1 /* 2 * Copyright (C) STRATO AG 2011. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 /* 20 * This module can be used to catch cases when the btrfs kernel 21 * code executes write requests to the disk that bring the file 22 * system in an inconsistent state. In such a state, a power-loss 23 * or kernel panic event would cause that the data on disk is 24 * lost or at least damaged. 25 * 26 * Code is added that examines all block write requests during 27 * runtime (including writes of the super block). Three rules 28 * are verified and an error is printed on violation of the 29 * rules: 30 * 1. It is not allowed to write a disk block which is 31 * currently referenced by the super block (either directly 32 * or indirectly). 33 * 2. When a super block is written, it is verified that all 34 * referenced (directly or indirectly) blocks fulfill the 35 * following requirements: 36 * 2a. All referenced blocks have either been present when 37 * the file system was mounted, (i.e., they have been 38 * referenced by the super block) or they have been 39 * written since then and the write completion callback 40 * was called and no write error was indicated and a 41 * FLUSH request to the device where these blocks are 42 * located was received and completed. 43 * 2b. All referenced blocks need to have a generation 44 * number which is equal to the parent's number. 45 * 46 * One issue that was found using this module was that the log 47 * tree on disk became temporarily corrupted because disk blocks 48 * that had been in use for the log tree had been freed and 49 * reused too early, while being referenced by the written super 50 * block. 51 * 52 * The search term in the kernel log that can be used to filter 53 * on the existence of detected integrity issues is 54 * "btrfs: attempt". 55 * 56 * The integrity check is enabled via mount options. These 57 * mount options are only supported if the integrity check 58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY. 59 * 60 * Example #1, apply integrity checks to all metadata: 61 * mount /dev/sdb1 /mnt -o check_int 62 * 63 * Example #2, apply integrity checks to all metadata and 64 * to data extents: 65 * mount /dev/sdb1 /mnt -o check_int_data 66 * 67 * Example #3, apply integrity checks to all metadata and dump 68 * the tree that the super block references to kernel messages 69 * each time after a super block was written: 70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263 71 * 72 * If the integrity check tool is included and activated in 73 * the mount options, plenty of kernel memory is used, and 74 * plenty of additional CPU cycles are spent. Enabling this 75 * functionality is not intended for normal use. In most 76 * cases, unless you are a btrfs developer who needs to verify 77 * the integrity of (super)-block write requests, do not 78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to 79 * include and compile the integrity check tool. 80 * 81 * Expect millions of lines of information in the kernel log with an 82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the 83 * kernel config to at least 26 (which is 64MB). Usually the value is 84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be 85 * changed like this before LOG_BUF_SHIFT can be set to a high value: 86 * config LOG_BUF_SHIFT 87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" 88 * range 12 30 89 */ 90 91 #include <linux/sched.h> 92 #include <linux/slab.h> 93 #include <linux/buffer_head.h> 94 #include <linux/mutex.h> 95 #include <linux/genhd.h> 96 #include <linux/blkdev.h> 97 #include "ctree.h" 98 #include "disk-io.h" 99 #include "hash.h" 100 #include "transaction.h" 101 #include "extent_io.h" 102 #include "volumes.h" 103 #include "print-tree.h" 104 #include "locking.h" 105 #include "check-integrity.h" 106 #include "rcu-string.h" 107 108 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000 109 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000 110 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100 111 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051 112 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807 113 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530 114 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300 115 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters, 116 * excluding " [...]" */ 117 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1) 118 119 /* 120 * The definition of the bitmask fields for the print_mask. 121 * They are specified with the mount option check_integrity_print_mask. 122 */ 123 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001 124 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002 125 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004 126 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008 127 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010 128 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020 129 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040 130 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080 131 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100 132 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200 133 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400 134 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800 135 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000 136 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000 137 138 struct btrfsic_dev_state; 139 struct btrfsic_state; 140 141 struct btrfsic_block { 142 u32 magic_num; /* only used for debug purposes */ 143 unsigned int is_metadata:1; /* if it is meta-data, not data-data */ 144 unsigned int is_superblock:1; /* if it is one of the superblocks */ 145 unsigned int is_iodone:1; /* if is done by lower subsystem */ 146 unsigned int iodone_w_error:1; /* error was indicated to endio */ 147 unsigned int never_written:1; /* block was added because it was 148 * referenced, not because it was 149 * written */ 150 unsigned int mirror_num; /* large enough to hold 151 * BTRFS_SUPER_MIRROR_MAX */ 152 struct btrfsic_dev_state *dev_state; 153 u64 dev_bytenr; /* key, physical byte num on disk */ 154 u64 logical_bytenr; /* logical byte num on disk */ 155 u64 generation; 156 struct btrfs_disk_key disk_key; /* extra info to print in case of 157 * issues, will not always be correct */ 158 struct list_head collision_resolving_node; /* list node */ 159 struct list_head all_blocks_node; /* list node */ 160 161 /* the following two lists contain block_link items */ 162 struct list_head ref_to_list; /* list */ 163 struct list_head ref_from_list; /* list */ 164 struct btrfsic_block *next_in_same_bio; 165 void *orig_bio_bh_private; 166 union { 167 bio_end_io_t *bio; 168 bh_end_io_t *bh; 169 } orig_bio_bh_end_io; 170 int submit_bio_bh_rw; 171 u64 flush_gen; /* only valid if !never_written */ 172 }; 173 174 /* 175 * Elements of this type are allocated dynamically and required because 176 * each block object can refer to and can be ref from multiple blocks. 177 * The key to lookup them in the hashtable is the dev_bytenr of 178 * the block ref to plus the one from the block refered from. 179 * The fact that they are searchable via a hashtable and that a 180 * ref_cnt is maintained is not required for the btrfs integrity 181 * check algorithm itself, it is only used to make the output more 182 * beautiful in case that an error is detected (an error is defined 183 * as a write operation to a block while that block is still referenced). 184 */ 185 struct btrfsic_block_link { 186 u32 magic_num; /* only used for debug purposes */ 187 u32 ref_cnt; 188 struct list_head node_ref_to; /* list node */ 189 struct list_head node_ref_from; /* list node */ 190 struct list_head collision_resolving_node; /* list node */ 191 struct btrfsic_block *block_ref_to; 192 struct btrfsic_block *block_ref_from; 193 u64 parent_generation; 194 }; 195 196 struct btrfsic_dev_state { 197 u32 magic_num; /* only used for debug purposes */ 198 struct block_device *bdev; 199 struct btrfsic_state *state; 200 struct list_head collision_resolving_node; /* list node */ 201 struct btrfsic_block dummy_block_for_bio_bh_flush; 202 u64 last_flush_gen; 203 char name[BDEVNAME_SIZE]; 204 }; 205 206 struct btrfsic_block_hashtable { 207 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE]; 208 }; 209 210 struct btrfsic_block_link_hashtable { 211 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE]; 212 }; 213 214 struct btrfsic_dev_state_hashtable { 215 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE]; 216 }; 217 218 struct btrfsic_block_data_ctx { 219 u64 start; /* virtual bytenr */ 220 u64 dev_bytenr; /* physical bytenr on device */ 221 u32 len; 222 struct btrfsic_dev_state *dev; 223 char **datav; 224 struct page **pagev; 225 void *mem_to_free; 226 }; 227 228 /* This structure is used to implement recursion without occupying 229 * any stack space, refer to btrfsic_process_metablock() */ 230 struct btrfsic_stack_frame { 231 u32 magic; 232 u32 nr; 233 int error; 234 int i; 235 int limit_nesting; 236 int num_copies; 237 int mirror_num; 238 struct btrfsic_block *block; 239 struct btrfsic_block_data_ctx *block_ctx; 240 struct btrfsic_block *next_block; 241 struct btrfsic_block_data_ctx next_block_ctx; 242 struct btrfs_header *hdr; 243 struct btrfsic_stack_frame *prev; 244 }; 245 246 /* Some state per mounted filesystem */ 247 struct btrfsic_state { 248 u32 print_mask; 249 int include_extent_data; 250 int csum_size; 251 struct list_head all_blocks_list; 252 struct btrfsic_block_hashtable block_hashtable; 253 struct btrfsic_block_link_hashtable block_link_hashtable; 254 struct btrfs_root *root; 255 u64 max_superblock_generation; 256 struct btrfsic_block *latest_superblock; 257 u32 metablock_size; 258 u32 datablock_size; 259 }; 260 261 static void btrfsic_block_init(struct btrfsic_block *b); 262 static struct btrfsic_block *btrfsic_block_alloc(void); 263 static void btrfsic_block_free(struct btrfsic_block *b); 264 static void btrfsic_block_link_init(struct btrfsic_block_link *n); 265 static struct btrfsic_block_link *btrfsic_block_link_alloc(void); 266 static void btrfsic_block_link_free(struct btrfsic_block_link *n); 267 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds); 268 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void); 269 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds); 270 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h); 271 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 272 struct btrfsic_block_hashtable *h); 273 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b); 274 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 275 struct block_device *bdev, 276 u64 dev_bytenr, 277 struct btrfsic_block_hashtable *h); 278 static void btrfsic_block_link_hashtable_init( 279 struct btrfsic_block_link_hashtable *h); 280 static void btrfsic_block_link_hashtable_add( 281 struct btrfsic_block_link *l, 282 struct btrfsic_block_link_hashtable *h); 283 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l); 284 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 285 struct block_device *bdev_ref_to, 286 u64 dev_bytenr_ref_to, 287 struct block_device *bdev_ref_from, 288 u64 dev_bytenr_ref_from, 289 struct btrfsic_block_link_hashtable *h); 290 static void btrfsic_dev_state_hashtable_init( 291 struct btrfsic_dev_state_hashtable *h); 292 static void btrfsic_dev_state_hashtable_add( 293 struct btrfsic_dev_state *ds, 294 struct btrfsic_dev_state_hashtable *h); 295 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds); 296 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 297 struct block_device *bdev, 298 struct btrfsic_dev_state_hashtable *h); 299 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void); 300 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf); 301 static int btrfsic_process_superblock(struct btrfsic_state *state, 302 struct btrfs_fs_devices *fs_devices); 303 static int btrfsic_process_metablock(struct btrfsic_state *state, 304 struct btrfsic_block *block, 305 struct btrfsic_block_data_ctx *block_ctx, 306 int limit_nesting, int force_iodone_flag); 307 static void btrfsic_read_from_block_data( 308 struct btrfsic_block_data_ctx *block_ctx, 309 void *dst, u32 offset, size_t len); 310 static int btrfsic_create_link_to_next_block( 311 struct btrfsic_state *state, 312 struct btrfsic_block *block, 313 struct btrfsic_block_data_ctx 314 *block_ctx, u64 next_bytenr, 315 int limit_nesting, 316 struct btrfsic_block_data_ctx *next_block_ctx, 317 struct btrfsic_block **next_blockp, 318 int force_iodone_flag, 319 int *num_copiesp, int *mirror_nump, 320 struct btrfs_disk_key *disk_key, 321 u64 parent_generation); 322 static int btrfsic_handle_extent_data(struct btrfsic_state *state, 323 struct btrfsic_block *block, 324 struct btrfsic_block_data_ctx *block_ctx, 325 u32 item_offset, int force_iodone_flag); 326 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 327 struct btrfsic_block_data_ctx *block_ctx_out, 328 int mirror_num); 329 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr, 330 u32 len, struct block_device *bdev, 331 struct btrfsic_block_data_ctx *block_ctx_out); 332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx); 333 static int btrfsic_read_block(struct btrfsic_state *state, 334 struct btrfsic_block_data_ctx *block_ctx); 335 static void btrfsic_dump_database(struct btrfsic_state *state); 336 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 337 char **datav, unsigned int num_pages); 338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 339 u64 dev_bytenr, char **mapped_datav, 340 unsigned int num_pages, 341 struct bio *bio, int *bio_is_patched, 342 struct buffer_head *bh, 343 int submit_bio_bh_rw); 344 static int btrfsic_process_written_superblock( 345 struct btrfsic_state *state, 346 struct btrfsic_block *const block, 347 struct btrfs_super_block *const super_hdr); 348 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status); 349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate); 350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state, 351 const struct btrfsic_block *block, 352 int recursion_level); 353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 354 struct btrfsic_block *const block, 355 int recursion_level); 356 static void btrfsic_print_add_link(const struct btrfsic_state *state, 357 const struct btrfsic_block_link *l); 358 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 359 const struct btrfsic_block_link *l); 360 static char btrfsic_get_block_type(const struct btrfsic_state *state, 361 const struct btrfsic_block *block); 362 static void btrfsic_dump_tree(const struct btrfsic_state *state); 363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 364 const struct btrfsic_block *block, 365 int indent_level); 366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 367 struct btrfsic_state *state, 368 struct btrfsic_block_data_ctx *next_block_ctx, 369 struct btrfsic_block *next_block, 370 struct btrfsic_block *from_block, 371 u64 parent_generation); 372 static struct btrfsic_block *btrfsic_block_lookup_or_add( 373 struct btrfsic_state *state, 374 struct btrfsic_block_data_ctx *block_ctx, 375 const char *additional_string, 376 int is_metadata, 377 int is_iodone, 378 int never_written, 379 int mirror_num, 380 int *was_created); 381 static int btrfsic_process_superblock_dev_mirror( 382 struct btrfsic_state *state, 383 struct btrfsic_dev_state *dev_state, 384 struct btrfs_device *device, 385 int superblock_mirror_num, 386 struct btrfsic_dev_state **selected_dev_state, 387 struct btrfs_super_block *selected_super); 388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 389 struct block_device *bdev); 390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 391 u64 bytenr, 392 struct btrfsic_dev_state *dev_state, 393 u64 dev_bytenr); 394 395 static struct mutex btrfsic_mutex; 396 static int btrfsic_is_initialized; 397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable; 398 399 400 static void btrfsic_block_init(struct btrfsic_block *b) 401 { 402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER; 403 b->dev_state = NULL; 404 b->dev_bytenr = 0; 405 b->logical_bytenr = 0; 406 b->generation = BTRFSIC_GENERATION_UNKNOWN; 407 b->disk_key.objectid = 0; 408 b->disk_key.type = 0; 409 b->disk_key.offset = 0; 410 b->is_metadata = 0; 411 b->is_superblock = 0; 412 b->is_iodone = 0; 413 b->iodone_w_error = 0; 414 b->never_written = 0; 415 b->mirror_num = 0; 416 b->next_in_same_bio = NULL; 417 b->orig_bio_bh_private = NULL; 418 b->orig_bio_bh_end_io.bio = NULL; 419 INIT_LIST_HEAD(&b->collision_resolving_node); 420 INIT_LIST_HEAD(&b->all_blocks_node); 421 INIT_LIST_HEAD(&b->ref_to_list); 422 INIT_LIST_HEAD(&b->ref_from_list); 423 b->submit_bio_bh_rw = 0; 424 b->flush_gen = 0; 425 } 426 427 static struct btrfsic_block *btrfsic_block_alloc(void) 428 { 429 struct btrfsic_block *b; 430 431 b = kzalloc(sizeof(*b), GFP_NOFS); 432 if (NULL != b) 433 btrfsic_block_init(b); 434 435 return b; 436 } 437 438 static void btrfsic_block_free(struct btrfsic_block *b) 439 { 440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num)); 441 kfree(b); 442 } 443 444 static void btrfsic_block_link_init(struct btrfsic_block_link *l) 445 { 446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER; 447 l->ref_cnt = 1; 448 INIT_LIST_HEAD(&l->node_ref_to); 449 INIT_LIST_HEAD(&l->node_ref_from); 450 INIT_LIST_HEAD(&l->collision_resolving_node); 451 l->block_ref_to = NULL; 452 l->block_ref_from = NULL; 453 } 454 455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void) 456 { 457 struct btrfsic_block_link *l; 458 459 l = kzalloc(sizeof(*l), GFP_NOFS); 460 if (NULL != l) 461 btrfsic_block_link_init(l); 462 463 return l; 464 } 465 466 static void btrfsic_block_link_free(struct btrfsic_block_link *l) 467 { 468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num)); 469 kfree(l); 470 } 471 472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds) 473 { 474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER; 475 ds->bdev = NULL; 476 ds->state = NULL; 477 ds->name[0] = '\0'; 478 INIT_LIST_HEAD(&ds->collision_resolving_node); 479 ds->last_flush_gen = 0; 480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush); 481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1; 482 ds->dummy_block_for_bio_bh_flush.dev_state = ds; 483 } 484 485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void) 486 { 487 struct btrfsic_dev_state *ds; 488 489 ds = kzalloc(sizeof(*ds), GFP_NOFS); 490 if (NULL != ds) 491 btrfsic_dev_state_init(ds); 492 493 return ds; 494 } 495 496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds) 497 { 498 BUG_ON(!(NULL == ds || 499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num)); 500 kfree(ds); 501 } 502 503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h) 504 { 505 int i; 506 507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++) 508 INIT_LIST_HEAD(h->table + i); 509 } 510 511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 512 struct btrfsic_block_hashtable *h) 513 { 514 const unsigned int hashval = 515 (((unsigned int)(b->dev_bytenr >> 16)) ^ 516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) & 517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 518 519 list_add(&b->collision_resolving_node, h->table + hashval); 520 } 521 522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b) 523 { 524 list_del(&b->collision_resolving_node); 525 } 526 527 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 528 struct block_device *bdev, 529 u64 dev_bytenr, 530 struct btrfsic_block_hashtable *h) 531 { 532 const unsigned int hashval = 533 (((unsigned int)(dev_bytenr >> 16)) ^ 534 ((unsigned int)((uintptr_t)bdev))) & 535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 536 struct list_head *elem; 537 538 list_for_each(elem, h->table + hashval) { 539 struct btrfsic_block *const b = 540 list_entry(elem, struct btrfsic_block, 541 collision_resolving_node); 542 543 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr) 544 return b; 545 } 546 547 return NULL; 548 } 549 550 static void btrfsic_block_link_hashtable_init( 551 struct btrfsic_block_link_hashtable *h) 552 { 553 int i; 554 555 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++) 556 INIT_LIST_HEAD(h->table + i); 557 } 558 559 static void btrfsic_block_link_hashtable_add( 560 struct btrfsic_block_link *l, 561 struct btrfsic_block_link_hashtable *h) 562 { 563 const unsigned int hashval = 564 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^ 565 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^ 566 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^ 567 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev))) 568 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 569 570 BUG_ON(NULL == l->block_ref_to); 571 BUG_ON(NULL == l->block_ref_from); 572 list_add(&l->collision_resolving_node, h->table + hashval); 573 } 574 575 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l) 576 { 577 list_del(&l->collision_resolving_node); 578 } 579 580 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 581 struct block_device *bdev_ref_to, 582 u64 dev_bytenr_ref_to, 583 struct block_device *bdev_ref_from, 584 u64 dev_bytenr_ref_from, 585 struct btrfsic_block_link_hashtable *h) 586 { 587 const unsigned int hashval = 588 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^ 589 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^ 590 ((unsigned int)((uintptr_t)bdev_ref_to)) ^ 591 ((unsigned int)((uintptr_t)bdev_ref_from))) & 592 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 593 struct list_head *elem; 594 595 list_for_each(elem, h->table + hashval) { 596 struct btrfsic_block_link *const l = 597 list_entry(elem, struct btrfsic_block_link, 598 collision_resolving_node); 599 600 BUG_ON(NULL == l->block_ref_to); 601 BUG_ON(NULL == l->block_ref_from); 602 if (l->block_ref_to->dev_state->bdev == bdev_ref_to && 603 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to && 604 l->block_ref_from->dev_state->bdev == bdev_ref_from && 605 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from) 606 return l; 607 } 608 609 return NULL; 610 } 611 612 static void btrfsic_dev_state_hashtable_init( 613 struct btrfsic_dev_state_hashtable *h) 614 { 615 int i; 616 617 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++) 618 INIT_LIST_HEAD(h->table + i); 619 } 620 621 static void btrfsic_dev_state_hashtable_add( 622 struct btrfsic_dev_state *ds, 623 struct btrfsic_dev_state_hashtable *h) 624 { 625 const unsigned int hashval = 626 (((unsigned int)((uintptr_t)ds->bdev)) & 627 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 628 629 list_add(&ds->collision_resolving_node, h->table + hashval); 630 } 631 632 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds) 633 { 634 list_del(&ds->collision_resolving_node); 635 } 636 637 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 638 struct block_device *bdev, 639 struct btrfsic_dev_state_hashtable *h) 640 { 641 const unsigned int hashval = 642 (((unsigned int)((uintptr_t)bdev)) & 643 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 644 struct list_head *elem; 645 646 list_for_each(elem, h->table + hashval) { 647 struct btrfsic_dev_state *const ds = 648 list_entry(elem, struct btrfsic_dev_state, 649 collision_resolving_node); 650 651 if (ds->bdev == bdev) 652 return ds; 653 } 654 655 return NULL; 656 } 657 658 static int btrfsic_process_superblock(struct btrfsic_state *state, 659 struct btrfs_fs_devices *fs_devices) 660 { 661 int ret = 0; 662 struct btrfs_super_block *selected_super; 663 struct list_head *dev_head = &fs_devices->devices; 664 struct btrfs_device *device; 665 struct btrfsic_dev_state *selected_dev_state = NULL; 666 int pass; 667 668 BUG_ON(NULL == state); 669 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS); 670 if (NULL == selected_super) { 671 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 672 return -1; 673 } 674 675 list_for_each_entry(device, dev_head, dev_list) { 676 int i; 677 struct btrfsic_dev_state *dev_state; 678 679 if (!device->bdev || !device->name) 680 continue; 681 682 dev_state = btrfsic_dev_state_lookup(device->bdev); 683 BUG_ON(NULL == dev_state); 684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 685 ret = btrfsic_process_superblock_dev_mirror( 686 state, dev_state, device, i, 687 &selected_dev_state, selected_super); 688 if (0 != ret && 0 == i) { 689 kfree(selected_super); 690 return ret; 691 } 692 } 693 } 694 695 if (NULL == state->latest_superblock) { 696 printk(KERN_INFO "btrfsic: no superblock found!\n"); 697 kfree(selected_super); 698 return -1; 699 } 700 701 state->csum_size = btrfs_super_csum_size(selected_super); 702 703 for (pass = 0; pass < 3; pass++) { 704 int num_copies; 705 int mirror_num; 706 u64 next_bytenr; 707 708 switch (pass) { 709 case 0: 710 next_bytenr = btrfs_super_root(selected_super); 711 if (state->print_mask & 712 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 713 printk(KERN_INFO "root@%llu\n", next_bytenr); 714 break; 715 case 1: 716 next_bytenr = btrfs_super_chunk_root(selected_super); 717 if (state->print_mask & 718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 719 printk(KERN_INFO "chunk@%llu\n", next_bytenr); 720 break; 721 case 2: 722 next_bytenr = btrfs_super_log_root(selected_super); 723 if (0 == next_bytenr) 724 continue; 725 if (state->print_mask & 726 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 727 printk(KERN_INFO "log@%llu\n", next_bytenr); 728 break; 729 } 730 731 num_copies = 732 btrfs_num_copies(state->root->fs_info, 733 next_bytenr, state->metablock_size); 734 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 735 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 736 next_bytenr, num_copies); 737 738 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 739 struct btrfsic_block *next_block; 740 struct btrfsic_block_data_ctx tmp_next_block_ctx; 741 struct btrfsic_block_link *l; 742 743 ret = btrfsic_map_block(state, next_bytenr, 744 state->metablock_size, 745 &tmp_next_block_ctx, 746 mirror_num); 747 if (ret) { 748 printk(KERN_INFO "btrfsic:" 749 " btrfsic_map_block(root @%llu," 750 " mirror %d) failed!\n", 751 next_bytenr, mirror_num); 752 kfree(selected_super); 753 return -1; 754 } 755 756 next_block = btrfsic_block_hashtable_lookup( 757 tmp_next_block_ctx.dev->bdev, 758 tmp_next_block_ctx.dev_bytenr, 759 &state->block_hashtable); 760 BUG_ON(NULL == next_block); 761 762 l = btrfsic_block_link_hashtable_lookup( 763 tmp_next_block_ctx.dev->bdev, 764 tmp_next_block_ctx.dev_bytenr, 765 state->latest_superblock->dev_state-> 766 bdev, 767 state->latest_superblock->dev_bytenr, 768 &state->block_link_hashtable); 769 BUG_ON(NULL == l); 770 771 ret = btrfsic_read_block(state, &tmp_next_block_ctx); 772 if (ret < (int)PAGE_CACHE_SIZE) { 773 printk(KERN_INFO 774 "btrfsic: read @logical %llu failed!\n", 775 tmp_next_block_ctx.start); 776 btrfsic_release_block_ctx(&tmp_next_block_ctx); 777 kfree(selected_super); 778 return -1; 779 } 780 781 ret = btrfsic_process_metablock(state, 782 next_block, 783 &tmp_next_block_ctx, 784 BTRFS_MAX_LEVEL + 3, 1); 785 btrfsic_release_block_ctx(&tmp_next_block_ctx); 786 } 787 } 788 789 kfree(selected_super); 790 return ret; 791 } 792 793 static int btrfsic_process_superblock_dev_mirror( 794 struct btrfsic_state *state, 795 struct btrfsic_dev_state *dev_state, 796 struct btrfs_device *device, 797 int superblock_mirror_num, 798 struct btrfsic_dev_state **selected_dev_state, 799 struct btrfs_super_block *selected_super) 800 { 801 struct btrfs_super_block *super_tmp; 802 u64 dev_bytenr; 803 struct buffer_head *bh; 804 struct btrfsic_block *superblock_tmp; 805 int pass; 806 struct block_device *const superblock_bdev = device->bdev; 807 808 /* super block bytenr is always the unmapped device bytenr */ 809 dev_bytenr = btrfs_sb_offset(superblock_mirror_num); 810 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes) 811 return -1; 812 bh = __bread(superblock_bdev, dev_bytenr / 4096, 813 BTRFS_SUPER_INFO_SIZE); 814 if (NULL == bh) 815 return -1; 816 super_tmp = (struct btrfs_super_block *) 817 (bh->b_data + (dev_bytenr & 4095)); 818 819 if (btrfs_super_bytenr(super_tmp) != dev_bytenr || 820 btrfs_super_magic(super_tmp) != BTRFS_MAGIC || 821 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) || 822 btrfs_super_nodesize(super_tmp) != state->metablock_size || 823 btrfs_super_leafsize(super_tmp) != state->metablock_size || 824 btrfs_super_sectorsize(super_tmp) != state->datablock_size) { 825 brelse(bh); 826 return 0; 827 } 828 829 superblock_tmp = 830 btrfsic_block_hashtable_lookup(superblock_bdev, 831 dev_bytenr, 832 &state->block_hashtable); 833 if (NULL == superblock_tmp) { 834 superblock_tmp = btrfsic_block_alloc(); 835 if (NULL == superblock_tmp) { 836 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 837 brelse(bh); 838 return -1; 839 } 840 /* for superblock, only the dev_bytenr makes sense */ 841 superblock_tmp->dev_bytenr = dev_bytenr; 842 superblock_tmp->dev_state = dev_state; 843 superblock_tmp->logical_bytenr = dev_bytenr; 844 superblock_tmp->generation = btrfs_super_generation(super_tmp); 845 superblock_tmp->is_metadata = 1; 846 superblock_tmp->is_superblock = 1; 847 superblock_tmp->is_iodone = 1; 848 superblock_tmp->never_written = 0; 849 superblock_tmp->mirror_num = 1 + superblock_mirror_num; 850 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 851 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)" 852 " @%llu (%s/%llu/%d)\n", 853 superblock_bdev, 854 rcu_str_deref(device->name), dev_bytenr, 855 dev_state->name, dev_bytenr, 856 superblock_mirror_num); 857 list_add(&superblock_tmp->all_blocks_node, 858 &state->all_blocks_list); 859 btrfsic_block_hashtable_add(superblock_tmp, 860 &state->block_hashtable); 861 } 862 863 /* select the one with the highest generation field */ 864 if (btrfs_super_generation(super_tmp) > 865 state->max_superblock_generation || 866 0 == state->max_superblock_generation) { 867 memcpy(selected_super, super_tmp, sizeof(*selected_super)); 868 *selected_dev_state = dev_state; 869 state->max_superblock_generation = 870 btrfs_super_generation(super_tmp); 871 state->latest_superblock = superblock_tmp; 872 } 873 874 for (pass = 0; pass < 3; pass++) { 875 u64 next_bytenr; 876 int num_copies; 877 int mirror_num; 878 const char *additional_string = NULL; 879 struct btrfs_disk_key tmp_disk_key; 880 881 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; 882 tmp_disk_key.offset = 0; 883 switch (pass) { 884 case 0: 885 btrfs_set_disk_key_objectid(&tmp_disk_key, 886 BTRFS_ROOT_TREE_OBJECTID); 887 additional_string = "initial root "; 888 next_bytenr = btrfs_super_root(super_tmp); 889 break; 890 case 1: 891 btrfs_set_disk_key_objectid(&tmp_disk_key, 892 BTRFS_CHUNK_TREE_OBJECTID); 893 additional_string = "initial chunk "; 894 next_bytenr = btrfs_super_chunk_root(super_tmp); 895 break; 896 case 2: 897 btrfs_set_disk_key_objectid(&tmp_disk_key, 898 BTRFS_TREE_LOG_OBJECTID); 899 additional_string = "initial log "; 900 next_bytenr = btrfs_super_log_root(super_tmp); 901 if (0 == next_bytenr) 902 continue; 903 break; 904 } 905 906 num_copies = 907 btrfs_num_copies(state->root->fs_info, 908 next_bytenr, state->metablock_size); 909 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 910 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 911 next_bytenr, num_copies); 912 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 913 struct btrfsic_block *next_block; 914 struct btrfsic_block_data_ctx tmp_next_block_ctx; 915 struct btrfsic_block_link *l; 916 917 if (btrfsic_map_block(state, next_bytenr, 918 state->metablock_size, 919 &tmp_next_block_ctx, 920 mirror_num)) { 921 printk(KERN_INFO "btrfsic: btrfsic_map_block(" 922 "bytenr @%llu, mirror %d) failed!\n", 923 next_bytenr, mirror_num); 924 brelse(bh); 925 return -1; 926 } 927 928 next_block = btrfsic_block_lookup_or_add( 929 state, &tmp_next_block_ctx, 930 additional_string, 1, 1, 0, 931 mirror_num, NULL); 932 if (NULL == next_block) { 933 btrfsic_release_block_ctx(&tmp_next_block_ctx); 934 brelse(bh); 935 return -1; 936 } 937 938 next_block->disk_key = tmp_disk_key; 939 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 940 l = btrfsic_block_link_lookup_or_add( 941 state, &tmp_next_block_ctx, 942 next_block, superblock_tmp, 943 BTRFSIC_GENERATION_UNKNOWN); 944 btrfsic_release_block_ctx(&tmp_next_block_ctx); 945 if (NULL == l) { 946 brelse(bh); 947 return -1; 948 } 949 } 950 } 951 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES) 952 btrfsic_dump_tree_sub(state, superblock_tmp, 0); 953 954 brelse(bh); 955 return 0; 956 } 957 958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void) 959 { 960 struct btrfsic_stack_frame *sf; 961 962 sf = kzalloc(sizeof(*sf), GFP_NOFS); 963 if (NULL == sf) 964 printk(KERN_INFO "btrfsic: alloc memory failed!\n"); 965 else 966 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER; 967 return sf; 968 } 969 970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf) 971 { 972 BUG_ON(!(NULL == sf || 973 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic)); 974 kfree(sf); 975 } 976 977 static int btrfsic_process_metablock( 978 struct btrfsic_state *state, 979 struct btrfsic_block *const first_block, 980 struct btrfsic_block_data_ctx *const first_block_ctx, 981 int first_limit_nesting, int force_iodone_flag) 982 { 983 struct btrfsic_stack_frame initial_stack_frame = { 0 }; 984 struct btrfsic_stack_frame *sf; 985 struct btrfsic_stack_frame *next_stack; 986 struct btrfs_header *const first_hdr = 987 (struct btrfs_header *)first_block_ctx->datav[0]; 988 989 BUG_ON(!first_hdr); 990 sf = &initial_stack_frame; 991 sf->error = 0; 992 sf->i = -1; 993 sf->limit_nesting = first_limit_nesting; 994 sf->block = first_block; 995 sf->block_ctx = first_block_ctx; 996 sf->next_block = NULL; 997 sf->hdr = first_hdr; 998 sf->prev = NULL; 999 1000 continue_with_new_stack_frame: 1001 sf->block->generation = le64_to_cpu(sf->hdr->generation); 1002 if (0 == sf->hdr->level) { 1003 struct btrfs_leaf *const leafhdr = 1004 (struct btrfs_leaf *)sf->hdr; 1005 1006 if (-1 == sf->i) { 1007 sf->nr = btrfs_stack_header_nritems(&leafhdr->header); 1008 1009 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1010 printk(KERN_INFO 1011 "leaf %llu items %d generation %llu" 1012 " owner %llu\n", 1013 sf->block_ctx->start, sf->nr, 1014 btrfs_stack_header_generation( 1015 &leafhdr->header), 1016 btrfs_stack_header_owner( 1017 &leafhdr->header)); 1018 } 1019 1020 continue_with_current_leaf_stack_frame: 1021 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1022 sf->i++; 1023 sf->num_copies = 0; 1024 } 1025 1026 if (sf->i < sf->nr) { 1027 struct btrfs_item disk_item; 1028 u32 disk_item_offset = 1029 (uintptr_t)(leafhdr->items + sf->i) - 1030 (uintptr_t)leafhdr; 1031 struct btrfs_disk_key *disk_key; 1032 u8 type; 1033 u32 item_offset; 1034 u32 item_size; 1035 1036 if (disk_item_offset + sizeof(struct btrfs_item) > 1037 sf->block_ctx->len) { 1038 leaf_item_out_of_bounce_error: 1039 printk(KERN_INFO 1040 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n", 1041 sf->block_ctx->start, 1042 sf->block_ctx->dev->name); 1043 goto one_stack_frame_backwards; 1044 } 1045 btrfsic_read_from_block_data(sf->block_ctx, 1046 &disk_item, 1047 disk_item_offset, 1048 sizeof(struct btrfs_item)); 1049 item_offset = btrfs_stack_item_offset(&disk_item); 1050 item_size = btrfs_stack_item_size(&disk_item); 1051 disk_key = &disk_item.key; 1052 type = btrfs_disk_key_type(disk_key); 1053 1054 if (BTRFS_ROOT_ITEM_KEY == type) { 1055 struct btrfs_root_item root_item; 1056 u32 root_item_offset; 1057 u64 next_bytenr; 1058 1059 root_item_offset = item_offset + 1060 offsetof(struct btrfs_leaf, items); 1061 if (root_item_offset + item_size > 1062 sf->block_ctx->len) 1063 goto leaf_item_out_of_bounce_error; 1064 btrfsic_read_from_block_data( 1065 sf->block_ctx, &root_item, 1066 root_item_offset, 1067 item_size); 1068 next_bytenr = btrfs_root_bytenr(&root_item); 1069 1070 sf->error = 1071 btrfsic_create_link_to_next_block( 1072 state, 1073 sf->block, 1074 sf->block_ctx, 1075 next_bytenr, 1076 sf->limit_nesting, 1077 &sf->next_block_ctx, 1078 &sf->next_block, 1079 force_iodone_flag, 1080 &sf->num_copies, 1081 &sf->mirror_num, 1082 disk_key, 1083 btrfs_root_generation( 1084 &root_item)); 1085 if (sf->error) 1086 goto one_stack_frame_backwards; 1087 1088 if (NULL != sf->next_block) { 1089 struct btrfs_header *const next_hdr = 1090 (struct btrfs_header *) 1091 sf->next_block_ctx.datav[0]; 1092 1093 next_stack = 1094 btrfsic_stack_frame_alloc(); 1095 if (NULL == next_stack) { 1096 btrfsic_release_block_ctx( 1097 &sf-> 1098 next_block_ctx); 1099 goto one_stack_frame_backwards; 1100 } 1101 1102 next_stack->i = -1; 1103 next_stack->block = sf->next_block; 1104 next_stack->block_ctx = 1105 &sf->next_block_ctx; 1106 next_stack->next_block = NULL; 1107 next_stack->hdr = next_hdr; 1108 next_stack->limit_nesting = 1109 sf->limit_nesting - 1; 1110 next_stack->prev = sf; 1111 sf = next_stack; 1112 goto continue_with_new_stack_frame; 1113 } 1114 } else if (BTRFS_EXTENT_DATA_KEY == type && 1115 state->include_extent_data) { 1116 sf->error = btrfsic_handle_extent_data( 1117 state, 1118 sf->block, 1119 sf->block_ctx, 1120 item_offset, 1121 force_iodone_flag); 1122 if (sf->error) 1123 goto one_stack_frame_backwards; 1124 } 1125 1126 goto continue_with_current_leaf_stack_frame; 1127 } 1128 } else { 1129 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr; 1130 1131 if (-1 == sf->i) { 1132 sf->nr = btrfs_stack_header_nritems(&nodehdr->header); 1133 1134 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1135 printk(KERN_INFO "node %llu level %d items %d" 1136 " generation %llu owner %llu\n", 1137 sf->block_ctx->start, 1138 nodehdr->header.level, sf->nr, 1139 btrfs_stack_header_generation( 1140 &nodehdr->header), 1141 btrfs_stack_header_owner( 1142 &nodehdr->header)); 1143 } 1144 1145 continue_with_current_node_stack_frame: 1146 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1147 sf->i++; 1148 sf->num_copies = 0; 1149 } 1150 1151 if (sf->i < sf->nr) { 1152 struct btrfs_key_ptr key_ptr; 1153 u32 key_ptr_offset; 1154 u64 next_bytenr; 1155 1156 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) - 1157 (uintptr_t)nodehdr; 1158 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) > 1159 sf->block_ctx->len) { 1160 printk(KERN_INFO 1161 "btrfsic: node item out of bounce at logical %llu, dev %s\n", 1162 sf->block_ctx->start, 1163 sf->block_ctx->dev->name); 1164 goto one_stack_frame_backwards; 1165 } 1166 btrfsic_read_from_block_data( 1167 sf->block_ctx, &key_ptr, key_ptr_offset, 1168 sizeof(struct btrfs_key_ptr)); 1169 next_bytenr = btrfs_stack_key_blockptr(&key_ptr); 1170 1171 sf->error = btrfsic_create_link_to_next_block( 1172 state, 1173 sf->block, 1174 sf->block_ctx, 1175 next_bytenr, 1176 sf->limit_nesting, 1177 &sf->next_block_ctx, 1178 &sf->next_block, 1179 force_iodone_flag, 1180 &sf->num_copies, 1181 &sf->mirror_num, 1182 &key_ptr.key, 1183 btrfs_stack_key_generation(&key_ptr)); 1184 if (sf->error) 1185 goto one_stack_frame_backwards; 1186 1187 if (NULL != sf->next_block) { 1188 struct btrfs_header *const next_hdr = 1189 (struct btrfs_header *) 1190 sf->next_block_ctx.datav[0]; 1191 1192 next_stack = btrfsic_stack_frame_alloc(); 1193 if (NULL == next_stack) 1194 goto one_stack_frame_backwards; 1195 1196 next_stack->i = -1; 1197 next_stack->block = sf->next_block; 1198 next_stack->block_ctx = &sf->next_block_ctx; 1199 next_stack->next_block = NULL; 1200 next_stack->hdr = next_hdr; 1201 next_stack->limit_nesting = 1202 sf->limit_nesting - 1; 1203 next_stack->prev = sf; 1204 sf = next_stack; 1205 goto continue_with_new_stack_frame; 1206 } 1207 1208 goto continue_with_current_node_stack_frame; 1209 } 1210 } 1211 1212 one_stack_frame_backwards: 1213 if (NULL != sf->prev) { 1214 struct btrfsic_stack_frame *const prev = sf->prev; 1215 1216 /* the one for the initial block is freed in the caller */ 1217 btrfsic_release_block_ctx(sf->block_ctx); 1218 1219 if (sf->error) { 1220 prev->error = sf->error; 1221 btrfsic_stack_frame_free(sf); 1222 sf = prev; 1223 goto one_stack_frame_backwards; 1224 } 1225 1226 btrfsic_stack_frame_free(sf); 1227 sf = prev; 1228 goto continue_with_new_stack_frame; 1229 } else { 1230 BUG_ON(&initial_stack_frame != sf); 1231 } 1232 1233 return sf->error; 1234 } 1235 1236 static void btrfsic_read_from_block_data( 1237 struct btrfsic_block_data_ctx *block_ctx, 1238 void *dstv, u32 offset, size_t len) 1239 { 1240 size_t cur; 1241 size_t offset_in_page; 1242 char *kaddr; 1243 char *dst = (char *)dstv; 1244 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1); 1245 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT; 1246 1247 WARN_ON(offset + len > block_ctx->len); 1248 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1); 1249 1250 while (len > 0) { 1251 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page)); 1252 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >> 1253 PAGE_CACHE_SHIFT); 1254 kaddr = block_ctx->datav[i]; 1255 memcpy(dst, kaddr + offset_in_page, cur); 1256 1257 dst += cur; 1258 len -= cur; 1259 offset_in_page = 0; 1260 i++; 1261 } 1262 } 1263 1264 static int btrfsic_create_link_to_next_block( 1265 struct btrfsic_state *state, 1266 struct btrfsic_block *block, 1267 struct btrfsic_block_data_ctx *block_ctx, 1268 u64 next_bytenr, 1269 int limit_nesting, 1270 struct btrfsic_block_data_ctx *next_block_ctx, 1271 struct btrfsic_block **next_blockp, 1272 int force_iodone_flag, 1273 int *num_copiesp, int *mirror_nump, 1274 struct btrfs_disk_key *disk_key, 1275 u64 parent_generation) 1276 { 1277 struct btrfsic_block *next_block = NULL; 1278 int ret; 1279 struct btrfsic_block_link *l; 1280 int did_alloc_block_link; 1281 int block_was_created; 1282 1283 *next_blockp = NULL; 1284 if (0 == *num_copiesp) { 1285 *num_copiesp = 1286 btrfs_num_copies(state->root->fs_info, 1287 next_bytenr, state->metablock_size); 1288 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1289 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 1290 next_bytenr, *num_copiesp); 1291 *mirror_nump = 1; 1292 } 1293 1294 if (*mirror_nump > *num_copiesp) 1295 return 0; 1296 1297 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1298 printk(KERN_INFO 1299 "btrfsic_create_link_to_next_block(mirror_num=%d)\n", 1300 *mirror_nump); 1301 ret = btrfsic_map_block(state, next_bytenr, 1302 state->metablock_size, 1303 next_block_ctx, *mirror_nump); 1304 if (ret) { 1305 printk(KERN_INFO 1306 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1307 next_bytenr, *mirror_nump); 1308 btrfsic_release_block_ctx(next_block_ctx); 1309 *next_blockp = NULL; 1310 return -1; 1311 } 1312 1313 next_block = btrfsic_block_lookup_or_add(state, 1314 next_block_ctx, "referenced ", 1315 1, force_iodone_flag, 1316 !force_iodone_flag, 1317 *mirror_nump, 1318 &block_was_created); 1319 if (NULL == next_block) { 1320 btrfsic_release_block_ctx(next_block_ctx); 1321 *next_blockp = NULL; 1322 return -1; 1323 } 1324 if (block_was_created) { 1325 l = NULL; 1326 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 1327 } else { 1328 if (next_block->logical_bytenr != next_bytenr && 1329 !(!next_block->is_metadata && 1330 0 == next_block->logical_bytenr)) { 1331 printk(KERN_INFO 1332 "Referenced block @%llu (%s/%llu/%d)" 1333 " found in hash table, %c," 1334 " bytenr mismatch (!= stored %llu).\n", 1335 next_bytenr, next_block_ctx->dev->name, 1336 next_block_ctx->dev_bytenr, *mirror_nump, 1337 btrfsic_get_block_type(state, next_block), 1338 next_block->logical_bytenr); 1339 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1340 printk(KERN_INFO 1341 "Referenced block @%llu (%s/%llu/%d)" 1342 " found in hash table, %c.\n", 1343 next_bytenr, next_block_ctx->dev->name, 1344 next_block_ctx->dev_bytenr, *mirror_nump, 1345 btrfsic_get_block_type(state, next_block)); 1346 next_block->logical_bytenr = next_bytenr; 1347 1348 next_block->mirror_num = *mirror_nump; 1349 l = btrfsic_block_link_hashtable_lookup( 1350 next_block_ctx->dev->bdev, 1351 next_block_ctx->dev_bytenr, 1352 block_ctx->dev->bdev, 1353 block_ctx->dev_bytenr, 1354 &state->block_link_hashtable); 1355 } 1356 1357 next_block->disk_key = *disk_key; 1358 if (NULL == l) { 1359 l = btrfsic_block_link_alloc(); 1360 if (NULL == l) { 1361 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 1362 btrfsic_release_block_ctx(next_block_ctx); 1363 *next_blockp = NULL; 1364 return -1; 1365 } 1366 1367 did_alloc_block_link = 1; 1368 l->block_ref_to = next_block; 1369 l->block_ref_from = block; 1370 l->ref_cnt = 1; 1371 l->parent_generation = parent_generation; 1372 1373 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1374 btrfsic_print_add_link(state, l); 1375 1376 list_add(&l->node_ref_to, &block->ref_to_list); 1377 list_add(&l->node_ref_from, &next_block->ref_from_list); 1378 1379 btrfsic_block_link_hashtable_add(l, 1380 &state->block_link_hashtable); 1381 } else { 1382 did_alloc_block_link = 0; 1383 if (0 == limit_nesting) { 1384 l->ref_cnt++; 1385 l->parent_generation = parent_generation; 1386 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1387 btrfsic_print_add_link(state, l); 1388 } 1389 } 1390 1391 if (limit_nesting > 0 && did_alloc_block_link) { 1392 ret = btrfsic_read_block(state, next_block_ctx); 1393 if (ret < (int)next_block_ctx->len) { 1394 printk(KERN_INFO 1395 "btrfsic: read block @logical %llu failed!\n", 1396 next_bytenr); 1397 btrfsic_release_block_ctx(next_block_ctx); 1398 *next_blockp = NULL; 1399 return -1; 1400 } 1401 1402 *next_blockp = next_block; 1403 } else { 1404 *next_blockp = NULL; 1405 } 1406 (*mirror_nump)++; 1407 1408 return 0; 1409 } 1410 1411 static int btrfsic_handle_extent_data( 1412 struct btrfsic_state *state, 1413 struct btrfsic_block *block, 1414 struct btrfsic_block_data_ctx *block_ctx, 1415 u32 item_offset, int force_iodone_flag) 1416 { 1417 int ret; 1418 struct btrfs_file_extent_item file_extent_item; 1419 u64 file_extent_item_offset; 1420 u64 next_bytenr; 1421 u64 num_bytes; 1422 u64 generation; 1423 struct btrfsic_block_link *l; 1424 1425 file_extent_item_offset = offsetof(struct btrfs_leaf, items) + 1426 item_offset; 1427 if (file_extent_item_offset + 1428 offsetof(struct btrfs_file_extent_item, disk_num_bytes) > 1429 block_ctx->len) { 1430 printk(KERN_INFO 1431 "btrfsic: file item out of bounce at logical %llu, dev %s\n", 1432 block_ctx->start, block_ctx->dev->name); 1433 return -1; 1434 } 1435 1436 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1437 file_extent_item_offset, 1438 offsetof(struct btrfs_file_extent_item, disk_num_bytes)); 1439 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type || 1440 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) { 1441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1442 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n", 1443 file_extent_item.type, 1444 btrfs_stack_file_extent_disk_bytenr( 1445 &file_extent_item)); 1446 return 0; 1447 } 1448 1449 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) > 1450 block_ctx->len) { 1451 printk(KERN_INFO 1452 "btrfsic: file item out of bounce at logical %llu, dev %s\n", 1453 block_ctx->start, block_ctx->dev->name); 1454 return -1; 1455 } 1456 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1457 file_extent_item_offset, 1458 sizeof(struct btrfs_file_extent_item)); 1459 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item); 1460 if (btrfs_stack_file_extent_compression(&file_extent_item) == 1461 BTRFS_COMPRESS_NONE) { 1462 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item); 1463 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item); 1464 } else { 1465 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item); 1466 } 1467 generation = btrfs_stack_file_extent_generation(&file_extent_item); 1468 1469 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1470 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu," 1471 " offset = %llu, num_bytes = %llu\n", 1472 file_extent_item.type, 1473 btrfs_stack_file_extent_disk_bytenr(&file_extent_item), 1474 btrfs_stack_file_extent_offset(&file_extent_item), 1475 num_bytes); 1476 while (num_bytes > 0) { 1477 u32 chunk_len; 1478 int num_copies; 1479 int mirror_num; 1480 1481 if (num_bytes > state->datablock_size) 1482 chunk_len = state->datablock_size; 1483 else 1484 chunk_len = num_bytes; 1485 1486 num_copies = 1487 btrfs_num_copies(state->root->fs_info, 1488 next_bytenr, state->datablock_size); 1489 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1490 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 1491 next_bytenr, num_copies); 1492 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 1493 struct btrfsic_block_data_ctx next_block_ctx; 1494 struct btrfsic_block *next_block; 1495 int block_was_created; 1496 1497 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1498 printk(KERN_INFO "btrfsic_handle_extent_data(" 1499 "mirror_num=%d)\n", mirror_num); 1500 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1501 printk(KERN_INFO 1502 "\tdisk_bytenr = %llu, num_bytes %u\n", 1503 next_bytenr, chunk_len); 1504 ret = btrfsic_map_block(state, next_bytenr, 1505 chunk_len, &next_block_ctx, 1506 mirror_num); 1507 if (ret) { 1508 printk(KERN_INFO 1509 "btrfsic: btrfsic_map_block(@%llu," 1510 " mirror=%d) failed!\n", 1511 next_bytenr, mirror_num); 1512 return -1; 1513 } 1514 1515 next_block = btrfsic_block_lookup_or_add( 1516 state, 1517 &next_block_ctx, 1518 "referenced ", 1519 0, 1520 force_iodone_flag, 1521 !force_iodone_flag, 1522 mirror_num, 1523 &block_was_created); 1524 if (NULL == next_block) { 1525 printk(KERN_INFO 1526 "btrfsic: error, kmalloc failed!\n"); 1527 btrfsic_release_block_ctx(&next_block_ctx); 1528 return -1; 1529 } 1530 if (!block_was_created) { 1531 if (next_block->logical_bytenr != next_bytenr && 1532 !(!next_block->is_metadata && 1533 0 == next_block->logical_bytenr)) { 1534 printk(KERN_INFO 1535 "Referenced block" 1536 " @%llu (%s/%llu/%d)" 1537 " found in hash table, D," 1538 " bytenr mismatch" 1539 " (!= stored %llu).\n", 1540 next_bytenr, 1541 next_block_ctx.dev->name, 1542 next_block_ctx.dev_bytenr, 1543 mirror_num, 1544 next_block->logical_bytenr); 1545 } 1546 next_block->logical_bytenr = next_bytenr; 1547 next_block->mirror_num = mirror_num; 1548 } 1549 1550 l = btrfsic_block_link_lookup_or_add(state, 1551 &next_block_ctx, 1552 next_block, block, 1553 generation); 1554 btrfsic_release_block_ctx(&next_block_ctx); 1555 if (NULL == l) 1556 return -1; 1557 } 1558 1559 next_bytenr += chunk_len; 1560 num_bytes -= chunk_len; 1561 } 1562 1563 return 0; 1564 } 1565 1566 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 1567 struct btrfsic_block_data_ctx *block_ctx_out, 1568 int mirror_num) 1569 { 1570 int ret; 1571 u64 length; 1572 struct btrfs_bio *multi = NULL; 1573 struct btrfs_device *device; 1574 1575 length = len; 1576 ret = btrfs_map_block(state->root->fs_info, READ, 1577 bytenr, &length, &multi, mirror_num); 1578 1579 if (ret) { 1580 block_ctx_out->start = 0; 1581 block_ctx_out->dev_bytenr = 0; 1582 block_ctx_out->len = 0; 1583 block_ctx_out->dev = NULL; 1584 block_ctx_out->datav = NULL; 1585 block_ctx_out->pagev = NULL; 1586 block_ctx_out->mem_to_free = NULL; 1587 1588 return ret; 1589 } 1590 1591 device = multi->stripes[0].dev; 1592 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev); 1593 block_ctx_out->dev_bytenr = multi->stripes[0].physical; 1594 block_ctx_out->start = bytenr; 1595 block_ctx_out->len = len; 1596 block_ctx_out->datav = NULL; 1597 block_ctx_out->pagev = NULL; 1598 block_ctx_out->mem_to_free = NULL; 1599 1600 kfree(multi); 1601 if (NULL == block_ctx_out->dev) { 1602 ret = -ENXIO; 1603 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n"); 1604 } 1605 1606 return ret; 1607 } 1608 1609 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr, 1610 u32 len, struct block_device *bdev, 1611 struct btrfsic_block_data_ctx *block_ctx_out) 1612 { 1613 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev); 1614 block_ctx_out->dev_bytenr = bytenr; 1615 block_ctx_out->start = bytenr; 1616 block_ctx_out->len = len; 1617 block_ctx_out->datav = NULL; 1618 block_ctx_out->pagev = NULL; 1619 block_ctx_out->mem_to_free = NULL; 1620 if (NULL != block_ctx_out->dev) { 1621 return 0; 1622 } else { 1623 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n"); 1624 return -ENXIO; 1625 } 1626 } 1627 1628 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx) 1629 { 1630 if (block_ctx->mem_to_free) { 1631 unsigned int num_pages; 1632 1633 BUG_ON(!block_ctx->datav); 1634 BUG_ON(!block_ctx->pagev); 1635 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >> 1636 PAGE_CACHE_SHIFT; 1637 while (num_pages > 0) { 1638 num_pages--; 1639 if (block_ctx->datav[num_pages]) { 1640 kunmap(block_ctx->pagev[num_pages]); 1641 block_ctx->datav[num_pages] = NULL; 1642 } 1643 if (block_ctx->pagev[num_pages]) { 1644 __free_page(block_ctx->pagev[num_pages]); 1645 block_ctx->pagev[num_pages] = NULL; 1646 } 1647 } 1648 1649 kfree(block_ctx->mem_to_free); 1650 block_ctx->mem_to_free = NULL; 1651 block_ctx->pagev = NULL; 1652 block_ctx->datav = NULL; 1653 } 1654 } 1655 1656 static int btrfsic_read_block(struct btrfsic_state *state, 1657 struct btrfsic_block_data_ctx *block_ctx) 1658 { 1659 unsigned int num_pages; 1660 unsigned int i; 1661 u64 dev_bytenr; 1662 int ret; 1663 1664 BUG_ON(block_ctx->datav); 1665 BUG_ON(block_ctx->pagev); 1666 BUG_ON(block_ctx->mem_to_free); 1667 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) { 1668 printk(KERN_INFO 1669 "btrfsic: read_block() with unaligned bytenr %llu\n", 1670 block_ctx->dev_bytenr); 1671 return -1; 1672 } 1673 1674 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >> 1675 PAGE_CACHE_SHIFT; 1676 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) + 1677 sizeof(*block_ctx->pagev)) * 1678 num_pages, GFP_NOFS); 1679 if (!block_ctx->mem_to_free) 1680 return -1; 1681 block_ctx->datav = block_ctx->mem_to_free; 1682 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages); 1683 for (i = 0; i < num_pages; i++) { 1684 block_ctx->pagev[i] = alloc_page(GFP_NOFS); 1685 if (!block_ctx->pagev[i]) 1686 return -1; 1687 } 1688 1689 dev_bytenr = block_ctx->dev_bytenr; 1690 for (i = 0; i < num_pages;) { 1691 struct bio *bio; 1692 unsigned int j; 1693 1694 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i); 1695 if (!bio) { 1696 printk(KERN_INFO 1697 "btrfsic: bio_alloc() for %u pages failed!\n", 1698 num_pages - i); 1699 return -1; 1700 } 1701 bio->bi_bdev = block_ctx->dev->bdev; 1702 bio->bi_iter.bi_sector = dev_bytenr >> 9; 1703 1704 for (j = i; j < num_pages; j++) { 1705 ret = bio_add_page(bio, block_ctx->pagev[j], 1706 PAGE_CACHE_SIZE, 0); 1707 if (PAGE_CACHE_SIZE != ret) 1708 break; 1709 } 1710 if (j == i) { 1711 printk(KERN_INFO 1712 "btrfsic: error, failed to add a single page!\n"); 1713 return -1; 1714 } 1715 if (submit_bio_wait(READ, bio)) { 1716 printk(KERN_INFO 1717 "btrfsic: read error at logical %llu dev %s!\n", 1718 block_ctx->start, block_ctx->dev->name); 1719 bio_put(bio); 1720 return -1; 1721 } 1722 bio_put(bio); 1723 dev_bytenr += (j - i) * PAGE_CACHE_SIZE; 1724 i = j; 1725 } 1726 for (i = 0; i < num_pages; i++) { 1727 block_ctx->datav[i] = kmap(block_ctx->pagev[i]); 1728 if (!block_ctx->datav[i]) { 1729 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n", 1730 block_ctx->dev->name); 1731 return -1; 1732 } 1733 } 1734 1735 return block_ctx->len; 1736 } 1737 1738 static void btrfsic_dump_database(struct btrfsic_state *state) 1739 { 1740 struct list_head *elem_all; 1741 1742 BUG_ON(NULL == state); 1743 1744 printk(KERN_INFO "all_blocks_list:\n"); 1745 list_for_each(elem_all, &state->all_blocks_list) { 1746 const struct btrfsic_block *const b_all = 1747 list_entry(elem_all, struct btrfsic_block, 1748 all_blocks_node); 1749 struct list_head *elem_ref_to; 1750 struct list_head *elem_ref_from; 1751 1752 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n", 1753 btrfsic_get_block_type(state, b_all), 1754 b_all->logical_bytenr, b_all->dev_state->name, 1755 b_all->dev_bytenr, b_all->mirror_num); 1756 1757 list_for_each(elem_ref_to, &b_all->ref_to_list) { 1758 const struct btrfsic_block_link *const l = 1759 list_entry(elem_ref_to, 1760 struct btrfsic_block_link, 1761 node_ref_to); 1762 1763 printk(KERN_INFO " %c @%llu (%s/%llu/%d)" 1764 " refers %u* to" 1765 " %c @%llu (%s/%llu/%d)\n", 1766 btrfsic_get_block_type(state, b_all), 1767 b_all->logical_bytenr, b_all->dev_state->name, 1768 b_all->dev_bytenr, b_all->mirror_num, 1769 l->ref_cnt, 1770 btrfsic_get_block_type(state, l->block_ref_to), 1771 l->block_ref_to->logical_bytenr, 1772 l->block_ref_to->dev_state->name, 1773 l->block_ref_to->dev_bytenr, 1774 l->block_ref_to->mirror_num); 1775 } 1776 1777 list_for_each(elem_ref_from, &b_all->ref_from_list) { 1778 const struct btrfsic_block_link *const l = 1779 list_entry(elem_ref_from, 1780 struct btrfsic_block_link, 1781 node_ref_from); 1782 1783 printk(KERN_INFO " %c @%llu (%s/%llu/%d)" 1784 " is ref %u* from" 1785 " %c @%llu (%s/%llu/%d)\n", 1786 btrfsic_get_block_type(state, b_all), 1787 b_all->logical_bytenr, b_all->dev_state->name, 1788 b_all->dev_bytenr, b_all->mirror_num, 1789 l->ref_cnt, 1790 btrfsic_get_block_type(state, l->block_ref_from), 1791 l->block_ref_from->logical_bytenr, 1792 l->block_ref_from->dev_state->name, 1793 l->block_ref_from->dev_bytenr, 1794 l->block_ref_from->mirror_num); 1795 } 1796 1797 printk(KERN_INFO "\n"); 1798 } 1799 } 1800 1801 /* 1802 * Test whether the disk block contains a tree block (leaf or node) 1803 * (note that this test fails for the super block) 1804 */ 1805 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 1806 char **datav, unsigned int num_pages) 1807 { 1808 struct btrfs_header *h; 1809 u8 csum[BTRFS_CSUM_SIZE]; 1810 u32 crc = ~(u32)0; 1811 unsigned int i; 1812 1813 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size) 1814 return 1; /* not metadata */ 1815 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT; 1816 h = (struct btrfs_header *)datav[0]; 1817 1818 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE)) 1819 return 1; 1820 1821 for (i = 0; i < num_pages; i++) { 1822 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE); 1823 size_t sublen = i ? PAGE_CACHE_SIZE : 1824 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE); 1825 1826 crc = btrfs_crc32c(crc, data, sublen); 1827 } 1828 btrfs_csum_final(crc, csum); 1829 if (memcmp(csum, h->csum, state->csum_size)) 1830 return 1; 1831 1832 return 0; /* is metadata */ 1833 } 1834 1835 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 1836 u64 dev_bytenr, char **mapped_datav, 1837 unsigned int num_pages, 1838 struct bio *bio, int *bio_is_patched, 1839 struct buffer_head *bh, 1840 int submit_bio_bh_rw) 1841 { 1842 int is_metadata; 1843 struct btrfsic_block *block; 1844 struct btrfsic_block_data_ctx block_ctx; 1845 int ret; 1846 struct btrfsic_state *state = dev_state->state; 1847 struct block_device *bdev = dev_state->bdev; 1848 unsigned int processed_len; 1849 1850 if (NULL != bio_is_patched) 1851 *bio_is_patched = 0; 1852 1853 again: 1854 if (num_pages == 0) 1855 return; 1856 1857 processed_len = 0; 1858 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav, 1859 num_pages)); 1860 1861 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr, 1862 &state->block_hashtable); 1863 if (NULL != block) { 1864 u64 bytenr = 0; 1865 struct list_head *elem_ref_to; 1866 struct list_head *tmp_ref_to; 1867 1868 if (block->is_superblock) { 1869 bytenr = btrfs_super_bytenr((struct btrfs_super_block *) 1870 mapped_datav[0]); 1871 if (num_pages * PAGE_CACHE_SIZE < 1872 BTRFS_SUPER_INFO_SIZE) { 1873 printk(KERN_INFO 1874 "btrfsic: cannot work with too short bios!\n"); 1875 return; 1876 } 1877 is_metadata = 1; 1878 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1)); 1879 processed_len = BTRFS_SUPER_INFO_SIZE; 1880 if (state->print_mask & 1881 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) { 1882 printk(KERN_INFO 1883 "[before new superblock is written]:\n"); 1884 btrfsic_dump_tree_sub(state, block, 0); 1885 } 1886 } 1887 if (is_metadata) { 1888 if (!block->is_superblock) { 1889 if (num_pages * PAGE_CACHE_SIZE < 1890 state->metablock_size) { 1891 printk(KERN_INFO 1892 "btrfsic: cannot work with too short bios!\n"); 1893 return; 1894 } 1895 processed_len = state->metablock_size; 1896 bytenr = btrfs_stack_header_bytenr( 1897 (struct btrfs_header *) 1898 mapped_datav[0]); 1899 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, 1900 dev_state, 1901 dev_bytenr); 1902 } 1903 if (block->logical_bytenr != bytenr && 1904 !(!block->is_metadata && 1905 block->logical_bytenr == 0)) 1906 printk(KERN_INFO 1907 "Written block @%llu (%s/%llu/%d)" 1908 " found in hash table, %c," 1909 " bytenr mismatch" 1910 " (!= stored %llu).\n", 1911 bytenr, dev_state->name, dev_bytenr, 1912 block->mirror_num, 1913 btrfsic_get_block_type(state, block), 1914 block->logical_bytenr); 1915 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1916 printk(KERN_INFO 1917 "Written block @%llu (%s/%llu/%d)" 1918 " found in hash table, %c.\n", 1919 bytenr, dev_state->name, dev_bytenr, 1920 block->mirror_num, 1921 btrfsic_get_block_type(state, block)); 1922 block->logical_bytenr = bytenr; 1923 } else { 1924 if (num_pages * PAGE_CACHE_SIZE < 1925 state->datablock_size) { 1926 printk(KERN_INFO 1927 "btrfsic: cannot work with too short bios!\n"); 1928 return; 1929 } 1930 processed_len = state->datablock_size; 1931 bytenr = block->logical_bytenr; 1932 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1933 printk(KERN_INFO 1934 "Written block @%llu (%s/%llu/%d)" 1935 " found in hash table, %c.\n", 1936 bytenr, dev_state->name, dev_bytenr, 1937 block->mirror_num, 1938 btrfsic_get_block_type(state, block)); 1939 } 1940 1941 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1942 printk(KERN_INFO 1943 "ref_to_list: %cE, ref_from_list: %cE\n", 1944 list_empty(&block->ref_to_list) ? ' ' : '!', 1945 list_empty(&block->ref_from_list) ? ' ' : '!'); 1946 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) { 1947 printk(KERN_INFO "btrfs: attempt to overwrite %c-block" 1948 " @%llu (%s/%llu/%d), old(gen=%llu," 1949 " objectid=%llu, type=%d, offset=%llu)," 1950 " new(gen=%llu)," 1951 " which is referenced by most recent superblock" 1952 " (superblockgen=%llu)!\n", 1953 btrfsic_get_block_type(state, block), bytenr, 1954 dev_state->name, dev_bytenr, block->mirror_num, 1955 block->generation, 1956 btrfs_disk_key_objectid(&block->disk_key), 1957 block->disk_key.type, 1958 btrfs_disk_key_offset(&block->disk_key), 1959 btrfs_stack_header_generation( 1960 (struct btrfs_header *) mapped_datav[0]), 1961 state->max_superblock_generation); 1962 btrfsic_dump_tree(state); 1963 } 1964 1965 if (!block->is_iodone && !block->never_written) { 1966 printk(KERN_INFO "btrfs: attempt to overwrite %c-block" 1967 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu," 1968 " which is not yet iodone!\n", 1969 btrfsic_get_block_type(state, block), bytenr, 1970 dev_state->name, dev_bytenr, block->mirror_num, 1971 block->generation, 1972 btrfs_stack_header_generation( 1973 (struct btrfs_header *) 1974 mapped_datav[0])); 1975 /* it would not be safe to go on */ 1976 btrfsic_dump_tree(state); 1977 goto continue_loop; 1978 } 1979 1980 /* 1981 * Clear all references of this block. Do not free 1982 * the block itself even if is not referenced anymore 1983 * because it still carries valueable information 1984 * like whether it was ever written and IO completed. 1985 */ 1986 list_for_each_safe(elem_ref_to, tmp_ref_to, 1987 &block->ref_to_list) { 1988 struct btrfsic_block_link *const l = 1989 list_entry(elem_ref_to, 1990 struct btrfsic_block_link, 1991 node_ref_to); 1992 1993 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1994 btrfsic_print_rem_link(state, l); 1995 l->ref_cnt--; 1996 if (0 == l->ref_cnt) { 1997 list_del(&l->node_ref_to); 1998 list_del(&l->node_ref_from); 1999 btrfsic_block_link_hashtable_remove(l); 2000 btrfsic_block_link_free(l); 2001 } 2002 } 2003 2004 if (block->is_superblock) 2005 ret = btrfsic_map_superblock(state, bytenr, 2006 processed_len, 2007 bdev, &block_ctx); 2008 else 2009 ret = btrfsic_map_block(state, bytenr, processed_len, 2010 &block_ctx, 0); 2011 if (ret) { 2012 printk(KERN_INFO 2013 "btrfsic: btrfsic_map_block(root @%llu)" 2014 " failed!\n", bytenr); 2015 goto continue_loop; 2016 } 2017 block_ctx.datav = mapped_datav; 2018 /* the following is required in case of writes to mirrors, 2019 * use the same that was used for the lookup */ 2020 block_ctx.dev = dev_state; 2021 block_ctx.dev_bytenr = dev_bytenr; 2022 2023 if (is_metadata || state->include_extent_data) { 2024 block->never_written = 0; 2025 block->iodone_w_error = 0; 2026 if (NULL != bio) { 2027 block->is_iodone = 0; 2028 BUG_ON(NULL == bio_is_patched); 2029 if (!*bio_is_patched) { 2030 block->orig_bio_bh_private = 2031 bio->bi_private; 2032 block->orig_bio_bh_end_io.bio = 2033 bio->bi_end_io; 2034 block->next_in_same_bio = NULL; 2035 bio->bi_private = block; 2036 bio->bi_end_io = btrfsic_bio_end_io; 2037 *bio_is_patched = 1; 2038 } else { 2039 struct btrfsic_block *chained_block = 2040 (struct btrfsic_block *) 2041 bio->bi_private; 2042 2043 BUG_ON(NULL == chained_block); 2044 block->orig_bio_bh_private = 2045 chained_block->orig_bio_bh_private; 2046 block->orig_bio_bh_end_io.bio = 2047 chained_block->orig_bio_bh_end_io. 2048 bio; 2049 block->next_in_same_bio = chained_block; 2050 bio->bi_private = block; 2051 } 2052 } else if (NULL != bh) { 2053 block->is_iodone = 0; 2054 block->orig_bio_bh_private = bh->b_private; 2055 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2056 block->next_in_same_bio = NULL; 2057 bh->b_private = block; 2058 bh->b_end_io = btrfsic_bh_end_io; 2059 } else { 2060 block->is_iodone = 1; 2061 block->orig_bio_bh_private = NULL; 2062 block->orig_bio_bh_end_io.bio = NULL; 2063 block->next_in_same_bio = NULL; 2064 } 2065 } 2066 2067 block->flush_gen = dev_state->last_flush_gen + 1; 2068 block->submit_bio_bh_rw = submit_bio_bh_rw; 2069 if (is_metadata) { 2070 block->logical_bytenr = bytenr; 2071 block->is_metadata = 1; 2072 if (block->is_superblock) { 2073 BUG_ON(PAGE_CACHE_SIZE != 2074 BTRFS_SUPER_INFO_SIZE); 2075 ret = btrfsic_process_written_superblock( 2076 state, 2077 block, 2078 (struct btrfs_super_block *) 2079 mapped_datav[0]); 2080 if (state->print_mask & 2081 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) { 2082 printk(KERN_INFO 2083 "[after new superblock is written]:\n"); 2084 btrfsic_dump_tree_sub(state, block, 0); 2085 } 2086 } else { 2087 block->mirror_num = 0; /* unknown */ 2088 ret = btrfsic_process_metablock( 2089 state, 2090 block, 2091 &block_ctx, 2092 0, 0); 2093 } 2094 if (ret) 2095 printk(KERN_INFO 2096 "btrfsic: btrfsic_process_metablock" 2097 "(root @%llu) failed!\n", 2098 dev_bytenr); 2099 } else { 2100 block->is_metadata = 0; 2101 block->mirror_num = 0; /* unknown */ 2102 block->generation = BTRFSIC_GENERATION_UNKNOWN; 2103 if (!state->include_extent_data 2104 && list_empty(&block->ref_from_list)) { 2105 /* 2106 * disk block is overwritten with extent 2107 * data (not meta data) and we are configured 2108 * to not include extent data: take the 2109 * chance and free the block's memory 2110 */ 2111 btrfsic_block_hashtable_remove(block); 2112 list_del(&block->all_blocks_node); 2113 btrfsic_block_free(block); 2114 } 2115 } 2116 btrfsic_release_block_ctx(&block_ctx); 2117 } else { 2118 /* block has not been found in hash table */ 2119 u64 bytenr; 2120 2121 if (!is_metadata) { 2122 processed_len = state->datablock_size; 2123 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2124 printk(KERN_INFO "Written block (%s/%llu/?)" 2125 " !found in hash table, D.\n", 2126 dev_state->name, dev_bytenr); 2127 if (!state->include_extent_data) { 2128 /* ignore that written D block */ 2129 goto continue_loop; 2130 } 2131 2132 /* this is getting ugly for the 2133 * include_extent_data case... */ 2134 bytenr = 0; /* unknown */ 2135 block_ctx.start = bytenr; 2136 block_ctx.len = processed_len; 2137 block_ctx.mem_to_free = NULL; 2138 block_ctx.pagev = NULL; 2139 } else { 2140 processed_len = state->metablock_size; 2141 bytenr = btrfs_stack_header_bytenr( 2142 (struct btrfs_header *) 2143 mapped_datav[0]); 2144 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, 2145 dev_bytenr); 2146 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2147 printk(KERN_INFO 2148 "Written block @%llu (%s/%llu/?)" 2149 " !found in hash table, M.\n", 2150 bytenr, dev_state->name, dev_bytenr); 2151 2152 ret = btrfsic_map_block(state, bytenr, processed_len, 2153 &block_ctx, 0); 2154 if (ret) { 2155 printk(KERN_INFO 2156 "btrfsic: btrfsic_map_block(root @%llu)" 2157 " failed!\n", 2158 dev_bytenr); 2159 goto continue_loop; 2160 } 2161 } 2162 block_ctx.datav = mapped_datav; 2163 /* the following is required in case of writes to mirrors, 2164 * use the same that was used for the lookup */ 2165 block_ctx.dev = dev_state; 2166 block_ctx.dev_bytenr = dev_bytenr; 2167 2168 block = btrfsic_block_alloc(); 2169 if (NULL == block) { 2170 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 2171 btrfsic_release_block_ctx(&block_ctx); 2172 goto continue_loop; 2173 } 2174 block->dev_state = dev_state; 2175 block->dev_bytenr = dev_bytenr; 2176 block->logical_bytenr = bytenr; 2177 block->is_metadata = is_metadata; 2178 block->never_written = 0; 2179 block->iodone_w_error = 0; 2180 block->mirror_num = 0; /* unknown */ 2181 block->flush_gen = dev_state->last_flush_gen + 1; 2182 block->submit_bio_bh_rw = submit_bio_bh_rw; 2183 if (NULL != bio) { 2184 block->is_iodone = 0; 2185 BUG_ON(NULL == bio_is_patched); 2186 if (!*bio_is_patched) { 2187 block->orig_bio_bh_private = bio->bi_private; 2188 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2189 block->next_in_same_bio = NULL; 2190 bio->bi_private = block; 2191 bio->bi_end_io = btrfsic_bio_end_io; 2192 *bio_is_patched = 1; 2193 } else { 2194 struct btrfsic_block *chained_block = 2195 (struct btrfsic_block *) 2196 bio->bi_private; 2197 2198 BUG_ON(NULL == chained_block); 2199 block->orig_bio_bh_private = 2200 chained_block->orig_bio_bh_private; 2201 block->orig_bio_bh_end_io.bio = 2202 chained_block->orig_bio_bh_end_io.bio; 2203 block->next_in_same_bio = chained_block; 2204 bio->bi_private = block; 2205 } 2206 } else if (NULL != bh) { 2207 block->is_iodone = 0; 2208 block->orig_bio_bh_private = bh->b_private; 2209 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2210 block->next_in_same_bio = NULL; 2211 bh->b_private = block; 2212 bh->b_end_io = btrfsic_bh_end_io; 2213 } else { 2214 block->is_iodone = 1; 2215 block->orig_bio_bh_private = NULL; 2216 block->orig_bio_bh_end_io.bio = NULL; 2217 block->next_in_same_bio = NULL; 2218 } 2219 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2220 printk(KERN_INFO 2221 "New written %c-block @%llu (%s/%llu/%d)\n", 2222 is_metadata ? 'M' : 'D', 2223 block->logical_bytenr, block->dev_state->name, 2224 block->dev_bytenr, block->mirror_num); 2225 list_add(&block->all_blocks_node, &state->all_blocks_list); 2226 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2227 2228 if (is_metadata) { 2229 ret = btrfsic_process_metablock(state, block, 2230 &block_ctx, 0, 0); 2231 if (ret) 2232 printk(KERN_INFO 2233 "btrfsic: process_metablock(root @%llu)" 2234 " failed!\n", 2235 dev_bytenr); 2236 } 2237 btrfsic_release_block_ctx(&block_ctx); 2238 } 2239 2240 continue_loop: 2241 BUG_ON(!processed_len); 2242 dev_bytenr += processed_len; 2243 mapped_datav += processed_len >> PAGE_CACHE_SHIFT; 2244 num_pages -= processed_len >> PAGE_CACHE_SHIFT; 2245 goto again; 2246 } 2247 2248 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status) 2249 { 2250 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private; 2251 int iodone_w_error; 2252 2253 /* mutex is not held! This is not save if IO is not yet completed 2254 * on umount */ 2255 iodone_w_error = 0; 2256 if (bio_error_status) 2257 iodone_w_error = 1; 2258 2259 BUG_ON(NULL == block); 2260 bp->bi_private = block->orig_bio_bh_private; 2261 bp->bi_end_io = block->orig_bio_bh_end_io.bio; 2262 2263 do { 2264 struct btrfsic_block *next_block; 2265 struct btrfsic_dev_state *const dev_state = block->dev_state; 2266 2267 if ((dev_state->state->print_mask & 2268 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2269 printk(KERN_INFO 2270 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n", 2271 bio_error_status, 2272 btrfsic_get_block_type(dev_state->state, block), 2273 block->logical_bytenr, dev_state->name, 2274 block->dev_bytenr, block->mirror_num); 2275 next_block = block->next_in_same_bio; 2276 block->iodone_w_error = iodone_w_error; 2277 if (block->submit_bio_bh_rw & REQ_FLUSH) { 2278 dev_state->last_flush_gen++; 2279 if ((dev_state->state->print_mask & 2280 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2281 printk(KERN_INFO 2282 "bio_end_io() new %s flush_gen=%llu\n", 2283 dev_state->name, 2284 dev_state->last_flush_gen); 2285 } 2286 if (block->submit_bio_bh_rw & REQ_FUA) 2287 block->flush_gen = 0; /* FUA completed means block is 2288 * on disk */ 2289 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2290 block = next_block; 2291 } while (NULL != block); 2292 2293 bp->bi_end_io(bp, bio_error_status); 2294 } 2295 2296 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate) 2297 { 2298 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private; 2299 int iodone_w_error = !uptodate; 2300 struct btrfsic_dev_state *dev_state; 2301 2302 BUG_ON(NULL == block); 2303 dev_state = block->dev_state; 2304 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2305 printk(KERN_INFO 2306 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n", 2307 iodone_w_error, 2308 btrfsic_get_block_type(dev_state->state, block), 2309 block->logical_bytenr, block->dev_state->name, 2310 block->dev_bytenr, block->mirror_num); 2311 2312 block->iodone_w_error = iodone_w_error; 2313 if (block->submit_bio_bh_rw & REQ_FLUSH) { 2314 dev_state->last_flush_gen++; 2315 if ((dev_state->state->print_mask & 2316 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2317 printk(KERN_INFO 2318 "bh_end_io() new %s flush_gen=%llu\n", 2319 dev_state->name, dev_state->last_flush_gen); 2320 } 2321 if (block->submit_bio_bh_rw & REQ_FUA) 2322 block->flush_gen = 0; /* FUA completed means block is on disk */ 2323 2324 bh->b_private = block->orig_bio_bh_private; 2325 bh->b_end_io = block->orig_bio_bh_end_io.bh; 2326 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2327 bh->b_end_io(bh, uptodate); 2328 } 2329 2330 static int btrfsic_process_written_superblock( 2331 struct btrfsic_state *state, 2332 struct btrfsic_block *const superblock, 2333 struct btrfs_super_block *const super_hdr) 2334 { 2335 int pass; 2336 2337 superblock->generation = btrfs_super_generation(super_hdr); 2338 if (!(superblock->generation > state->max_superblock_generation || 2339 0 == state->max_superblock_generation)) { 2340 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2341 printk(KERN_INFO 2342 "btrfsic: superblock @%llu (%s/%llu/%d)" 2343 " with old gen %llu <= %llu\n", 2344 superblock->logical_bytenr, 2345 superblock->dev_state->name, 2346 superblock->dev_bytenr, superblock->mirror_num, 2347 btrfs_super_generation(super_hdr), 2348 state->max_superblock_generation); 2349 } else { 2350 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2351 printk(KERN_INFO 2352 "btrfsic: got new superblock @%llu (%s/%llu/%d)" 2353 " with new gen %llu > %llu\n", 2354 superblock->logical_bytenr, 2355 superblock->dev_state->name, 2356 superblock->dev_bytenr, superblock->mirror_num, 2357 btrfs_super_generation(super_hdr), 2358 state->max_superblock_generation); 2359 2360 state->max_superblock_generation = 2361 btrfs_super_generation(super_hdr); 2362 state->latest_superblock = superblock; 2363 } 2364 2365 for (pass = 0; pass < 3; pass++) { 2366 int ret; 2367 u64 next_bytenr; 2368 struct btrfsic_block *next_block; 2369 struct btrfsic_block_data_ctx tmp_next_block_ctx; 2370 struct btrfsic_block_link *l; 2371 int num_copies; 2372 int mirror_num; 2373 const char *additional_string = NULL; 2374 struct btrfs_disk_key tmp_disk_key = {0}; 2375 2376 btrfs_set_disk_key_objectid(&tmp_disk_key, 2377 BTRFS_ROOT_ITEM_KEY); 2378 btrfs_set_disk_key_objectid(&tmp_disk_key, 0); 2379 2380 switch (pass) { 2381 case 0: 2382 btrfs_set_disk_key_objectid(&tmp_disk_key, 2383 BTRFS_ROOT_TREE_OBJECTID); 2384 additional_string = "root "; 2385 next_bytenr = btrfs_super_root(super_hdr); 2386 if (state->print_mask & 2387 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2388 printk(KERN_INFO "root@%llu\n", next_bytenr); 2389 break; 2390 case 1: 2391 btrfs_set_disk_key_objectid(&tmp_disk_key, 2392 BTRFS_CHUNK_TREE_OBJECTID); 2393 additional_string = "chunk "; 2394 next_bytenr = btrfs_super_chunk_root(super_hdr); 2395 if (state->print_mask & 2396 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2397 printk(KERN_INFO "chunk@%llu\n", next_bytenr); 2398 break; 2399 case 2: 2400 btrfs_set_disk_key_objectid(&tmp_disk_key, 2401 BTRFS_TREE_LOG_OBJECTID); 2402 additional_string = "log "; 2403 next_bytenr = btrfs_super_log_root(super_hdr); 2404 if (0 == next_bytenr) 2405 continue; 2406 if (state->print_mask & 2407 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2408 printk(KERN_INFO "log@%llu\n", next_bytenr); 2409 break; 2410 } 2411 2412 num_copies = 2413 btrfs_num_copies(state->root->fs_info, 2414 next_bytenr, BTRFS_SUPER_INFO_SIZE); 2415 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 2416 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", 2417 next_bytenr, num_copies); 2418 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2419 int was_created; 2420 2421 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2422 printk(KERN_INFO 2423 "btrfsic_process_written_superblock(" 2424 "mirror_num=%d)\n", mirror_num); 2425 ret = btrfsic_map_block(state, next_bytenr, 2426 BTRFS_SUPER_INFO_SIZE, 2427 &tmp_next_block_ctx, 2428 mirror_num); 2429 if (ret) { 2430 printk(KERN_INFO 2431 "btrfsic: btrfsic_map_block(@%llu," 2432 " mirror=%d) failed!\n", 2433 next_bytenr, mirror_num); 2434 return -1; 2435 } 2436 2437 next_block = btrfsic_block_lookup_or_add( 2438 state, 2439 &tmp_next_block_ctx, 2440 additional_string, 2441 1, 0, 1, 2442 mirror_num, 2443 &was_created); 2444 if (NULL == next_block) { 2445 printk(KERN_INFO 2446 "btrfsic: error, kmalloc failed!\n"); 2447 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2448 return -1; 2449 } 2450 2451 next_block->disk_key = tmp_disk_key; 2452 if (was_created) 2453 next_block->generation = 2454 BTRFSIC_GENERATION_UNKNOWN; 2455 l = btrfsic_block_link_lookup_or_add( 2456 state, 2457 &tmp_next_block_ctx, 2458 next_block, 2459 superblock, 2460 BTRFSIC_GENERATION_UNKNOWN); 2461 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2462 if (NULL == l) 2463 return -1; 2464 } 2465 } 2466 2467 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0))) 2468 btrfsic_dump_tree(state); 2469 2470 return 0; 2471 } 2472 2473 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 2474 struct btrfsic_block *const block, 2475 int recursion_level) 2476 { 2477 struct list_head *elem_ref_to; 2478 int ret = 0; 2479 2480 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2481 /* 2482 * Note that this situation can happen and does not 2483 * indicate an error in regular cases. It happens 2484 * when disk blocks are freed and later reused. 2485 * The check-integrity module is not aware of any 2486 * block free operations, it just recognizes block 2487 * write operations. Therefore it keeps the linkage 2488 * information for a block until a block is 2489 * rewritten. This can temporarily cause incorrect 2490 * and even circular linkage informations. This 2491 * causes no harm unless such blocks are referenced 2492 * by the most recent super block. 2493 */ 2494 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2495 printk(KERN_INFO 2496 "btrfsic: abort cyclic linkage (case 1).\n"); 2497 2498 return ret; 2499 } 2500 2501 /* 2502 * This algorithm is recursive because the amount of used stack 2503 * space is very small and the max recursion depth is limited. 2504 */ 2505 list_for_each(elem_ref_to, &block->ref_to_list) { 2506 const struct btrfsic_block_link *const l = 2507 list_entry(elem_ref_to, struct btrfsic_block_link, 2508 node_ref_to); 2509 2510 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2511 printk(KERN_INFO 2512 "rl=%d, %c @%llu (%s/%llu/%d)" 2513 " %u* refers to %c @%llu (%s/%llu/%d)\n", 2514 recursion_level, 2515 btrfsic_get_block_type(state, block), 2516 block->logical_bytenr, block->dev_state->name, 2517 block->dev_bytenr, block->mirror_num, 2518 l->ref_cnt, 2519 btrfsic_get_block_type(state, l->block_ref_to), 2520 l->block_ref_to->logical_bytenr, 2521 l->block_ref_to->dev_state->name, 2522 l->block_ref_to->dev_bytenr, 2523 l->block_ref_to->mirror_num); 2524 if (l->block_ref_to->never_written) { 2525 printk(KERN_INFO "btrfs: attempt to write superblock" 2526 " which references block %c @%llu (%s/%llu/%d)" 2527 " which is never written!\n", 2528 btrfsic_get_block_type(state, l->block_ref_to), 2529 l->block_ref_to->logical_bytenr, 2530 l->block_ref_to->dev_state->name, 2531 l->block_ref_to->dev_bytenr, 2532 l->block_ref_to->mirror_num); 2533 ret = -1; 2534 } else if (!l->block_ref_to->is_iodone) { 2535 printk(KERN_INFO "btrfs: attempt to write superblock" 2536 " which references block %c @%llu (%s/%llu/%d)" 2537 " which is not yet iodone!\n", 2538 btrfsic_get_block_type(state, l->block_ref_to), 2539 l->block_ref_to->logical_bytenr, 2540 l->block_ref_to->dev_state->name, 2541 l->block_ref_to->dev_bytenr, 2542 l->block_ref_to->mirror_num); 2543 ret = -1; 2544 } else if (l->block_ref_to->iodone_w_error) { 2545 printk(KERN_INFO "btrfs: attempt to write superblock" 2546 " which references block %c @%llu (%s/%llu/%d)" 2547 " which has write error!\n", 2548 btrfsic_get_block_type(state, l->block_ref_to), 2549 l->block_ref_to->logical_bytenr, 2550 l->block_ref_to->dev_state->name, 2551 l->block_ref_to->dev_bytenr, 2552 l->block_ref_to->mirror_num); 2553 ret = -1; 2554 } else if (l->parent_generation != 2555 l->block_ref_to->generation && 2556 BTRFSIC_GENERATION_UNKNOWN != 2557 l->parent_generation && 2558 BTRFSIC_GENERATION_UNKNOWN != 2559 l->block_ref_to->generation) { 2560 printk(KERN_INFO "btrfs: attempt to write superblock" 2561 " which references block %c @%llu (%s/%llu/%d)" 2562 " with generation %llu !=" 2563 " parent generation %llu!\n", 2564 btrfsic_get_block_type(state, l->block_ref_to), 2565 l->block_ref_to->logical_bytenr, 2566 l->block_ref_to->dev_state->name, 2567 l->block_ref_to->dev_bytenr, 2568 l->block_ref_to->mirror_num, 2569 l->block_ref_to->generation, 2570 l->parent_generation); 2571 ret = -1; 2572 } else if (l->block_ref_to->flush_gen > 2573 l->block_ref_to->dev_state->last_flush_gen) { 2574 printk(KERN_INFO "btrfs: attempt to write superblock" 2575 " which references block %c @%llu (%s/%llu/%d)" 2576 " which is not flushed out of disk's write cache" 2577 " (block flush_gen=%llu," 2578 " dev->flush_gen=%llu)!\n", 2579 btrfsic_get_block_type(state, l->block_ref_to), 2580 l->block_ref_to->logical_bytenr, 2581 l->block_ref_to->dev_state->name, 2582 l->block_ref_to->dev_bytenr, 2583 l->block_ref_to->mirror_num, block->flush_gen, 2584 l->block_ref_to->dev_state->last_flush_gen); 2585 ret = -1; 2586 } else if (-1 == btrfsic_check_all_ref_blocks(state, 2587 l->block_ref_to, 2588 recursion_level + 2589 1)) { 2590 ret = -1; 2591 } 2592 } 2593 2594 return ret; 2595 } 2596 2597 static int btrfsic_is_block_ref_by_superblock( 2598 const struct btrfsic_state *state, 2599 const struct btrfsic_block *block, 2600 int recursion_level) 2601 { 2602 struct list_head *elem_ref_from; 2603 2604 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2605 /* refer to comment at "abort cyclic linkage (case 1)" */ 2606 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2607 printk(KERN_INFO 2608 "btrfsic: abort cyclic linkage (case 2).\n"); 2609 2610 return 0; 2611 } 2612 2613 /* 2614 * This algorithm is recursive because the amount of used stack space 2615 * is very small and the max recursion depth is limited. 2616 */ 2617 list_for_each(elem_ref_from, &block->ref_from_list) { 2618 const struct btrfsic_block_link *const l = 2619 list_entry(elem_ref_from, struct btrfsic_block_link, 2620 node_ref_from); 2621 2622 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2623 printk(KERN_INFO 2624 "rl=%d, %c @%llu (%s/%llu/%d)" 2625 " is ref %u* from %c @%llu (%s/%llu/%d)\n", 2626 recursion_level, 2627 btrfsic_get_block_type(state, block), 2628 block->logical_bytenr, block->dev_state->name, 2629 block->dev_bytenr, block->mirror_num, 2630 l->ref_cnt, 2631 btrfsic_get_block_type(state, l->block_ref_from), 2632 l->block_ref_from->logical_bytenr, 2633 l->block_ref_from->dev_state->name, 2634 l->block_ref_from->dev_bytenr, 2635 l->block_ref_from->mirror_num); 2636 if (l->block_ref_from->is_superblock && 2637 state->latest_superblock->dev_bytenr == 2638 l->block_ref_from->dev_bytenr && 2639 state->latest_superblock->dev_state->bdev == 2640 l->block_ref_from->dev_state->bdev) 2641 return 1; 2642 else if (btrfsic_is_block_ref_by_superblock(state, 2643 l->block_ref_from, 2644 recursion_level + 2645 1)) 2646 return 1; 2647 } 2648 2649 return 0; 2650 } 2651 2652 static void btrfsic_print_add_link(const struct btrfsic_state *state, 2653 const struct btrfsic_block_link *l) 2654 { 2655 printk(KERN_INFO 2656 "Add %u* link from %c @%llu (%s/%llu/%d)" 2657 " to %c @%llu (%s/%llu/%d).\n", 2658 l->ref_cnt, 2659 btrfsic_get_block_type(state, l->block_ref_from), 2660 l->block_ref_from->logical_bytenr, 2661 l->block_ref_from->dev_state->name, 2662 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2663 btrfsic_get_block_type(state, l->block_ref_to), 2664 l->block_ref_to->logical_bytenr, 2665 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2666 l->block_ref_to->mirror_num); 2667 } 2668 2669 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 2670 const struct btrfsic_block_link *l) 2671 { 2672 printk(KERN_INFO 2673 "Rem %u* link from %c @%llu (%s/%llu/%d)" 2674 " to %c @%llu (%s/%llu/%d).\n", 2675 l->ref_cnt, 2676 btrfsic_get_block_type(state, l->block_ref_from), 2677 l->block_ref_from->logical_bytenr, 2678 l->block_ref_from->dev_state->name, 2679 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2680 btrfsic_get_block_type(state, l->block_ref_to), 2681 l->block_ref_to->logical_bytenr, 2682 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2683 l->block_ref_to->mirror_num); 2684 } 2685 2686 static char btrfsic_get_block_type(const struct btrfsic_state *state, 2687 const struct btrfsic_block *block) 2688 { 2689 if (block->is_superblock && 2690 state->latest_superblock->dev_bytenr == block->dev_bytenr && 2691 state->latest_superblock->dev_state->bdev == block->dev_state->bdev) 2692 return 'S'; 2693 else if (block->is_superblock) 2694 return 's'; 2695 else if (block->is_metadata) 2696 return 'M'; 2697 else 2698 return 'D'; 2699 } 2700 2701 static void btrfsic_dump_tree(const struct btrfsic_state *state) 2702 { 2703 btrfsic_dump_tree_sub(state, state->latest_superblock, 0); 2704 } 2705 2706 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 2707 const struct btrfsic_block *block, 2708 int indent_level) 2709 { 2710 struct list_head *elem_ref_to; 2711 int indent_add; 2712 static char buf[80]; 2713 int cursor_position; 2714 2715 /* 2716 * Should better fill an on-stack buffer with a complete line and 2717 * dump it at once when it is time to print a newline character. 2718 */ 2719 2720 /* 2721 * This algorithm is recursive because the amount of used stack space 2722 * is very small and the max recursion depth is limited. 2723 */ 2724 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)", 2725 btrfsic_get_block_type(state, block), 2726 block->logical_bytenr, block->dev_state->name, 2727 block->dev_bytenr, block->mirror_num); 2728 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2729 printk("[...]\n"); 2730 return; 2731 } 2732 printk(buf); 2733 indent_level += indent_add; 2734 if (list_empty(&block->ref_to_list)) { 2735 printk("\n"); 2736 return; 2737 } 2738 if (block->mirror_num > 1 && 2739 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) { 2740 printk(" [...]\n"); 2741 return; 2742 } 2743 2744 cursor_position = indent_level; 2745 list_for_each(elem_ref_to, &block->ref_to_list) { 2746 const struct btrfsic_block_link *const l = 2747 list_entry(elem_ref_to, struct btrfsic_block_link, 2748 node_ref_to); 2749 2750 while (cursor_position < indent_level) { 2751 printk(" "); 2752 cursor_position++; 2753 } 2754 if (l->ref_cnt > 1) 2755 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt); 2756 else 2757 indent_add = sprintf(buf, " --> "); 2758 if (indent_level + indent_add > 2759 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2760 printk("[...]\n"); 2761 cursor_position = 0; 2762 continue; 2763 } 2764 2765 printk(buf); 2766 2767 btrfsic_dump_tree_sub(state, l->block_ref_to, 2768 indent_level + indent_add); 2769 cursor_position = 0; 2770 } 2771 } 2772 2773 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 2774 struct btrfsic_state *state, 2775 struct btrfsic_block_data_ctx *next_block_ctx, 2776 struct btrfsic_block *next_block, 2777 struct btrfsic_block *from_block, 2778 u64 parent_generation) 2779 { 2780 struct btrfsic_block_link *l; 2781 2782 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev, 2783 next_block_ctx->dev_bytenr, 2784 from_block->dev_state->bdev, 2785 from_block->dev_bytenr, 2786 &state->block_link_hashtable); 2787 if (NULL == l) { 2788 l = btrfsic_block_link_alloc(); 2789 if (NULL == l) { 2790 printk(KERN_INFO 2791 "btrfsic: error, kmalloc" " failed!\n"); 2792 return NULL; 2793 } 2794 2795 l->block_ref_to = next_block; 2796 l->block_ref_from = from_block; 2797 l->ref_cnt = 1; 2798 l->parent_generation = parent_generation; 2799 2800 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2801 btrfsic_print_add_link(state, l); 2802 2803 list_add(&l->node_ref_to, &from_block->ref_to_list); 2804 list_add(&l->node_ref_from, &next_block->ref_from_list); 2805 2806 btrfsic_block_link_hashtable_add(l, 2807 &state->block_link_hashtable); 2808 } else { 2809 l->ref_cnt++; 2810 l->parent_generation = parent_generation; 2811 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2812 btrfsic_print_add_link(state, l); 2813 } 2814 2815 return l; 2816 } 2817 2818 static struct btrfsic_block *btrfsic_block_lookup_or_add( 2819 struct btrfsic_state *state, 2820 struct btrfsic_block_data_ctx *block_ctx, 2821 const char *additional_string, 2822 int is_metadata, 2823 int is_iodone, 2824 int never_written, 2825 int mirror_num, 2826 int *was_created) 2827 { 2828 struct btrfsic_block *block; 2829 2830 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev, 2831 block_ctx->dev_bytenr, 2832 &state->block_hashtable); 2833 if (NULL == block) { 2834 struct btrfsic_dev_state *dev_state; 2835 2836 block = btrfsic_block_alloc(); 2837 if (NULL == block) { 2838 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); 2839 return NULL; 2840 } 2841 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev); 2842 if (NULL == dev_state) { 2843 printk(KERN_INFO 2844 "btrfsic: error, lookup dev_state failed!\n"); 2845 btrfsic_block_free(block); 2846 return NULL; 2847 } 2848 block->dev_state = dev_state; 2849 block->dev_bytenr = block_ctx->dev_bytenr; 2850 block->logical_bytenr = block_ctx->start; 2851 block->is_metadata = is_metadata; 2852 block->is_iodone = is_iodone; 2853 block->never_written = never_written; 2854 block->mirror_num = mirror_num; 2855 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2856 printk(KERN_INFO 2857 "New %s%c-block @%llu (%s/%llu/%d)\n", 2858 additional_string, 2859 btrfsic_get_block_type(state, block), 2860 block->logical_bytenr, dev_state->name, 2861 block->dev_bytenr, mirror_num); 2862 list_add(&block->all_blocks_node, &state->all_blocks_list); 2863 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2864 if (NULL != was_created) 2865 *was_created = 1; 2866 } else { 2867 if (NULL != was_created) 2868 *was_created = 0; 2869 } 2870 2871 return block; 2872 } 2873 2874 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 2875 u64 bytenr, 2876 struct btrfsic_dev_state *dev_state, 2877 u64 dev_bytenr) 2878 { 2879 int num_copies; 2880 int mirror_num; 2881 int ret; 2882 struct btrfsic_block_data_ctx block_ctx; 2883 int match = 0; 2884 2885 num_copies = btrfs_num_copies(state->root->fs_info, 2886 bytenr, state->metablock_size); 2887 2888 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2889 ret = btrfsic_map_block(state, bytenr, state->metablock_size, 2890 &block_ctx, mirror_num); 2891 if (ret) { 2892 printk(KERN_INFO "btrfsic:" 2893 " btrfsic_map_block(logical @%llu," 2894 " mirror %d) failed!\n", 2895 bytenr, mirror_num); 2896 continue; 2897 } 2898 2899 if (dev_state->bdev == block_ctx.dev->bdev && 2900 dev_bytenr == block_ctx.dev_bytenr) { 2901 match++; 2902 btrfsic_release_block_ctx(&block_ctx); 2903 break; 2904 } 2905 btrfsic_release_block_ctx(&block_ctx); 2906 } 2907 2908 if (WARN_ON(!match)) { 2909 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio," 2910 " buffer->log_bytenr=%llu, submit_bio(bdev=%s," 2911 " phys_bytenr=%llu)!\n", 2912 bytenr, dev_state->name, dev_bytenr); 2913 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2914 ret = btrfsic_map_block(state, bytenr, 2915 state->metablock_size, 2916 &block_ctx, mirror_num); 2917 if (ret) 2918 continue; 2919 2920 printk(KERN_INFO "Read logical bytenr @%llu maps to" 2921 " (%s/%llu/%d)\n", 2922 bytenr, block_ctx.dev->name, 2923 block_ctx.dev_bytenr, mirror_num); 2924 } 2925 } 2926 } 2927 2928 static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 2929 struct block_device *bdev) 2930 { 2931 struct btrfsic_dev_state *ds; 2932 2933 ds = btrfsic_dev_state_hashtable_lookup(bdev, 2934 &btrfsic_dev_state_hashtable); 2935 return ds; 2936 } 2937 2938 int btrfsic_submit_bh(int rw, struct buffer_head *bh) 2939 { 2940 struct btrfsic_dev_state *dev_state; 2941 2942 if (!btrfsic_is_initialized) 2943 return submit_bh(rw, bh); 2944 2945 mutex_lock(&btrfsic_mutex); 2946 /* since btrfsic_submit_bh() might also be called before 2947 * btrfsic_mount(), this might return NULL */ 2948 dev_state = btrfsic_dev_state_lookup(bh->b_bdev); 2949 2950 /* Only called to write the superblock (incl. FLUSH/FUA) */ 2951 if (NULL != dev_state && 2952 (rw & WRITE) && bh->b_size > 0) { 2953 u64 dev_bytenr; 2954 2955 dev_bytenr = 4096 * bh->b_blocknr; 2956 if (dev_state->state->print_mask & 2957 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2958 printk(KERN_INFO 2959 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu)," 2960 " size=%zu, data=%p, bdev=%p)\n", 2961 rw, (unsigned long long)bh->b_blocknr, 2962 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev); 2963 btrfsic_process_written_block(dev_state, dev_bytenr, 2964 &bh->b_data, 1, NULL, 2965 NULL, bh, rw); 2966 } else if (NULL != dev_state && (rw & REQ_FLUSH)) { 2967 if (dev_state->state->print_mask & 2968 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2969 printk(KERN_INFO 2970 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n", 2971 rw, bh->b_bdev); 2972 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2973 if ((dev_state->state->print_mask & 2974 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2975 BTRFSIC_PRINT_MASK_VERBOSE))) 2976 printk(KERN_INFO 2977 "btrfsic_submit_bh(%s) with FLUSH" 2978 " but dummy block already in use" 2979 " (ignored)!\n", 2980 dev_state->name); 2981 } else { 2982 struct btrfsic_block *const block = 2983 &dev_state->dummy_block_for_bio_bh_flush; 2984 2985 block->is_iodone = 0; 2986 block->never_written = 0; 2987 block->iodone_w_error = 0; 2988 block->flush_gen = dev_state->last_flush_gen + 1; 2989 block->submit_bio_bh_rw = rw; 2990 block->orig_bio_bh_private = bh->b_private; 2991 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2992 block->next_in_same_bio = NULL; 2993 bh->b_private = block; 2994 bh->b_end_io = btrfsic_bh_end_io; 2995 } 2996 } 2997 mutex_unlock(&btrfsic_mutex); 2998 return submit_bh(rw, bh); 2999 } 3000 3001 static void __btrfsic_submit_bio(int rw, struct bio *bio) 3002 { 3003 struct btrfsic_dev_state *dev_state; 3004 3005 if (!btrfsic_is_initialized) 3006 return; 3007 3008 mutex_lock(&btrfsic_mutex); 3009 /* since btrfsic_submit_bio() is also called before 3010 * btrfsic_mount(), this might return NULL */ 3011 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev); 3012 if (NULL != dev_state && 3013 (rw & WRITE) && NULL != bio->bi_io_vec) { 3014 unsigned int i; 3015 u64 dev_bytenr; 3016 u64 cur_bytenr; 3017 int bio_is_patched; 3018 char **mapped_datav; 3019 3020 dev_bytenr = 512 * bio->bi_iter.bi_sector; 3021 bio_is_patched = 0; 3022 if (dev_state->state->print_mask & 3023 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 3024 printk(KERN_INFO 3025 "submit_bio(rw=0x%x, bi_vcnt=%u," 3026 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n", 3027 rw, bio->bi_vcnt, 3028 (unsigned long long)bio->bi_iter.bi_sector, 3029 dev_bytenr, bio->bi_bdev); 3030 3031 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt, 3032 GFP_NOFS); 3033 if (!mapped_datav) 3034 goto leave; 3035 cur_bytenr = dev_bytenr; 3036 for (i = 0; i < bio->bi_vcnt; i++) { 3037 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE); 3038 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page); 3039 if (!mapped_datav[i]) { 3040 while (i > 0) { 3041 i--; 3042 kunmap(bio->bi_io_vec[i].bv_page); 3043 } 3044 kfree(mapped_datav); 3045 goto leave; 3046 } 3047 if (dev_state->state->print_mask & 3048 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE) 3049 printk(KERN_INFO 3050 "#%u: bytenr=%llu, len=%u, offset=%u\n", 3051 i, cur_bytenr, bio->bi_io_vec[i].bv_len, 3052 bio->bi_io_vec[i].bv_offset); 3053 cur_bytenr += bio->bi_io_vec[i].bv_len; 3054 } 3055 btrfsic_process_written_block(dev_state, dev_bytenr, 3056 mapped_datav, bio->bi_vcnt, 3057 bio, &bio_is_patched, 3058 NULL, rw); 3059 while (i > 0) { 3060 i--; 3061 kunmap(bio->bi_io_vec[i].bv_page); 3062 } 3063 kfree(mapped_datav); 3064 } else if (NULL != dev_state && (rw & REQ_FLUSH)) { 3065 if (dev_state->state->print_mask & 3066 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 3067 printk(KERN_INFO 3068 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n", 3069 rw, bio->bi_bdev); 3070 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 3071 if ((dev_state->state->print_mask & 3072 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 3073 BTRFSIC_PRINT_MASK_VERBOSE))) 3074 printk(KERN_INFO 3075 "btrfsic_submit_bio(%s) with FLUSH" 3076 " but dummy block already in use" 3077 " (ignored)!\n", 3078 dev_state->name); 3079 } else { 3080 struct btrfsic_block *const block = 3081 &dev_state->dummy_block_for_bio_bh_flush; 3082 3083 block->is_iodone = 0; 3084 block->never_written = 0; 3085 block->iodone_w_error = 0; 3086 block->flush_gen = dev_state->last_flush_gen + 1; 3087 block->submit_bio_bh_rw = rw; 3088 block->orig_bio_bh_private = bio->bi_private; 3089 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 3090 block->next_in_same_bio = NULL; 3091 bio->bi_private = block; 3092 bio->bi_end_io = btrfsic_bio_end_io; 3093 } 3094 } 3095 leave: 3096 mutex_unlock(&btrfsic_mutex); 3097 } 3098 3099 void btrfsic_submit_bio(int rw, struct bio *bio) 3100 { 3101 __btrfsic_submit_bio(rw, bio); 3102 submit_bio(rw, bio); 3103 } 3104 3105 int btrfsic_submit_bio_wait(int rw, struct bio *bio) 3106 { 3107 __btrfsic_submit_bio(rw, bio); 3108 return submit_bio_wait(rw, bio); 3109 } 3110 3111 int btrfsic_mount(struct btrfs_root *root, 3112 struct btrfs_fs_devices *fs_devices, 3113 int including_extent_data, u32 print_mask) 3114 { 3115 int ret; 3116 struct btrfsic_state *state; 3117 struct list_head *dev_head = &fs_devices->devices; 3118 struct btrfs_device *device; 3119 3120 if (root->nodesize != root->leafsize) { 3121 printk(KERN_INFO 3122 "btrfsic: cannot handle nodesize %d != leafsize %d!\n", 3123 root->nodesize, root->leafsize); 3124 return -1; 3125 } 3126 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) { 3127 printk(KERN_INFO 3128 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3129 root->nodesize, PAGE_CACHE_SIZE); 3130 return -1; 3131 } 3132 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) { 3133 printk(KERN_INFO 3134 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3135 root->leafsize, PAGE_CACHE_SIZE); 3136 return -1; 3137 } 3138 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) { 3139 printk(KERN_INFO 3140 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n", 3141 root->sectorsize, PAGE_CACHE_SIZE); 3142 return -1; 3143 } 3144 state = kzalloc(sizeof(*state), GFP_NOFS); 3145 if (NULL == state) { 3146 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n"); 3147 return -1; 3148 } 3149 3150 if (!btrfsic_is_initialized) { 3151 mutex_init(&btrfsic_mutex); 3152 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable); 3153 btrfsic_is_initialized = 1; 3154 } 3155 mutex_lock(&btrfsic_mutex); 3156 state->root = root; 3157 state->print_mask = print_mask; 3158 state->include_extent_data = including_extent_data; 3159 state->csum_size = 0; 3160 state->metablock_size = root->nodesize; 3161 state->datablock_size = root->sectorsize; 3162 INIT_LIST_HEAD(&state->all_blocks_list); 3163 btrfsic_block_hashtable_init(&state->block_hashtable); 3164 btrfsic_block_link_hashtable_init(&state->block_link_hashtable); 3165 state->max_superblock_generation = 0; 3166 state->latest_superblock = NULL; 3167 3168 list_for_each_entry(device, dev_head, dev_list) { 3169 struct btrfsic_dev_state *ds; 3170 char *p; 3171 3172 if (!device->bdev || !device->name) 3173 continue; 3174 3175 ds = btrfsic_dev_state_alloc(); 3176 if (NULL == ds) { 3177 printk(KERN_INFO 3178 "btrfs check-integrity: kmalloc() failed!\n"); 3179 mutex_unlock(&btrfsic_mutex); 3180 return -1; 3181 } 3182 ds->bdev = device->bdev; 3183 ds->state = state; 3184 bdevname(ds->bdev, ds->name); 3185 ds->name[BDEVNAME_SIZE - 1] = '\0'; 3186 for (p = ds->name; *p != '\0'; p++); 3187 while (p > ds->name && *p != '/') 3188 p--; 3189 if (*p == '/') 3190 p++; 3191 strlcpy(ds->name, p, sizeof(ds->name)); 3192 btrfsic_dev_state_hashtable_add(ds, 3193 &btrfsic_dev_state_hashtable); 3194 } 3195 3196 ret = btrfsic_process_superblock(state, fs_devices); 3197 if (0 != ret) { 3198 mutex_unlock(&btrfsic_mutex); 3199 btrfsic_unmount(root, fs_devices); 3200 return ret; 3201 } 3202 3203 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE) 3204 btrfsic_dump_database(state); 3205 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE) 3206 btrfsic_dump_tree(state); 3207 3208 mutex_unlock(&btrfsic_mutex); 3209 return 0; 3210 } 3211 3212 void btrfsic_unmount(struct btrfs_root *root, 3213 struct btrfs_fs_devices *fs_devices) 3214 { 3215 struct list_head *elem_all; 3216 struct list_head *tmp_all; 3217 struct btrfsic_state *state; 3218 struct list_head *dev_head = &fs_devices->devices; 3219 struct btrfs_device *device; 3220 3221 if (!btrfsic_is_initialized) 3222 return; 3223 3224 mutex_lock(&btrfsic_mutex); 3225 3226 state = NULL; 3227 list_for_each_entry(device, dev_head, dev_list) { 3228 struct btrfsic_dev_state *ds; 3229 3230 if (!device->bdev || !device->name) 3231 continue; 3232 3233 ds = btrfsic_dev_state_hashtable_lookup( 3234 device->bdev, 3235 &btrfsic_dev_state_hashtable); 3236 if (NULL != ds) { 3237 state = ds->state; 3238 btrfsic_dev_state_hashtable_remove(ds); 3239 btrfsic_dev_state_free(ds); 3240 } 3241 } 3242 3243 if (NULL == state) { 3244 printk(KERN_INFO 3245 "btrfsic: error, cannot find state information" 3246 " on umount!\n"); 3247 mutex_unlock(&btrfsic_mutex); 3248 return; 3249 } 3250 3251 /* 3252 * Don't care about keeping the lists' state up to date, 3253 * just free all memory that was allocated dynamically. 3254 * Free the blocks and the block_links. 3255 */ 3256 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) { 3257 struct btrfsic_block *const b_all = 3258 list_entry(elem_all, struct btrfsic_block, 3259 all_blocks_node); 3260 struct list_head *elem_ref_to; 3261 struct list_head *tmp_ref_to; 3262 3263 list_for_each_safe(elem_ref_to, tmp_ref_to, 3264 &b_all->ref_to_list) { 3265 struct btrfsic_block_link *const l = 3266 list_entry(elem_ref_to, 3267 struct btrfsic_block_link, 3268 node_ref_to); 3269 3270 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 3271 btrfsic_print_rem_link(state, l); 3272 3273 l->ref_cnt--; 3274 if (0 == l->ref_cnt) 3275 btrfsic_block_link_free(l); 3276 } 3277 3278 if (b_all->is_iodone || b_all->never_written) 3279 btrfsic_block_free(b_all); 3280 else 3281 printk(KERN_INFO "btrfs: attempt to free %c-block" 3282 " @%llu (%s/%llu/%d) on umount which is" 3283 " not yet iodone!\n", 3284 btrfsic_get_block_type(state, b_all), 3285 b_all->logical_bytenr, b_all->dev_state->name, 3286 b_all->dev_bytenr, b_all->mirror_num); 3287 } 3288 3289 mutex_unlock(&btrfsic_mutex); 3290 3291 kfree(state); 3292 } 3293