfsic_block *block_ref_from;
193 	u64 parent_generation;
194 };
195 
196 struct btrfsic_dev_state {
197 	u32 magic_num;		/* only used for debug purposes */
198 	struct block_device *bdev;
199 	struct btrfsic_state *state;
200 	struct list_head collision_resolving_node;	/* list node */
201 	struct btrfsic_block dummy_block_for_bio_bh_flush;
202 	u64 last_flush_gen;
203 	char name[BDEVNAME_SIZE];
204 };
205 
206 struct btrfsic_block_hashtable {
207 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208 };
209 
210 struct btrfsic_block_link_hashtable {
211 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212 };
213 
214 struct btrfsic_dev_state_hashtable {
215 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216 };
217 
218 struct btrfsic_block_data_ctx {
219 	u64 start;		/* virtual bytenr */
220 	u64 dev_bytenr;		/* physical bytenr on device */
221 	u32 len;
222 	struct btrfsic_dev_state *dev;
223 	char **datav;
224 	struct page **pagev;
225 	void *mem_to_free;
226 };
227 
228 /* This structure is used to implement recursion without occupying
229  * any stack space, refer to btrfsic_process_metablock() */
230 struct btrfsic_stack_frame {
231 	u32 magic;
232 	u32 nr;
233 	int error;
234 	int i;
235 	int limit_nesting;
236 	int num_copies;
237 	int mirror_num;
238 	struct btrfsic_block *block;
239 	struct btrfsic_block_data_ctx *block_ctx;
240 	struct btrfsic_block *next_block;
241 	struct btrfsic_block_data_ctx next_block_ctx;
242 	struct btrfs_header *hdr;
243 	struct btrfsic_stack_frame *prev;
244 };
245 
246 /* Some state per mounted filesystem */
247 struct btrfsic_state {
248 	u32 print_mask;
249 	int include_extent_data;
250 	int csum_size;
251 	struct list_head all_blocks_list;
252 	struct btrfsic_block_hashtable block_hashtable;
253 	struct btrfsic_block_link_hashtable block_link_hashtable;
254 	struct btrfs_root *root;
255 	u64 max_superblock_generation;
256 	struct btrfsic_block *latest_superblock;
257 	u32 metablock_size;
258 	u32 datablock_size;
259 };
260 
261 static void btrfsic_block_init(struct btrfsic_block *b);
262 static struct btrfsic_block *btrfsic_block_alloc(void);
263 static void btrfsic_block_free(struct btrfsic_block *b);
264 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 					struct btrfsic_block_hashtable *h);
273 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 		struct block_device *bdev,
276 		u64 dev_bytenr,
277 		struct btrfsic_block_hashtable *h);
278 static void btrfsic_block_link_hashtable_init(
279 		struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_block_link_hashtable_add(
281 		struct btrfsic_block_link *l,
282 		struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 		struct block_device *bdev_ref_to,
286 		u64 dev_bytenr_ref_to,
287 		struct block_device *bdev_ref_from,
288 		u64 dev_bytenr_ref_from,
289 		struct btrfsic_block_link_hashtable *h);
290 static void btrfsic_dev_state_hashtable_init(
291 		struct btrfsic_dev_state_hashtable *h);
292 static void btrfsic_dev_state_hashtable_add(
293 		struct btrfsic_dev_state *ds,
294 		struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 		struct block_device *bdev,
298 		struct btrfsic_dev_state_hashtable *h);
299 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301 static int btrfsic_process_superblock(struct btrfsic_state *state,
302 				      struct btrfs_fs_devices *fs_devices);
303 static int btrfsic_process_metablock(struct btrfsic_state *state,
304 				     struct btrfsic_block *block,
305 				     struct btrfsic_block_data_ctx *block_ctx,
306 				     int limit_nesting, int force_iodone_flag);
307 static void btrfsic_read_from_block_data(
308 	struct btrfsic_block_data_ctx *block_ctx,
309 	void *dst, u32 offset, size_t len);
310 static int btrfsic_create_link_to_next_block(
311 		struct btrfsic_state *state,
312 		struct btrfsic_block *block,
313 		struct btrfsic_block_data_ctx
314 		*block_ctx, u64 next_bytenr,
315 		int limit_nesting,
316 		struct btrfsic_block_data_ctx *next_block_ctx,
317 		struct btrfsic_block **next_blockp,
318 		int force_iodone_flag,
319 		int *num_copiesp, int *mirror_nump,
320 		struct btrfs_disk_key *disk_key,
321 		u64 parent_generation);
322 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 				      struct btrfsic_block *block,
324 				      struct btrfsic_block_data_ctx *block_ctx,
325 				      u32 item_offset, int force_iodone_flag);
326 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 			     struct btrfsic_block_data_ctx *block_ctx_out,
328 			     int mirror_num);
329 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 				  u32 len, struct block_device *bdev,
331 				  struct btrfsic_block_data_ctx *block_ctx_out);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 			      struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 				     char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 					  u64 dev_bytenr, char **mapped_datav,
340 					  unsigned int num_pages,
341 					  struct bio *bio, int *bio_is_patched,
342 					  struct buffer_head *bh,
343 					  int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345 		struct btrfsic_state *state,
346 		struct btrfsic_block *const block,
347 		struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 					      const struct btrfsic_block *block,
352 					      int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 					struct btrfsic_block *const block,
355 					int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 				   const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 				   const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 				   const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 				  const struct btrfsic_block *block,
365 				  int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 		struct btrfsic_state *state,
368 		struct btrfsic_block_data_ctx *next_block_ctx,
369 		struct btrfsic_block *next_block,
370 		struct btrfsic_block *from_block,
371 		u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 		struct btrfsic_state *state,
374 		struct btrfsic_block_data_ctx *block_ctx,
375 		const char *additional_string,
376 		int is_metadata,
377 		int is_iodone,
378 		int never_written,
379 		int mirror_num,
380 		int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382 		struct btrfsic_state *state,
383 		struct btrfsic_dev_state *dev_state,
384 		struct btrfs_device *device,
385 		int superblock_mirror_num,
386 		struct btrfsic_dev_state **selected_dev_state,
387 		struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 		struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 					   u64 bytenr,
392 					   struct btrfsic_dev_state *dev_state,
393 					   u64 dev_bytenr);
394 
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398 
399 
400 static void btrfsic_block_init(struct btrfsic_block *b)
401 {
402 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 	b->dev_state = NULL;
404 	b->dev_bytenr = 0;
405 	b->logical_bytenr = 0;
406 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 	b->disk_key.objectid = 0;
408 	b->disk_key.type = 0;
409 	b->disk_key.offset = 0;
410 	b->is_metadata = 0;
411 	b->is_superblock = 0;
412 	b->is_iodone = 0;
413 	b->iodone_w_error = 0;
414 	b->never_written = 0;
415 	b->mirror_num = 0;
416 	b->next_in_same_bio = NULL;
417 	b->orig_bio_bh_private = NULL;
418 	b->orig_bio_bh_end_io.bio = NULL;
419 	INIT_LIST_HEAD(&b->collision_resolving_node);
420 	INIT_LIST_HEAD(&b->all_blocks_node);
421 	INIT_LIST_HEAD(&b->ref_to_list);
422 	INIT_LIST_HEAD(&b->ref_from_list);
423 	b->submit_bio_bh_rw = 0;
424 	b->flush_gen = 0;
425 }
426 
427 static struct btrfsic_block *btrfsic_block_alloc(void)
428 {
429 	struct btrfsic_block *b;
430 
431 	b = kzalloc(sizeof(*b), GFP_NOFS);
432 	if (NULL != b)
433 		btrfsic_block_init(b);
434 
435 	return b;
436 }
437 
438 static void btrfsic_block_free(struct btrfsic_block *b)
439 {
440 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 	kfree(b);
442 }
443 
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445 {
446 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 	l->ref_cnt = 1;
448 	INIT_LIST_HEAD(&l->node_ref_to);
449 	INIT_LIST_HEAD(&l->node_ref_from);
450 	INIT_LIST_HEAD(&l->collision_resolving_node);
451 	l->block_ref_to = NULL;
452 	l->block_ref_from = NULL;
453 }
454 
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456 {
457 	struct btrfsic_block_link *l;
458 
459 	l = kzalloc(sizeof(*l), GFP_NOFS);
460 	if (NULL != l)
461 		btrfsic_block_link_init(l);
462 
463 	return l;
464 }
465 
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467 {
468 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 	kfree(l);
470 }
471 
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473 {
474 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 	ds->bdev = NULL;
476 	ds->state = NULL;
477 	ds->name[0] = '\0';
478 	INIT_LIST_HEAD(&ds->collision_resolving_node);
479 	ds->last_flush_gen = 0;
480 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483 }
484 
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486 {
487 	struct btrfsic_dev_state *ds;
488 
489 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 	if (NULL != ds)
491 		btrfsic_dev_state_init(ds);
492 
493 	return ds;
494 }
495 
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497 {
498 	BUG_ON(!(NULL == ds ||
499 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 	kfree(ds);
501 }
502 
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504 {
505 	int i;
506 
507 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 		INIT_LIST_HEAD(h->table + i);
509 }
510 
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 					struct btrfsic_block_hashtable *h)
513 {
514 	const unsigned int hashval =
515 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
516 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518 
519 	list_add(&b->collision_resolving_node, h->table + hashval);
520 }
521 
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523 {
524 	list_del(&b->collision_resolving_node);
525 }
526 
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 		struct block_device *bdev,
529 		u64 dev_bytenr,
530 		struct btrfsic_block_hashtable *h)
531 {
532 	const unsigned int hashval =
533 	    (((unsigned int)(dev_bytenr >> 16)) ^
534 	     ((unsigned int)((uintptr_t)bdev))) &
535 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 	struct list_head *elem;
537 
538 	list_for_each(elem, h->table + hashval) {
539 		struct btrfsic_block *const b =
540 		    list_entry(elem, struct btrfsic_block,
541 			       collision_resolving_node);
542 
543 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544 			return b;
545 	}
546 
547 	return NULL;
548 }
549 
550 static void btrfsic_block_link_hashtable_init(
551 		struct btrfsic_block_link_hashtable *h)
552 {
553 	int i;
554 
555 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556 		INIT_LIST_HEAD(h->table + i);
557 }
558 
559 static void btrfsic_block_link_hashtable_add(
560 		struct btrfsic_block_link *l,
561 		struct btrfsic_block_link_hashtable *h)
562 {
563 	const unsigned int hashval =
564 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
569 
570 	BUG_ON(NULL == l->block_ref_to);
571 	BUG_ON(NULL == l->block_ref_from);
572 	list_add(&l->collision_resolving_node, h->table + hashval);
573 }
574 
575 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
576 {
577 	list_del(&l->collision_resolving_node);
578 }
579 
580 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581 		struct block_device *bdev_ref_to,
582 		u64 dev_bytenr_ref_to,
583 		struct block_device *bdev_ref_from,
584 		u64 dev_bytenr_ref_from,
585 		struct btrfsic_block_link_hashtable *h)
586 {
587 	const unsigned int hashval =
588 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
592 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593 	struct list_head *elem;
594 
595 	list_for_each(elem, h->table + hashval) {
596 		struct btrfsic_block_link *const l =
597 		    list_entry(elem, struct btrfsic_block_link,
598 			       collision_resolving_node);
599 
600 		BUG_ON(NULL == l->block_ref_to);
601 		BUG_ON(NULL == l->block_ref_from);
602 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606 			return l;
607 	}
608 
609 	return NULL;
610 }
611 
612 static void btrfsic_dev_state_hashtable_init(
613 		struct btrfsic_dev_state_hashtable *h)
614 {
615 	int i;
616 
617 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618 		INIT_LIST_HEAD(h->table + i);
619 }
620 
621 static void btrfsic_dev_state_hashtable_add(
622 		struct btrfsic_dev_state *ds,
623 		struct btrfsic_dev_state_hashtable *h)
624 {
625 	const unsigned int hashval =
626 	    (((unsigned int)((uintptr_t)ds->bdev)) &
627 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
628 
629 	list_add(&ds->collision_resolving_node, h->table + hashval);
630 }
631 
632 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
633 {
634 	list_del(&ds->collision_resolving_node);
635 }
636 
637 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638 		struct block_device *bdev,
639 		struct btrfsic_dev_state_hashtable *h)
640 {
641 	const unsigned int hashval =
642 	    (((unsigned int)((uintptr_t)bdev)) &
643 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644 	struct list_head *elem;
645 
646 	list_for_each(elem, h->table + hashval) {
647 		struct btrfsic_dev_state *const ds =
648 		    list_entry(elem, struct btrfsic_dev_state,
649 			       collision_resolving_node);
650 
651 		if (ds->bdev == bdev)
652 			return ds;
653 	}
654 
655 	return NULL;
656 }
657 
658 static int btrfsic_process_superblock(struct btrfsic_state *state,
659 				      struct btrfs_fs_devices *fs_devices)
660 {
661 	int ret = 0;
662 	struct btrfs_super_block *selected_super;
663 	struct list_head *dev_head = &fs_devices->devices;
664 	struct btrfs_device *device;
665 	struct btrfsic_dev_state *selected_dev_state = NULL;
666 	int pass;
667 
668 	BUG_ON(NULL == state);
669 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
670 	if (NULL == selected_super) {
671 		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672 		return -1;
673 	}
674 
675 	list_for_each_entry(device, dev_head, dev_list) {
676 		int i;
677 		struct btrfsic_dev_state *dev_state;
678 
679 		if (!device->bdev || !device->name)
680 			continue;
681 
682 		dev_state = btrfsic_dev_state_lookup(device->bdev);
683 		BUG_ON(NULL == dev_state);
684 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685 			ret = btrfsic_process_superblock_dev_mirror(
686 					state, dev_state, device, i,
687 					&selected_dev_state, selected_super);
688 			if (0 != ret && 0 == i) {
689 				kfree(selected_super);
690 				return ret;
691 			}
692 		}
693 	}
694 
695 	if (NULL == state->latest_superblock) {
696 		printk(KERN_INFO "btrfsic: no superblock found!\n");
697 		kfree(selected_super);
698 		return -1;
699 	}
700 
701 	state->csum_size = btrfs_super_csum_size(selected_super);
702 
703 	for (pass = 0; pass < 3; pass++) {
704 		int num_copies;
705 		int mirror_num;
706 		u64 next_bytenr;
707 
708 		switch (pass) {
709 		case 0:
710 			next_bytenr = btrfs_super_root(selected_super);
711 			if (state->print_mask &
712 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
713 				printk(KERN_INFO "root@%llu\n", next_bytenr);
714 			break;
715 		case 1:
716 			next_bytenr = btrfs_super_chunk_root(selected_super);
717 			if (state->print_mask &
718 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
719 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
720 			break;
721 		case 2:
722 			next_bytenr = btrfs_super_log_root(selected_super);
723 			if (0 == next_bytenr)
724 				continue;
725 			if (state->print_mask &
726 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
727 				printk(KERN_INFO "log@%llu\n", next_bytenr);
728 			break;
729 		}
730 
731 		num_copies =
732 		    btrfs_num_copies(state->root->fs_info,
733 				     next_bytenr, state->metablock_size);
734 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
736 			       next_bytenr, num_copies);
737 
738 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739 			struct btrfsic_block *next_block;
740 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
741 			struct btrfsic_block_link *l;
742 
743 			ret = btrfsic_map_block(state, next_bytenr,
744 						state->metablock_size,
745 						&tmp_next_block_ctx,
746 						mirror_num);
747 			if (ret) {
748 				printk(KERN_INFO "btrfsic:"
749 				       " btrfsic_map_block(root @%llu,"
750 				       " mirror %d) failed!\n",
751 				       next_bytenr, mirror_num);
752 				kfree(selected_super);
753 				return -1;
754 			}
755 
756 			next_block = btrfsic_block_hashtable_lookup(
757 					tmp_next_block_ctx.dev->bdev,
758 					tmp_next_block_ctx.dev_bytenr,
759 					&state->block_hashtable);
760 			BUG_ON(NULL == next_block);
761 
762 			l = btrfsic_block_link_hashtable_lookup(
763 					tmp_next_block_ctx.dev->bdev,
764 					tmp_next_block_ctx.dev_bytenr,
765 					state->latest_superblock->dev_state->
766 					bdev,
767 					state->latest_superblock->dev_bytenr,
768 					&state->block_link_hashtable);
769 			BUG_ON(NULL == l);
770 
771 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
772 			if (ret < (int)PAGE_CACHE_SIZE) {
773 				printk(KERN_INFO
774 				       "btrfsic: read @logical %llu failed!\n",
775 				       tmp_next_block_ctx.start);
776 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 				kfree(selected_super);
778 				return -1;
779 			}
780 
781 			ret = btrfsic_process_metablock(state,
782 							next_block,
783 							&tmp_next_block_ctx,
784 							BTRFS_MAX_LEVEL + 3, 1);
785 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
786 		}
787 	}
788 
789 	kfree(selected_super);
790 	return ret;
791 }
792 
793 static int btrfsic_process_superblock_dev_mirror(
794 		struct btrfsic_state *state,
795 		struct btrfsic_dev_state *dev_state,
796 		struct btrfs_device *device,
797 		int superblock_mirror_num,
798 		struct btrfsic_dev_state **selected_dev_state,
799 		struct btrfs_super_block *selected_super)
800 {
801 	struct btrfs_super_block *super_tmp;
802 	u64 dev_bytenr;
803 	struct buffer_head *bh;
804 	struct btrfsic_block *superblock_tmp;
805 	int pass;
806 	struct block_device *const superblock_bdev = device->bdev;
807 
808 	/* super block bytenr is always the unmapped device bytenr */
809 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
810 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811 		return -1;
812 	bh = __bread(superblock_bdev, dev_bytenr / 4096,
813 		     BTRFS_SUPER_INFO_SIZE);
814 	if (NULL == bh)
815 		return -1;
816 	super_tmp = (struct btrfs_super_block *)
817 	    (bh->b_data + (dev_bytenr & 4095));
818 
819 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
820 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
821 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
823 	    btrfs_super_leafsize(super_tmp) != state->metablock_size ||
824 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
825 		brelse(bh);
826 		return 0;
827 	}
828 
829 	superblock_tmp =
830 	    btrfsic_block_hashtable_lookup(superblock_bdev,
831 					   dev_bytenr,
832 					   &state->block_hashtable);
833 	if (NULL == superblock_tmp) {
834 		superblock_tmp = btrfsic_block_alloc();
835 		if (NULL == superblock_tmp) {
836 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
837 			brelse(bh);
838 			return -1;
839 		}
840 		/* for superblock, only the dev_bytenr makes sense */
841 		superblock_tmp->dev_bytenr = dev_bytenr;
842 		superblock_tmp->dev_state = dev_state;
843 		superblock_tmp->logical_bytenr = dev_bytenr;
844 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
845 		superblock_tmp->is_metadata = 1;
846 		superblock_tmp->is_superblock = 1;
847 		superblock_tmp->is_iodone = 1;
848 		superblock_tmp->never_written = 0;
849 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
850 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
851 			printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
852 				     " @%llu (%s/%llu/%d)\n",
853 				     superblock_bdev,
854 				     rcu_str_deref(device->name), dev_bytenr,
855 				     dev_state->name, dev_bytenr,
856 				     superblock_mirror_num);
857 		list_add(&superblock_tmp->all_blocks_node,
858 			 &state->all_blocks_list);
859 		btrfsic_block_hashtable_add(superblock_tmp,
860 					    &state->block_hashtable);
861 	}
862 
863 	/* select the one with the highest generation field */
864 	if (btrfs_super_generation(super_tmp) >
865 	    state->max_superblock_generation ||
866 	    0 == state->max_superblock_generation) {
867 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
868 		*selected_dev_state = dev_state;
869 		state->max_superblock_generation =
870 		    btrfs_super_generation(super_tmp);
871 		state->latest_superblock = superblock_tmp;
872 	}
873 
874 	for (pass = 0; pass < 3; pass++) {
875 		u64 next_bytenr;
876 		int num_copies;
877 		int mirror_num;
878 		const char *additional_string = NULL;
879 		struct btrfs_disk_key tmp_disk_key;
880 
881 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
882 		tmp_disk_key.offset = 0;
883 		switch (pass) {
884 		case 0:
885 			btrfs_set_disk_key_objectid(&tmp_disk_key,
886 						    BTRFS_ROOT_TREE_OBJECTID);
887 			additional_string = "initial root ";
888 			next_bytenr = btrfs_super_root(super_tmp);
889 			break;
890 		case 1:
891 			btrfs_set_disk_key_objectid(&tmp_disk_key,
892 						    BTRFS_CHUNK_TREE_OBJECTID);
893 			additional_string = "initial chunk ";
894 			next_bytenr = btrfs_super_chunk_root(super_tmp);
895 			break;
896 		case 2:
897 			btrfs_set_disk_key_objectid(&tmp_disk_key,
898 						    BTRFS_TREE_LOG_OBJECTID);
899 			additional_string = "initial log ";
900 			next_bytenr = btrfs_super_log_root(super_tmp);
901 			if (0 == next_bytenr)
902 				continue;
903 			break;
904 		}
905 
906 		num_copies =
907 		    btrfs_num_copies(state->root->fs_info,
908 				     next_bytenr, state->metablock_size);
909 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
910 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
911 			       next_bytenr, num_copies);
912 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
913 			struct btrfsic_block *next_block;
914 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
915 			struct btrfsic_block_link *l;
916 
917 			if (btrfsic_map_block(state, next_bytenr,
918 					      state->metablock_size,
919 					      &tmp_next_block_ctx,
920 					      mirror_num)) {
921 				printk(KERN_INFO "btrfsic: btrfsic_map_block("
922 				       "bytenr @%llu, mirror %d) failed!\n",
923 				       next_bytenr, mirror_num);
924 				brelse(bh);
925 				return -1;
926 			}
927 
928 			next_block = btrfsic_block_lookup_or_add(
929 					state, &tmp_next_block_ctx,
930 					additional_string, 1, 1, 0,
931 					mirror_num, NULL);
932 			if (NULL == next_block) {
933 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 				brelse(bh);
935 				return -1;
936 			}
937 
938 			next_block->disk_key = tmp_disk_key;
939 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940 			l = btrfsic_block_link_lookup_or_add(
941 					state, &tmp_next_block_ctx,
942 					next_block, superblock_tmp,
943 					BTRFSIC_GENERATION_UNKNOWN);
944 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
945 			if (NULL == l) {
946 				brelse(bh);
947 				return -1;
948 			}
949 		}
950 	}
951 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
953 
954 	brelse(bh);
955 	return 0;
956 }
957 
958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
959 {
960 	struct btrfsic_stack_frame *sf;
961 
962 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
963 	if (NULL == sf)
964 		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965 	else
966 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967 	return sf;
968 }
969 
970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
971 {
972 	BUG_ON(!(NULL == sf ||
973 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974 	kfree(sf);
975 }
976 
977 static int btrfsic_process_metablock(
978 		struct btrfsic_state *state,
979 		struct btrfsic_block *const first_block,
980 		struct btrfsic_block_data_ctx *const first_block_ctx,
981 		int first_limit_nesting, int force_iodone_flag)
982 {
983 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
984 	struct btrfsic_stack_frame *sf;
985 	struct btrfsic_stack_frame *next_stack;
986 	struct btrfs_header *const first_hdr =
987 		(struct btrfs_header *)first_block_ctx->datav[0];
988 
989 	BUG_ON(!first_hdr);
990 	sf = &initial_stack_frame;
991 	sf->error = 0;
992 	sf->i = -1;
993 	sf->limit_nesting = first_limit_nesting;
994 	sf->block = first_block;
995 	sf->block_ctx = first_block_ctx;
996 	sf->next_block = NULL;
997 	sf->hdr = first_hdr;
998 	sf->prev = NULL;
999 
1000 continue_with_new_stack_frame:
1001 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002 	if (0 == sf->hdr->level) {
1003 		struct btrfs_leaf *const leafhdr =
1004 		    (struct btrfs_leaf *)sf->hdr;
1005 
1006 		if (-1 == sf->i) {
1007 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1008 
1009 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010 				printk(KERN_INFO
1011 				       "leaf %llu items %d generation %llu"
1012 				       " owner %llu\n",
1013 				       sf->block_ctx->start, sf->nr,
1014 				       btrfs_stack_header_generation(
1015 					       &leafhdr->header),
1016 				       btrfs_stack_header_owner(
1017 					       &leafhdr->header));
1018 		}
1019 
1020 continue_with_current_leaf_stack_frame:
1021 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1022 			sf->i++;
1023 			sf->num_copies = 0;
1024 		}
1025 
1026 		if (sf->i < sf->nr) {
1027 			struct btrfs_item disk_item;
1028 			u32 disk_item_offset =
1029 				(uintptr_t)(leafhdr->items + sf->i) -
1030 				(uintptr_t)leafhdr;
1031 			struct btrfs_disk_key *disk_key;
1032 			u8 type;
1033 			u32 item_offset;
1034 			u32 item_size;
1035 
1036 			if (disk_item_offset + sizeof(struct btrfs_item) >
1037 			    sf->block_ctx->len) {
1038 leaf_item_out_of_bounce_error:
1039 				printk(KERN_INFO
1040 				       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1041 				       sf->block_ctx->start,
1042 				       sf->block_ctx->dev->name);
1043 				goto one_stack_frame_backwards;
1044 			}
1045 			btrfsic_read_from_block_data(sf->block_ctx,
1046 						     &disk_item,
1047 						     disk_item_offset,
1048 						     sizeof(struct btrfs_item));
1049 			item_offset = btrfs_stack_item_offset(&disk_item);
1050 			item_size = btrfs_stack_item_size(&disk_item);
1051 			disk_key = &disk_item.key;
1052 			type = btrfs_disk_key_type(disk_key);
1053 
1054 			if (BTRFS_ROOT_ITEM_KEY == type) {
1055 				struct btrfs_root_item root_item;
1056 				u32 root_item_offset;
1057 				u64 next_bytenr;
1058 
1059 				root_item_offset = item_offset +
1060 					offsetof(struct btrfs_leaf, items);
1061 				if (root_item_offset + item_size >
1062 				    sf->block_ctx->len)
1063 					goto leaf_item_out_of_bounce_error;
1064 				btrfsic_read_from_block_data(
1065 					sf->block_ctx, &root_item,
1066 					root_item_offset,
1067 					item_size);
1068 				next_bytenr = btrfs_root_bytenr(&root_item);
1069 
1070 				sf->error =
1071 				    btrfsic_create_link_to_next_block(
1072 						state,
1073 						sf->block,
1074 						sf->block_ctx,
1075 						next_bytenr,
1076 						sf->limit_nesting,
1077 						&sf->next_block_ctx,
1078 						&sf->next_block,
1079 						force_iodone_flag,
1080 						&sf->num_copies,
1081 						&sf->mirror_num,
1082 						disk_key,
1083 						btrfs_root_generation(
1084 						&root_item));
1085 				if (sf->error)
1086 					goto one_stack_frame_backwards;
1087 
1088 				if (NULL != sf->next_block) {
1089 					struct btrfs_header *const next_hdr =
1090 					    (struct btrfs_header *)
1091 					    sf->next_block_ctx.datav[0];
1092 
1093 					next_stack =
1094 					    btrfsic_stack_frame_alloc();
1095 					if (NULL == next_stack) {
1096 						sf->error = -1;
1097 						btrfsic_release_block_ctx(
1098 								&sf->
1099 								next_block_ctx);
1100 						goto one_stack_frame_backwards;
1101 					}
1102 
1103 					next_stack->i = -1;
1104 					next_stack->block = sf->next_block;
1105 					next_stack->block_ctx =
1106 					    &sf->next_block_ctx;
1107 					next_stack->next_block = NULL;
1108 					next_stack->hdr = next_hdr;
1109 					next_stack->limit_nesting =
1110 					    sf->limit_nesting - 1;
1111 					next_stack->prev = sf;
1112 					sf = next_stack;
1113 					goto continue_with_new_stack_frame;
1114 				}
1115 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1116 				   state->include_extent_data) {
1117 				sf->error = btrfsic_handle_extent_data(
1118 						state,
1119 						sf->block,
1120 						sf->block_ctx,
1121 						item_offset,
1122 						force_iodone_flag);
1123 				if (sf->error)
1124 					goto one_stack_frame_backwards;
1125 			}
1126 
1127 			goto continue_with_current_leaf_stack_frame;
1128 		}
1129 	} else {
1130 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1131 
1132 		if (-1 == sf->i) {
1133 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1134 
1135 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1136 				printk(KERN_INFO "node %llu level %d items %d"
1137 				       " generation %llu owner %llu\n",
1138 				       sf->block_ctx->start,
1139 				       nodehdr->header.level, sf->nr,
1140 				       btrfs_stack_header_generation(
1141 				       &nodehdr->header),
1142 				       btrfs_stack_header_owner(
1143 				       &nodehdr->header));
1144 		}
1145 
1146 continue_with_current_node_stack_frame:
1147 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1148 			sf->i++;
1149 			sf->num_copies = 0;
1150 		}
1151 
1152 		if (sf->i < sf->nr) {
1153 			struct btrfs_key_ptr key_ptr;
1154 			u32 key_ptr_offset;
1155 			u64 next_bytenr;
1156 
1157 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1158 					  (uintptr_t)nodehdr;
1159 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1160 			    sf->block_ctx->len) {
1161 				printk(KERN_INFO
1162 				       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1163 				       sf->block_ctx->start,
1164 				       sf->block_ctx->dev->name);
1165 				goto one_stack_frame_backwards;
1166 			}
1167 			btrfsic_read_from_block_data(
1168 				sf->block_ctx, &key_ptr, key_ptr_offset,
1169 				sizeof(struct btrfs_key_ptr));
1170 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1171 
1172 			sf->error = btrfsic_create_link_to_next_block(
1173 					state,
1174 					sf->block,
1175 					sf->block_ctx,
1176 					next_bytenr,
1177 					sf->limit_nesting,
1178 					&sf->next_block_ctx,
1179 					&sf->next_block,
1180 					force_iodone_flag,
1181 					&sf->num_copies,
1182 					&sf->mirror_num,
1183 					&key_ptr.key,
1184 					btrfs_stack_key_generation(&key_ptr));
1185 			if (sf->error)
1186 				goto one_stack_frame_backwards;
1187 
1188 			if (NULL != sf->next_block) {
1189 				struct btrfs_header *const next_hdr =
1190 				    (struct btrfs_header *)
1191 				    sf->next_block_ctx.datav[0];
1192 
1193 				next_stack = btrfsic_stack_frame_alloc();
1194 				if (NULL == next_stack) {
1195 					sf->error = -1;
1196 					goto one_stack_frame_backwards;
1197 				}
1198 
1199 				next_stack->i = -1;
1200 				next_stack->block = sf->next_block;
1201 				next_stack->block_ctx = &sf->next_block_ctx;
1202 				next_stack->next_block = NULL;
1203 				next_stack->hdr = next_hdr;
1204 				next_stack->limit_nesting =
1205 				    sf->limit_nesting - 1;
1206 				next_stack->prev = sf;
1207 				sf = next_stack;
1208 				goto continue_with_new_stack_frame;
1209 			}
1210 
1211 			goto continue_with_current_node_stack_frame;
1212 		}
1213 	}
1214 
1215 one_stack_frame_backwards:
1216 	if (NULL != sf->prev) {
1217 		struct btrfsic_stack_frame *const prev = sf->prev;
1218 
1219 		/* the one for the initial block is freed in the caller */
1220 		btrfsic_release_block_ctx(sf->block_ctx);
1221 
1222 		if (sf->error) {
1223 			prev->error = sf->error;
1224 			btrfsic_stack_frame_free(sf);
1225 			sf = prev;
1226 			goto one_stack_frame_backwards;
1227 		}
1228 
1229 		btrfsic_stack_frame_free(sf);
1230 		sf = prev;
1231 		goto continue_with_new_stack_frame;
1232 	} else {
1233 		BUG_ON(&initial_stack_frame != sf);
1234 	}
1235 
1236 	return sf->error;
1237 }
1238 
1239 static void btrfsic_read_from_block_data(
1240 	struct btrfsic_block_data_ctx *block_ctx,
1241 	void *dstv, u32 offset, size_t len)
1242 {
1243 	size_t cur;
1244 	size_t offset_in_page;
1245 	char *kaddr;
1246 	char *dst = (char *)dstv;
1247 	size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1248 	unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1249 
1250 	WARN_ON(offset + len > block_ctx->len);
1251 	offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1252 
1253 	while (len > 0) {
1254 		cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1255 		BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1256 			    PAGE_CACHE_SHIFT);
1257 		kaddr = block_ctx->datav[i];
1258 		memcpy(dst, kaddr + offset_in_page, cur);
1259 
1260 		dst += cur;
1261 		len -= cur;
1262 		offset_in_page = 0;
1263 		i++;
1264 	}
1265 }
1266 
1267 static int btrfsic_create_link_to_next_block(
1268 		struct btrfsic_state *state,
1269 		struct btrfsic_block *block,
1270 		struct btrfsic_block_data_ctx *block_ctx,
1271 		u64 next_bytenr,
1272 		int limit_nesting,
1273 		struct btrfsic_block_data_ctx *next_block_ctx,
1274 		struct btrfsic_block **next_blockp,
1275 		int force_iodone_flag,
1276 		int *num_copiesp, int *mirror_nump,
1277 		struct btrfs_disk_key *disk_key,
1278 		u64 parent_generation)
1279 {
1280 	struct btrfsic_block *next_block = NULL;
1281 	int ret;
1282 	struct btrfsic_block_link *l;
1283 	int did_alloc_block_link;
1284 	int block_was_created;
1285 
1286 	*next_blockp = NULL;
1287 	if (0 == *num_copiesp) {
1288 		*num_copiesp =
1289 		    btrfs_num_copies(state->root->fs_info,
1290 				     next_bytenr, state->metablock_size);
1291 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1292 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1293 			       next_bytenr, *num_copiesp);
1294 		*mirror_nump = 1;
1295 	}
1296 
1297 	if (*mirror_nump > *num_copiesp)
1298 		return 0;
1299 
1300 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1301 		printk(KERN_INFO
1302 		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1303 		       *mirror_nump);
1304 	ret = btrfsic_map_block(state, next_bytenr,
1305 				state->metablock_size,
1306 				next_block_ctx, *mirror_nump);
1307 	if (ret) {
1308 		printk(KERN_INFO
1309 		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1310 		       next_bytenr, *mirror_nump);
1311 		btrfsic_release_block_ctx(next_block_ctx);
1312 		*next_blockp = NULL;
1313 		return -1;
1314 	}
1315 
1316 	next_block = btrfsic_block_lookup_or_add(state,
1317 						 next_block_ctx, "referenced ",
1318 						 1, force_iodone_flag,
1319 						 !force_iodone_flag,
1320 						 *mirror_nump,
1321 						 &block_was_created);
1322 	if (NULL == next_block) {
1323 		btrfsic_release_block_ctx(next_block_ctx);
1324 		*next_blockp = NULL;
1325 		return -1;
1326 	}
1327 	if (block_was_created) {
1328 		l = NULL;
1329 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1330 	} else {
1331 		if (next_block->logical_bytenr != next_bytenr &&
1332 		    !(!next_block->is_metadata &&
1333 		      0 == next_block->logical_bytenr)) {
1334 			printk(KERN_INFO
1335 			       "Referenced block @%llu (%s/%llu/%d)"
1336 			       " found in hash table, %c,"
1337 			       " bytenr mismatch (!= stored %llu).\n",
1338 			       next_bytenr, next_block_ctx->dev->name,
1339 			       next_block_ctx->dev_bytenr, *mirror_nump,
1340 			       btrfsic_get_block_type(state, next_block),
1341 			       next_block->logical_bytenr);
1342 		} else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1343 			printk(KERN_INFO
1344 			       "Referenced block @%llu (%s/%llu/%d)"
1345 			       " found in hash table, %c.\n",
1346 			       next_bytenr, next_block_ctx->dev->name,
1347 			       next_block_ctx->dev_bytenr, *mirror_nump,
1348 			       btrfsic_get_block_type(state, next_block));
1349 		next_block->logical_bytenr = next_bytenr;
1350 
1351 		next_block->mirror_num = *mirror_nump;
1352 		l = btrfsic_block_link_hashtable_lookup(
1353 				next_block_ctx->dev->bdev,
1354 				next_block_ctx->dev_bytenr,
1355 				block_ctx->dev->bdev,
1356 				block_ctx->dev_bytenr,
1357 				&state->block_link_hashtable);
1358 	}
1359 
1360 	next_block->disk_key = *disk_key;
1361 	if (NULL == l) {
1362 		l = btrfsic_block_link_alloc();
1363 		if (NULL == l) {
1364 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1365 			btrfsic_release_block_ctx(next_block_ctx);
1366 			*next_blockp = NULL;
1367 			return -1;
1368 		}
1369 
1370 		did_alloc_block_link = 1;
1371 		l->block_ref_to = next_block;
1372 		l->block_ref_from = block;
1373 		l->ref_cnt = 1;
1374 		l->parent_generation = parent_generation;
1375 
1376 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1377 			btrfsic_print_add_link(state, l);
1378 
1379 		list_add(&l->node_ref_to, &block->ref_to_list);
1380 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1381 
1382 		btrfsic_block_link_hashtable_add(l,
1383 						 &state->block_link_hashtable);
1384 	} else {
1385 		did_alloc_block_link = 0;
1386 		if (0 == limit_nesting) {
1387 			l->ref_cnt++;
1388 			l->parent_generation = parent_generation;
1389 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1390 				btrfsic_print_add_link(state, l);
1391 		}
1392 	}
1393 
1394 	if (limit_nesting > 0 && did_alloc_block_link) {
1395 		ret = btrfsic_read_block(state, next_block_ctx);
1396 		if (ret < (int)next_block_ctx->len) {
1397 			printk(KERN_INFO
1398 			       "btrfsic: read block @logical %llu failed!\n",
1399 			       next_bytenr);
1400 			btrfsic_release_block_ctx(next_block_ctx);
1401 			*next_blockp = NULL;
1402 			return -1;
1403 		}
1404 
1405 		*next_blockp = next_block;
1406 	} else {
1407 		*next_blockp = NULL;
1408 	}
1409 	(*mirror_nump)++;
1410 
1411 	return 0;
1412 }
1413 
1414 static int btrfsic_handle_extent_data(
1415 		struct btrfsic_state *state,
1416 		struct btrfsic_block *block,
1417 		struct btrfsic_block_data_ctx *block_ctx,
1418 		u32 item_offset, int force_iodone_flag)
1419 {
1420 	int ret;
1421 	struct btrfs_file_extent_item file_extent_item;
1422 	u64 file_extent_item_offset;
1423 	u64 next_bytenr;
1424 	u64 num_bytes;
1425 	u64 generation;
1426 	struct btrfsic_block_link *l;
1427 
1428 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1429 				  item_offset;
1430 	if (file_extent_item_offset +
1431 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1432 	    block_ctx->len) {
1433 		printk(KERN_INFO
1434 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1435 		       block_ctx->start, block_ctx->dev->name);
1436 		return -1;
1437 	}
1438 
1439 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1440 		file_extent_item_offset,
1441 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1442 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1443 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1444 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1445 			printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1446 			       file_extent_item.type,
1447 			       btrfs_stack_file_extent_disk_bytenr(
1448 			       &file_extent_item));
1449 		return 0;
1450 	}
1451 
1452 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1453 	    block_ctx->len) {
1454 		printk(KERN_INFO
1455 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1456 		       block_ctx->start, block_ctx->dev->name);
1457 		return -1;
1458 	}
1459 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1460 				     file_extent_item_offset,
1461 				     sizeof(struct btrfs_file_extent_item));
1462 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1463 	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1464 	    BTRFS_COMPRESS_NONE) {
1465 		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1466 		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1467 	} else {
1468 		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1469 	}
1470 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1471 
1472 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1473 		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1474 		       " offset = %llu, num_bytes = %llu\n",
1475 		       file_extent_item.type,
1476 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1477 		       btrfs_stack_file_extent_offset(&file_extent_item),
1478 		       num_bytes);
1479 	while (num_bytes > 0) {
1480 		u32 chunk_len;
1481 		int num_copies;
1482 		int mirror_num;
1483 
1484 		if (num_bytes > state->datablock_size)
1485 			chunk_len = state->datablock_size;
1486 		else
1487 			chunk_len = num_bytes;
1488 
1489 		num_copies =
1490 		    btrfs_num_copies(state->root->fs_info,
1491 				     next_bytenr, state->datablock_size);
1492 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1493 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1494 			       next_bytenr, num_copies);
1495 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1496 			struct btrfsic_block_data_ctx next_block_ctx;
1497 			struct btrfsic_block *next_block;
1498 			int block_was_created;
1499 
1500 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1501 				printk(KERN_INFO "btrfsic_handle_extent_data("
1502 				       "mirror_num=%d)\n", mirror_num);
1503 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1504 				printk(KERN_INFO
1505 				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1506 				       next_bytenr, chunk_len);
1507 			ret = btrfsic_map_block(state, next_bytenr,
1508 						chunk_len, &next_block_ctx,
1509 						mirror_num);
1510 			if (ret) {
1511 				printk(KERN_INFO
1512 				       "btrfsic: btrfsic_map_block(@%llu,"
1513 				       " mirror=%d) failed!\n",
1514 				       next_bytenr, mirror_num);
1515 				return -1;
1516 			}
1517 
1518 			next_block = btrfsic_block_lookup_or_add(
1519 					state,
1520 					&next_block_ctx,
1521 					"referenced ",
1522 					0,
1523 					force_iodone_flag,
1524 					!force_iodone_flag,
1525 					mirror_num,
1526 					&block_was_created);
1527 			if (NULL == next_block) {
1528 				printk(KERN_INFO
1529 				       "btrfsic: error, kmalloc failed!\n");
1530 				btrfsic_release_block_ctx(&next_block_ctx);
1531 				return -1;
1532 			}
1533 			if (!block_was_created) {
1534 				if (next_block->logical_bytenr != next_bytenr &&
1535 				    !(!next_block->is_metadata &&
1536 				      0 == next_block->logical_bytenr)) {
1537 					printk(KERN_INFO
1538 					       "Referenced block"
1539 					       " @%llu (%s/%llu/%d)"
1540 					       " found in hash table, D,"
1541 					       " bytenr mismatch"
1542 					       " (!= stored %llu).\n",
1543 					       next_bytenr,
1544 					       next_block_ctx.dev->name,
1545 					       next_block_ctx.dev_bytenr,
1546 					       mirror_num,
1547 					       next_block->logical_bytenr);
1548 				}
1549 				next_block->logical_bytenr = next_bytenr;
1550 				next_block->mirror_num = mirror_num;
1551 			}
1552 
1553 			l = btrfsic_block_link_lookup_or_add(state,
1554 							     &next_block_ctx,
1555 							     next_block, block,
1556 							     generation);
1557 			btrfsic_release_block_ctx(&next_block_ctx);
1558 			if (NULL == l)
1559 				return -1;
1560 		}
1561 
1562 		next_bytenr += chunk_len;
1563 		num_bytes -= chunk_len;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1570 			     struct btrfsic_block_data_ctx *block_ctx_out,
1571 			     int mirror_num)
1572 {
1573 	int ret;
1574 	u64 length;
1575 	struct btrfs_bio *multi = NULL;
1576 	struct btrfs_device *device;
1577 
1578 	length = len;
1579 	ret = btrfs_map_block(state->root->fs_info, READ,
1580 			      bytenr, &length, &multi, mirror_num);
1581 
1582 	if (ret) {
1583 		block_ctx_out->start = 0;
1584 		block_ctx_out->dev_bytenr = 0;
1585 		block_ctx_out->len = 0;
1586 		block_ctx_out->dev = NULL;
1587 		block_ctx_out->datav = NULL;
1588 		block_ctx_out->pagev = NULL;
1589 		block_ctx_out->mem_to_free = NULL;
1590 
1591 		return ret;
1592 	}
1593 
1594 	device = multi->stripes[0].dev;
1595 	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1596 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1597 	block_ctx_out->start = bytenr;
1598 	block_ctx_out->len = len;
1599 	block_ctx_out->datav = NULL;
1600 	block_ctx_out->pagev = NULL;
1601 	block_ctx_out->mem_to_free = NULL;
1602 
1603 	kfree(multi);
1604 	if (NULL == block_ctx_out->dev) {
1605 		ret = -ENXIO;
1606 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1607 	}
1608 
1609 	return ret;
1610 }
1611 
1612 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1613 				  u32 len, struct block_device *bdev,
1614 				  struct btrfsic_block_data_ctx *block_ctx_out)
1615 {
1616 	block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1617 	block_ctx_out->dev_bytenr = bytenr;
1618 	block_ctx_out->start = bytenr;
1619 	block_ctx_out->len = len;
1620 	block_ctx_out->datav = NULL;
1621 	block_ctx_out->pagev = NULL;
1622 	block_ctx_out->mem_to_free = NULL;
1623 	if (NULL != block_ctx_out->dev) {
1624 		return 0;
1625 	} else {
1626 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1627 		return -ENXIO;
1628 	}
1629 }
1630 
1631 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1632 {
1633 	if (block_ctx->mem_to_free) {
1634 		unsigned int num_pages;
1635 
1636 		BUG_ON(!block_ctx->datav);
1637 		BUG_ON(!block_ctx->pagev);
1638 		num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1639 			    PAGE_CACHE_SHIFT;
1640 		while (num_pages > 0) {
1641 			num_pages--;
1642 			if (block_ctx->datav[num_pages]) {
1643 				kunmap(block_ctx->pagev[num_pages]);
1644 				block_ctx->datav[num_pages] = NULL;
1645 			}
1646 			if (block_ctx->pagev[num_pages]) {
1647 				__free_page(block_ctx->pagev[num_pages]);
1648 				block_ctx->pagev[num_pages] = NULL;
1649 			}
1650 		}
1651 
1652 		kfree(block_ctx->mem_to_free);
1653 		block_ctx->mem_to_free = NULL;
1654 		block_ctx->pagev = NULL;
1655 		block_ctx->datav = NULL;
1656 	}
1657 }
1658 
1659 static int btrfsic_read_block(struct btrfsic_state *state,
1660 			      struct btrfsic_block_data_ctx *block_ctx)
1661 {
1662 	unsigned int num_pages;
1663 	unsigned int i;
1664 	u64 dev_bytenr;
1665 	int ret;
1666 
1667 	BUG_ON(block_ctx->datav);
1668 	BUG_ON(block_ctx->pagev);
1669 	BUG_ON(block_ctx->mem_to_free);
1670 	if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1671 		printk(KERN_INFO
1672 		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1673 		       block_ctx->dev_bytenr);
1674 		return -1;
1675 	}
1676 
1677 	num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1678 		    PAGE_CACHE_SHIFT;
1679 	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1680 					  sizeof(*block_ctx->pagev)) *
1681 					 num_pages, GFP_NOFS);
1682 	if (!block_ctx->mem_to_free)
1683 		return -1;
1684 	block_ctx->datav = block_ctx->mem_to_free;
1685 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1686 	for (i = 0; i < num_pages; i++) {
1687 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1688 		if (!block_ctx->pagev[i])
1689 			return -1;
1690 	}
1691 
1692 	dev_bytenr = block_ctx->dev_bytenr;
1693 	for (i = 0; i < num_pages;) {
1694 		struct bio *bio;
1695 		unsigned int j;
1696 
1697 		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1698 		if (!bio) {
1699 			printk(KERN_INFO
1700 			       "btrfsic: bio_alloc() for %u pages failed!\n",
1701 			       num_pages - i);
1702 			return -1;
1703 		}
1704 		bio->bi_bdev = block_ctx->dev->bdev;
1705 		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1706 
1707 		for (j = i; j < num_pages; j++) {
1708 			ret = bio_add_page(bio, block_ctx->pagev[j],
1709 					   PAGE_CACHE_SIZE, 0);
1710 			if (PAGE_CACHE_SIZE != ret)
1711 				break;
1712 		}
1713 		if (j == i) {
1714 			printk(KERN_INFO
1715 			       "btrfsic: error, failed to add a single page!\n");
1716 			return -1;
1717 		}
1718 		if (submit_bio_wait(READ, bio)) {
1719 			printk(KERN_INFO
1720 			       "btrfsic: read error at logical %llu dev %s!\n",
1721 			       block_ctx->start, block_ctx->dev->name);
1722 			bio_put(bio);
1723 			return -1;
1724 		}
1725 		bio_put(bio);
1726 		dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1727 		i = j;
1728 	}
1729 	for (i = 0; i < num_pages; i++) {
1730 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1731 		if (!block_ctx->datav[i]) {
1732 			printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1733 			       block_ctx->dev->name);
1734 			return -1;
1735 		}
1736 	}
1737 
1738 	return block_ctx->len;
1739 }
1740 
1741 static void btrfsic_dump_database(struct btrfsic_state *state)
1742 {
1743 	struct list_head *elem_all;
1744 
1745 	BUG_ON(NULL == state);
1746 
1747 	printk(KERN_INFO "all_blocks_list:\n");
1748 	list_for_each(elem_all, &state->all_blocks_list) {
1749 		const struct btrfsic_block *const b_all =
1750 		    list_entry(elem_all, struct btrfsic_block,
1751 			       all_blocks_node);
1752 		struct list_head *elem_ref_to;
1753 		struct list_head *elem_ref_from;
1754 
1755 		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1756 		       btrfsic_get_block_type(state, b_all),
1757 		       b_all->logical_bytenr, b_all->dev_state->name,
1758 		       b_all->dev_bytenr, b_all->mirror_num);
1759 
1760 		list_for_each(elem_ref_to, &b_all->ref_to_list) {
1761 			const struct btrfsic_block_link *const l =
1762 			    list_entry(elem_ref_to,
1763 				       struct btrfsic_block_link,
1764 				       node_ref_to);
1765 
1766 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1767 			       " refers %u* to"
1768 			       " %c @%llu (%s/%llu/%d)\n",
1769 			       btrfsic_get_block_type(state, b_all),
1770 			       b_all->logical_bytenr, b_all->dev_state->name,
1771 			       b_all->dev_bytenr, b_all->mirror_num,
1772 			       l->ref_cnt,
1773 			       btrfsic_get_block_type(state, l->block_ref_to),
1774 			       l->block_ref_to->logical_bytenr,
1775 			       l->block_ref_to->dev_state->name,
1776 			       l->block_ref_to->dev_bytenr,
1777 			       l->block_ref_to->mirror_num);
1778 		}
1779 
1780 		list_for_each(elem_ref_from, &b_all->ref_from_list) {
1781 			const struct btrfsic_block_link *const l =
1782 			    list_entry(elem_ref_from,
1783 				       struct btrfsic_block_link,
1784 				       node_ref_from);
1785 
1786 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1787 			       " is ref %u* from"
1788 			       " %c @%llu (%s/%llu/%d)\n",
1789 			       btrfsic_get_block_type(state, b_all),
1790 			       b_all->logical_bytenr, b_all->dev_state->name,
1791 			       b_all->dev_bytenr, b_all->mirror_num,
1792 			       l->ref_cnt,
1793 			       btrfsic_get_block_type(state, l->block_ref_from),
1794 			       l->block_ref_from->logical_bytenr,
1795 			       l->block_ref_from->dev_state->name,
1796 			       l->block_ref_from->dev_bytenr,
1797 			       l->block_ref_from->mirror_num);
1798 		}
1799 
1800 		printk(KERN_INFO "\n");
1801 	}
1802 }
1803 
1804 /*
1805  * Test whether the disk block contains a tree block (leaf or node)
1806  * (note that this test fails for the super block)
1807  */
1808 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1809 				     char **datav, unsigned int num_pages)
1810 {
1811 	struct btrfs_header *h;
1812 	u8 csum[BTRFS_CSUM_SIZE];
1813 	u32 crc = ~(u32)0;
1814 	unsigned int i;
1815 
1816 	if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1817 		return 1; /* not metadata */
1818 	num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1819 	h = (struct btrfs_header *)datav[0];
1820 
1821 	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1822 		return 1;
1823 
1824 	for (i = 0; i < num_pages; i++) {
1825 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1826 		size_t sublen = i ? PAGE_CACHE_SIZE :
1827 				    (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1828 
1829 		crc = btrfs_crc32c(crc, data, sublen);
1830 	}
1831 	btrfs_csum_final(crc, csum);
1832 	if (memcmp(csum, h->csum, state->csum_size))
1833 		return 1;
1834 
1835 	return 0; /* is metadata */
1836 }
1837 
1838 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1839 					  u64 dev_bytenr, char **mapped_datav,
1840 					  unsigned int num_pages,
1841 					  struct bio *bio, int *bio_is_patched,
1842 					  struct buffer_head *bh,
1843 					  int submit_bio_bh_rw)
1844 {
1845 	int is_metadata;
1846 	struct btrfsic_block *block;
1847 	struct btrfsic_block_data_ctx block_ctx;
1848 	int ret;
1849 	struct btrfsic_state *state = dev_state->state;
1850 	struct block_device *bdev = dev_state->bdev;
1851 	unsigned int processed_len;
1852 
1853 	if (NULL != bio_is_patched)
1854 		*bio_is_patched = 0;
1855 
1856 again:
1857 	if (num_pages == 0)
1858 		return;
1859 
1860 	processed_len = 0;
1861 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1862 						      num_pages));
1863 
1864 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1865 					       &state->block_hashtable);
1866 	if (NULL != block) {
1867 		u64 bytenr = 0;
1868 		struct list_head *elem_ref_to;
1869 		struct list_head *tmp_ref_to;
1870 
1871 		if (block->is_superblock) {
1872 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1873 						    mapped_datav[0]);
1874 			if (num_pages * PAGE_CACHE_SIZE <
1875 			    BTRFS_SUPER_INFO_SIZE) {
1876 				printk(KERN_INFO
1877 				       "btrfsic: cannot work with too short bios!\n");
1878 				return;
1879 			}
1880 			is_metadata = 1;
1881 			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1882 			processed_len = BTRFS_SUPER_INFO_SIZE;
1883 			if (state->print_mask &
1884 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1885 				printk(KERN_INFO
1886 				       "[before new superblock is written]:\n");
1887 				btrfsic_dump_tree_sub(state, block, 0);
1888 			}
1889 		}
1890 		if (is_metadata) {
1891 			if (!block->is_superblock) {
1892 				if (num_pages * PAGE_CACHE_SIZE <
1893 				    state->metablock_size) {
1894 					printk(KERN_INFO
1895 					       "btrfsic: cannot work with too short bios!\n");
1896 					return;
1897 				}
1898 				processed_len = state->metablock_size;
1899 				bytenr = btrfs_stack_header_bytenr(
1900 						(struct btrfs_header *)
1901 						mapped_datav[0]);
1902 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1903 							       dev_state,
1904 							       dev_bytenr);
1905 			}
1906 			if (block->logical_bytenr != bytenr &&
1907 			    !(!block->is_metadata &&
1908 			      block->logical_bytenr == 0))
1909 				printk(KERN_INFO
1910 				       "Written block @%llu (%s/%llu/%d)"
1911 				       " found in hash table, %c,"
1912 				       " bytenr mismatch"
1913 				       " (!= stored %llu).\n",
1914 				       bytenr, dev_state->name, dev_bytenr,
1915 				       block->mirror_num,
1916 				       btrfsic_get_block_type(state, block),
1917 				       block->logical_bytenr);
1918 			else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1919 				printk(KERN_INFO
1920 				       "Written block @%llu (%s/%llu/%d)"
1921 				       " found in hash table, %c.\n",
1922 				       bytenr, dev_state->name, dev_bytenr,
1923 				       block->mirror_num,
1924 				       btrfsic_get_block_type(state, block));
1925 			block->logical_bytenr = bytenr;
1926 		} else {
1927 			if (num_pages * PAGE_CACHE_SIZE <
1928 			    state->datablock_size) {
1929 				printk(KERN_INFO
1930 				       "btrfsic: cannot work with too short bios!\n");
1931 				return;
1932 			}
1933 			processed_len = state->datablock_size;
1934 			bytenr = block->logical_bytenr;
1935 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1936 				printk(KERN_INFO
1937 				       "Written block @%llu (%s/%llu/%d)"
1938 				       " found in hash table, %c.\n",
1939 				       bytenr, dev_state->name, dev_bytenr,
1940 				       block->mirror_num,
1941 				       btrfsic_get_block_type(state, block));
1942 		}
1943 
1944 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1945 			printk(KERN_INFO
1946 			       "ref_to_list: %cE, ref_from_list: %cE\n",
1947 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1948 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1949 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1950 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1951 			       " @%llu (%s/%llu/%d), old(gen=%llu,"
1952 			       " objectid=%llu, type=%d, offset=%llu),"
1953 			       " new(gen=%llu),"
1954 			       " which is referenced by most recent superblock"
1955 			       " (superblockgen=%llu)!\n",
1956 			       btrfsic_get_block_type(state, block), bytenr,
1957 			       dev_state->name, dev_bytenr, block->mirror_num,
1958 			       block->generation,
1959 			       btrfs_disk_key_objectid(&block->disk_key),
1960 			       block->disk_key.type,
1961 			       btrfs_disk_key_offset(&block->disk_key),
1962 			       btrfs_stack_header_generation(
1963 				       (struct btrfs_header *) mapped_datav[0]),
1964 			       state->max_superblock_generation);
1965 			btrfsic_dump_tree(state);
1966 		}
1967 
1968 		if (!block->is_iodone && !block->never_written) {
1969 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1970 			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1971 			       " which is not yet iodone!\n",
1972 			       btrfsic_get_block_type(state, block), bytenr,
1973 			       dev_state->name, dev_bytenr, block->mirror_num,
1974 			       block->generation,
1975 			       btrfs_stack_header_generation(
1976 				       (struct btrfs_header *)
1977 				       mapped_datav[0]));
1978 			/* it would not be safe to go on */
1979 			btrfsic_dump_tree(state);
1980 			goto continue_loop;
1981 		}
1982 
1983 		/*
1984 		 * Clear all references of this block. Do not free
1985 		 * the block itself even if is not referenced anymore
1986 		 * because it still carries valueable information
1987 		 * like whether it was ever written and IO completed.
1988 		 */
1989 		list_for_each_safe(elem_ref_to, tmp_ref_to,
1990 				   &block->ref_to_list) {
1991 			struct btrfsic_block_link *const l =
1992 			    list_entry(elem_ref_to,
1993 				       struct btrfsic_block_link,
1994 				       node_ref_to);
1995 
1996 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1997 				btrfsic_print_rem_link(state, l);
1998 			l->ref_cnt--;
1999 			if (0 == l->ref_cnt) {
2000 				list_del(&l->node_ref_to);
2001 				list_del(&l->node_ref_from);
2002 				btrfsic_block_link_hashtable_remove(l);
2003 				btrfsic_block_link_free(l);
2004 			}
2005 		}
2006 
2007 		if (block->is_superblock)
2008 			ret = btrfsic_map_superblock(state, bytenr,
2009 						     processed_len,
2010 						     bdev, &block_ctx);
2011 		else
2012 			ret = btrfsic_map_block(state, bytenr, processed_len,
2013 						&block_ctx, 0);
2014 		if (ret) {
2015 			printk(KERN_INFO
2016 			       "btrfsic: btrfsic_map_block(root @%llu)"
2017 			       " failed!\n", bytenr);
2018 			goto continue_loop;
2019 		}
2020 		block_ctx.datav = mapped_datav;
2021 		/* the following is required in case of writes to mirrors,
2022 		 * use the same that was used for the lookup */
2023 		block_ctx.dev = dev_state;
2024 		block_ctx.dev_bytenr = dev_bytenr;
2025 
2026 		if (is_metadata || state->include_extent_data) {
2027 			block->never_written = 0;
2028 			block->iodone_w_error = 0;
2029 			if (NULL != bio) {
2030 				block->is_iodone = 0;
2031 				BUG_ON(NULL == bio_is_patched);
2032 				if (!*bio_is_patched) {
2033 					block->orig_bio_bh_private =
2034 					    bio->bi_private;
2035 					block->orig_bio_bh_end_io.bio =
2036 					    bio->bi_end_io;
2037 					block->next_in_same_bio = NULL;
2038 					bio->bi_private = block;
2039 					bio->bi_end_io = btrfsic_bio_end_io;
2040 					*bio_is_patched = 1;
2041 				} else {
2042 					struct btrfsic_block *chained_block =
2043 					    (struct btrfsic_block *)
2044 					    bio->bi_private;
2045 
2046 					BUG_ON(NULL == chained_block);
2047 					block->orig_bio_bh_private =
2048 					    chained_block->orig_bio_bh_private;
2049 					block->orig_bio_bh_end_io.bio =
2050 					    chained_block->orig_bio_bh_end_io.
2051 					    bio;
2052 					block->next_in_same_bio = chained_block;
2053 					bio->bi_private = block;
2054 				}
2055 			} else if (NULL != bh) {
2056 				block->is_iodone = 0;
2057 				block->orig_bio_bh_private = bh->b_private;
2058 				block->orig_bio_bh_end_io.bh = bh->b_end_io;
2059 				block->next_in_same_bio = NULL;
2060 				bh->b_private = block;
2061 				bh->b_end_io = btrfsic_bh_end_io;
2062 			} else {
2063 				block->is_iodone = 1;
2064 				block->orig_bio_bh_private = NULL;
2065 				block->orig_bio_bh_end_io.bio = NULL;
2066 				block->next_in_same_bio = NULL;
2067 			}
2068 		}
2069 
2070 		block->flush_gen = dev_state->last_flush_gen + 1;
2071 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2072 		if (is_metadata) {
2073 			block->logical_bytenr = bytenr;
2074 			block->is_metadata = 1;
2075 			if (block->is_superblock) {
2076 				BUG_ON(PAGE_CACHE_SIZE !=
2077 				       BTRFS_SUPER_INFO_SIZE);
2078 				ret = btrfsic_process_written_superblock(
2079 						state,
2080 						block,
2081 						(struct btrfs_super_block *)
2082 						mapped_datav[0]);
2083 				if (state->print_mask &
2084 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2085 					printk(KERN_INFO
2086 					"[after new superblock is written]:\n");
2087 					btrfsic_dump_tree_sub(state, block, 0);
2088 				}
2089 			} else {
2090 				block->mirror_num = 0;	/* unknown */
2091 				ret = btrfsic_process_metablock(
2092 						state,
2093 						block,
2094 						&block_ctx,
2095 						0, 0);
2096 			}
2097 			if (ret)
2098 				printk(KERN_INFO
2099 				       "btrfsic: btrfsic_process_metablock"
2100 				       "(root @%llu) failed!\n",
2101 				       dev_bytenr);
2102 		} else {
2103 			block->is_metadata = 0;
2104 			block->mirror_num = 0;	/* unknown */
2105 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
2106 			if (!state->include_extent_data
2107 			    && list_empty(&block->ref_from_list)) {
2108 				/*
2109 				 * disk block is overwritten with extent
2110 				 * data (not meta data) and we are configured
2111 				 * to not include extent data: take the
2112 				 * chance and free the block's memory
2113 				 */
2114 				btrfsic_block_hashtable_remove(block);
2115 				list_del(&block->all_blocks_node);
2116 				btrfsic_block_free(block);
2117 			}
2118 		}
2119 		btrfsic_release_block_ctx(&block_ctx);
2120 	} else {
2121 		/* block has not been found in hash table */
2122 		u64 bytenr;
2123 
2124 		if (!is_metadata) {
2125 			processed_len = state->datablock_size;
2126 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2127 				printk(KERN_INFO "Written block (%s/%llu/?)"
2128 				       " !found in hash table, D.\n",
2129 				       dev_state->name, dev_bytenr);
2130 			if (!state->include_extent_data) {
2131 				/* ignore that written D block */
2132 				goto continue_loop;
2133 			}
2134 
2135 			/* this is getting ugly for the
2136 			 * include_extent_data case... */
2137 			bytenr = 0;	/* unknown */
2138 			block_ctx.start = bytenr;
2139 			block_ctx.len = processed_len;
2140 			block_ctx.mem_to_free = NULL;
2141 			block_ctx.pagev = NULL;
2142 		} else {
2143 			processed_len = state->metablock_size;
2144 			bytenr = btrfs_stack_header_bytenr(
2145 					(struct btrfs_header *)
2146 					mapped_datav[0]);
2147 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2148 						       dev_bytenr);
2149 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2150 				printk(KERN_INFO
2151 				       "Written block @%llu (%s/%llu/?)"
2152 				       " !found in hash table, M.\n",
2153 				       bytenr, dev_state->name, dev_bytenr);
2154 
2155 			ret = btrfsic_map_block(state, bytenr, processed_len,
2156 						&block_ctx, 0);
2157 			if (ret) {
2158 				printk(KERN_INFO
2159 				       "btrfsic: btrfsic_map_block(root @%llu)"
2160 				       " failed!\n",
2161 				       dev_bytenr);
2162 				goto continue_loop;
2163 			}
2164 		}
2165 		block_ctx.datav = mapped_datav;
2166 		/* the following is required in case of writes to mirrors,
2167 		 * use the same that was used for the lookup */
2168 		block_ctx.dev = dev_state;
2169 		block_ctx.dev_bytenr = dev_bytenr;
2170 
2171 		block = btrfsic_block_alloc();
2172 		if (NULL == block) {
2173 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2174 			btrfsic_release_block_ctx(&block_ctx);
2175 			goto continue_loop;
2176 		}
2177 		block->dev_state = dev_state;
2178 		block->dev_bytenr = dev_bytenr;
2179 		block->logical_bytenr = bytenr;
2180 		block->is_metadata = is_metadata;
2181 		block->never_written = 0;
2182 		block->iodone_w_error = 0;
2183 		block->mirror_num = 0;	/* unknown */
2184 		block->flush_gen = dev_state->last_flush_gen + 1;
2185 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2186 		if (NULL != bio) {
2187 			block->is_iodone = 0;
2188 			BUG_ON(NULL == bio_is_patched);
2189 			if (!*bio_is_patched) {
2190 				block->orig_bio_bh_private = bio->bi_private;
2191 				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2192 				block->next_in_same_bio = NULL;
2193 				bio->bi_private = block;
2194 				bio->bi_end_io = btrfsic_bio_end_io;
2195 				*bio_is_patched = 1;
2196 			} else {
2197 				struct btrfsic_block *chained_block =
2198 				    (struct btrfsic_block *)
2199 				    bio->bi_private;
2200 
2201 				BUG_ON(NULL == chained_block);
2202 				block->orig_bio_bh_private =
2203 				    chained_block->orig_bio_bh_private;
2204 				block->orig_bio_bh_end_io.bio =
2205 				    chained_block->orig_bio_bh_end_io.bio;
2206 				block->next_in_same_bio = chained_block;
2207 				bio->bi_private = block;
2208 			}
2209 		} else if (NULL != bh) {
2210 			block->is_iodone = 0;
2211 			block->orig_bio_bh_private = bh->b_private;
2212 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2213 			block->next_in_same_bio = NULL;
2214 			bh->b_private = block;
2215 			bh->b_end_io = btrfsic_bh_end_io;
2216 		} else {
2217 			block->is_iodone = 1;
2218 			block->orig_bio_bh_private = NULL;
2219 			block->orig_bio_bh_end_io.bio = NULL;
2220 			block->next_in_same_bio = NULL;
2221 		}
2222 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2223 			printk(KERN_INFO
2224 			       "New written %c-block @%llu (%s/%llu/%d)\n",
2225 			       is_metadata ? 'M' : 'D',
2226 			       block->logical_bytenr, block->dev_state->name,
2227 			       block->dev_bytenr, block->mirror_num);
2228 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2229 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2230 
2231 		if (is_metadata) {
2232 			ret = btrfsic_process_metablock(state, block,
2233 							&block_ctx, 0, 0);
2234 			if (ret)
2235 				printk(KERN_INFO
2236 				       "btrfsic: process_metablock(root @%llu)"
2237 				       " failed!\n",
2238 				       dev_bytenr);
2239 		}
2240 		btrfsic_release_block_ctx(&block_ctx);
2241 	}
2242 
2243 continue_loop:
2244 	BUG_ON(!processed_len);
2245 	dev_bytenr += processed_len;
2246 	mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2247 	num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2248 	goto again;
2249 }
2250 
2251 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2252 {
2253 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2254 	int iodone_w_error;
2255 
2256 	/* mutex is not held! This is not save if IO is not yet completed
2257 	 * on umount */
2258 	iodone_w_error = 0;
2259 	if (bio_error_status)
2260 		iodone_w_error = 1;
2261 
2262 	BUG_ON(NULL == block);
2263 	bp->bi_private = block->orig_bio_bh_private;
2264 	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2265 
2266 	do {
2267 		struct btrfsic_block *next_block;
2268 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2269 
2270 		if ((dev_state->state->print_mask &
2271 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2272 			printk(KERN_INFO
2273 			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2274 			       bio_error_status,
2275 			       btrfsic_get_block_type(dev_state->state, block),
2276 			       block->logical_bytenr, dev_state->name,
2277 			       block->dev_bytenr, block->mirror_num);
2278 		next_block = block->next_in_same_bio;
2279 		block->iodone_w_error = iodone_w_error;
2280 		if (block->submit_bio_bh_rw & REQ_FLUSH) {
2281 			dev_state->last_flush_gen++;
2282 			if ((dev_state->state->print_mask &
2283 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2284 				printk(KERN_INFO
2285 				       "bio_end_io() new %s flush_gen=%llu\n",
2286 				       dev_state->name,
2287 				       dev_state->last_flush_gen);
2288 		}
2289 		if (block->submit_bio_bh_rw & REQ_FUA)
2290 			block->flush_gen = 0; /* FUA completed means block is
2291 					       * on disk */
2292 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2293 		block = next_block;
2294 	} while (NULL != block);
2295 
2296 	bp->bi_end_io(bp, bio_error_status);
2297 }
2298 
2299 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2300 {
2301 	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2302 	int iodone_w_error = !uptodate;
2303 	struct btrfsic_dev_state *dev_state;
2304 
2305 	BUG_ON(NULL == block);
2306 	dev_state = block->dev_state;
2307 	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2308 		printk(KERN_INFO
2309 		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2310 		       iodone_w_error,
2311 		       btrfsic_get_block_type(dev_state->state, block),
2312 		       block->logical_bytenr, block->dev_state->name,
2313 		       block->dev_bytenr, block->mirror_num);
2314 
2315 	block->iodone_w_error = iodone_w_error;
2316 	if (block->submit_bio_bh_rw & REQ_FLUSH) {
2317 		dev_state->last_flush_gen++;
2318 		if ((dev_state->state->print_mask &
2319 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2320 			printk(KERN_INFO
2321 			       "bh_end_io() new %s flush_gen=%llu\n",
2322 			       dev_state->name, dev_state->last_flush_gen);
2323 	}
2324 	if (block->submit_bio_bh_rw & REQ_FUA)
2325 		block->flush_gen = 0; /* FUA completed means block is on disk */
2326 
2327 	bh->b_private = block->orig_bio_bh_private;
2328 	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2329 	block->is_iodone = 1; /* for FLUSH, this releases the block */
2330 	bh->b_end_io(bh, uptodate);
2331 }
2332 
2333 static int btrfsic_process_written_superblock(
2334 		struct btrfsic_state *state,
2335 		struct btrfsic_block *const superblock,
2336 		struct btrfs_super_block *const super_hdr)
2337 {
2338 	int pass;
2339 
2340 	superblock->generation = btrfs_super_generation(super_hdr);
2341 	if (!(superblock->generation > state->max_superblock_generation ||
2342 	      0 == state->max_superblock_generation)) {
2343 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2344 			printk(KERN_INFO
2345 			       "btrfsic: superblock @%llu (%s/%llu/%d)"
2346 			       " with old gen %llu <= %llu\n",
2347 			       superblock->logical_bytenr,
2348 			       superblock->dev_state->name,
2349 			       superblock->dev_bytenr, superblock->mirror_num,
2350 			       btrfs_super_generation(super_hdr),
2351 			       state->max_superblock_generation);
2352 	} else {
2353 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2354 			printk(KERN_INFO
2355 			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2356 			       " with new gen %llu > %llu\n",
2357 			       superblock->logical_bytenr,
2358 			       superblock->dev_state->name,
2359 			       superblock->dev_bytenr, superblock->mirror_num,
2360 			       btrfs_super_generation(super_hdr),
2361 			       state->max_superblock_generation);
2362 
2363 		state->max_superblock_generation =
2364 		    btrfs_super_generation(super_hdr);
2365 		state->latest_superblock = superblock;
2366 	}
2367 
2368 	for (pass = 0; pass < 3; pass++) {
2369 		int ret;
2370 		u64 next_bytenr;
2371 		struct btrfsic_block *next_block;
2372 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2373 		struct btrfsic_block_link *l;
2374 		int num_copies;
2375 		int mirror_num;
2376 		const char *additional_string = NULL;
2377 		struct btrfs_disk_key tmp_disk_key = {0};
2378 
2379 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2380 					    BTRFS_ROOT_ITEM_KEY);
2381 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2382 
2383 		switch (pass) {
2384 		case 0:
2385 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2386 						    BTRFS_ROOT_TREE_OBJECTID);
2387 			additional_string = "root ";
2388 			next_bytenr = btrfs_super_root(super_hdr);
2389 			if (state->print_mask &
2390 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2391 				printk(KERN_INFO "root@%llu\n", next_bytenr);
2392 			break;
2393 		case 1:
2394 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2395 						    BTRFS_CHUNK_TREE_OBJECTID);
2396 			additional_string = "chunk ";
2397 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2398 			if (state->print_mask &
2399 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2400 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2401 			break;
2402 		case 2:
2403 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2404 						    BTRFS_TREE_LOG_OBJECTID);
2405 			additional_string = "log ";
2406 			next_bytenr = btrfs_super_log_root(super_hdr);
2407 			if (0 == next_bytenr)
2408 				continue;
2409 			if (state->print_mask &
2410 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2411 				printk(KERN_INFO "log@%llu\n", next_bytenr);
2412 			break;
2413 		}
2414 
2415 		num_copies =
2416 		    btrfs_num_copies(state->root->fs_info,
2417 				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2418 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2419 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2420 			       next_bytenr, num_copies);
2421 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2422 			int was_created;
2423 
2424 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2425 				printk(KERN_INFO
2426 				       "btrfsic_process_written_superblock("
2427 				       "mirror_num=%d)\n", mirror_num);
2428 			ret = btrfsic_map_block(state, next_bytenr,
2429 						BTRFS_SUPER_INFO_SIZE,
2430 						&tmp_next_block_ctx,
2431 						mirror_num);
2432 			if (ret) {
2433 				printk(KERN_INFO
2434 				       "btrfsic: btrfsic_map_block(@%llu,"
2435 				       " mirror=%d) failed!\n",
2436 				       next_bytenr, mirror_num);
2437 				return -1;
2438 			}
2439 
2440 			next_block = btrfsic_block_lookup_or_add(
2441 					state,
2442 					&tmp_next_block_ctx,
2443 					additional_string,
2444 					1, 0, 1,
2445 					mirror_num,
2446 					&was_created);
2447 			if (NULL == next_block) {
2448 				printk(KERN_INFO
2449 				       "btrfsic: error, kmalloc failed!\n");
2450 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2451 				return -1;
2452 			}
2453 
2454 			next_block->disk_key = tmp_disk_key;
2455 			if (was_created)
2456 				next_block->generation =
2457 				    BTRFSIC_GENERATION_UNKNOWN;
2458 			l = btrfsic_block_link_lookup_or_add(
2459 					state,
2460 					&tmp_next_block_ctx,
2461 					next_block,
2462 					superblock,
2463 					BTRFSIC_GENERATION_UNKNOWN);
2464 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2465 			if (NULL == l)
2466 				return -1;
2467 		}
2468 	}
2469 
2470 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2471 		btrfsic_dump_tree(state);
2472 
2473 	return 0;
2474 }
2475 
2476 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2477 					struct btrfsic_block *const block,
2478 					int recursion_level)
2479 {
2480 	struct list_head *elem_ref_to;
2481 	int ret = 0;
2482 
2483 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2484 		/*
2485 		 * Note that this situation can happen and does not
2486 		 * indicate an error in regular cases. It happens
2487 		 * when disk blocks are freed and later reused.
2488 		 * The check-integrity module is not aware of any
2489 		 * block free operations, it just recognizes block
2490 		 * write operations. Therefore it keeps the linkage
2491 		 * information for a block until a block is
2492 		 * rewritten. This can temporarily cause incorrect
2493 		 * and even circular linkage informations. This
2494 		 * causes no harm unless such blocks are referenced
2495 		 * by the most recent super block.
2496 		 */
2497 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2498 			printk(KERN_INFO
2499 			       "btrfsic: abort cyclic linkage (case 1).\n");
2500 
2501 		return ret;
2502 	}
2503 
2504 	/*
2505 	 * This algorithm is recursive because the amount of used stack
2506 	 * space is very small and the max recursion depth is limited.
2507 	 */
2508 	list_for_each(elem_ref_to, &block->ref_to_list) {
2509 		const struct btrfsic_block_link *const l =
2510 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2511 			       node_ref_to);
2512 
2513 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2514 			printk(KERN_INFO
2515 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2516 			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
2517 			       recursion_level,
2518 			       btrfsic_get_block_type(state, block),
2519 			       block->logical_bytenr, block->dev_state->name,
2520 			       block->dev_bytenr, block->mirror_num,
2521 			       l->ref_cnt,
2522 			       btrfsic_get_block_type(state, l->block_ref_to),
2523 			       l->block_ref_to->logical_bytenr,
2524 			       l->block_ref_to->dev_state->name,
2525 			       l->block_ref_to->dev_bytenr,
2526 			       l->block_ref_to->mirror_num);
2527 		if (l->block_ref_to->never_written) {
2528 			printk(KERN_INFO "btrfs: attempt to write superblock"
2529 			       " which references block %c @%llu (%s/%llu/%d)"
2530 			       " which is never written!\n",
2531 			       btrfsic_get_block_type(state, l->block_ref_to),
2532 			       l->block_ref_to->logical_bytenr,
2533 			       l->block_ref_to->dev_state->name,
2534 			       l->block_ref_to->dev_bytenr,
2535 			       l->block_ref_to->mirror_num);
2536 			ret = -1;
2537 		} else if (!l->block_ref_to->is_iodone) {
2538 			printk(KERN_INFO "btrfs: attempt to write superblock"
2539 			       " which references block %c @%llu (%s/%llu/%d)"
2540 			       " which is not yet iodone!\n",
2541 			       btrfsic_get_block_type(state, l->block_ref_to),
2542 			       l->block_ref_to->logical_bytenr,
2543 			       l->block_ref_to->dev_state->name,
2544 			       l->block_ref_to->dev_bytenr,
2545 			       l->block_ref_to->mirror_num);
2546 			ret = -1;
2547 		} else if (l->block_ref_to->iodone_w_error) {
2548 			printk(KERN_INFO "btrfs: attempt to write superblock"
2549 			       " which references block %c @%llu (%s/%llu/%d)"
2550 			       " which has write error!\n",
2551 			       btrfsic_get_block_type(state, l->block_ref_to),
2552 			       l->block_ref_to->logical_bytenr,
2553 			       l->block_ref_to->dev_state->name,
2554 			       l->block_ref_to->dev_bytenr,
2555 			       l->block_ref_to->mirror_num);
2556 			ret = -1;
2557 		} else if (l->parent_generation !=
2558 			   l->block_ref_to->generation &&
2559 			   BTRFSIC_GENERATION_UNKNOWN !=
2560 			   l->parent_generation &&
2561 			   BTRFSIC_GENERATION_UNKNOWN !=
2562 			   l->block_ref_to->generation) {
2563 			printk(KERN_INFO "btrfs: attempt to write superblock"
2564 			       " which references block %c @%llu (%s/%llu/%d)"
2565 			       " with generation %llu !="
2566 			       " parent generation %llu!\n",
2567 			       btrfsic_get_block_type(state, l->block_ref_to),
2568 			       l->block_ref_to->logical_bytenr,
2569 			       l->block_ref_to->dev_state->name,
2570 			       l->block_ref_to->dev_bytenr,
2571 			       l->block_ref_to->mirror_num,
2572 			       l->block_ref_to->generation,
2573 			       l->parent_generation);
2574 			ret = -1;
2575 		} else if (l->block_ref_to->flush_gen >
2576 			   l->block_ref_to->dev_state->last_flush_gen) {
2577 			printk(KERN_INFO "btrfs: attempt to write superblock"
2578 			       " which references block %c @%llu (%s/%llu/%d)"
2579 			       " which is not flushed out of disk's write cache"
2580 			       " (block flush_gen=%llu,"
2581 			       " dev->flush_gen=%llu)!\n",
2582 			       btrfsic_get_block_type(state, l->block_ref_to),
2583 			       l->block_ref_to->logical_bytenr,
2584 			       l->block_ref_to->dev_state->name,
2585 			       l->block_ref_to->dev_bytenr,
2586 			       l->block_ref_to->mirror_num, block->flush_gen,
2587 			       l->block_ref_to->dev_state->last_flush_gen);
2588 			ret = -1;
2589 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2590 							      l->block_ref_to,
2591 							      recursion_level +
2592 							      1)) {
2593 			ret = -1;
2594 		}
2595 	}
2596 
2597 	return ret;
2598 }
2599 
2600 static int btrfsic_is_block_ref_by_superblock(
2601 		const struct btrfsic_state *state,
2602 		const struct btrfsic_block *block,
2603 		int recursion_level)
2604 {
2605 	struct list_head *elem_ref_from;
2606 
2607 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2608 		/* refer to comment at "abort cyclic linkage (case 1)" */
2609 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2610 			printk(KERN_INFO
2611 			       "btrfsic: abort cyclic linkage (case 2).\n");
2612 
2613 		return 0;
2614 	}
2615 
2616 	/*
2617 	 * This algorithm is recursive because the amount of used stack space
2618 	 * is very small and the max recursion depth is limited.
2619 	 */
2620 	list_for_each(elem_ref_from, &block->ref_from_list) {
2621 		const struct btrfsic_block_link *const l =
2622 		    list_entry(elem_ref_from, struct btrfsic_block_link,
2623 			       node_ref_from);
2624 
2625 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2626 			printk(KERN_INFO
2627 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2628 			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2629 			       recursion_level,
2630 			       btrfsic_get_block_type(state, block),
2631 			       block->logical_bytenr, block->dev_state->name,
2632 			       block->dev_bytenr, block->mirror_num,
2633 			       l->ref_cnt,
2634 			       btrfsic_get_block_type(state, l->block_ref_from),
2635 			       l->block_ref_from->logical_bytenr,
2636 			       l->block_ref_from->dev_state->name,
2637 			       l->block_ref_from->dev_bytenr,
2638 			       l->block_ref_from->mirror_num);
2639 		if (l->block_ref_from->is_superblock &&
2640 		    state->latest_superblock->dev_bytenr ==
2641 		    l->block_ref_from->dev_bytenr &&
2642 		    state->latest_superblock->dev_state->bdev ==
2643 		    l->block_ref_from->dev_state->bdev)
2644 			return 1;
2645 		else if (btrfsic_is_block_ref_by_superblock(state,
2646 							    l->block_ref_from,
2647 							    recursion_level +
2648 							    1))
2649 			return 1;
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2656 				   const struct btrfsic_block_link *l)
2657 {
2658 	printk(KERN_INFO
2659 	       "Add %u* link from %c @%llu (%s/%llu/%d)"
2660 	       " to %c @%llu (%s/%llu/%d).\n",
2661 	       l->ref_cnt,
2662 	       btrfsic_get_block_type(state, l->block_ref_from),
2663 	       l->block_ref_from->logical_bytenr,
2664 	       l->block_ref_from->dev_state->name,
2665 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2666 	       btrfsic_get_block_type(state, l->block_ref_to),
2667 	       l->block_ref_to->logical_bytenr,
2668 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2669 	       l->block_ref_to->mirror_num);
2670 }
2671 
2672 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2673 				   const struct btrfsic_block_link *l)
2674 {
2675 	printk(KERN_INFO
2676 	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
2677 	       " to %c @%llu (%s/%llu/%d).\n",
2678 	       l->ref_cnt,
2679 	       btrfsic_get_block_type(state, l->block_ref_from),
2680 	       l->block_ref_from->logical_bytenr,
2681 	       l->block_ref_from->dev_state->name,
2682 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2683 	       btrfsic_get_block_type(state, l->block_ref_to),
2684 	       l->block_ref_to->logical_bytenr,
2685 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2686 	       l->block_ref_to->mirror_num);
2687 }
2688 
2689 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2690 				   const struct btrfsic_block *block)
2691 {
2692 	if (block->is_superblock &&
2693 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2694 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2695 		return 'S';
2696 	else if (block->is_superblock)
2697 		return 's';
2698 	else if (block->is_metadata)
2699 		return 'M';
2700 	else
2701 		return 'D';
2702 }
2703 
2704 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2705 {
2706 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2707 }
2708 
2709 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2710 				  const struct btrfsic_block *block,
2711 				  int indent_level)
2712 {
2713 	struct list_head *elem_ref_to;
2714 	int indent_add;
2715 	static char buf[80];
2716 	int cursor_position;
2717 
2718 	/*
2719 	 * Should better fill an on-stack buffer with a complete line and
2720 	 * dump it at once when it is time to print a newline character.
2721 	 */
2722 
2723 	/*
2724 	 * This algorithm is recursive because the amount of used stack space
2725 	 * is very small and the max recursion depth is limited.
2726 	 */
2727 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2728 			     btrfsic_get_block_type(state, block),
2729 			     block->logical_bytenr, block->dev_state->name,
2730 			     block->dev_bytenr, block->mirror_num);
2731 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2732 		printk("[...]\n");
2733 		return;
2734 	}
2735 	printk(buf);
2736 	indent_level += indent_add;
2737 	if (list_empty(&block->ref_to_list)) {
2738 		printk("\n");
2739 		return;
2740 	}
2741 	if (block->mirror_num > 1 &&
2742 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2743 		printk(" [...]\n");
2744 		return;
2745 	}
2746 
2747 	cursor_position = indent_level;
2748 	list_for_each(elem_ref_to, &block->ref_to_list) {
2749 		const struct btrfsic_block_link *const l =
2750 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2751 			       node_ref_to);
2752 
2753 		while (cursor_position < indent_level) {
2754 			printk(" ");
2755 			cursor_position++;
2756 		}
2757 		if (l->ref_cnt > 1)
2758 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2759 		else
2760 			indent_add = sprintf(buf, " --> ");
2761 		if (indent_level + indent_add >
2762 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2763 			printk("[...]\n");
2764 			cursor_position = 0;
2765 			continue;
2766 		}
2767 
2768 		printk(buf);
2769 
2770 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2771 				      indent_level + indent_add);
2772 		cursor_position = 0;
2773 	}
2774 }
2775 
2776 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2777 		struct btrfsic_state *state,
2778 		struct btrfsic_block_data_ctx *next_block_ctx,
2779 		struct btrfsic_block *next_block,
2780 		struct btrfsic_block *from_block,
2781 		u64 parent_generation)
2782 {
2783 	struct btrfsic_block_link *l;
2784 
2785 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2786 						next_block_ctx->dev_bytenr,
2787 						from_block->dev_state->bdev,
2788 						from_block->dev_bytenr,
2789 						&state->block_link_hashtable);
2790 	if (NULL == l) {
2791 		l = btrfsic_block_link_alloc();
2792 		if (NULL == l) {
2793 			printk(KERN_INFO
2794 			       "btrfsic: error, kmalloc" " failed!\n");
2795 			return NULL;
2796 		}
2797 
2798 		l->block_ref_to = next_block;
2799 		l->block_ref_from = from_block;
2800 		l->ref_cnt = 1;
2801 		l->parent_generation = parent_generation;
2802 
2803 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2804 			btrfsic_print_add_link(state, l);
2805 
2806 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2807 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2808 
2809 		btrfsic_block_link_hashtable_add(l,
2810 						 &state->block_link_hashtable);
2811 	} else {
2812 		l->ref_cnt++;
2813 		l->parent_generation = parent_generation;
2814 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2815 			btrfsic_print_add_link(state, l);
2816 	}
2817 
2818 	return l;
2819 }
2820 
2821 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2822 		struct btrfsic_state *state,
2823 		struct btrfsic_block_data_ctx *block_ctx,
2824 		const char *additional_string,
2825 		int is_metadata,
2826 		int is_iodone,
2827 		int never_written,
2828 		int mirror_num,
2829 		int *was_created)
2830 {
2831 	struct btrfsic_block *block;
2832 
2833 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2834 					       block_ctx->dev_bytenr,
2835 					       &state->block_hashtable);
2836 	if (NULL == block) {
2837 		struct btrfsic_dev_state *dev_state;
2838 
2839 		block = btrfsic_block_alloc();
2840 		if (NULL == block) {
2841 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2842 			return NULL;
2843 		}
2844 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2845 		if (NULL == dev_state) {
2846 			printk(KERN_INFO
2847 			       "btrfsic: error, lookup dev_state failed!\n");
2848 			btrfsic_block_free(block);
2849 			return NULL;
2850 		}
2851 		block->dev_state = dev_state;
2852 		block->dev_bytenr = block_ctx->dev_bytenr;
2853 		block->logical_bytenr = block_ctx->start;
2854 		block->is_metadata = is_metadata;
2855 		block->is_iodone = is_iodone;
2856 		block->never_written = never_written;
2857 		block->mirror_num = mirror_num;
2858 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2859 			printk(KERN_INFO
2860 			       "New %s%c-block @%llu (%s/%llu/%d)\n",
2861 			       additional_string,
2862 			       btrfsic_get_block_type(state, block),
2863 			       block->logical_bytenr, dev_state->name,
2864 			       block->dev_bytenr, mirror_num);
2865 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2866 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2867 		if (NULL != was_created)
2868 			*was_created = 1;
2869 	} else {
2870 		if (NULL != was_created)
2871 			*was_created = 0;
2872 	}
2873 
2874 	return block;
2875 }
2876 
2877 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2878 					   u64 bytenr,
2879 					   struct btrfsic_dev_state *dev_state,
2880 					   u64 dev_bytenr)
2881 {
2882 	int num_copies;
2883 	int mirror_num;
2884 	int ret;
2885 	struct btrfsic_block_data_ctx block_ctx;
2886 	int match = 0;
2887 
2888 	num_copies = btrfs_num_copies(state->root->fs_info,
2889 				      bytenr, state->metablock_size);
2890 
2891 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2892 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2893 					&block_ctx, mirror_num);
2894 		if (ret) {
2895 			printk(KERN_INFO "btrfsic:"
2896 			       " btrfsic_map_block(logical @%llu,"
2897 			       " mirror %d) failed!\n",
2898 			       bytenr, mirror_num);
2899 			continue;
2900 		}
2901 
2902 		if (dev_state->bdev == block_ctx.dev->bdev &&
2903 		    dev_bytenr == block_ctx.dev_bytenr) {
2904 			match++;
2905 			btrfsic_release_block_ctx(&block_ctx);
2906 			break;
2907 		}
2908 		btrfsic_release_block_ctx(&block_ctx);
2909 	}
2910 
2911 	if (WARN_ON(!match)) {
2912 		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2913 		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2914 		       " phys_bytenr=%llu)!\n",
2915 		       bytenr, dev_state->name, dev_bytenr);
2916 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2917 			ret = btrfsic_map_block(state, bytenr,
2918 						state->metablock_size,
2919 						&block_ctx, mirror_num);
2920 			if (ret)
2921 				continue;
2922 
2923 			printk(KERN_INFO "Read logical bytenr @%llu maps to"
2924 			       " (%s/%llu/%d)\n",
2925 			       bytenr, block_ctx.dev->name,
2926 			       block_ctx.dev_bytenr, mirror_num);
2927 		}
2928 	}
2929 }
2930 
2931 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2932 		struct block_device *bdev)
2933 {
2934 	struct btrfsic_dev_state *ds;
2935 
2936 	ds = btrfsic_dev_state_hashtable_lookup(bdev,
2937 						&btrfsic_dev_state_hashtable);
2938 	return ds;
2939 }
2940 
2941 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2942 {
2943 	struct btrfsic_dev_state *dev_state;
2944 
2945 	if (!btrfsic_is_initialized)
2946 		return submit_bh(rw, bh);
2947 
2948 	mutex_lock(&btrfsic_mutex);
2949 	/* since btrfsic_submit_bh() might also be called before
2950 	 * btrfsic_mount(), this might return NULL */
2951 	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2952 
2953 	/* Only called to write the superblock (incl. FLUSH/FUA) */
2954 	if (NULL != dev_state &&
2955 	    (rw & WRITE) && bh->b_size > 0) {
2956 		u64 dev_bytenr;
2957 
2958 		dev_bytenr = 4096 * bh->b_blocknr;
2959 		if (dev_state->state->print_mask &
2960 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2961 			printk(KERN_INFO
2962 			       "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2963 			       " size=%zu, data=%p, bdev=%p)\n",
2964 			       rw, (unsigned long long)bh->b_blocknr,
2965 			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2966 		btrfsic_process_written_block(dev_state, dev_bytenr,
2967 					      &bh->b_data, 1, NULL,
2968 					      NULL, bh, rw);
2969 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2970 		if (dev_state->state->print_mask &
2971 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2972 			printk(KERN_INFO
2973 			       "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2974 			       rw, bh->b_bdev);
2975 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2976 			if ((dev_state->state->print_mask &
2977 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2978 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2979 				printk(KERN_INFO
2980 				       "btrfsic_submit_bh(%s) with FLUSH"
2981 				       " but dummy block already in use"
2982 				       " (ignored)!\n",
2983 				       dev_state->name);
2984 		} else {
2985 			struct btrfsic_block *const block =
2986 				&dev_state->dummy_block_for_bio_bh_flush;
2987 
2988 			block->is_iodone = 0;
2989 			block->never_written = 0;
2990 			block->iodone_w_error = 0;
2991 			block->flush_gen = dev_state->last_flush_gen + 1;
2992 			block->submit_bio_bh_rw = rw;
2993 			block->orig_bio_bh_private = bh->b_private;
2994 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2995 			block->next_in_same_bio = NULL;
2996 			bh->b_private = block;
2997 			bh->b_end_io = btrfsic_bh_end_io;
2998 		}
2999 	}
3000 	mutex_unlock(&btrfsic_mutex);
3001 	return submit_bh(rw, bh);
3002 }
3003 
3004 static void __btrfsic_submit_bio(int rw, struct bio *bio)
3005 {
3006 	struct btrfsic_dev_state *dev_state;
3007 
3008 	if (!btrfsic_is_initialized)
3009 		return;
3010 
3011 	mutex_lock(&btrfsic_mutex);
3012 	/* since btrfsic_submit_bio() is also called before
3013 	 * btrfsic_mount(), this might return NULL */
3014 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3015 	if (NULL != dev_state &&
3016 	    (rw & WRITE) && NULL != bio->bi_io_vec) {
3017 		unsigned int i;
3018 		u64 dev_bytenr;
3019 		u64 cur_bytenr;
3020 		int bio_is_patched;
3021 		char **mapped_datav;
3022 
3023 		dev_bytenr = 512 * bio->bi_iter.bi_sector;
3024 		bio_is_patched = 0;
3025 		if (dev_state->state->print_mask &
3026 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3027 			printk(KERN_INFO
3028 			       "submit_bio(rw=0x%x, bi_vcnt=%u,"
3029 			       " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3030 			       rw, bio->bi_vcnt,
3031 			       (unsigned long long)bio->bi_iter.bi_sector,
3032 			       dev_bytenr, bio->bi_bdev);
3033 
3034 		mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3035 				       GFP_NOFS);
3036 		if (!mapped_datav)
3037 			goto leave;
3038 		cur_bytenr = dev_bytenr;
3039 		for (i = 0; i < bio->bi_vcnt; i++) {
3040 			BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3041 			mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3042 			if (!mapped_datav[i]) {
3043 				while (i > 0) {
3044 					i--;
3045 					kunmap(bio->bi_io_vec[i].bv_page);
3046 				}
3047 				kfree(mapped_datav);
3048 				goto leave;
3049 			}
3050 			if (dev_state->state->print_mask &
3051 			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3052 				printk(KERN_INFO
3053 				       "#%u: bytenr=%llu, len=%u, offset=%u\n",
3054 				       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3055 				       bio->bi_io_vec[i].bv_offset);
3056 			cur_bytenr += bio->bi_io_vec[i].bv_len;
3057 		}
3058 		btrfsic_process_written_block(dev_state, dev_bytenr,
3059 					      mapped_datav, bio->bi_vcnt,
3060 					      bio, &bio_is_patched,
3061 					      NULL, rw);
3062 		while (i > 0) {
3063 			i--;
3064 			kunmap(bio->bi_io_vec[i].bv_page);
3065 		}
3066 		kfree(mapped_datav);
3067 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3068 		if (dev_state->state->print_mask &
3069 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3070 			printk(KERN_INFO
3071 			       "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3072 			       rw, bio->bi_bdev);
3073 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3074 			if ((dev_state->state->print_mask &
3075 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3076 			      BTRFSIC_PRINT_MASK_VERBOSE)))
3077 				printk(KERN_INFO
3078 				       "btrfsic_submit_bio(%s) with FLUSH"
3079 				       " but dummy block already in use"
3080 				       " (ignored)!\n",
3081 				       dev_state->name);
3082 		} else {
3083 			struct btrfsic_block *const block =
3084 				&dev_state->dummy_block_for_bio_bh_flush;
3085 
3086 			block->is_iodone = 0;
3087 			block->never_written = 0;
3088 			block->iodone_w_error = 0;
3089 			block->flush_gen = dev_state->last_flush_gen + 1;
3090 			block->submit_bio_bh_rw = rw;
3091 			block->orig_bio_bh_private = bio->bi_private;
3092 			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3093 			block->next_in_same_bio = NULL;
3094 			bio->bi_private = block;
3095 			bio->bi_end_io = btrfsic_bio_end_io;
3096 		}
3097 	}
3098 leave:
3099 	mutex_unlock(&btrfsic_mutex);
3100 }
3101 
3102 void btrfsic_submit_bio(int rw, struct bio *bio)
3103 {
3104 	__btrfsic_submit_bio(rw, bio);
3105 	submit_bio(rw, bio);
3106 }
3107 
3108 int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3109 {
3110 	__btrfsic_submit_bio(rw, bio);
3111 	return submit_bio_wait(rw, bio);
3112 }
3113 
3114 int btrfsic_mount(struct btrfs_root *root,
3115 		  struct btrfs_fs_devices *fs_devices,
3116 		  int including_extent_data, u32 print_mask)
3117 {
3118 	int ret;
3119 	struct btrfsic_state *state;
3120 	struct list_head *dev_head = &fs_devices->devices;
3121 	struct btrfs_device *device;
3122 
3123 	if (root->nodesize != root->leafsize) {
3124 		printk(KERN_INFO
3125 		       "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3126 		       root->nodesize, root->leafsize);
3127 		return -1;
3128 	}
3129 	if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3130 		printk(KERN_INFO
3131 		       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3132 		       root->nodesize, PAGE_CACHE_SIZE);
3133 		return -1;
3134 	}
3135 	if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3136 		printk(KERN_INFO
3137 		       "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3138 		       root->leafsize, PAGE_CACHE_SIZE);
3139 		return -1;
3140 	}
3141 	if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3142 		printk(KERN_INFO
3143 		       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3144 		       root->sectorsize, PAGE_CACHE_SIZE);
3145 		return -1;
3146 	}
3147 	state = kzalloc(sizeof(*state), GFP_NOFS);
3148 	if (NULL == state) {
3149 		printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3150 		return -1;
3151 	}
3152 
3153 	if (!btrfsic_is_initialized) {
3154 		mutex_init(&btrfsic_mutex);
3155 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3156 		btrfsic_is_initialized = 1;
3157 	}
3158 	mutex_lock(&btrfsic_mutex);
3159 	state->root = root;
3160 	state->print_mask = print_mask;
3161 	state->include_extent_data = including_extent_data;
3162 	state->csum_size = 0;
3163 	state->metablock_size = root->nodesize;
3164 	state->datablock_size = root->sectorsize;
3165 	INIT_LIST_HEAD(&state->all_blocks_list);
3166 	btrfsic_block_hashtable_init(&state->block_hashtable);
3167 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3168 	state->max_superblock_generation = 0;
3169 	state->latest_superblock = NULL;
3170 
3171 	list_for_each_entry(device, dev_head, dev_list) {
3172 		struct btrfsic_dev_state *ds;
3173 		char *p;
3174 
3175 		if (!device->bdev || !device->name)
3176 			continue;
3177 
3178 		ds = btrfsic_dev_state_alloc();
3179 		if (NULL == ds) {
3180 			printk(KERN_INFO
3181 			       "btrfs check-integrity: kmalloc() failed!\n");
3182 			mutex_unlock(&btrfsic_mutex);
3183 			return -1;
3184 		}
3185 		ds->bdev = device->bdev;
3186 		ds->state = state;
3187 		bdevname(ds->bdev, ds->name);
3188 		ds->name[BDEVNAME_SIZE - 1] = '\0';
3189 		for (p = ds->name; *p != '\0'; p++);
3190 		while (p > ds->name && *p != '/')
3191 			p--;
3192 		if (*p == '/')
3193 			p++;
3194 		strlcpy(ds->name, p, sizeof(ds->name));
3195 		btrfsic_dev_state_hashtable_add(ds,
3196 						&btrfsic_dev_state_hashtable);
3197 	}
3198 
3199 	ret = btrfsic_process_superblock(state, fs_devices);
3200 	if (0 != ret) {
3201 		mutex_unlock(&btrfsic_mutex);
3202 		btrfsic_unmount(root, fs_devices);
3203 		return ret;
3204 	}
3205 
3206 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3207 		btrfsic_dump_database(state);
3208 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3209 		btrfsic_dump_tree(state);
3210 
3211 	mutex_unlock(&btrfsic_mutex);
3212 	return 0;
3213 }
3214 
3215 void btrfsic_unmount(struct btrfs_root *root,
3216 		     struct btrfs_fs_devices *fs_devices)
3217 {
3218 	struct list_head *elem_all;
3219 	struct list_head *tmp_all;
3220 	struct btrfsic_state *state;
3221 	struct list_head *dev_head = &fs_devices->devices;
3222 	struct btrfs_device *device;
3223 
3224 	if (!btrfsic_is_initialized)
3225 		return;
3226 
3227 	mutex_lock(&btrfsic_mutex);
3228 
3229 	state = NULL;
3230 	list_for_each_entry(device, dev_head, dev_list) {
3231 		struct btrfsic_dev_state *ds;
3232 
3233 		if (!device->bdev || !device->name)
3234 			continue;
3235 
3236 		ds = btrfsic_dev_state_hashtable_lookup(
3237 				device->bdev,
3238 				&btrfsic_dev_state_hashtable);
3239 		if (NULL != ds) {
3240 			state = ds->state;
3241 			btrfsic_dev_state_hashtable_remove(ds);
3242 			btrfsic_dev_state_free(ds);
3243 		}
3244 	}
3245 
3246 	if (NULL == state) {
3247 		printk(KERN_INFO
3248 		       "btrfsic: error, cannot find state information"
3249 		       " on umount!\n");
3250 		mutex_unlock(&btrfsic_mutex);
3251 		return;
3252 	}
3253 
3254 	/*
3255 	 * Don't care about keeping the lists' state up to date,
3256 	 * just free all memory that was allocated dynamically.
3257 	 * Free the blocks and the block_links.
3258 	 */
3259 	list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3260 		struct btrfsic_block *const b_all =
3261 		    list_entry(elem_all, struct btrfsic_block,
3262 			       all_blocks_node);
3263 		struct list_head *elem_ref_to;
3264 		struct list_head *tmp_ref_to;
3265 
3266 		list_for_each_safe(elem_ref_to, tmp_ref_to,
3267 				   &b_all->ref_to_list) {
3268 			struct btrfsic_block_link *const l =
3269 			    list_entry(elem_ref_to,
3270 				       struct btrfsic_block_link,
3271 				       node_ref_to);
3272 
3273 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3274 				btrfsic_print_rem_link(state, l);
3275 
3276 			l->ref_cnt--;
3277 			if (0 == l->ref_cnt)
3278 				btrfsic_block_link_free(l);
3279 		}
3280 
3281 		if (b_all->is_iodone || b_all->never_written)
3282 			btrfsic_block_free(b_all);
3283 		else
3284 			printk(KERN_INFO "btrfs: attempt to free %c-block"
3285 			       " @%llu (%s/%llu/%d) on umount which is"
3286 			       " not yet iodone!\n",
3287 			       btrfsic_get_block_type(state, b_all),
3288 			       b_all->logical_bytenr, b_all->dev_state->name,
3289 			       b_all->dev_bytenr, b_all->mirror_num);
3290 	}
3291 
3292 	mutex_unlock(&btrfsic_mutex);
3293 
3294 	kfree(state);
3295 }
3296