xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STRATO AG 2011.  All rights reserved.
4  */
5 
6 /*
7  * This module can be used to catch cases when the btrfs kernel
8  * code executes write requests to the disk that bring the file
9  * system in an inconsistent state. In such a state, a power-loss
10  * or kernel panic event would cause that the data on disk is
11  * lost or at least damaged.
12  *
13  * Code is added that examines all block write requests during
14  * runtime (including writes of the super block). Three rules
15  * are verified and an error is printed on violation of the
16  * rules:
17  * 1. It is not allowed to write a disk block which is
18  *    currently referenced by the super block (either directly
19  *    or indirectly).
20  * 2. When a super block is written, it is verified that all
21  *    referenced (directly or indirectly) blocks fulfill the
22  *    following requirements:
23  *    2a. All referenced blocks have either been present when
24  *        the file system was mounted, (i.e., they have been
25  *        referenced by the super block) or they have been
26  *        written since then and the write completion callback
27  *        was called and no write error was indicated and a
28  *        FLUSH request to the device where these blocks are
29  *        located was received and completed.
30  *    2b. All referenced blocks need to have a generation
31  *        number which is equal to the parent's number.
32  *
33  * One issue that was found using this module was that the log
34  * tree on disk became temporarily corrupted because disk blocks
35  * that had been in use for the log tree had been freed and
36  * reused too early, while being referenced by the written super
37  * block.
38  *
39  * The search term in the kernel log that can be used to filter
40  * on the existence of detected integrity issues is
41  * "btrfs: attempt".
42  *
43  * The integrity check is enabled via mount options. These
44  * mount options are only supported if the integrity check
45  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
46  *
47  * Example #1, apply integrity checks to all metadata:
48  * mount /dev/sdb1 /mnt -o check_int
49  *
50  * Example #2, apply integrity checks to all metadata and
51  * to data extents:
52  * mount /dev/sdb1 /mnt -o check_int_data
53  *
54  * Example #3, apply integrity checks to all metadata and dump
55  * the tree that the super block references to kernel messages
56  * each time after a super block was written:
57  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
58  *
59  * If the integrity check tool is included and activated in
60  * the mount options, plenty of kernel memory is used, and
61  * plenty of additional CPU cycles are spent. Enabling this
62  * functionality is not intended for normal use. In most
63  * cases, unless you are a btrfs developer who needs to verify
64  * the integrity of (super)-block write requests, do not
65  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
66  * include and compile the integrity check tool.
67  *
68  * Expect millions of lines of information in the kernel log with an
69  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
70  * kernel config to at least 26 (which is 64MB). Usually the value is
71  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
72  * changed like this before LOG_BUF_SHIFT can be set to a high value:
73  * config LOG_BUF_SHIFT
74  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
75  *       range 12 30
76  */
77 
78 #include <linux/sched.h>
79 #include <linux/slab.h>
80 #include <linux/mutex.h>
81 #include <linux/genhd.h>
82 #include <linux/blkdev.h>
83 #include <linux/mm.h>
84 #include <linux/string.h>
85 #include <crypto/hash.h>
86 #include "ctree.h"
87 #include "disk-io.h"
88 #include "transaction.h"
89 #include "extent_io.h"
90 #include "volumes.h"
91 #include "print-tree.h"
92 #include "locking.h"
93 #include "check-integrity.h"
94 #include "rcu-string.h"
95 #include "compression.h"
96 
97 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
98 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
99 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
100 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
101 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
102 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
103 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
104 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
105 							 * excluding " [...]" */
106 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
107 
108 /*
109  * The definition of the bitmask fields for the print_mask.
110  * They are specified with the mount option check_integrity_print_mask.
111  */
112 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
113 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
114 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
115 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
116 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
117 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
118 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
119 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
120 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
121 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
122 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
123 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
124 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
125 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
126 
127 struct btrfsic_dev_state;
128 struct btrfsic_state;
129 
130 struct btrfsic_block {
131 	u32 magic_num;		/* only used for debug purposes */
132 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
133 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
134 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
135 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
136 	unsigned int never_written:1;	/* block was added because it was
137 					 * referenced, not because it was
138 					 * written */
139 	unsigned int mirror_num;	/* large enough to hold
140 					 * BTRFS_SUPER_MIRROR_MAX */
141 	struct btrfsic_dev_state *dev_state;
142 	u64 dev_bytenr;		/* key, physical byte num on disk */
143 	u64 logical_bytenr;	/* logical byte num on disk */
144 	u64 generation;
145 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
146 					 * issues, will not always be correct */
147 	struct list_head collision_resolving_node;	/* list node */
148 	struct list_head all_blocks_node;	/* list node */
149 
150 	/* the following two lists contain block_link items */
151 	struct list_head ref_to_list;	/* list */
152 	struct list_head ref_from_list;	/* list */
153 	struct btrfsic_block *next_in_same_bio;
154 	void *orig_bio_private;
155 	bio_end_io_t *orig_bio_end_io;
156 	int submit_bio_bh_rw;
157 	u64 flush_gen; /* only valid if !never_written */
158 };
159 
160 /*
161  * Elements of this type are allocated dynamically and required because
162  * each block object can refer to and can be ref from multiple blocks.
163  * The key to lookup them in the hashtable is the dev_bytenr of
164  * the block ref to plus the one from the block referred from.
165  * The fact that they are searchable via a hashtable and that a
166  * ref_cnt is maintained is not required for the btrfs integrity
167  * check algorithm itself, it is only used to make the output more
168  * beautiful in case that an error is detected (an error is defined
169  * as a write operation to a block while that block is still referenced).
170  */
171 struct btrfsic_block_link {
172 	u32 magic_num;		/* only used for debug purposes */
173 	u32 ref_cnt;
174 	struct list_head node_ref_to;	/* list node */
175 	struct list_head node_ref_from;	/* list node */
176 	struct list_head collision_resolving_node;	/* list node */
177 	struct btrfsic_block *block_ref_to;
178 	struct btrfsic_block *block_ref_from;
179 	u64 parent_generation;
180 };
181 
182 struct btrfsic_dev_state {
183 	u32 magic_num;		/* only used for debug purposes */
184 	struct block_device *bdev;
185 	struct btrfsic_state *state;
186 	struct list_head collision_resolving_node;	/* list node */
187 	struct btrfsic_block dummy_block_for_bio_bh_flush;
188 	u64 last_flush_gen;
189 	char name[BDEVNAME_SIZE];
190 };
191 
192 struct btrfsic_block_hashtable {
193 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
194 };
195 
196 struct btrfsic_block_link_hashtable {
197 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
198 };
199 
200 struct btrfsic_dev_state_hashtable {
201 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
202 };
203 
204 struct btrfsic_block_data_ctx {
205 	u64 start;		/* virtual bytenr */
206 	u64 dev_bytenr;		/* physical bytenr on device */
207 	u32 len;
208 	struct btrfsic_dev_state *dev;
209 	char **datav;
210 	struct page **pagev;
211 	void *mem_to_free;
212 };
213 
214 /* This structure is used to implement recursion without occupying
215  * any stack space, refer to btrfsic_process_metablock() */
216 struct btrfsic_stack_frame {
217 	u32 magic;
218 	u32 nr;
219 	int error;
220 	int i;
221 	int limit_nesting;
222 	int num_copies;
223 	int mirror_num;
224 	struct btrfsic_block *block;
225 	struct btrfsic_block_data_ctx *block_ctx;
226 	struct btrfsic_block *next_block;
227 	struct btrfsic_block_data_ctx next_block_ctx;
228 	struct btrfs_header *hdr;
229 	struct btrfsic_stack_frame *prev;
230 };
231 
232 /* Some state per mounted filesystem */
233 struct btrfsic_state {
234 	u32 print_mask;
235 	int include_extent_data;
236 	int csum_size;
237 	struct list_head all_blocks_list;
238 	struct btrfsic_block_hashtable block_hashtable;
239 	struct btrfsic_block_link_hashtable block_link_hashtable;
240 	struct btrfs_fs_info *fs_info;
241 	u64 max_superblock_generation;
242 	struct btrfsic_block *latest_superblock;
243 	u32 metablock_size;
244 	u32 datablock_size;
245 };
246 
247 static void btrfsic_block_init(struct btrfsic_block *b);
248 static struct btrfsic_block *btrfsic_block_alloc(void);
249 static void btrfsic_block_free(struct btrfsic_block *b);
250 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
251 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
252 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
253 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
254 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
255 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
256 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
257 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
258 					struct btrfsic_block_hashtable *h);
259 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
260 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
261 		struct block_device *bdev,
262 		u64 dev_bytenr,
263 		struct btrfsic_block_hashtable *h);
264 static void btrfsic_block_link_hashtable_init(
265 		struct btrfsic_block_link_hashtable *h);
266 static void btrfsic_block_link_hashtable_add(
267 		struct btrfsic_block_link *l,
268 		struct btrfsic_block_link_hashtable *h);
269 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
270 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
271 		struct block_device *bdev_ref_to,
272 		u64 dev_bytenr_ref_to,
273 		struct block_device *bdev_ref_from,
274 		u64 dev_bytenr_ref_from,
275 		struct btrfsic_block_link_hashtable *h);
276 static void btrfsic_dev_state_hashtable_init(
277 		struct btrfsic_dev_state_hashtable *h);
278 static void btrfsic_dev_state_hashtable_add(
279 		struct btrfsic_dev_state *ds,
280 		struct btrfsic_dev_state_hashtable *h);
281 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
282 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
283 		struct btrfsic_dev_state_hashtable *h);
284 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
285 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
286 static int btrfsic_process_superblock(struct btrfsic_state *state,
287 				      struct btrfs_fs_devices *fs_devices);
288 static int btrfsic_process_metablock(struct btrfsic_state *state,
289 				     struct btrfsic_block *block,
290 				     struct btrfsic_block_data_ctx *block_ctx,
291 				     int limit_nesting, int force_iodone_flag);
292 static void btrfsic_read_from_block_data(
293 	struct btrfsic_block_data_ctx *block_ctx,
294 	void *dst, u32 offset, size_t len);
295 static int btrfsic_create_link_to_next_block(
296 		struct btrfsic_state *state,
297 		struct btrfsic_block *block,
298 		struct btrfsic_block_data_ctx
299 		*block_ctx, u64 next_bytenr,
300 		int limit_nesting,
301 		struct btrfsic_block_data_ctx *next_block_ctx,
302 		struct btrfsic_block **next_blockp,
303 		int force_iodone_flag,
304 		int *num_copiesp, int *mirror_nump,
305 		struct btrfs_disk_key *disk_key,
306 		u64 parent_generation);
307 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
308 				      struct btrfsic_block *block,
309 				      struct btrfsic_block_data_ctx *block_ctx,
310 				      u32 item_offset, int force_iodone_flag);
311 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
312 			     struct btrfsic_block_data_ctx *block_ctx_out,
313 			     int mirror_num);
314 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
315 static int btrfsic_read_block(struct btrfsic_state *state,
316 			      struct btrfsic_block_data_ctx *block_ctx);
317 static void btrfsic_dump_database(struct btrfsic_state *state);
318 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
319 				     char **datav, unsigned int num_pages);
320 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
321 					  u64 dev_bytenr, char **mapped_datav,
322 					  unsigned int num_pages,
323 					  struct bio *bio, int *bio_is_patched,
324 					  int submit_bio_bh_rw);
325 static int btrfsic_process_written_superblock(
326 		struct btrfsic_state *state,
327 		struct btrfsic_block *const block,
328 		struct btrfs_super_block *const super_hdr);
329 static void btrfsic_bio_end_io(struct bio *bp);
330 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
331 					      const struct btrfsic_block *block,
332 					      int recursion_level);
333 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
334 					struct btrfsic_block *const block,
335 					int recursion_level);
336 static void btrfsic_print_add_link(const struct btrfsic_state *state,
337 				   const struct btrfsic_block_link *l);
338 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
339 				   const struct btrfsic_block_link *l);
340 static char btrfsic_get_block_type(const struct btrfsic_state *state,
341 				   const struct btrfsic_block *block);
342 static void btrfsic_dump_tree(const struct btrfsic_state *state);
343 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
344 				  const struct btrfsic_block *block,
345 				  int indent_level);
346 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
347 		struct btrfsic_state *state,
348 		struct btrfsic_block_data_ctx *next_block_ctx,
349 		struct btrfsic_block *next_block,
350 		struct btrfsic_block *from_block,
351 		u64 parent_generation);
352 static struct btrfsic_block *btrfsic_block_lookup_or_add(
353 		struct btrfsic_state *state,
354 		struct btrfsic_block_data_ctx *block_ctx,
355 		const char *additional_string,
356 		int is_metadata,
357 		int is_iodone,
358 		int never_written,
359 		int mirror_num,
360 		int *was_created);
361 static int btrfsic_process_superblock_dev_mirror(
362 		struct btrfsic_state *state,
363 		struct btrfsic_dev_state *dev_state,
364 		struct btrfs_device *device,
365 		int superblock_mirror_num,
366 		struct btrfsic_dev_state **selected_dev_state,
367 		struct btrfs_super_block *selected_super);
368 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
369 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
370 					   u64 bytenr,
371 					   struct btrfsic_dev_state *dev_state,
372 					   u64 dev_bytenr);
373 
374 static struct mutex btrfsic_mutex;
375 static int btrfsic_is_initialized;
376 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
377 
378 
379 static void btrfsic_block_init(struct btrfsic_block *b)
380 {
381 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
382 	b->dev_state = NULL;
383 	b->dev_bytenr = 0;
384 	b->logical_bytenr = 0;
385 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
386 	b->disk_key.objectid = 0;
387 	b->disk_key.type = 0;
388 	b->disk_key.offset = 0;
389 	b->is_metadata = 0;
390 	b->is_superblock = 0;
391 	b->is_iodone = 0;
392 	b->iodone_w_error = 0;
393 	b->never_written = 0;
394 	b->mirror_num = 0;
395 	b->next_in_same_bio = NULL;
396 	b->orig_bio_private = NULL;
397 	b->orig_bio_end_io = NULL;
398 	INIT_LIST_HEAD(&b->collision_resolving_node);
399 	INIT_LIST_HEAD(&b->all_blocks_node);
400 	INIT_LIST_HEAD(&b->ref_to_list);
401 	INIT_LIST_HEAD(&b->ref_from_list);
402 	b->submit_bio_bh_rw = 0;
403 	b->flush_gen = 0;
404 }
405 
406 static struct btrfsic_block *btrfsic_block_alloc(void)
407 {
408 	struct btrfsic_block *b;
409 
410 	b = kzalloc(sizeof(*b), GFP_NOFS);
411 	if (NULL != b)
412 		btrfsic_block_init(b);
413 
414 	return b;
415 }
416 
417 static void btrfsic_block_free(struct btrfsic_block *b)
418 {
419 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
420 	kfree(b);
421 }
422 
423 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
424 {
425 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
426 	l->ref_cnt = 1;
427 	INIT_LIST_HEAD(&l->node_ref_to);
428 	INIT_LIST_HEAD(&l->node_ref_from);
429 	INIT_LIST_HEAD(&l->collision_resolving_node);
430 	l->block_ref_to = NULL;
431 	l->block_ref_from = NULL;
432 }
433 
434 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
435 {
436 	struct btrfsic_block_link *l;
437 
438 	l = kzalloc(sizeof(*l), GFP_NOFS);
439 	if (NULL != l)
440 		btrfsic_block_link_init(l);
441 
442 	return l;
443 }
444 
445 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
446 {
447 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
448 	kfree(l);
449 }
450 
451 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
452 {
453 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
454 	ds->bdev = NULL;
455 	ds->state = NULL;
456 	ds->name[0] = '\0';
457 	INIT_LIST_HEAD(&ds->collision_resolving_node);
458 	ds->last_flush_gen = 0;
459 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
460 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
461 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
462 }
463 
464 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
465 {
466 	struct btrfsic_dev_state *ds;
467 
468 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
469 	if (NULL != ds)
470 		btrfsic_dev_state_init(ds);
471 
472 	return ds;
473 }
474 
475 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
476 {
477 	BUG_ON(!(NULL == ds ||
478 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
479 	kfree(ds);
480 }
481 
482 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
483 {
484 	int i;
485 
486 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
487 		INIT_LIST_HEAD(h->table + i);
488 }
489 
490 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
491 					struct btrfsic_block_hashtable *h)
492 {
493 	const unsigned int hashval =
494 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
495 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
496 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
497 
498 	list_add(&b->collision_resolving_node, h->table + hashval);
499 }
500 
501 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
502 {
503 	list_del(&b->collision_resolving_node);
504 }
505 
506 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
507 		struct block_device *bdev,
508 		u64 dev_bytenr,
509 		struct btrfsic_block_hashtable *h)
510 {
511 	const unsigned int hashval =
512 	    (((unsigned int)(dev_bytenr >> 16)) ^
513 	     ((unsigned int)((uintptr_t)bdev))) &
514 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
515 	struct btrfsic_block *b;
516 
517 	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
518 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
519 			return b;
520 	}
521 
522 	return NULL;
523 }
524 
525 static void btrfsic_block_link_hashtable_init(
526 		struct btrfsic_block_link_hashtable *h)
527 {
528 	int i;
529 
530 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
531 		INIT_LIST_HEAD(h->table + i);
532 }
533 
534 static void btrfsic_block_link_hashtable_add(
535 		struct btrfsic_block_link *l,
536 		struct btrfsic_block_link_hashtable *h)
537 {
538 	const unsigned int hashval =
539 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
540 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
541 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
542 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
543 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
544 
545 	BUG_ON(NULL == l->block_ref_to);
546 	BUG_ON(NULL == l->block_ref_from);
547 	list_add(&l->collision_resolving_node, h->table + hashval);
548 }
549 
550 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
551 {
552 	list_del(&l->collision_resolving_node);
553 }
554 
555 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
556 		struct block_device *bdev_ref_to,
557 		u64 dev_bytenr_ref_to,
558 		struct block_device *bdev_ref_from,
559 		u64 dev_bytenr_ref_from,
560 		struct btrfsic_block_link_hashtable *h)
561 {
562 	const unsigned int hashval =
563 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
564 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
565 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
566 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
567 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
568 	struct btrfsic_block_link *l;
569 
570 	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
571 		BUG_ON(NULL == l->block_ref_to);
572 		BUG_ON(NULL == l->block_ref_from);
573 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
574 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
575 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
576 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
577 			return l;
578 	}
579 
580 	return NULL;
581 }
582 
583 static void btrfsic_dev_state_hashtable_init(
584 		struct btrfsic_dev_state_hashtable *h)
585 {
586 	int i;
587 
588 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
589 		INIT_LIST_HEAD(h->table + i);
590 }
591 
592 static void btrfsic_dev_state_hashtable_add(
593 		struct btrfsic_dev_state *ds,
594 		struct btrfsic_dev_state_hashtable *h)
595 {
596 	const unsigned int hashval =
597 	    (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
598 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
599 
600 	list_add(&ds->collision_resolving_node, h->table + hashval);
601 }
602 
603 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
604 {
605 	list_del(&ds->collision_resolving_node);
606 }
607 
608 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
609 		struct btrfsic_dev_state_hashtable *h)
610 {
611 	const unsigned int hashval =
612 		dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
613 	struct btrfsic_dev_state *ds;
614 
615 	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
616 		if (ds->bdev->bd_dev == dev)
617 			return ds;
618 	}
619 
620 	return NULL;
621 }
622 
623 static int btrfsic_process_superblock(struct btrfsic_state *state,
624 				      struct btrfs_fs_devices *fs_devices)
625 {
626 	struct btrfs_super_block *selected_super;
627 	struct list_head *dev_head = &fs_devices->devices;
628 	struct btrfs_device *device;
629 	struct btrfsic_dev_state *selected_dev_state = NULL;
630 	int ret = 0;
631 	int pass;
632 
633 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
634 	if (!selected_super)
635 		return -ENOMEM;
636 
637 	list_for_each_entry(device, dev_head, dev_list) {
638 		int i;
639 		struct btrfsic_dev_state *dev_state;
640 
641 		if (!device->bdev || !device->name)
642 			continue;
643 
644 		dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
645 		BUG_ON(NULL == dev_state);
646 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
647 			ret = btrfsic_process_superblock_dev_mirror(
648 					state, dev_state, device, i,
649 					&selected_dev_state, selected_super);
650 			if (0 != ret && 0 == i) {
651 				kfree(selected_super);
652 				return ret;
653 			}
654 		}
655 	}
656 
657 	if (NULL == state->latest_superblock) {
658 		pr_info("btrfsic: no superblock found!\n");
659 		kfree(selected_super);
660 		return -1;
661 	}
662 
663 	state->csum_size = btrfs_super_csum_size(selected_super);
664 
665 	for (pass = 0; pass < 3; pass++) {
666 		int num_copies;
667 		int mirror_num;
668 		u64 next_bytenr;
669 
670 		switch (pass) {
671 		case 0:
672 			next_bytenr = btrfs_super_root(selected_super);
673 			if (state->print_mask &
674 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
675 				pr_info("root@%llu\n", next_bytenr);
676 			break;
677 		case 1:
678 			next_bytenr = btrfs_super_chunk_root(selected_super);
679 			if (state->print_mask &
680 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
681 				pr_info("chunk@%llu\n", next_bytenr);
682 			break;
683 		case 2:
684 			next_bytenr = btrfs_super_log_root(selected_super);
685 			if (0 == next_bytenr)
686 				continue;
687 			if (state->print_mask &
688 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
689 				pr_info("log@%llu\n", next_bytenr);
690 			break;
691 		}
692 
693 		num_copies = btrfs_num_copies(state->fs_info, next_bytenr,
694 					      state->metablock_size);
695 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
696 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
697 			       next_bytenr, num_copies);
698 
699 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
700 			struct btrfsic_block *next_block;
701 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
702 			struct btrfsic_block_link *l;
703 
704 			ret = btrfsic_map_block(state, next_bytenr,
705 						state->metablock_size,
706 						&tmp_next_block_ctx,
707 						mirror_num);
708 			if (ret) {
709 				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
710 				       next_bytenr, mirror_num);
711 				kfree(selected_super);
712 				return -1;
713 			}
714 
715 			next_block = btrfsic_block_hashtable_lookup(
716 					tmp_next_block_ctx.dev->bdev,
717 					tmp_next_block_ctx.dev_bytenr,
718 					&state->block_hashtable);
719 			BUG_ON(NULL == next_block);
720 
721 			l = btrfsic_block_link_hashtable_lookup(
722 					tmp_next_block_ctx.dev->bdev,
723 					tmp_next_block_ctx.dev_bytenr,
724 					state->latest_superblock->dev_state->
725 					bdev,
726 					state->latest_superblock->dev_bytenr,
727 					&state->block_link_hashtable);
728 			BUG_ON(NULL == l);
729 
730 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
731 			if (ret < (int)PAGE_SIZE) {
732 				pr_info("btrfsic: read @logical %llu failed!\n",
733 				       tmp_next_block_ctx.start);
734 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
735 				kfree(selected_super);
736 				return -1;
737 			}
738 
739 			ret = btrfsic_process_metablock(state,
740 							next_block,
741 							&tmp_next_block_ctx,
742 							BTRFS_MAX_LEVEL + 3, 1);
743 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
744 		}
745 	}
746 
747 	kfree(selected_super);
748 	return ret;
749 }
750 
751 static int btrfsic_process_superblock_dev_mirror(
752 		struct btrfsic_state *state,
753 		struct btrfsic_dev_state *dev_state,
754 		struct btrfs_device *device,
755 		int superblock_mirror_num,
756 		struct btrfsic_dev_state **selected_dev_state,
757 		struct btrfs_super_block *selected_super)
758 {
759 	struct btrfs_fs_info *fs_info = state->fs_info;
760 	struct btrfs_super_block *super_tmp;
761 	u64 dev_bytenr;
762 	struct btrfsic_block *superblock_tmp;
763 	int pass;
764 	struct block_device *const superblock_bdev = device->bdev;
765 	struct page *page;
766 	struct address_space *mapping = superblock_bdev->bd_inode->i_mapping;
767 	int ret = 0;
768 
769 	/* super block bytenr is always the unmapped device bytenr */
770 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
771 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
772 		return -1;
773 
774 	page = read_cache_page_gfp(mapping, dev_bytenr >> PAGE_SHIFT, GFP_NOFS);
775 	if (IS_ERR(page))
776 		return -1;
777 
778 	super_tmp = page_address(page);
779 
780 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
781 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
782 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
783 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
784 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
785 		ret = 0;
786 		goto out;
787 	}
788 
789 	superblock_tmp =
790 	    btrfsic_block_hashtable_lookup(superblock_bdev,
791 					   dev_bytenr,
792 					   &state->block_hashtable);
793 	if (NULL == superblock_tmp) {
794 		superblock_tmp = btrfsic_block_alloc();
795 		if (NULL == superblock_tmp) {
796 			ret = -1;
797 			goto out;
798 		}
799 		/* for superblock, only the dev_bytenr makes sense */
800 		superblock_tmp->dev_bytenr = dev_bytenr;
801 		superblock_tmp->dev_state = dev_state;
802 		superblock_tmp->logical_bytenr = dev_bytenr;
803 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
804 		superblock_tmp->is_metadata = 1;
805 		superblock_tmp->is_superblock = 1;
806 		superblock_tmp->is_iodone = 1;
807 		superblock_tmp->never_written = 0;
808 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
809 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
810 			btrfs_info_in_rcu(fs_info,
811 				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
812 				     superblock_bdev,
813 				     rcu_str_deref(device->name), dev_bytenr,
814 				     dev_state->name, dev_bytenr,
815 				     superblock_mirror_num);
816 		list_add(&superblock_tmp->all_blocks_node,
817 			 &state->all_blocks_list);
818 		btrfsic_block_hashtable_add(superblock_tmp,
819 					    &state->block_hashtable);
820 	}
821 
822 	/* select the one with the highest generation field */
823 	if (btrfs_super_generation(super_tmp) >
824 	    state->max_superblock_generation ||
825 	    0 == state->max_superblock_generation) {
826 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
827 		*selected_dev_state = dev_state;
828 		state->max_superblock_generation =
829 		    btrfs_super_generation(super_tmp);
830 		state->latest_superblock = superblock_tmp;
831 	}
832 
833 	for (pass = 0; pass < 3; pass++) {
834 		u64 next_bytenr;
835 		int num_copies;
836 		int mirror_num;
837 		const char *additional_string = NULL;
838 		struct btrfs_disk_key tmp_disk_key;
839 
840 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
841 		tmp_disk_key.offset = 0;
842 		switch (pass) {
843 		case 0:
844 			btrfs_set_disk_key_objectid(&tmp_disk_key,
845 						    BTRFS_ROOT_TREE_OBJECTID);
846 			additional_string = "initial root ";
847 			next_bytenr = btrfs_super_root(super_tmp);
848 			break;
849 		case 1:
850 			btrfs_set_disk_key_objectid(&tmp_disk_key,
851 						    BTRFS_CHUNK_TREE_OBJECTID);
852 			additional_string = "initial chunk ";
853 			next_bytenr = btrfs_super_chunk_root(super_tmp);
854 			break;
855 		case 2:
856 			btrfs_set_disk_key_objectid(&tmp_disk_key,
857 						    BTRFS_TREE_LOG_OBJECTID);
858 			additional_string = "initial log ";
859 			next_bytenr = btrfs_super_log_root(super_tmp);
860 			if (0 == next_bytenr)
861 				continue;
862 			break;
863 		}
864 
865 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
866 					      state->metablock_size);
867 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
868 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
869 			       next_bytenr, num_copies);
870 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
871 			struct btrfsic_block *next_block;
872 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
873 			struct btrfsic_block_link *l;
874 
875 			if (btrfsic_map_block(state, next_bytenr,
876 					      state->metablock_size,
877 					      &tmp_next_block_ctx,
878 					      mirror_num)) {
879 				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
880 				       next_bytenr, mirror_num);
881 				ret = -1;
882 				goto out;
883 			}
884 
885 			next_block = btrfsic_block_lookup_or_add(
886 					state, &tmp_next_block_ctx,
887 					additional_string, 1, 1, 0,
888 					mirror_num, NULL);
889 			if (NULL == next_block) {
890 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
891 				ret = -1;
892 				goto out;
893 			}
894 
895 			next_block->disk_key = tmp_disk_key;
896 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
897 			l = btrfsic_block_link_lookup_or_add(
898 					state, &tmp_next_block_ctx,
899 					next_block, superblock_tmp,
900 					BTRFSIC_GENERATION_UNKNOWN);
901 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
902 			if (NULL == l) {
903 				ret = -1;
904 				goto out;
905 			}
906 		}
907 	}
908 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
909 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
910 
911 out:
912 	put_page(page);
913 	return ret;
914 }
915 
916 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
917 {
918 	struct btrfsic_stack_frame *sf;
919 
920 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
921 	if (sf)
922 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
923 	return sf;
924 }
925 
926 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
927 {
928 	BUG_ON(!(NULL == sf ||
929 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
930 	kfree(sf);
931 }
932 
933 static noinline_for_stack int btrfsic_process_metablock(
934 		struct btrfsic_state *state,
935 		struct btrfsic_block *const first_block,
936 		struct btrfsic_block_data_ctx *const first_block_ctx,
937 		int first_limit_nesting, int force_iodone_flag)
938 {
939 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
940 	struct btrfsic_stack_frame *sf;
941 	struct btrfsic_stack_frame *next_stack;
942 	struct btrfs_header *const first_hdr =
943 		(struct btrfs_header *)first_block_ctx->datav[0];
944 
945 	BUG_ON(!first_hdr);
946 	sf = &initial_stack_frame;
947 	sf->error = 0;
948 	sf->i = -1;
949 	sf->limit_nesting = first_limit_nesting;
950 	sf->block = first_block;
951 	sf->block_ctx = first_block_ctx;
952 	sf->next_block = NULL;
953 	sf->hdr = first_hdr;
954 	sf->prev = NULL;
955 
956 continue_with_new_stack_frame:
957 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
958 	if (0 == sf->hdr->level) {
959 		struct btrfs_leaf *const leafhdr =
960 		    (struct btrfs_leaf *)sf->hdr;
961 
962 		if (-1 == sf->i) {
963 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
964 
965 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
966 				pr_info("leaf %llu items %d generation %llu owner %llu\n",
967 				       sf->block_ctx->start, sf->nr,
968 				       btrfs_stack_header_generation(
969 					       &leafhdr->header),
970 				       btrfs_stack_header_owner(
971 					       &leafhdr->header));
972 		}
973 
974 continue_with_current_leaf_stack_frame:
975 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
976 			sf->i++;
977 			sf->num_copies = 0;
978 		}
979 
980 		if (sf->i < sf->nr) {
981 			struct btrfs_item disk_item;
982 			u32 disk_item_offset =
983 				(uintptr_t)(leafhdr->items + sf->i) -
984 				(uintptr_t)leafhdr;
985 			struct btrfs_disk_key *disk_key;
986 			u8 type;
987 			u32 item_offset;
988 			u32 item_size;
989 
990 			if (disk_item_offset + sizeof(struct btrfs_item) >
991 			    sf->block_ctx->len) {
992 leaf_item_out_of_bounce_error:
993 				pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
994 				       sf->block_ctx->start,
995 				       sf->block_ctx->dev->name);
996 				goto one_stack_frame_backwards;
997 			}
998 			btrfsic_read_from_block_data(sf->block_ctx,
999 						     &disk_item,
1000 						     disk_item_offset,
1001 						     sizeof(struct btrfs_item));
1002 			item_offset = btrfs_stack_item_offset(&disk_item);
1003 			item_size = btrfs_stack_item_size(&disk_item);
1004 			disk_key = &disk_item.key;
1005 			type = btrfs_disk_key_type(disk_key);
1006 
1007 			if (BTRFS_ROOT_ITEM_KEY == type) {
1008 				struct btrfs_root_item root_item;
1009 				u32 root_item_offset;
1010 				u64 next_bytenr;
1011 
1012 				root_item_offset = item_offset +
1013 					offsetof(struct btrfs_leaf, items);
1014 				if (root_item_offset + item_size >
1015 				    sf->block_ctx->len)
1016 					goto leaf_item_out_of_bounce_error;
1017 				btrfsic_read_from_block_data(
1018 					sf->block_ctx, &root_item,
1019 					root_item_offset,
1020 					item_size);
1021 				next_bytenr = btrfs_root_bytenr(&root_item);
1022 
1023 				sf->error =
1024 				    btrfsic_create_link_to_next_block(
1025 						state,
1026 						sf->block,
1027 						sf->block_ctx,
1028 						next_bytenr,
1029 						sf->limit_nesting,
1030 						&sf->next_block_ctx,
1031 						&sf->next_block,
1032 						force_iodone_flag,
1033 						&sf->num_copies,
1034 						&sf->mirror_num,
1035 						disk_key,
1036 						btrfs_root_generation(
1037 						&root_item));
1038 				if (sf->error)
1039 					goto one_stack_frame_backwards;
1040 
1041 				if (NULL != sf->next_block) {
1042 					struct btrfs_header *const next_hdr =
1043 					    (struct btrfs_header *)
1044 					    sf->next_block_ctx.datav[0];
1045 
1046 					next_stack =
1047 					    btrfsic_stack_frame_alloc();
1048 					if (NULL == next_stack) {
1049 						sf->error = -1;
1050 						btrfsic_release_block_ctx(
1051 								&sf->
1052 								next_block_ctx);
1053 						goto one_stack_frame_backwards;
1054 					}
1055 
1056 					next_stack->i = -1;
1057 					next_stack->block = sf->next_block;
1058 					next_stack->block_ctx =
1059 					    &sf->next_block_ctx;
1060 					next_stack->next_block = NULL;
1061 					next_stack->hdr = next_hdr;
1062 					next_stack->limit_nesting =
1063 					    sf->limit_nesting - 1;
1064 					next_stack->prev = sf;
1065 					sf = next_stack;
1066 					goto continue_with_new_stack_frame;
1067 				}
1068 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1069 				   state->include_extent_data) {
1070 				sf->error = btrfsic_handle_extent_data(
1071 						state,
1072 						sf->block,
1073 						sf->block_ctx,
1074 						item_offset,
1075 						force_iodone_flag);
1076 				if (sf->error)
1077 					goto one_stack_frame_backwards;
1078 			}
1079 
1080 			goto continue_with_current_leaf_stack_frame;
1081 		}
1082 	} else {
1083 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1084 
1085 		if (-1 == sf->i) {
1086 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1087 
1088 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1089 				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1090 				       sf->block_ctx->start,
1091 				       nodehdr->header.level, sf->nr,
1092 				       btrfs_stack_header_generation(
1093 				       &nodehdr->header),
1094 				       btrfs_stack_header_owner(
1095 				       &nodehdr->header));
1096 		}
1097 
1098 continue_with_current_node_stack_frame:
1099 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1100 			sf->i++;
1101 			sf->num_copies = 0;
1102 		}
1103 
1104 		if (sf->i < sf->nr) {
1105 			struct btrfs_key_ptr key_ptr;
1106 			u32 key_ptr_offset;
1107 			u64 next_bytenr;
1108 
1109 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1110 					  (uintptr_t)nodehdr;
1111 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1112 			    sf->block_ctx->len) {
1113 				pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1114 				       sf->block_ctx->start,
1115 				       sf->block_ctx->dev->name);
1116 				goto one_stack_frame_backwards;
1117 			}
1118 			btrfsic_read_from_block_data(
1119 				sf->block_ctx, &key_ptr, key_ptr_offset,
1120 				sizeof(struct btrfs_key_ptr));
1121 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1122 
1123 			sf->error = btrfsic_create_link_to_next_block(
1124 					state,
1125 					sf->block,
1126 					sf->block_ctx,
1127 					next_bytenr,
1128 					sf->limit_nesting,
1129 					&sf->next_block_ctx,
1130 					&sf->next_block,
1131 					force_iodone_flag,
1132 					&sf->num_copies,
1133 					&sf->mirror_num,
1134 					&key_ptr.key,
1135 					btrfs_stack_key_generation(&key_ptr));
1136 			if (sf->error)
1137 				goto one_stack_frame_backwards;
1138 
1139 			if (NULL != sf->next_block) {
1140 				struct btrfs_header *const next_hdr =
1141 				    (struct btrfs_header *)
1142 				    sf->next_block_ctx.datav[0];
1143 
1144 				next_stack = btrfsic_stack_frame_alloc();
1145 				if (NULL == next_stack) {
1146 					sf->error = -1;
1147 					goto one_stack_frame_backwards;
1148 				}
1149 
1150 				next_stack->i = -1;
1151 				next_stack->block = sf->next_block;
1152 				next_stack->block_ctx = &sf->next_block_ctx;
1153 				next_stack->next_block = NULL;
1154 				next_stack->hdr = next_hdr;
1155 				next_stack->limit_nesting =
1156 				    sf->limit_nesting - 1;
1157 				next_stack->prev = sf;
1158 				sf = next_stack;
1159 				goto continue_with_new_stack_frame;
1160 			}
1161 
1162 			goto continue_with_current_node_stack_frame;
1163 		}
1164 	}
1165 
1166 one_stack_frame_backwards:
1167 	if (NULL != sf->prev) {
1168 		struct btrfsic_stack_frame *const prev = sf->prev;
1169 
1170 		/* the one for the initial block is freed in the caller */
1171 		btrfsic_release_block_ctx(sf->block_ctx);
1172 
1173 		if (sf->error) {
1174 			prev->error = sf->error;
1175 			btrfsic_stack_frame_free(sf);
1176 			sf = prev;
1177 			goto one_stack_frame_backwards;
1178 		}
1179 
1180 		btrfsic_stack_frame_free(sf);
1181 		sf = prev;
1182 		goto continue_with_new_stack_frame;
1183 	} else {
1184 		BUG_ON(&initial_stack_frame != sf);
1185 	}
1186 
1187 	return sf->error;
1188 }
1189 
1190 static void btrfsic_read_from_block_data(
1191 	struct btrfsic_block_data_ctx *block_ctx,
1192 	void *dstv, u32 offset, size_t len)
1193 {
1194 	size_t cur;
1195 	size_t pgoff;
1196 	char *kaddr;
1197 	char *dst = (char *)dstv;
1198 	size_t start_offset = offset_in_page(block_ctx->start);
1199 	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1200 
1201 	WARN_ON(offset + len > block_ctx->len);
1202 	pgoff = offset_in_page(start_offset + offset);
1203 
1204 	while (len > 0) {
1205 		cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1206 		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1207 		kaddr = block_ctx->datav[i];
1208 		memcpy(dst, kaddr + pgoff, cur);
1209 
1210 		dst += cur;
1211 		len -= cur;
1212 		pgoff = 0;
1213 		i++;
1214 	}
1215 }
1216 
1217 static int btrfsic_create_link_to_next_block(
1218 		struct btrfsic_state *state,
1219 		struct btrfsic_block *block,
1220 		struct btrfsic_block_data_ctx *block_ctx,
1221 		u64 next_bytenr,
1222 		int limit_nesting,
1223 		struct btrfsic_block_data_ctx *next_block_ctx,
1224 		struct btrfsic_block **next_blockp,
1225 		int force_iodone_flag,
1226 		int *num_copiesp, int *mirror_nump,
1227 		struct btrfs_disk_key *disk_key,
1228 		u64 parent_generation)
1229 {
1230 	struct btrfs_fs_info *fs_info = state->fs_info;
1231 	struct btrfsic_block *next_block = NULL;
1232 	int ret;
1233 	struct btrfsic_block_link *l;
1234 	int did_alloc_block_link;
1235 	int block_was_created;
1236 
1237 	*next_blockp = NULL;
1238 	if (0 == *num_copiesp) {
1239 		*num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1240 						state->metablock_size);
1241 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1242 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1243 			       next_bytenr, *num_copiesp);
1244 		*mirror_nump = 1;
1245 	}
1246 
1247 	if (*mirror_nump > *num_copiesp)
1248 		return 0;
1249 
1250 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1251 		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1252 		       *mirror_nump);
1253 	ret = btrfsic_map_block(state, next_bytenr,
1254 				state->metablock_size,
1255 				next_block_ctx, *mirror_nump);
1256 	if (ret) {
1257 		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1258 		       next_bytenr, *mirror_nump);
1259 		btrfsic_release_block_ctx(next_block_ctx);
1260 		*next_blockp = NULL;
1261 		return -1;
1262 	}
1263 
1264 	next_block = btrfsic_block_lookup_or_add(state,
1265 						 next_block_ctx, "referenced ",
1266 						 1, force_iodone_flag,
1267 						 !force_iodone_flag,
1268 						 *mirror_nump,
1269 						 &block_was_created);
1270 	if (NULL == next_block) {
1271 		btrfsic_release_block_ctx(next_block_ctx);
1272 		*next_blockp = NULL;
1273 		return -1;
1274 	}
1275 	if (block_was_created) {
1276 		l = NULL;
1277 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1278 	} else {
1279 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1280 			if (next_block->logical_bytenr != next_bytenr &&
1281 			    !(!next_block->is_metadata &&
1282 			      0 == next_block->logical_bytenr))
1283 				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1284 				       next_bytenr, next_block_ctx->dev->name,
1285 				       next_block_ctx->dev_bytenr, *mirror_nump,
1286 				       btrfsic_get_block_type(state,
1287 							      next_block),
1288 				       next_block->logical_bytenr);
1289 			else
1290 				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1291 				       next_bytenr, next_block_ctx->dev->name,
1292 				       next_block_ctx->dev_bytenr, *mirror_nump,
1293 				       btrfsic_get_block_type(state,
1294 							      next_block));
1295 		}
1296 		next_block->logical_bytenr = next_bytenr;
1297 
1298 		next_block->mirror_num = *mirror_nump;
1299 		l = btrfsic_block_link_hashtable_lookup(
1300 				next_block_ctx->dev->bdev,
1301 				next_block_ctx->dev_bytenr,
1302 				block_ctx->dev->bdev,
1303 				block_ctx->dev_bytenr,
1304 				&state->block_link_hashtable);
1305 	}
1306 
1307 	next_block->disk_key = *disk_key;
1308 	if (NULL == l) {
1309 		l = btrfsic_block_link_alloc();
1310 		if (NULL == l) {
1311 			btrfsic_release_block_ctx(next_block_ctx);
1312 			*next_blockp = NULL;
1313 			return -1;
1314 		}
1315 
1316 		did_alloc_block_link = 1;
1317 		l->block_ref_to = next_block;
1318 		l->block_ref_from = block;
1319 		l->ref_cnt = 1;
1320 		l->parent_generation = parent_generation;
1321 
1322 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1323 			btrfsic_print_add_link(state, l);
1324 
1325 		list_add(&l->node_ref_to, &block->ref_to_list);
1326 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1327 
1328 		btrfsic_block_link_hashtable_add(l,
1329 						 &state->block_link_hashtable);
1330 	} else {
1331 		did_alloc_block_link = 0;
1332 		if (0 == limit_nesting) {
1333 			l->ref_cnt++;
1334 			l->parent_generation = parent_generation;
1335 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1336 				btrfsic_print_add_link(state, l);
1337 		}
1338 	}
1339 
1340 	if (limit_nesting > 0 && did_alloc_block_link) {
1341 		ret = btrfsic_read_block(state, next_block_ctx);
1342 		if (ret < (int)next_block_ctx->len) {
1343 			pr_info("btrfsic: read block @logical %llu failed!\n",
1344 			       next_bytenr);
1345 			btrfsic_release_block_ctx(next_block_ctx);
1346 			*next_blockp = NULL;
1347 			return -1;
1348 		}
1349 
1350 		*next_blockp = next_block;
1351 	} else {
1352 		*next_blockp = NULL;
1353 	}
1354 	(*mirror_nump)++;
1355 
1356 	return 0;
1357 }
1358 
1359 static int btrfsic_handle_extent_data(
1360 		struct btrfsic_state *state,
1361 		struct btrfsic_block *block,
1362 		struct btrfsic_block_data_ctx *block_ctx,
1363 		u32 item_offset, int force_iodone_flag)
1364 {
1365 	struct btrfs_fs_info *fs_info = state->fs_info;
1366 	struct btrfs_file_extent_item file_extent_item;
1367 	u64 file_extent_item_offset;
1368 	u64 next_bytenr;
1369 	u64 num_bytes;
1370 	u64 generation;
1371 	struct btrfsic_block_link *l;
1372 	int ret;
1373 
1374 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1375 				  item_offset;
1376 	if (file_extent_item_offset +
1377 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1378 	    block_ctx->len) {
1379 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1380 		       block_ctx->start, block_ctx->dev->name);
1381 		return -1;
1382 	}
1383 
1384 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1385 		file_extent_item_offset,
1386 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1387 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1388 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1389 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1390 			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1391 			       file_extent_item.type,
1392 			       btrfs_stack_file_extent_disk_bytenr(
1393 			       &file_extent_item));
1394 		return 0;
1395 	}
1396 
1397 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1398 	    block_ctx->len) {
1399 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1400 		       block_ctx->start, block_ctx->dev->name);
1401 		return -1;
1402 	}
1403 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1404 				     file_extent_item_offset,
1405 				     sizeof(struct btrfs_file_extent_item));
1406 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1407 	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1408 	    BTRFS_COMPRESS_NONE) {
1409 		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1410 		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1411 	} else {
1412 		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1413 	}
1414 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1415 
1416 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1417 		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1418 		       file_extent_item.type,
1419 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1420 		       btrfs_stack_file_extent_offset(&file_extent_item),
1421 		       num_bytes);
1422 	while (num_bytes > 0) {
1423 		u32 chunk_len;
1424 		int num_copies;
1425 		int mirror_num;
1426 
1427 		if (num_bytes > state->datablock_size)
1428 			chunk_len = state->datablock_size;
1429 		else
1430 			chunk_len = num_bytes;
1431 
1432 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
1433 					      state->datablock_size);
1434 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1435 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1436 			       next_bytenr, num_copies);
1437 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1438 			struct btrfsic_block_data_ctx next_block_ctx;
1439 			struct btrfsic_block *next_block;
1440 			int block_was_created;
1441 
1442 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1443 				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1444 					mirror_num);
1445 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1446 				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1447 				       next_bytenr, chunk_len);
1448 			ret = btrfsic_map_block(state, next_bytenr,
1449 						chunk_len, &next_block_ctx,
1450 						mirror_num);
1451 			if (ret) {
1452 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1453 				       next_bytenr, mirror_num);
1454 				return -1;
1455 			}
1456 
1457 			next_block = btrfsic_block_lookup_or_add(
1458 					state,
1459 					&next_block_ctx,
1460 					"referenced ",
1461 					0,
1462 					force_iodone_flag,
1463 					!force_iodone_flag,
1464 					mirror_num,
1465 					&block_was_created);
1466 			if (NULL == next_block) {
1467 				btrfsic_release_block_ctx(&next_block_ctx);
1468 				return -1;
1469 			}
1470 			if (!block_was_created) {
1471 				if ((state->print_mask &
1472 				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1473 				    next_block->logical_bytenr != next_bytenr &&
1474 				    !(!next_block->is_metadata &&
1475 				      0 == next_block->logical_bytenr)) {
1476 					pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1477 					       next_bytenr,
1478 					       next_block_ctx.dev->name,
1479 					       next_block_ctx.dev_bytenr,
1480 					       mirror_num,
1481 					       next_block->logical_bytenr);
1482 				}
1483 				next_block->logical_bytenr = next_bytenr;
1484 				next_block->mirror_num = mirror_num;
1485 			}
1486 
1487 			l = btrfsic_block_link_lookup_or_add(state,
1488 							     &next_block_ctx,
1489 							     next_block, block,
1490 							     generation);
1491 			btrfsic_release_block_ctx(&next_block_ctx);
1492 			if (NULL == l)
1493 				return -1;
1494 		}
1495 
1496 		next_bytenr += chunk_len;
1497 		num_bytes -= chunk_len;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1504 			     struct btrfsic_block_data_ctx *block_ctx_out,
1505 			     int mirror_num)
1506 {
1507 	struct btrfs_fs_info *fs_info = state->fs_info;
1508 	int ret;
1509 	u64 length;
1510 	struct btrfs_bio *multi = NULL;
1511 	struct btrfs_device *device;
1512 
1513 	length = len;
1514 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1515 			      bytenr, &length, &multi, mirror_num);
1516 
1517 	if (ret) {
1518 		block_ctx_out->start = 0;
1519 		block_ctx_out->dev_bytenr = 0;
1520 		block_ctx_out->len = 0;
1521 		block_ctx_out->dev = NULL;
1522 		block_ctx_out->datav = NULL;
1523 		block_ctx_out->pagev = NULL;
1524 		block_ctx_out->mem_to_free = NULL;
1525 
1526 		return ret;
1527 	}
1528 
1529 	device = multi->stripes[0].dev;
1530 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1531 	    !device->bdev || !device->name)
1532 		block_ctx_out->dev = NULL;
1533 	else
1534 		block_ctx_out->dev = btrfsic_dev_state_lookup(
1535 							device->bdev->bd_dev);
1536 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1537 	block_ctx_out->start = bytenr;
1538 	block_ctx_out->len = len;
1539 	block_ctx_out->datav = NULL;
1540 	block_ctx_out->pagev = NULL;
1541 	block_ctx_out->mem_to_free = NULL;
1542 
1543 	kfree(multi);
1544 	if (NULL == block_ctx_out->dev) {
1545 		ret = -ENXIO;
1546 		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1547 	}
1548 
1549 	return ret;
1550 }
1551 
1552 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1553 {
1554 	if (block_ctx->mem_to_free) {
1555 		unsigned int num_pages;
1556 
1557 		BUG_ON(!block_ctx->datav);
1558 		BUG_ON(!block_ctx->pagev);
1559 		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1560 			    PAGE_SHIFT;
1561 		while (num_pages > 0) {
1562 			num_pages--;
1563 			if (block_ctx->datav[num_pages]) {
1564 				kunmap(block_ctx->pagev[num_pages]);
1565 				block_ctx->datav[num_pages] = NULL;
1566 			}
1567 			if (block_ctx->pagev[num_pages]) {
1568 				__free_page(block_ctx->pagev[num_pages]);
1569 				block_ctx->pagev[num_pages] = NULL;
1570 			}
1571 		}
1572 
1573 		kfree(block_ctx->mem_to_free);
1574 		block_ctx->mem_to_free = NULL;
1575 		block_ctx->pagev = NULL;
1576 		block_ctx->datav = NULL;
1577 	}
1578 }
1579 
1580 static int btrfsic_read_block(struct btrfsic_state *state,
1581 			      struct btrfsic_block_data_ctx *block_ctx)
1582 {
1583 	unsigned int num_pages;
1584 	unsigned int i;
1585 	size_t size;
1586 	u64 dev_bytenr;
1587 	int ret;
1588 
1589 	BUG_ON(block_ctx->datav);
1590 	BUG_ON(block_ctx->pagev);
1591 	BUG_ON(block_ctx->mem_to_free);
1592 	if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1593 		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1594 		       block_ctx->dev_bytenr);
1595 		return -1;
1596 	}
1597 
1598 	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1599 		    PAGE_SHIFT;
1600 	size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1601 	block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
1602 	if (!block_ctx->mem_to_free)
1603 		return -ENOMEM;
1604 	block_ctx->datav = block_ctx->mem_to_free;
1605 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1606 	for (i = 0; i < num_pages; i++) {
1607 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1608 		if (!block_ctx->pagev[i])
1609 			return -1;
1610 	}
1611 
1612 	dev_bytenr = block_ctx->dev_bytenr;
1613 	for (i = 0; i < num_pages;) {
1614 		struct bio *bio;
1615 		unsigned int j;
1616 
1617 		bio = btrfs_io_bio_alloc(num_pages - i);
1618 		bio_set_dev(bio, block_ctx->dev->bdev);
1619 		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1620 		bio->bi_opf = REQ_OP_READ;
1621 
1622 		for (j = i; j < num_pages; j++) {
1623 			ret = bio_add_page(bio, block_ctx->pagev[j],
1624 					   PAGE_SIZE, 0);
1625 			if (PAGE_SIZE != ret)
1626 				break;
1627 		}
1628 		if (j == i) {
1629 			pr_info("btrfsic: error, failed to add a single page!\n");
1630 			return -1;
1631 		}
1632 		if (submit_bio_wait(bio)) {
1633 			pr_info("btrfsic: read error at logical %llu dev %s!\n",
1634 			       block_ctx->start, block_ctx->dev->name);
1635 			bio_put(bio);
1636 			return -1;
1637 		}
1638 		bio_put(bio);
1639 		dev_bytenr += (j - i) * PAGE_SIZE;
1640 		i = j;
1641 	}
1642 	for (i = 0; i < num_pages; i++)
1643 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1644 
1645 	return block_ctx->len;
1646 }
1647 
1648 static void btrfsic_dump_database(struct btrfsic_state *state)
1649 {
1650 	const struct btrfsic_block *b_all;
1651 
1652 	BUG_ON(NULL == state);
1653 
1654 	pr_info("all_blocks_list:\n");
1655 	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1656 		const struct btrfsic_block_link *l;
1657 
1658 		pr_info("%c-block @%llu (%s/%llu/%d)\n",
1659 		       btrfsic_get_block_type(state, b_all),
1660 		       b_all->logical_bytenr, b_all->dev_state->name,
1661 		       b_all->dev_bytenr, b_all->mirror_num);
1662 
1663 		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1664 			pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1665 			       btrfsic_get_block_type(state, b_all),
1666 			       b_all->logical_bytenr, b_all->dev_state->name,
1667 			       b_all->dev_bytenr, b_all->mirror_num,
1668 			       l->ref_cnt,
1669 			       btrfsic_get_block_type(state, l->block_ref_to),
1670 			       l->block_ref_to->logical_bytenr,
1671 			       l->block_ref_to->dev_state->name,
1672 			       l->block_ref_to->dev_bytenr,
1673 			       l->block_ref_to->mirror_num);
1674 		}
1675 
1676 		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1677 			pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1678 			       btrfsic_get_block_type(state, b_all),
1679 			       b_all->logical_bytenr, b_all->dev_state->name,
1680 			       b_all->dev_bytenr, b_all->mirror_num,
1681 			       l->ref_cnt,
1682 			       btrfsic_get_block_type(state, l->block_ref_from),
1683 			       l->block_ref_from->logical_bytenr,
1684 			       l->block_ref_from->dev_state->name,
1685 			       l->block_ref_from->dev_bytenr,
1686 			       l->block_ref_from->mirror_num);
1687 		}
1688 
1689 		pr_info("\n");
1690 	}
1691 }
1692 
1693 /*
1694  * Test whether the disk block contains a tree block (leaf or node)
1695  * (note that this test fails for the super block)
1696  */
1697 static noinline_for_stack int btrfsic_test_for_metadata(
1698 		struct btrfsic_state *state,
1699 		char **datav, unsigned int num_pages)
1700 {
1701 	struct btrfs_fs_info *fs_info = state->fs_info;
1702 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1703 	struct btrfs_header *h;
1704 	u8 csum[BTRFS_CSUM_SIZE];
1705 	unsigned int i;
1706 
1707 	if (num_pages * PAGE_SIZE < state->metablock_size)
1708 		return 1; /* not metadata */
1709 	num_pages = state->metablock_size >> PAGE_SHIFT;
1710 	h = (struct btrfs_header *)datav[0];
1711 
1712 	if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1713 		return 1;
1714 
1715 	shash->tfm = fs_info->csum_shash;
1716 	crypto_shash_init(shash);
1717 
1718 	for (i = 0; i < num_pages; i++) {
1719 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1720 		size_t sublen = i ? PAGE_SIZE :
1721 				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1722 
1723 		crypto_shash_update(shash, data, sublen);
1724 	}
1725 	crypto_shash_final(shash, csum);
1726 	if (memcmp(csum, h->csum, state->csum_size))
1727 		return 1;
1728 
1729 	return 0; /* is metadata */
1730 }
1731 
1732 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1733 					  u64 dev_bytenr, char **mapped_datav,
1734 					  unsigned int num_pages,
1735 					  struct bio *bio, int *bio_is_patched,
1736 					  int submit_bio_bh_rw)
1737 {
1738 	int is_metadata;
1739 	struct btrfsic_block *block;
1740 	struct btrfsic_block_data_ctx block_ctx;
1741 	int ret;
1742 	struct btrfsic_state *state = dev_state->state;
1743 	struct block_device *bdev = dev_state->bdev;
1744 	unsigned int processed_len;
1745 
1746 	if (NULL != bio_is_patched)
1747 		*bio_is_patched = 0;
1748 
1749 again:
1750 	if (num_pages == 0)
1751 		return;
1752 
1753 	processed_len = 0;
1754 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1755 						      num_pages));
1756 
1757 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1758 					       &state->block_hashtable);
1759 	if (NULL != block) {
1760 		u64 bytenr = 0;
1761 		struct btrfsic_block_link *l, *tmp;
1762 
1763 		if (block->is_superblock) {
1764 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1765 						    mapped_datav[0]);
1766 			if (num_pages * PAGE_SIZE <
1767 			    BTRFS_SUPER_INFO_SIZE) {
1768 				pr_info("btrfsic: cannot work with too short bios!\n");
1769 				return;
1770 			}
1771 			is_metadata = 1;
1772 			BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1773 			processed_len = BTRFS_SUPER_INFO_SIZE;
1774 			if (state->print_mask &
1775 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1776 				pr_info("[before new superblock is written]:\n");
1777 				btrfsic_dump_tree_sub(state, block, 0);
1778 			}
1779 		}
1780 		if (is_metadata) {
1781 			if (!block->is_superblock) {
1782 				if (num_pages * PAGE_SIZE <
1783 				    state->metablock_size) {
1784 					pr_info("btrfsic: cannot work with too short bios!\n");
1785 					return;
1786 				}
1787 				processed_len = state->metablock_size;
1788 				bytenr = btrfs_stack_header_bytenr(
1789 						(struct btrfs_header *)
1790 						mapped_datav[0]);
1791 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1792 							       dev_state,
1793 							       dev_bytenr);
1794 			}
1795 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1796 				if (block->logical_bytenr != bytenr &&
1797 				    !(!block->is_metadata &&
1798 				      block->logical_bytenr == 0))
1799 					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1800 					       bytenr, dev_state->name,
1801 					       dev_bytenr,
1802 					       block->mirror_num,
1803 					       btrfsic_get_block_type(state,
1804 								      block),
1805 					       block->logical_bytenr);
1806 				else
1807 					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1808 					       bytenr, dev_state->name,
1809 					       dev_bytenr, block->mirror_num,
1810 					       btrfsic_get_block_type(state,
1811 								      block));
1812 			}
1813 			block->logical_bytenr = bytenr;
1814 		} else {
1815 			if (num_pages * PAGE_SIZE <
1816 			    state->datablock_size) {
1817 				pr_info("btrfsic: cannot work with too short bios!\n");
1818 				return;
1819 			}
1820 			processed_len = state->datablock_size;
1821 			bytenr = block->logical_bytenr;
1822 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1823 				pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1824 				       bytenr, dev_state->name, dev_bytenr,
1825 				       block->mirror_num,
1826 				       btrfsic_get_block_type(state, block));
1827 		}
1828 
1829 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1830 			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1831 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1832 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1833 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1834 			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1835 			       btrfsic_get_block_type(state, block), bytenr,
1836 			       dev_state->name, dev_bytenr, block->mirror_num,
1837 			       block->generation,
1838 			       btrfs_disk_key_objectid(&block->disk_key),
1839 			       block->disk_key.type,
1840 			       btrfs_disk_key_offset(&block->disk_key),
1841 			       btrfs_stack_header_generation(
1842 				       (struct btrfs_header *) mapped_datav[0]),
1843 			       state->max_superblock_generation);
1844 			btrfsic_dump_tree(state);
1845 		}
1846 
1847 		if (!block->is_iodone && !block->never_written) {
1848 			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1849 			       btrfsic_get_block_type(state, block), bytenr,
1850 			       dev_state->name, dev_bytenr, block->mirror_num,
1851 			       block->generation,
1852 			       btrfs_stack_header_generation(
1853 				       (struct btrfs_header *)
1854 				       mapped_datav[0]));
1855 			/* it would not be safe to go on */
1856 			btrfsic_dump_tree(state);
1857 			goto continue_loop;
1858 		}
1859 
1860 		/*
1861 		 * Clear all references of this block. Do not free
1862 		 * the block itself even if is not referenced anymore
1863 		 * because it still carries valuable information
1864 		 * like whether it was ever written and IO completed.
1865 		 */
1866 		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1867 					 node_ref_to) {
1868 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1869 				btrfsic_print_rem_link(state, l);
1870 			l->ref_cnt--;
1871 			if (0 == l->ref_cnt) {
1872 				list_del(&l->node_ref_to);
1873 				list_del(&l->node_ref_from);
1874 				btrfsic_block_link_hashtable_remove(l);
1875 				btrfsic_block_link_free(l);
1876 			}
1877 		}
1878 
1879 		block_ctx.dev = dev_state;
1880 		block_ctx.dev_bytenr = dev_bytenr;
1881 		block_ctx.start = bytenr;
1882 		block_ctx.len = processed_len;
1883 		block_ctx.pagev = NULL;
1884 		block_ctx.mem_to_free = NULL;
1885 		block_ctx.datav = mapped_datav;
1886 
1887 		if (is_metadata || state->include_extent_data) {
1888 			block->never_written = 0;
1889 			block->iodone_w_error = 0;
1890 			if (NULL != bio) {
1891 				block->is_iodone = 0;
1892 				BUG_ON(NULL == bio_is_patched);
1893 				if (!*bio_is_patched) {
1894 					block->orig_bio_private =
1895 					    bio->bi_private;
1896 					block->orig_bio_end_io =
1897 					    bio->bi_end_io;
1898 					block->next_in_same_bio = NULL;
1899 					bio->bi_private = block;
1900 					bio->bi_end_io = btrfsic_bio_end_io;
1901 					*bio_is_patched = 1;
1902 				} else {
1903 					struct btrfsic_block *chained_block =
1904 					    (struct btrfsic_block *)
1905 					    bio->bi_private;
1906 
1907 					BUG_ON(NULL == chained_block);
1908 					block->orig_bio_private =
1909 					    chained_block->orig_bio_private;
1910 					block->orig_bio_end_io =
1911 					    chained_block->orig_bio_end_io;
1912 					block->next_in_same_bio = chained_block;
1913 					bio->bi_private = block;
1914 				}
1915 			} else {
1916 				block->is_iodone = 1;
1917 				block->orig_bio_private = NULL;
1918 				block->orig_bio_end_io = NULL;
1919 				block->next_in_same_bio = NULL;
1920 			}
1921 		}
1922 
1923 		block->flush_gen = dev_state->last_flush_gen + 1;
1924 		block->submit_bio_bh_rw = submit_bio_bh_rw;
1925 		if (is_metadata) {
1926 			block->logical_bytenr = bytenr;
1927 			block->is_metadata = 1;
1928 			if (block->is_superblock) {
1929 				BUG_ON(PAGE_SIZE !=
1930 				       BTRFS_SUPER_INFO_SIZE);
1931 				ret = btrfsic_process_written_superblock(
1932 						state,
1933 						block,
1934 						(struct btrfs_super_block *)
1935 						mapped_datav[0]);
1936 				if (state->print_mask &
1937 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1938 					pr_info("[after new superblock is written]:\n");
1939 					btrfsic_dump_tree_sub(state, block, 0);
1940 				}
1941 			} else {
1942 				block->mirror_num = 0;	/* unknown */
1943 				ret = btrfsic_process_metablock(
1944 						state,
1945 						block,
1946 						&block_ctx,
1947 						0, 0);
1948 			}
1949 			if (ret)
1950 				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1951 				       dev_bytenr);
1952 		} else {
1953 			block->is_metadata = 0;
1954 			block->mirror_num = 0;	/* unknown */
1955 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1956 			if (!state->include_extent_data
1957 			    && list_empty(&block->ref_from_list)) {
1958 				/*
1959 				 * disk block is overwritten with extent
1960 				 * data (not meta data) and we are configured
1961 				 * to not include extent data: take the
1962 				 * chance and free the block's memory
1963 				 */
1964 				btrfsic_block_hashtable_remove(block);
1965 				list_del(&block->all_blocks_node);
1966 				btrfsic_block_free(block);
1967 			}
1968 		}
1969 		btrfsic_release_block_ctx(&block_ctx);
1970 	} else {
1971 		/* block has not been found in hash table */
1972 		u64 bytenr;
1973 
1974 		if (!is_metadata) {
1975 			processed_len = state->datablock_size;
1976 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1977 				pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
1978 				       dev_state->name, dev_bytenr);
1979 			if (!state->include_extent_data) {
1980 				/* ignore that written D block */
1981 				goto continue_loop;
1982 			}
1983 
1984 			/* this is getting ugly for the
1985 			 * include_extent_data case... */
1986 			bytenr = 0;	/* unknown */
1987 		} else {
1988 			processed_len = state->metablock_size;
1989 			bytenr = btrfs_stack_header_bytenr(
1990 					(struct btrfs_header *)
1991 					mapped_datav[0]);
1992 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
1993 						       dev_bytenr);
1994 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1995 				pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
1996 				       bytenr, dev_state->name, dev_bytenr);
1997 		}
1998 
1999 		block_ctx.dev = dev_state;
2000 		block_ctx.dev_bytenr = dev_bytenr;
2001 		block_ctx.start = bytenr;
2002 		block_ctx.len = processed_len;
2003 		block_ctx.pagev = NULL;
2004 		block_ctx.mem_to_free = NULL;
2005 		block_ctx.datav = mapped_datav;
2006 
2007 		block = btrfsic_block_alloc();
2008 		if (NULL == block) {
2009 			btrfsic_release_block_ctx(&block_ctx);
2010 			goto continue_loop;
2011 		}
2012 		block->dev_state = dev_state;
2013 		block->dev_bytenr = dev_bytenr;
2014 		block->logical_bytenr = bytenr;
2015 		block->is_metadata = is_metadata;
2016 		block->never_written = 0;
2017 		block->iodone_w_error = 0;
2018 		block->mirror_num = 0;	/* unknown */
2019 		block->flush_gen = dev_state->last_flush_gen + 1;
2020 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2021 		if (NULL != bio) {
2022 			block->is_iodone = 0;
2023 			BUG_ON(NULL == bio_is_patched);
2024 			if (!*bio_is_patched) {
2025 				block->orig_bio_private = bio->bi_private;
2026 				block->orig_bio_end_io = bio->bi_end_io;
2027 				block->next_in_same_bio = NULL;
2028 				bio->bi_private = block;
2029 				bio->bi_end_io = btrfsic_bio_end_io;
2030 				*bio_is_patched = 1;
2031 			} else {
2032 				struct btrfsic_block *chained_block =
2033 				    (struct btrfsic_block *)
2034 				    bio->bi_private;
2035 
2036 				BUG_ON(NULL == chained_block);
2037 				block->orig_bio_private =
2038 				    chained_block->orig_bio_private;
2039 				block->orig_bio_end_io =
2040 				    chained_block->orig_bio_end_io;
2041 				block->next_in_same_bio = chained_block;
2042 				bio->bi_private = block;
2043 			}
2044 		} else {
2045 			block->is_iodone = 1;
2046 			block->orig_bio_private = NULL;
2047 			block->orig_bio_end_io = NULL;
2048 			block->next_in_same_bio = NULL;
2049 		}
2050 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2051 			pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2052 			       is_metadata ? 'M' : 'D',
2053 			       block->logical_bytenr, block->dev_state->name,
2054 			       block->dev_bytenr, block->mirror_num);
2055 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2056 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2057 
2058 		if (is_metadata) {
2059 			ret = btrfsic_process_metablock(state, block,
2060 							&block_ctx, 0, 0);
2061 			if (ret)
2062 				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2063 				       dev_bytenr);
2064 		}
2065 		btrfsic_release_block_ctx(&block_ctx);
2066 	}
2067 
2068 continue_loop:
2069 	BUG_ON(!processed_len);
2070 	dev_bytenr += processed_len;
2071 	mapped_datav += processed_len >> PAGE_SHIFT;
2072 	num_pages -= processed_len >> PAGE_SHIFT;
2073 	goto again;
2074 }
2075 
2076 static void btrfsic_bio_end_io(struct bio *bp)
2077 {
2078 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2079 	int iodone_w_error;
2080 
2081 	/* mutex is not held! This is not save if IO is not yet completed
2082 	 * on umount */
2083 	iodone_w_error = 0;
2084 	if (bp->bi_status)
2085 		iodone_w_error = 1;
2086 
2087 	BUG_ON(NULL == block);
2088 	bp->bi_private = block->orig_bio_private;
2089 	bp->bi_end_io = block->orig_bio_end_io;
2090 
2091 	do {
2092 		struct btrfsic_block *next_block;
2093 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2094 
2095 		if ((dev_state->state->print_mask &
2096 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2097 			pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2098 			       bp->bi_status,
2099 			       btrfsic_get_block_type(dev_state->state, block),
2100 			       block->logical_bytenr, dev_state->name,
2101 			       block->dev_bytenr, block->mirror_num);
2102 		next_block = block->next_in_same_bio;
2103 		block->iodone_w_error = iodone_w_error;
2104 		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2105 			dev_state->last_flush_gen++;
2106 			if ((dev_state->state->print_mask &
2107 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2108 				pr_info("bio_end_io() new %s flush_gen=%llu\n",
2109 				       dev_state->name,
2110 				       dev_state->last_flush_gen);
2111 		}
2112 		if (block->submit_bio_bh_rw & REQ_FUA)
2113 			block->flush_gen = 0; /* FUA completed means block is
2114 					       * on disk */
2115 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2116 		block = next_block;
2117 	} while (NULL != block);
2118 
2119 	bp->bi_end_io(bp);
2120 }
2121 
2122 static int btrfsic_process_written_superblock(
2123 		struct btrfsic_state *state,
2124 		struct btrfsic_block *const superblock,
2125 		struct btrfs_super_block *const super_hdr)
2126 {
2127 	struct btrfs_fs_info *fs_info = state->fs_info;
2128 	int pass;
2129 
2130 	superblock->generation = btrfs_super_generation(super_hdr);
2131 	if (!(superblock->generation > state->max_superblock_generation ||
2132 	      0 == state->max_superblock_generation)) {
2133 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2134 			pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2135 			       superblock->logical_bytenr,
2136 			       superblock->dev_state->name,
2137 			       superblock->dev_bytenr, superblock->mirror_num,
2138 			       btrfs_super_generation(super_hdr),
2139 			       state->max_superblock_generation);
2140 	} else {
2141 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2142 			pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2143 			       superblock->logical_bytenr,
2144 			       superblock->dev_state->name,
2145 			       superblock->dev_bytenr, superblock->mirror_num,
2146 			       btrfs_super_generation(super_hdr),
2147 			       state->max_superblock_generation);
2148 
2149 		state->max_superblock_generation =
2150 		    btrfs_super_generation(super_hdr);
2151 		state->latest_superblock = superblock;
2152 	}
2153 
2154 	for (pass = 0; pass < 3; pass++) {
2155 		int ret;
2156 		u64 next_bytenr;
2157 		struct btrfsic_block *next_block;
2158 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2159 		struct btrfsic_block_link *l;
2160 		int num_copies;
2161 		int mirror_num;
2162 		const char *additional_string = NULL;
2163 		struct btrfs_disk_key tmp_disk_key = {0};
2164 
2165 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2166 					    BTRFS_ROOT_ITEM_KEY);
2167 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2168 
2169 		switch (pass) {
2170 		case 0:
2171 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2172 						    BTRFS_ROOT_TREE_OBJECTID);
2173 			additional_string = "root ";
2174 			next_bytenr = btrfs_super_root(super_hdr);
2175 			if (state->print_mask &
2176 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2177 				pr_info("root@%llu\n", next_bytenr);
2178 			break;
2179 		case 1:
2180 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2181 						    BTRFS_CHUNK_TREE_OBJECTID);
2182 			additional_string = "chunk ";
2183 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2184 			if (state->print_mask &
2185 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2186 				pr_info("chunk@%llu\n", next_bytenr);
2187 			break;
2188 		case 2:
2189 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2190 						    BTRFS_TREE_LOG_OBJECTID);
2191 			additional_string = "log ";
2192 			next_bytenr = btrfs_super_log_root(super_hdr);
2193 			if (0 == next_bytenr)
2194 				continue;
2195 			if (state->print_mask &
2196 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2197 				pr_info("log@%llu\n", next_bytenr);
2198 			break;
2199 		}
2200 
2201 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
2202 					      BTRFS_SUPER_INFO_SIZE);
2203 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2204 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2205 			       next_bytenr, num_copies);
2206 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2207 			int was_created;
2208 
2209 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2210 				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2211 			ret = btrfsic_map_block(state, next_bytenr,
2212 						BTRFS_SUPER_INFO_SIZE,
2213 						&tmp_next_block_ctx,
2214 						mirror_num);
2215 			if (ret) {
2216 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2217 				       next_bytenr, mirror_num);
2218 				return -1;
2219 			}
2220 
2221 			next_block = btrfsic_block_lookup_or_add(
2222 					state,
2223 					&tmp_next_block_ctx,
2224 					additional_string,
2225 					1, 0, 1,
2226 					mirror_num,
2227 					&was_created);
2228 			if (NULL == next_block) {
2229 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2230 				return -1;
2231 			}
2232 
2233 			next_block->disk_key = tmp_disk_key;
2234 			if (was_created)
2235 				next_block->generation =
2236 				    BTRFSIC_GENERATION_UNKNOWN;
2237 			l = btrfsic_block_link_lookup_or_add(
2238 					state,
2239 					&tmp_next_block_ctx,
2240 					next_block,
2241 					superblock,
2242 					BTRFSIC_GENERATION_UNKNOWN);
2243 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2244 			if (NULL == l)
2245 				return -1;
2246 		}
2247 	}
2248 
2249 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2250 		btrfsic_dump_tree(state);
2251 
2252 	return 0;
2253 }
2254 
2255 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2256 					struct btrfsic_block *const block,
2257 					int recursion_level)
2258 {
2259 	const struct btrfsic_block_link *l;
2260 	int ret = 0;
2261 
2262 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2263 		/*
2264 		 * Note that this situation can happen and does not
2265 		 * indicate an error in regular cases. It happens
2266 		 * when disk blocks are freed and later reused.
2267 		 * The check-integrity module is not aware of any
2268 		 * block free operations, it just recognizes block
2269 		 * write operations. Therefore it keeps the linkage
2270 		 * information for a block until a block is
2271 		 * rewritten. This can temporarily cause incorrect
2272 		 * and even circular linkage information. This
2273 		 * causes no harm unless such blocks are referenced
2274 		 * by the most recent super block.
2275 		 */
2276 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2277 			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2278 
2279 		return ret;
2280 	}
2281 
2282 	/*
2283 	 * This algorithm is recursive because the amount of used stack
2284 	 * space is very small and the max recursion depth is limited.
2285 	 */
2286 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2287 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2288 			pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2289 			       recursion_level,
2290 			       btrfsic_get_block_type(state, block),
2291 			       block->logical_bytenr, block->dev_state->name,
2292 			       block->dev_bytenr, block->mirror_num,
2293 			       l->ref_cnt,
2294 			       btrfsic_get_block_type(state, l->block_ref_to),
2295 			       l->block_ref_to->logical_bytenr,
2296 			       l->block_ref_to->dev_state->name,
2297 			       l->block_ref_to->dev_bytenr,
2298 			       l->block_ref_to->mirror_num);
2299 		if (l->block_ref_to->never_written) {
2300 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2301 			       btrfsic_get_block_type(state, l->block_ref_to),
2302 			       l->block_ref_to->logical_bytenr,
2303 			       l->block_ref_to->dev_state->name,
2304 			       l->block_ref_to->dev_bytenr,
2305 			       l->block_ref_to->mirror_num);
2306 			ret = -1;
2307 		} else if (!l->block_ref_to->is_iodone) {
2308 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2309 			       btrfsic_get_block_type(state, l->block_ref_to),
2310 			       l->block_ref_to->logical_bytenr,
2311 			       l->block_ref_to->dev_state->name,
2312 			       l->block_ref_to->dev_bytenr,
2313 			       l->block_ref_to->mirror_num);
2314 			ret = -1;
2315 		} else if (l->block_ref_to->iodone_w_error) {
2316 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2317 			       btrfsic_get_block_type(state, l->block_ref_to),
2318 			       l->block_ref_to->logical_bytenr,
2319 			       l->block_ref_to->dev_state->name,
2320 			       l->block_ref_to->dev_bytenr,
2321 			       l->block_ref_to->mirror_num);
2322 			ret = -1;
2323 		} else if (l->parent_generation !=
2324 			   l->block_ref_to->generation &&
2325 			   BTRFSIC_GENERATION_UNKNOWN !=
2326 			   l->parent_generation &&
2327 			   BTRFSIC_GENERATION_UNKNOWN !=
2328 			   l->block_ref_to->generation) {
2329 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2330 			       btrfsic_get_block_type(state, l->block_ref_to),
2331 			       l->block_ref_to->logical_bytenr,
2332 			       l->block_ref_to->dev_state->name,
2333 			       l->block_ref_to->dev_bytenr,
2334 			       l->block_ref_to->mirror_num,
2335 			       l->block_ref_to->generation,
2336 			       l->parent_generation);
2337 			ret = -1;
2338 		} else if (l->block_ref_to->flush_gen >
2339 			   l->block_ref_to->dev_state->last_flush_gen) {
2340 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2341 			       btrfsic_get_block_type(state, l->block_ref_to),
2342 			       l->block_ref_to->logical_bytenr,
2343 			       l->block_ref_to->dev_state->name,
2344 			       l->block_ref_to->dev_bytenr,
2345 			       l->block_ref_to->mirror_num, block->flush_gen,
2346 			       l->block_ref_to->dev_state->last_flush_gen);
2347 			ret = -1;
2348 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2349 							      l->block_ref_to,
2350 							      recursion_level +
2351 							      1)) {
2352 			ret = -1;
2353 		}
2354 	}
2355 
2356 	return ret;
2357 }
2358 
2359 static int btrfsic_is_block_ref_by_superblock(
2360 		const struct btrfsic_state *state,
2361 		const struct btrfsic_block *block,
2362 		int recursion_level)
2363 {
2364 	const struct btrfsic_block_link *l;
2365 
2366 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2367 		/* refer to comment at "abort cyclic linkage (case 1)" */
2368 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2369 			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2370 
2371 		return 0;
2372 	}
2373 
2374 	/*
2375 	 * This algorithm is recursive because the amount of used stack space
2376 	 * is very small and the max recursion depth is limited.
2377 	 */
2378 	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2379 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2380 			pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2381 			       recursion_level,
2382 			       btrfsic_get_block_type(state, block),
2383 			       block->logical_bytenr, block->dev_state->name,
2384 			       block->dev_bytenr, block->mirror_num,
2385 			       l->ref_cnt,
2386 			       btrfsic_get_block_type(state, l->block_ref_from),
2387 			       l->block_ref_from->logical_bytenr,
2388 			       l->block_ref_from->dev_state->name,
2389 			       l->block_ref_from->dev_bytenr,
2390 			       l->block_ref_from->mirror_num);
2391 		if (l->block_ref_from->is_superblock &&
2392 		    state->latest_superblock->dev_bytenr ==
2393 		    l->block_ref_from->dev_bytenr &&
2394 		    state->latest_superblock->dev_state->bdev ==
2395 		    l->block_ref_from->dev_state->bdev)
2396 			return 1;
2397 		else if (btrfsic_is_block_ref_by_superblock(state,
2398 							    l->block_ref_from,
2399 							    recursion_level +
2400 							    1))
2401 			return 1;
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2408 				   const struct btrfsic_block_link *l)
2409 {
2410 	pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2411 	       l->ref_cnt,
2412 	       btrfsic_get_block_type(state, l->block_ref_from),
2413 	       l->block_ref_from->logical_bytenr,
2414 	       l->block_ref_from->dev_state->name,
2415 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2416 	       btrfsic_get_block_type(state, l->block_ref_to),
2417 	       l->block_ref_to->logical_bytenr,
2418 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2419 	       l->block_ref_to->mirror_num);
2420 }
2421 
2422 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2423 				   const struct btrfsic_block_link *l)
2424 {
2425 	pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2426 	       l->ref_cnt,
2427 	       btrfsic_get_block_type(state, l->block_ref_from),
2428 	       l->block_ref_from->logical_bytenr,
2429 	       l->block_ref_from->dev_state->name,
2430 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2431 	       btrfsic_get_block_type(state, l->block_ref_to),
2432 	       l->block_ref_to->logical_bytenr,
2433 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2434 	       l->block_ref_to->mirror_num);
2435 }
2436 
2437 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2438 				   const struct btrfsic_block *block)
2439 {
2440 	if (block->is_superblock &&
2441 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2442 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2443 		return 'S';
2444 	else if (block->is_superblock)
2445 		return 's';
2446 	else if (block->is_metadata)
2447 		return 'M';
2448 	else
2449 		return 'D';
2450 }
2451 
2452 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2453 {
2454 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2455 }
2456 
2457 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2458 				  const struct btrfsic_block *block,
2459 				  int indent_level)
2460 {
2461 	const struct btrfsic_block_link *l;
2462 	int indent_add;
2463 	static char buf[80];
2464 	int cursor_position;
2465 
2466 	/*
2467 	 * Should better fill an on-stack buffer with a complete line and
2468 	 * dump it at once when it is time to print a newline character.
2469 	 */
2470 
2471 	/*
2472 	 * This algorithm is recursive because the amount of used stack space
2473 	 * is very small and the max recursion depth is limited.
2474 	 */
2475 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2476 			     btrfsic_get_block_type(state, block),
2477 			     block->logical_bytenr, block->dev_state->name,
2478 			     block->dev_bytenr, block->mirror_num);
2479 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2480 		printk("[...]\n");
2481 		return;
2482 	}
2483 	printk(buf);
2484 	indent_level += indent_add;
2485 	if (list_empty(&block->ref_to_list)) {
2486 		printk("\n");
2487 		return;
2488 	}
2489 	if (block->mirror_num > 1 &&
2490 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2491 		printk(" [...]\n");
2492 		return;
2493 	}
2494 
2495 	cursor_position = indent_level;
2496 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2497 		while (cursor_position < indent_level) {
2498 			printk(" ");
2499 			cursor_position++;
2500 		}
2501 		if (l->ref_cnt > 1)
2502 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2503 		else
2504 			indent_add = sprintf(buf, " --> ");
2505 		if (indent_level + indent_add >
2506 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2507 			printk("[...]\n");
2508 			cursor_position = 0;
2509 			continue;
2510 		}
2511 
2512 		printk(buf);
2513 
2514 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2515 				      indent_level + indent_add);
2516 		cursor_position = 0;
2517 	}
2518 }
2519 
2520 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2521 		struct btrfsic_state *state,
2522 		struct btrfsic_block_data_ctx *next_block_ctx,
2523 		struct btrfsic_block *next_block,
2524 		struct btrfsic_block *from_block,
2525 		u64 parent_generation)
2526 {
2527 	struct btrfsic_block_link *l;
2528 
2529 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2530 						next_block_ctx->dev_bytenr,
2531 						from_block->dev_state->bdev,
2532 						from_block->dev_bytenr,
2533 						&state->block_link_hashtable);
2534 	if (NULL == l) {
2535 		l = btrfsic_block_link_alloc();
2536 		if (!l)
2537 			return NULL;
2538 
2539 		l->block_ref_to = next_block;
2540 		l->block_ref_from = from_block;
2541 		l->ref_cnt = 1;
2542 		l->parent_generation = parent_generation;
2543 
2544 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2545 			btrfsic_print_add_link(state, l);
2546 
2547 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2548 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2549 
2550 		btrfsic_block_link_hashtable_add(l,
2551 						 &state->block_link_hashtable);
2552 	} else {
2553 		l->ref_cnt++;
2554 		l->parent_generation = parent_generation;
2555 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2556 			btrfsic_print_add_link(state, l);
2557 	}
2558 
2559 	return l;
2560 }
2561 
2562 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2563 		struct btrfsic_state *state,
2564 		struct btrfsic_block_data_ctx *block_ctx,
2565 		const char *additional_string,
2566 		int is_metadata,
2567 		int is_iodone,
2568 		int never_written,
2569 		int mirror_num,
2570 		int *was_created)
2571 {
2572 	struct btrfsic_block *block;
2573 
2574 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2575 					       block_ctx->dev_bytenr,
2576 					       &state->block_hashtable);
2577 	if (NULL == block) {
2578 		struct btrfsic_dev_state *dev_state;
2579 
2580 		block = btrfsic_block_alloc();
2581 		if (!block)
2582 			return NULL;
2583 
2584 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2585 		if (NULL == dev_state) {
2586 			pr_info("btrfsic: error, lookup dev_state failed!\n");
2587 			btrfsic_block_free(block);
2588 			return NULL;
2589 		}
2590 		block->dev_state = dev_state;
2591 		block->dev_bytenr = block_ctx->dev_bytenr;
2592 		block->logical_bytenr = block_ctx->start;
2593 		block->is_metadata = is_metadata;
2594 		block->is_iodone = is_iodone;
2595 		block->never_written = never_written;
2596 		block->mirror_num = mirror_num;
2597 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2598 			pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2599 			       additional_string,
2600 			       btrfsic_get_block_type(state, block),
2601 			       block->logical_bytenr, dev_state->name,
2602 			       block->dev_bytenr, mirror_num);
2603 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2604 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2605 		if (NULL != was_created)
2606 			*was_created = 1;
2607 	} else {
2608 		if (NULL != was_created)
2609 			*was_created = 0;
2610 	}
2611 
2612 	return block;
2613 }
2614 
2615 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2616 					   u64 bytenr,
2617 					   struct btrfsic_dev_state *dev_state,
2618 					   u64 dev_bytenr)
2619 {
2620 	struct btrfs_fs_info *fs_info = state->fs_info;
2621 	struct btrfsic_block_data_ctx block_ctx;
2622 	int num_copies;
2623 	int mirror_num;
2624 	int match = 0;
2625 	int ret;
2626 
2627 	num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2628 
2629 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2630 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2631 					&block_ctx, mirror_num);
2632 		if (ret) {
2633 			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2634 			       bytenr, mirror_num);
2635 			continue;
2636 		}
2637 
2638 		if (dev_state->bdev == block_ctx.dev->bdev &&
2639 		    dev_bytenr == block_ctx.dev_bytenr) {
2640 			match++;
2641 			btrfsic_release_block_ctx(&block_ctx);
2642 			break;
2643 		}
2644 		btrfsic_release_block_ctx(&block_ctx);
2645 	}
2646 
2647 	if (WARN_ON(!match)) {
2648 		pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2649 		       bytenr, dev_state->name, dev_bytenr);
2650 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2651 			ret = btrfsic_map_block(state, bytenr,
2652 						state->metablock_size,
2653 						&block_ctx, mirror_num);
2654 			if (ret)
2655 				continue;
2656 
2657 			pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2658 			       bytenr, block_ctx.dev->name,
2659 			       block_ctx.dev_bytenr, mirror_num);
2660 		}
2661 	}
2662 }
2663 
2664 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
2665 {
2666 	return btrfsic_dev_state_hashtable_lookup(dev,
2667 						  &btrfsic_dev_state_hashtable);
2668 }
2669 
2670 static void __btrfsic_submit_bio(struct bio *bio)
2671 {
2672 	struct btrfsic_dev_state *dev_state;
2673 
2674 	if (!btrfsic_is_initialized)
2675 		return;
2676 
2677 	mutex_lock(&btrfsic_mutex);
2678 	/* since btrfsic_submit_bio() is also called before
2679 	 * btrfsic_mount(), this might return NULL */
2680 	dev_state = btrfsic_dev_state_lookup(bio_dev(bio) + bio->bi_partno);
2681 	if (NULL != dev_state &&
2682 	    (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2683 		unsigned int i = 0;
2684 		u64 dev_bytenr;
2685 		u64 cur_bytenr;
2686 		struct bio_vec bvec;
2687 		struct bvec_iter iter;
2688 		int bio_is_patched;
2689 		char **mapped_datav;
2690 		unsigned int segs = bio_segments(bio);
2691 
2692 		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2693 		bio_is_patched = 0;
2694 		if (dev_state->state->print_mask &
2695 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2696 			pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_disk=%p)\n",
2697 			       bio_op(bio), bio->bi_opf, segs,
2698 			       (unsigned long long)bio->bi_iter.bi_sector,
2699 			       dev_bytenr, bio->bi_disk);
2700 
2701 		mapped_datav = kmalloc_array(segs,
2702 					     sizeof(*mapped_datav), GFP_NOFS);
2703 		if (!mapped_datav)
2704 			goto leave;
2705 		cur_bytenr = dev_bytenr;
2706 
2707 		bio_for_each_segment(bvec, bio, iter) {
2708 			BUG_ON(bvec.bv_len != PAGE_SIZE);
2709 			mapped_datav[i] = kmap(bvec.bv_page);
2710 			i++;
2711 
2712 			if (dev_state->state->print_mask &
2713 			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2714 				pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2715 				       i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2716 			cur_bytenr += bvec.bv_len;
2717 		}
2718 		btrfsic_process_written_block(dev_state, dev_bytenr,
2719 					      mapped_datav, segs,
2720 					      bio, &bio_is_patched,
2721 					      bio->bi_opf);
2722 		bio_for_each_segment(bvec, bio, iter)
2723 			kunmap(bvec.bv_page);
2724 		kfree(mapped_datav);
2725 	} else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2726 		if (dev_state->state->print_mask &
2727 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2728 			pr_info("submit_bio(rw=%d,0x%x FLUSH, disk=%p)\n",
2729 			       bio_op(bio), bio->bi_opf, bio->bi_disk);
2730 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2731 			if ((dev_state->state->print_mask &
2732 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2733 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2734 				pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2735 				       dev_state->name);
2736 		} else {
2737 			struct btrfsic_block *const block =
2738 				&dev_state->dummy_block_for_bio_bh_flush;
2739 
2740 			block->is_iodone = 0;
2741 			block->never_written = 0;
2742 			block->iodone_w_error = 0;
2743 			block->flush_gen = dev_state->last_flush_gen + 1;
2744 			block->submit_bio_bh_rw = bio->bi_opf;
2745 			block->orig_bio_private = bio->bi_private;
2746 			block->orig_bio_end_io = bio->bi_end_io;
2747 			block->next_in_same_bio = NULL;
2748 			bio->bi_private = block;
2749 			bio->bi_end_io = btrfsic_bio_end_io;
2750 		}
2751 	}
2752 leave:
2753 	mutex_unlock(&btrfsic_mutex);
2754 }
2755 
2756 void btrfsic_submit_bio(struct bio *bio)
2757 {
2758 	__btrfsic_submit_bio(bio);
2759 	submit_bio(bio);
2760 }
2761 
2762 int btrfsic_submit_bio_wait(struct bio *bio)
2763 {
2764 	__btrfsic_submit_bio(bio);
2765 	return submit_bio_wait(bio);
2766 }
2767 
2768 int btrfsic_mount(struct btrfs_fs_info *fs_info,
2769 		  struct btrfs_fs_devices *fs_devices,
2770 		  int including_extent_data, u32 print_mask)
2771 {
2772 	int ret;
2773 	struct btrfsic_state *state;
2774 	struct list_head *dev_head = &fs_devices->devices;
2775 	struct btrfs_device *device;
2776 
2777 	if (!PAGE_ALIGNED(fs_info->nodesize)) {
2778 		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2779 		       fs_info->nodesize, PAGE_SIZE);
2780 		return -1;
2781 	}
2782 	if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2783 		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2784 		       fs_info->sectorsize, PAGE_SIZE);
2785 		return -1;
2786 	}
2787 	state = kvzalloc(sizeof(*state), GFP_KERNEL);
2788 	if (!state)
2789 		return -ENOMEM;
2790 
2791 	if (!btrfsic_is_initialized) {
2792 		mutex_init(&btrfsic_mutex);
2793 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2794 		btrfsic_is_initialized = 1;
2795 	}
2796 	mutex_lock(&btrfsic_mutex);
2797 	state->fs_info = fs_info;
2798 	state->print_mask = print_mask;
2799 	state->include_extent_data = including_extent_data;
2800 	state->csum_size = 0;
2801 	state->metablock_size = fs_info->nodesize;
2802 	state->datablock_size = fs_info->sectorsize;
2803 	INIT_LIST_HEAD(&state->all_blocks_list);
2804 	btrfsic_block_hashtable_init(&state->block_hashtable);
2805 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2806 	state->max_superblock_generation = 0;
2807 	state->latest_superblock = NULL;
2808 
2809 	list_for_each_entry(device, dev_head, dev_list) {
2810 		struct btrfsic_dev_state *ds;
2811 		const char *p;
2812 
2813 		if (!device->bdev || !device->name)
2814 			continue;
2815 
2816 		ds = btrfsic_dev_state_alloc();
2817 		if (NULL == ds) {
2818 			mutex_unlock(&btrfsic_mutex);
2819 			return -ENOMEM;
2820 		}
2821 		ds->bdev = device->bdev;
2822 		ds->state = state;
2823 		bdevname(ds->bdev, ds->name);
2824 		ds->name[BDEVNAME_SIZE - 1] = '\0';
2825 		p = kbasename(ds->name);
2826 		strlcpy(ds->name, p, sizeof(ds->name));
2827 		btrfsic_dev_state_hashtable_add(ds,
2828 						&btrfsic_dev_state_hashtable);
2829 	}
2830 
2831 	ret = btrfsic_process_superblock(state, fs_devices);
2832 	if (0 != ret) {
2833 		mutex_unlock(&btrfsic_mutex);
2834 		btrfsic_unmount(fs_devices);
2835 		return ret;
2836 	}
2837 
2838 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2839 		btrfsic_dump_database(state);
2840 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2841 		btrfsic_dump_tree(state);
2842 
2843 	mutex_unlock(&btrfsic_mutex);
2844 	return 0;
2845 }
2846 
2847 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2848 {
2849 	struct btrfsic_block *b_all, *tmp_all;
2850 	struct btrfsic_state *state;
2851 	struct list_head *dev_head = &fs_devices->devices;
2852 	struct btrfs_device *device;
2853 
2854 	if (!btrfsic_is_initialized)
2855 		return;
2856 
2857 	mutex_lock(&btrfsic_mutex);
2858 
2859 	state = NULL;
2860 	list_for_each_entry(device, dev_head, dev_list) {
2861 		struct btrfsic_dev_state *ds;
2862 
2863 		if (!device->bdev || !device->name)
2864 			continue;
2865 
2866 		ds = btrfsic_dev_state_hashtable_lookup(
2867 				device->bdev->bd_dev,
2868 				&btrfsic_dev_state_hashtable);
2869 		if (NULL != ds) {
2870 			state = ds->state;
2871 			btrfsic_dev_state_hashtable_remove(ds);
2872 			btrfsic_dev_state_free(ds);
2873 		}
2874 	}
2875 
2876 	if (NULL == state) {
2877 		pr_info("btrfsic: error, cannot find state information on umount!\n");
2878 		mutex_unlock(&btrfsic_mutex);
2879 		return;
2880 	}
2881 
2882 	/*
2883 	 * Don't care about keeping the lists' state up to date,
2884 	 * just free all memory that was allocated dynamically.
2885 	 * Free the blocks and the block_links.
2886 	 */
2887 	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
2888 				 all_blocks_node) {
2889 		struct btrfsic_block_link *l, *tmp;
2890 
2891 		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
2892 					 node_ref_to) {
2893 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2894 				btrfsic_print_rem_link(state, l);
2895 
2896 			l->ref_cnt--;
2897 			if (0 == l->ref_cnt)
2898 				btrfsic_block_link_free(l);
2899 		}
2900 
2901 		if (b_all->is_iodone || b_all->never_written)
2902 			btrfsic_block_free(b_all);
2903 		else
2904 			pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
2905 			       btrfsic_get_block_type(state, b_all),
2906 			       b_all->logical_bytenr, b_all->dev_state->name,
2907 			       b_all->dev_bytenr, b_all->mirror_num);
2908 	}
2909 
2910 	mutex_unlock(&btrfsic_mutex);
2911 
2912 	kvfree(state);
2913 }
2914