xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision 79f08d9e)
1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and no write error was indicated and a
41  *        FLUSH request to the device where these blocks are
42  *        located was received and completed.
43  *    2b. All referenced blocks need to have a generation
44  *        number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  *
81  * Expect millions of lines of information in the kernel log with an
82  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83  * kernel config to at least 26 (which is 64MB). Usually the value is
84  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85  * changed like this before LOG_BUF_SHIFT can be set to a high value:
86  * config LOG_BUF_SHIFT
87  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88  *       range 12 30
89  */
90 
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/crc32c.h>
96 #include <linux/genhd.h>
97 #include <linux/blkdev.h>
98 #include "ctree.h"
99 #include "disk-io.h"
100 #include "transaction.h"
101 #include "extent_io.h"
102 #include "volumes.h"
103 #include "print-tree.h"
104 #include "locking.h"
105 #include "check-integrity.h"
106 #include "rcu-string.h"
107 
108 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
116 							 * excluding " [...]" */
117 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118 
119 /*
120  * The definition of the bitmask fields for the print_mask.
121  * They are specified with the mount option check_integrity_print_mask.
122  */
123 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
124 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
125 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
126 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
127 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
128 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
129 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
130 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
131 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
132 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
133 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
134 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
135 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
136 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
137 
138 struct btrfsic_dev_state;
139 struct btrfsic_state;
140 
141 struct btrfsic_block {
142 	u32 magic_num;		/* only used for debug purposes */
143 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
144 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
145 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
146 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
147 	unsigned int never_written:1;	/* block was added because it was
148 					 * referenced, not because it was
149 					 * written */
150 	unsigned int mirror_num;	/* large enough to hold
151 					 * BTRFS_SUPER_MIRROR_MAX */
152 	struct btrfsic_dev_state *dev_state;
153 	u64 dev_bytenr;		/* key, physical byte num on disk */
154 	u64 logical_bytenr;	/* logical byte num on disk */
155 	u64 generation;
156 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
157 					 * issues, will not always be correct */
158 	struct list_head collision_resolving_node;	/* list node */
159 	struct list_head all_blocks_node;	/* list node */
160 
161 	/* the following two lists contain block_link items */
162 	struct list_head ref_to_list;	/* list */
163 	struct list_head ref_from_list;	/* list */
164 	struct btrfsic_block *next_in_same_bio;
165 	void *orig_bio_bh_private;
166 	union {
167 		bio_end_io_t *bio;
168 		bh_end_io_t *bh;
169 	} orig_bio_bh_end_io;
170 	int submit_bio_bh_rw;
171 	u64 flush_gen; /* only valid if !never_written */
172 };
173 
174 /*
175  * Elements of this type are allocated dynamically and required because
176  * each block object can refer to and can be ref from multiple blocks.
177  * The key to lookup them in the hashtable is the dev_bytenr of
178  * the block ref to plus the one from the block refered from.
179  * The fact that they are searchable via a hashtable and that a
180  * ref_cnt is maintained is not required for the btrfs integrity
181  * check algorithm itself, it is only used to make the output more
182  * beautiful in case that an error is detected (an error is defined
183  * as a write operation to a block while that block is still referenced).
184  */
185 struct btrfsic_block_link {
186 	u32 magic_num;		/* only used for debug purposes */
187 	u32 ref_cnt;
188 	struct list_head node_ref_to;	/* list node */
189 	struct list_head node_ref_from;	/* list node */
190 	struct list_head collision_resolving_node;	/* list node */
191 	struct btrfsic_block *block_ref_to;
192 	struct btrfsic_block *block_ref_from;
193 	u64 parent_generation;
194 };
195 
196 struct btrfsic_dev_state {
197 	u32 magic_num;		/* only used for debug purposes */
198 	struct block_device *bdev;
199 	struct btrfsic_state *state;
200 	struct list_head collision_resolving_node;	/* list node */
201 	struct btrfsic_block dummy_block_for_bio_bh_flush;
202 	u64 last_flush_gen;
203 	char name[BDEVNAME_SIZE];
204 };
205 
206 struct btrfsic_block_hashtable {
207 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208 };
209 
210 struct btrfsic_block_link_hashtable {
211 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212 };
213 
214 struct btrfsic_dev_state_hashtable {
215 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216 };
217 
218 struct btrfsic_block_data_ctx {
219 	u64 start;		/* virtual bytenr */
220 	u64 dev_bytenr;		/* physical bytenr on device */
221 	u32 len;
222 	struct btrfsic_dev_state *dev;
223 	char **datav;
224 	struct page **pagev;
225 	void *mem_to_free;
226 };
227 
228 /* This structure is used to implement recursion without occupying
229  * any stack space, refer to btrfsic_process_metablock() */
230 struct btrfsic_stack_frame {
231 	u32 magic;
232 	u32 nr;
233 	int error;
234 	int i;
235 	int limit_nesting;
236 	int num_copies;
237 	int mirror_num;
238 	struct btrfsic_block *block;
239 	struct btrfsic_block_data_ctx *block_ctx;
240 	struct btrfsic_block *next_block;
241 	struct btrfsic_block_data_ctx next_block_ctx;
242 	struct btrfs_header *hdr;
243 	struct btrfsic_stack_frame *prev;
244 };
245 
246 /* Some state per mounted filesystem */
247 struct btrfsic_state {
248 	u32 print_mask;
249 	int include_extent_data;
250 	int csum_size;
251 	struct list_head all_blocks_list;
252 	struct btrfsic_block_hashtable block_hashtable;
253 	struct btrfsic_block_link_hashtable block_link_hashtable;
254 	struct btrfs_root *root;
255 	u64 max_superblock_generation;
256 	struct btrfsic_block *latest_superblock;
257 	u32 metablock_size;
258 	u32 datablock_size;
259 };
260 
261 static void btrfsic_block_init(struct btrfsic_block *b);
262 static struct btrfsic_block *btrfsic_block_alloc(void);
263 static void btrfsic_block_free(struct btrfsic_block *b);
264 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 					struct btrfsic_block_hashtable *h);
273 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 		struct block_device *bdev,
276 		u64 dev_bytenr,
277 		struct btrfsic_block_hashtable *h);
278 static void btrfsic_block_link_hashtable_init(
279 		struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_block_link_hashtable_add(
281 		struct btrfsic_block_link *l,
282 		struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 		struct block_device *bdev_ref_to,
286 		u64 dev_bytenr_ref_to,
287 		struct block_device *bdev_ref_from,
288 		u64 dev_bytenr_ref_from,
289 		struct btrfsic_block_link_hashtable *h);
290 static void btrfsic_dev_state_hashtable_init(
291 		struct btrfsic_dev_state_hashtable *h);
292 static void btrfsic_dev_state_hashtable_add(
293 		struct btrfsic_dev_state *ds,
294 		struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 		struct block_device *bdev,
298 		struct btrfsic_dev_state_hashtable *h);
299 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301 static int btrfsic_process_superblock(struct btrfsic_state *state,
302 				      struct btrfs_fs_devices *fs_devices);
303 static int btrfsic_process_metablock(struct btrfsic_state *state,
304 				     struct btrfsic_block *block,
305 				     struct btrfsic_block_data_ctx *block_ctx,
306 				     int limit_nesting, int force_iodone_flag);
307 static void btrfsic_read_from_block_data(
308 	struct btrfsic_block_data_ctx *block_ctx,
309 	void *dst, u32 offset, size_t len);
310 static int btrfsic_create_link_to_next_block(
311 		struct btrfsic_state *state,
312 		struct btrfsic_block *block,
313 		struct btrfsic_block_data_ctx
314 		*block_ctx, u64 next_bytenr,
315 		int limit_nesting,
316 		struct btrfsic_block_data_ctx *next_block_ctx,
317 		struct btrfsic_block **next_blockp,
318 		int force_iodone_flag,
319 		int *num_copiesp, int *mirror_nump,
320 		struct btrfs_disk_key *disk_key,
321 		u64 parent_generation);
322 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 				      struct btrfsic_block *block,
324 				      struct btrfsic_block_data_ctx *block_ctx,
325 				      u32 item_offset, int force_iodone_flag);
326 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 			     struct btrfsic_block_data_ctx *block_ctx_out,
328 			     int mirror_num);
329 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 				  u32 len, struct block_device *bdev,
331 				  struct btrfsic_block_data_ctx *block_ctx_out);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 			      struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
337 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
338 				     char **datav, unsigned int num_pages);
339 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
340 					  u64 dev_bytenr, char **mapped_datav,
341 					  unsigned int num_pages,
342 					  struct bio *bio, int *bio_is_patched,
343 					  struct buffer_head *bh,
344 					  int submit_bio_bh_rw);
345 static int btrfsic_process_written_superblock(
346 		struct btrfsic_state *state,
347 		struct btrfsic_block *const block,
348 		struct btrfs_super_block *const super_hdr);
349 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
350 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
351 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
352 					      const struct btrfsic_block *block,
353 					      int recursion_level);
354 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
355 					struct btrfsic_block *const block,
356 					int recursion_level);
357 static void btrfsic_print_add_link(const struct btrfsic_state *state,
358 				   const struct btrfsic_block_link *l);
359 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
360 				   const struct btrfsic_block_link *l);
361 static char btrfsic_get_block_type(const struct btrfsic_state *state,
362 				   const struct btrfsic_block *block);
363 static void btrfsic_dump_tree(const struct btrfsic_state *state);
364 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
365 				  const struct btrfsic_block *block,
366 				  int indent_level);
367 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
368 		struct btrfsic_state *state,
369 		struct btrfsic_block_data_ctx *next_block_ctx,
370 		struct btrfsic_block *next_block,
371 		struct btrfsic_block *from_block,
372 		u64 parent_generation);
373 static struct btrfsic_block *btrfsic_block_lookup_or_add(
374 		struct btrfsic_state *state,
375 		struct btrfsic_block_data_ctx *block_ctx,
376 		const char *additional_string,
377 		int is_metadata,
378 		int is_iodone,
379 		int never_written,
380 		int mirror_num,
381 		int *was_created);
382 static int btrfsic_process_superblock_dev_mirror(
383 		struct btrfsic_state *state,
384 		struct btrfsic_dev_state *dev_state,
385 		struct btrfs_device *device,
386 		int superblock_mirror_num,
387 		struct btrfsic_dev_state **selected_dev_state,
388 		struct btrfs_super_block *selected_super);
389 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
390 		struct block_device *bdev);
391 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
392 					   u64 bytenr,
393 					   struct btrfsic_dev_state *dev_state,
394 					   u64 dev_bytenr);
395 
396 static struct mutex btrfsic_mutex;
397 static int btrfsic_is_initialized;
398 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
399 
400 
401 static void btrfsic_block_init(struct btrfsic_block *b)
402 {
403 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
404 	b->dev_state = NULL;
405 	b->dev_bytenr = 0;
406 	b->logical_bytenr = 0;
407 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
408 	b->disk_key.objectid = 0;
409 	b->disk_key.type = 0;
410 	b->disk_key.offset = 0;
411 	b->is_metadata = 0;
412 	b->is_superblock = 0;
413 	b->is_iodone = 0;
414 	b->iodone_w_error = 0;
415 	b->never_written = 0;
416 	b->mirror_num = 0;
417 	b->next_in_same_bio = NULL;
418 	b->orig_bio_bh_private = NULL;
419 	b->orig_bio_bh_end_io.bio = NULL;
420 	INIT_LIST_HEAD(&b->collision_resolving_node);
421 	INIT_LIST_HEAD(&b->all_blocks_node);
422 	INIT_LIST_HEAD(&b->ref_to_list);
423 	INIT_LIST_HEAD(&b->ref_from_list);
424 	b->submit_bio_bh_rw = 0;
425 	b->flush_gen = 0;
426 }
427 
428 static struct btrfsic_block *btrfsic_block_alloc(void)
429 {
430 	struct btrfsic_block *b;
431 
432 	b = kzalloc(sizeof(*b), GFP_NOFS);
433 	if (NULL != b)
434 		btrfsic_block_init(b);
435 
436 	return b;
437 }
438 
439 static void btrfsic_block_free(struct btrfsic_block *b)
440 {
441 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
442 	kfree(b);
443 }
444 
445 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
446 {
447 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
448 	l->ref_cnt = 1;
449 	INIT_LIST_HEAD(&l->node_ref_to);
450 	INIT_LIST_HEAD(&l->node_ref_from);
451 	INIT_LIST_HEAD(&l->collision_resolving_node);
452 	l->block_ref_to = NULL;
453 	l->block_ref_from = NULL;
454 }
455 
456 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
457 {
458 	struct btrfsic_block_link *l;
459 
460 	l = kzalloc(sizeof(*l), GFP_NOFS);
461 	if (NULL != l)
462 		btrfsic_block_link_init(l);
463 
464 	return l;
465 }
466 
467 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
468 {
469 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
470 	kfree(l);
471 }
472 
473 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
474 {
475 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
476 	ds->bdev = NULL;
477 	ds->state = NULL;
478 	ds->name[0] = '\0';
479 	INIT_LIST_HEAD(&ds->collision_resolving_node);
480 	ds->last_flush_gen = 0;
481 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
482 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
483 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
484 }
485 
486 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
487 {
488 	struct btrfsic_dev_state *ds;
489 
490 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
491 	if (NULL != ds)
492 		btrfsic_dev_state_init(ds);
493 
494 	return ds;
495 }
496 
497 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
498 {
499 	BUG_ON(!(NULL == ds ||
500 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
501 	kfree(ds);
502 }
503 
504 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
505 {
506 	int i;
507 
508 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
509 		INIT_LIST_HEAD(h->table + i);
510 }
511 
512 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
513 					struct btrfsic_block_hashtable *h)
514 {
515 	const unsigned int hashval =
516 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
517 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
518 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
519 
520 	list_add(&b->collision_resolving_node, h->table + hashval);
521 }
522 
523 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
524 {
525 	list_del(&b->collision_resolving_node);
526 }
527 
528 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
529 		struct block_device *bdev,
530 		u64 dev_bytenr,
531 		struct btrfsic_block_hashtable *h)
532 {
533 	const unsigned int hashval =
534 	    (((unsigned int)(dev_bytenr >> 16)) ^
535 	     ((unsigned int)((uintptr_t)bdev))) &
536 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
537 	struct list_head *elem;
538 
539 	list_for_each(elem, h->table + hashval) {
540 		struct btrfsic_block *const b =
541 		    list_entry(elem, struct btrfsic_block,
542 			       collision_resolving_node);
543 
544 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
545 			return b;
546 	}
547 
548 	return NULL;
549 }
550 
551 static void btrfsic_block_link_hashtable_init(
552 		struct btrfsic_block_link_hashtable *h)
553 {
554 	int i;
555 
556 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
557 		INIT_LIST_HEAD(h->table + i);
558 }
559 
560 static void btrfsic_block_link_hashtable_add(
561 		struct btrfsic_block_link *l,
562 		struct btrfsic_block_link_hashtable *h)
563 {
564 	const unsigned int hashval =
565 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
566 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
567 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
568 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
569 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
570 
571 	BUG_ON(NULL == l->block_ref_to);
572 	BUG_ON(NULL == l->block_ref_from);
573 	list_add(&l->collision_resolving_node, h->table + hashval);
574 }
575 
576 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
577 {
578 	list_del(&l->collision_resolving_node);
579 }
580 
581 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
582 		struct block_device *bdev_ref_to,
583 		u64 dev_bytenr_ref_to,
584 		struct block_device *bdev_ref_from,
585 		u64 dev_bytenr_ref_from,
586 		struct btrfsic_block_link_hashtable *h)
587 {
588 	const unsigned int hashval =
589 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
590 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
591 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
592 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
593 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
594 	struct list_head *elem;
595 
596 	list_for_each(elem, h->table + hashval) {
597 		struct btrfsic_block_link *const l =
598 		    list_entry(elem, struct btrfsic_block_link,
599 			       collision_resolving_node);
600 
601 		BUG_ON(NULL == l->block_ref_to);
602 		BUG_ON(NULL == l->block_ref_from);
603 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
604 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
605 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
606 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
607 			return l;
608 	}
609 
610 	return NULL;
611 }
612 
613 static void btrfsic_dev_state_hashtable_init(
614 		struct btrfsic_dev_state_hashtable *h)
615 {
616 	int i;
617 
618 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
619 		INIT_LIST_HEAD(h->table + i);
620 }
621 
622 static void btrfsic_dev_state_hashtable_add(
623 		struct btrfsic_dev_state *ds,
624 		struct btrfsic_dev_state_hashtable *h)
625 {
626 	const unsigned int hashval =
627 	    (((unsigned int)((uintptr_t)ds->bdev)) &
628 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
629 
630 	list_add(&ds->collision_resolving_node, h->table + hashval);
631 }
632 
633 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
634 {
635 	list_del(&ds->collision_resolving_node);
636 }
637 
638 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
639 		struct block_device *bdev,
640 		struct btrfsic_dev_state_hashtable *h)
641 {
642 	const unsigned int hashval =
643 	    (((unsigned int)((uintptr_t)bdev)) &
644 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
645 	struct list_head *elem;
646 
647 	list_for_each(elem, h->table + hashval) {
648 		struct btrfsic_dev_state *const ds =
649 		    list_entry(elem, struct btrfsic_dev_state,
650 			       collision_resolving_node);
651 
652 		if (ds->bdev == bdev)
653 			return ds;
654 	}
655 
656 	return NULL;
657 }
658 
659 static int btrfsic_process_superblock(struct btrfsic_state *state,
660 				      struct btrfs_fs_devices *fs_devices)
661 {
662 	int ret = 0;
663 	struct btrfs_super_block *selected_super;
664 	struct list_head *dev_head = &fs_devices->devices;
665 	struct btrfs_device *device;
666 	struct btrfsic_dev_state *selected_dev_state = NULL;
667 	int pass;
668 
669 	BUG_ON(NULL == state);
670 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
671 	if (NULL == selected_super) {
672 		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
673 		return -1;
674 	}
675 
676 	list_for_each_entry(device, dev_head, dev_list) {
677 		int i;
678 		struct btrfsic_dev_state *dev_state;
679 
680 		if (!device->bdev || !device->name)
681 			continue;
682 
683 		dev_state = btrfsic_dev_state_lookup(device->bdev);
684 		BUG_ON(NULL == dev_state);
685 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
686 			ret = btrfsic_process_superblock_dev_mirror(
687 					state, dev_state, device, i,
688 					&selected_dev_state, selected_super);
689 			if (0 != ret && 0 == i) {
690 				kfree(selected_super);
691 				return ret;
692 			}
693 		}
694 	}
695 
696 	if (NULL == state->latest_superblock) {
697 		printk(KERN_INFO "btrfsic: no superblock found!\n");
698 		kfree(selected_super);
699 		return -1;
700 	}
701 
702 	state->csum_size = btrfs_super_csum_size(selected_super);
703 
704 	for (pass = 0; pass < 3; pass++) {
705 		int num_copies;
706 		int mirror_num;
707 		u64 next_bytenr;
708 
709 		switch (pass) {
710 		case 0:
711 			next_bytenr = btrfs_super_root(selected_super);
712 			if (state->print_mask &
713 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
714 				printk(KERN_INFO "root@%llu\n", next_bytenr);
715 			break;
716 		case 1:
717 			next_bytenr = btrfs_super_chunk_root(selected_super);
718 			if (state->print_mask &
719 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
720 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
721 			break;
722 		case 2:
723 			next_bytenr = btrfs_super_log_root(selected_super);
724 			if (0 == next_bytenr)
725 				continue;
726 			if (state->print_mask &
727 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
728 				printk(KERN_INFO "log@%llu\n", next_bytenr);
729 			break;
730 		}
731 
732 		num_copies =
733 		    btrfs_num_copies(state->root->fs_info,
734 				     next_bytenr, state->metablock_size);
735 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
736 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
737 			       next_bytenr, num_copies);
738 
739 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
740 			struct btrfsic_block *next_block;
741 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
742 			struct btrfsic_block_link *l;
743 
744 			ret = btrfsic_map_block(state, next_bytenr,
745 						state->metablock_size,
746 						&tmp_next_block_ctx,
747 						mirror_num);
748 			if (ret) {
749 				printk(KERN_INFO "btrfsic:"
750 				       " btrfsic_map_block(root @%llu,"
751 				       " mirror %d) failed!\n",
752 				       next_bytenr, mirror_num);
753 				kfree(selected_super);
754 				return -1;
755 			}
756 
757 			next_block = btrfsic_block_hashtable_lookup(
758 					tmp_next_block_ctx.dev->bdev,
759 					tmp_next_block_ctx.dev_bytenr,
760 					&state->block_hashtable);
761 			BUG_ON(NULL == next_block);
762 
763 			l = btrfsic_block_link_hashtable_lookup(
764 					tmp_next_block_ctx.dev->bdev,
765 					tmp_next_block_ctx.dev_bytenr,
766 					state->latest_superblock->dev_state->
767 					bdev,
768 					state->latest_superblock->dev_bytenr,
769 					&state->block_link_hashtable);
770 			BUG_ON(NULL == l);
771 
772 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
773 			if (ret < (int)PAGE_CACHE_SIZE) {
774 				printk(KERN_INFO
775 				       "btrfsic: read @logical %llu failed!\n",
776 				       tmp_next_block_ctx.start);
777 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
778 				kfree(selected_super);
779 				return -1;
780 			}
781 
782 			ret = btrfsic_process_metablock(state,
783 							next_block,
784 							&tmp_next_block_ctx,
785 							BTRFS_MAX_LEVEL + 3, 1);
786 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
787 		}
788 	}
789 
790 	kfree(selected_super);
791 	return ret;
792 }
793 
794 static int btrfsic_process_superblock_dev_mirror(
795 		struct btrfsic_state *state,
796 		struct btrfsic_dev_state *dev_state,
797 		struct btrfs_device *device,
798 		int superblock_mirror_num,
799 		struct btrfsic_dev_state **selected_dev_state,
800 		struct btrfs_super_block *selected_super)
801 {
802 	struct btrfs_super_block *super_tmp;
803 	u64 dev_bytenr;
804 	struct buffer_head *bh;
805 	struct btrfsic_block *superblock_tmp;
806 	int pass;
807 	struct block_device *const superblock_bdev = device->bdev;
808 
809 	/* super block bytenr is always the unmapped device bytenr */
810 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
811 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
812 		return -1;
813 	bh = __bread(superblock_bdev, dev_bytenr / 4096,
814 		     BTRFS_SUPER_INFO_SIZE);
815 	if (NULL == bh)
816 		return -1;
817 	super_tmp = (struct btrfs_super_block *)
818 	    (bh->b_data + (dev_bytenr & 4095));
819 
820 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
821 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
822 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
823 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
824 	    btrfs_super_leafsize(super_tmp) != state->metablock_size ||
825 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
826 		brelse(bh);
827 		return 0;
828 	}
829 
830 	superblock_tmp =
831 	    btrfsic_block_hashtable_lookup(superblock_bdev,
832 					   dev_bytenr,
833 					   &state->block_hashtable);
834 	if (NULL == superblock_tmp) {
835 		superblock_tmp = btrfsic_block_alloc();
836 		if (NULL == superblock_tmp) {
837 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
838 			brelse(bh);
839 			return -1;
840 		}
841 		/* for superblock, only the dev_bytenr makes sense */
842 		superblock_tmp->dev_bytenr = dev_bytenr;
843 		superblock_tmp->dev_state = dev_state;
844 		superblock_tmp->logical_bytenr = dev_bytenr;
845 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
846 		superblock_tmp->is_metadata = 1;
847 		superblock_tmp->is_superblock = 1;
848 		superblock_tmp->is_iodone = 1;
849 		superblock_tmp->never_written = 0;
850 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
851 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
852 			printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
853 				     " @%llu (%s/%llu/%d)\n",
854 				     superblock_bdev,
855 				     rcu_str_deref(device->name), dev_bytenr,
856 				     dev_state->name, dev_bytenr,
857 				     superblock_mirror_num);
858 		list_add(&superblock_tmp->all_blocks_node,
859 			 &state->all_blocks_list);
860 		btrfsic_block_hashtable_add(superblock_tmp,
861 					    &state->block_hashtable);
862 	}
863 
864 	/* select the one with the highest generation field */
865 	if (btrfs_super_generation(super_tmp) >
866 	    state->max_superblock_generation ||
867 	    0 == state->max_superblock_generation) {
868 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
869 		*selected_dev_state = dev_state;
870 		state->max_superblock_generation =
871 		    btrfs_super_generation(super_tmp);
872 		state->latest_superblock = superblock_tmp;
873 	}
874 
875 	for (pass = 0; pass < 3; pass++) {
876 		u64 next_bytenr;
877 		int num_copies;
878 		int mirror_num;
879 		const char *additional_string = NULL;
880 		struct btrfs_disk_key tmp_disk_key;
881 
882 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
883 		tmp_disk_key.offset = 0;
884 		switch (pass) {
885 		case 0:
886 			btrfs_set_disk_key_objectid(&tmp_disk_key,
887 						    BTRFS_ROOT_TREE_OBJECTID);
888 			additional_string = "initial root ";
889 			next_bytenr = btrfs_super_root(super_tmp);
890 			break;
891 		case 1:
892 			btrfs_set_disk_key_objectid(&tmp_disk_key,
893 						    BTRFS_CHUNK_TREE_OBJECTID);
894 			additional_string = "initial chunk ";
895 			next_bytenr = btrfs_super_chunk_root(super_tmp);
896 			break;
897 		case 2:
898 			btrfs_set_disk_key_objectid(&tmp_disk_key,
899 						    BTRFS_TREE_LOG_OBJECTID);
900 			additional_string = "initial log ";
901 			next_bytenr = btrfs_super_log_root(super_tmp);
902 			if (0 == next_bytenr)
903 				continue;
904 			break;
905 		}
906 
907 		num_copies =
908 		    btrfs_num_copies(state->root->fs_info,
909 				     next_bytenr, state->metablock_size);
910 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
911 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
912 			       next_bytenr, num_copies);
913 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
914 			struct btrfsic_block *next_block;
915 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
916 			struct btrfsic_block_link *l;
917 
918 			if (btrfsic_map_block(state, next_bytenr,
919 					      state->metablock_size,
920 					      &tmp_next_block_ctx,
921 					      mirror_num)) {
922 				printk(KERN_INFO "btrfsic: btrfsic_map_block("
923 				       "bytenr @%llu, mirror %d) failed!\n",
924 				       next_bytenr, mirror_num);
925 				brelse(bh);
926 				return -1;
927 			}
928 
929 			next_block = btrfsic_block_lookup_or_add(
930 					state, &tmp_next_block_ctx,
931 					additional_string, 1, 1, 0,
932 					mirror_num, NULL);
933 			if (NULL == next_block) {
934 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
935 				brelse(bh);
936 				return -1;
937 			}
938 
939 			next_block->disk_key = tmp_disk_key;
940 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
941 			l = btrfsic_block_link_lookup_or_add(
942 					state, &tmp_next_block_ctx,
943 					next_block, superblock_tmp,
944 					BTRFSIC_GENERATION_UNKNOWN);
945 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
946 			if (NULL == l) {
947 				brelse(bh);
948 				return -1;
949 			}
950 		}
951 	}
952 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
953 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
954 
955 	brelse(bh);
956 	return 0;
957 }
958 
959 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
960 {
961 	struct btrfsic_stack_frame *sf;
962 
963 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
964 	if (NULL == sf)
965 		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
966 	else
967 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
968 	return sf;
969 }
970 
971 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
972 {
973 	BUG_ON(!(NULL == sf ||
974 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
975 	kfree(sf);
976 }
977 
978 static int btrfsic_process_metablock(
979 		struct btrfsic_state *state,
980 		struct btrfsic_block *const first_block,
981 		struct btrfsic_block_data_ctx *const first_block_ctx,
982 		int first_limit_nesting, int force_iodone_flag)
983 {
984 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
985 	struct btrfsic_stack_frame *sf;
986 	struct btrfsic_stack_frame *next_stack;
987 	struct btrfs_header *const first_hdr =
988 		(struct btrfs_header *)first_block_ctx->datav[0];
989 
990 	BUG_ON(!first_hdr);
991 	sf = &initial_stack_frame;
992 	sf->error = 0;
993 	sf->i = -1;
994 	sf->limit_nesting = first_limit_nesting;
995 	sf->block = first_block;
996 	sf->block_ctx = first_block_ctx;
997 	sf->next_block = NULL;
998 	sf->hdr = first_hdr;
999 	sf->prev = NULL;
1000 
1001 continue_with_new_stack_frame:
1002 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
1003 	if (0 == sf->hdr->level) {
1004 		struct btrfs_leaf *const leafhdr =
1005 		    (struct btrfs_leaf *)sf->hdr;
1006 
1007 		if (-1 == sf->i) {
1008 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1009 
1010 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1011 				printk(KERN_INFO
1012 				       "leaf %llu items %d generation %llu"
1013 				       " owner %llu\n",
1014 				       sf->block_ctx->start, sf->nr,
1015 				       btrfs_stack_header_generation(
1016 					       &leafhdr->header),
1017 				       btrfs_stack_header_owner(
1018 					       &leafhdr->header));
1019 		}
1020 
1021 continue_with_current_leaf_stack_frame:
1022 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1023 			sf->i++;
1024 			sf->num_copies = 0;
1025 		}
1026 
1027 		if (sf->i < sf->nr) {
1028 			struct btrfs_item disk_item;
1029 			u32 disk_item_offset =
1030 				(uintptr_t)(leafhdr->items + sf->i) -
1031 				(uintptr_t)leafhdr;
1032 			struct btrfs_disk_key *disk_key;
1033 			u8 type;
1034 			u32 item_offset;
1035 			u32 item_size;
1036 
1037 			if (disk_item_offset + sizeof(struct btrfs_item) >
1038 			    sf->block_ctx->len) {
1039 leaf_item_out_of_bounce_error:
1040 				printk(KERN_INFO
1041 				       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1042 				       sf->block_ctx->start,
1043 				       sf->block_ctx->dev->name);
1044 				goto one_stack_frame_backwards;
1045 			}
1046 			btrfsic_read_from_block_data(sf->block_ctx,
1047 						     &disk_item,
1048 						     disk_item_offset,
1049 						     sizeof(struct btrfs_item));
1050 			item_offset = btrfs_stack_item_offset(&disk_item);
1051 			item_size = btrfs_stack_item_size(&disk_item);
1052 			disk_key = &disk_item.key;
1053 			type = btrfs_disk_key_type(disk_key);
1054 
1055 			if (BTRFS_ROOT_ITEM_KEY == type) {
1056 				struct btrfs_root_item root_item;
1057 				u32 root_item_offset;
1058 				u64 next_bytenr;
1059 
1060 				root_item_offset = item_offset +
1061 					offsetof(struct btrfs_leaf, items);
1062 				if (root_item_offset + item_size >
1063 				    sf->block_ctx->len)
1064 					goto leaf_item_out_of_bounce_error;
1065 				btrfsic_read_from_block_data(
1066 					sf->block_ctx, &root_item,
1067 					root_item_offset,
1068 					item_size);
1069 				next_bytenr = btrfs_root_bytenr(&root_item);
1070 
1071 				sf->error =
1072 				    btrfsic_create_link_to_next_block(
1073 						state,
1074 						sf->block,
1075 						sf->block_ctx,
1076 						next_bytenr,
1077 						sf->limit_nesting,
1078 						&sf->next_block_ctx,
1079 						&sf->next_block,
1080 						force_iodone_flag,
1081 						&sf->num_copies,
1082 						&sf->mirror_num,
1083 						disk_key,
1084 						btrfs_root_generation(
1085 						&root_item));
1086 				if (sf->error)
1087 					goto one_stack_frame_backwards;
1088 
1089 				if (NULL != sf->next_block) {
1090 					struct btrfs_header *const next_hdr =
1091 					    (struct btrfs_header *)
1092 					    sf->next_block_ctx.datav[0];
1093 
1094 					next_stack =
1095 					    btrfsic_stack_frame_alloc();
1096 					if (NULL == next_stack) {
1097 						btrfsic_release_block_ctx(
1098 								&sf->
1099 								next_block_ctx);
1100 						goto one_stack_frame_backwards;
1101 					}
1102 
1103 					next_stack->i = -1;
1104 					next_stack->block = sf->next_block;
1105 					next_stack->block_ctx =
1106 					    &sf->next_block_ctx;
1107 					next_stack->next_block = NULL;
1108 					next_stack->hdr = next_hdr;
1109 					next_stack->limit_nesting =
1110 					    sf->limit_nesting - 1;
1111 					next_stack->prev = sf;
1112 					sf = next_stack;
1113 					goto continue_with_new_stack_frame;
1114 				}
1115 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1116 				   state->include_extent_data) {
1117 				sf->error = btrfsic_handle_extent_data(
1118 						state,
1119 						sf->block,
1120 						sf->block_ctx,
1121 						item_offset,
1122 						force_iodone_flag);
1123 				if (sf->error)
1124 					goto one_stack_frame_backwards;
1125 			}
1126 
1127 			goto continue_with_current_leaf_stack_frame;
1128 		}
1129 	} else {
1130 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1131 
1132 		if (-1 == sf->i) {
1133 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1134 
1135 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1136 				printk(KERN_INFO "node %llu level %d items %d"
1137 				       " generation %llu owner %llu\n",
1138 				       sf->block_ctx->start,
1139 				       nodehdr->header.level, sf->nr,
1140 				       btrfs_stack_header_generation(
1141 				       &nodehdr->header),
1142 				       btrfs_stack_header_owner(
1143 				       &nodehdr->header));
1144 		}
1145 
1146 continue_with_current_node_stack_frame:
1147 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1148 			sf->i++;
1149 			sf->num_copies = 0;
1150 		}
1151 
1152 		if (sf->i < sf->nr) {
1153 			struct btrfs_key_ptr key_ptr;
1154 			u32 key_ptr_offset;
1155 			u64 next_bytenr;
1156 
1157 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1158 					  (uintptr_t)nodehdr;
1159 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1160 			    sf->block_ctx->len) {
1161 				printk(KERN_INFO
1162 				       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1163 				       sf->block_ctx->start,
1164 				       sf->block_ctx->dev->name);
1165 				goto one_stack_frame_backwards;
1166 			}
1167 			btrfsic_read_from_block_data(
1168 				sf->block_ctx, &key_ptr, key_ptr_offset,
1169 				sizeof(struct btrfs_key_ptr));
1170 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1171 
1172 			sf->error = btrfsic_create_link_to_next_block(
1173 					state,
1174 					sf->block,
1175 					sf->block_ctx,
1176 					next_bytenr,
1177 					sf->limit_nesting,
1178 					&sf->next_block_ctx,
1179 					&sf->next_block,
1180 					force_iodone_flag,
1181 					&sf->num_copies,
1182 					&sf->mirror_num,
1183 					&key_ptr.key,
1184 					btrfs_stack_key_generation(&key_ptr));
1185 			if (sf->error)
1186 				goto one_stack_frame_backwards;
1187 
1188 			if (NULL != sf->next_block) {
1189 				struct btrfs_header *const next_hdr =
1190 				    (struct btrfs_header *)
1191 				    sf->next_block_ctx.datav[0];
1192 
1193 				next_stack = btrfsic_stack_frame_alloc();
1194 				if (NULL == next_stack)
1195 					goto one_stack_frame_backwards;
1196 
1197 				next_stack->i = -1;
1198 				next_stack->block = sf->next_block;
1199 				next_stack->block_ctx = &sf->next_block_ctx;
1200 				next_stack->next_block = NULL;
1201 				next_stack->hdr = next_hdr;
1202 				next_stack->limit_nesting =
1203 				    sf->limit_nesting - 1;
1204 				next_stack->prev = sf;
1205 				sf = next_stack;
1206 				goto continue_with_new_stack_frame;
1207 			}
1208 
1209 			goto continue_with_current_node_stack_frame;
1210 		}
1211 	}
1212 
1213 one_stack_frame_backwards:
1214 	if (NULL != sf->prev) {
1215 		struct btrfsic_stack_frame *const prev = sf->prev;
1216 
1217 		/* the one for the initial block is freed in the caller */
1218 		btrfsic_release_block_ctx(sf->block_ctx);
1219 
1220 		if (sf->error) {
1221 			prev->error = sf->error;
1222 			btrfsic_stack_frame_free(sf);
1223 			sf = prev;
1224 			goto one_stack_frame_backwards;
1225 		}
1226 
1227 		btrfsic_stack_frame_free(sf);
1228 		sf = prev;
1229 		goto continue_with_new_stack_frame;
1230 	} else {
1231 		BUG_ON(&initial_stack_frame != sf);
1232 	}
1233 
1234 	return sf->error;
1235 }
1236 
1237 static void btrfsic_read_from_block_data(
1238 	struct btrfsic_block_data_ctx *block_ctx,
1239 	void *dstv, u32 offset, size_t len)
1240 {
1241 	size_t cur;
1242 	size_t offset_in_page;
1243 	char *kaddr;
1244 	char *dst = (char *)dstv;
1245 	size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1246 	unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1247 
1248 	WARN_ON(offset + len > block_ctx->len);
1249 	offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1250 
1251 	while (len > 0) {
1252 		cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1253 		BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1254 			    PAGE_CACHE_SHIFT);
1255 		kaddr = block_ctx->datav[i];
1256 		memcpy(dst, kaddr + offset_in_page, cur);
1257 
1258 		dst += cur;
1259 		len -= cur;
1260 		offset_in_page = 0;
1261 		i++;
1262 	}
1263 }
1264 
1265 static int btrfsic_create_link_to_next_block(
1266 		struct btrfsic_state *state,
1267 		struct btrfsic_block *block,
1268 		struct btrfsic_block_data_ctx *block_ctx,
1269 		u64 next_bytenr,
1270 		int limit_nesting,
1271 		struct btrfsic_block_data_ctx *next_block_ctx,
1272 		struct btrfsic_block **next_blockp,
1273 		int force_iodone_flag,
1274 		int *num_copiesp, int *mirror_nump,
1275 		struct btrfs_disk_key *disk_key,
1276 		u64 parent_generation)
1277 {
1278 	struct btrfsic_block *next_block = NULL;
1279 	int ret;
1280 	struct btrfsic_block_link *l;
1281 	int did_alloc_block_link;
1282 	int block_was_created;
1283 
1284 	*next_blockp = NULL;
1285 	if (0 == *num_copiesp) {
1286 		*num_copiesp =
1287 		    btrfs_num_copies(state->root->fs_info,
1288 				     next_bytenr, state->metablock_size);
1289 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1290 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1291 			       next_bytenr, *num_copiesp);
1292 		*mirror_nump = 1;
1293 	}
1294 
1295 	if (*mirror_nump > *num_copiesp)
1296 		return 0;
1297 
1298 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1299 		printk(KERN_INFO
1300 		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1301 		       *mirror_nump);
1302 	ret = btrfsic_map_block(state, next_bytenr,
1303 				state->metablock_size,
1304 				next_block_ctx, *mirror_nump);
1305 	if (ret) {
1306 		printk(KERN_INFO
1307 		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1308 		       next_bytenr, *mirror_nump);
1309 		btrfsic_release_block_ctx(next_block_ctx);
1310 		*next_blockp = NULL;
1311 		return -1;
1312 	}
1313 
1314 	next_block = btrfsic_block_lookup_or_add(state,
1315 						 next_block_ctx, "referenced ",
1316 						 1, force_iodone_flag,
1317 						 !force_iodone_flag,
1318 						 *mirror_nump,
1319 						 &block_was_created);
1320 	if (NULL == next_block) {
1321 		btrfsic_release_block_ctx(next_block_ctx);
1322 		*next_blockp = NULL;
1323 		return -1;
1324 	}
1325 	if (block_was_created) {
1326 		l = NULL;
1327 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1328 	} else {
1329 		if (next_block->logical_bytenr != next_bytenr &&
1330 		    !(!next_block->is_metadata &&
1331 		      0 == next_block->logical_bytenr)) {
1332 			printk(KERN_INFO
1333 			       "Referenced block @%llu (%s/%llu/%d)"
1334 			       " found in hash table, %c,"
1335 			       " bytenr mismatch (!= stored %llu).\n",
1336 			       next_bytenr, next_block_ctx->dev->name,
1337 			       next_block_ctx->dev_bytenr, *mirror_nump,
1338 			       btrfsic_get_block_type(state, next_block),
1339 			       next_block->logical_bytenr);
1340 		} else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1341 			printk(KERN_INFO
1342 			       "Referenced block @%llu (%s/%llu/%d)"
1343 			       " found in hash table, %c.\n",
1344 			       next_bytenr, next_block_ctx->dev->name,
1345 			       next_block_ctx->dev_bytenr, *mirror_nump,
1346 			       btrfsic_get_block_type(state, next_block));
1347 		next_block->logical_bytenr = next_bytenr;
1348 
1349 		next_block->mirror_num = *mirror_nump;
1350 		l = btrfsic_block_link_hashtable_lookup(
1351 				next_block_ctx->dev->bdev,
1352 				next_block_ctx->dev_bytenr,
1353 				block_ctx->dev->bdev,
1354 				block_ctx->dev_bytenr,
1355 				&state->block_link_hashtable);
1356 	}
1357 
1358 	next_block->disk_key = *disk_key;
1359 	if (NULL == l) {
1360 		l = btrfsic_block_link_alloc();
1361 		if (NULL == l) {
1362 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1363 			btrfsic_release_block_ctx(next_block_ctx);
1364 			*next_blockp = NULL;
1365 			return -1;
1366 		}
1367 
1368 		did_alloc_block_link = 1;
1369 		l->block_ref_to = next_block;
1370 		l->block_ref_from = block;
1371 		l->ref_cnt = 1;
1372 		l->parent_generation = parent_generation;
1373 
1374 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1375 			btrfsic_print_add_link(state, l);
1376 
1377 		list_add(&l->node_ref_to, &block->ref_to_list);
1378 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1379 
1380 		btrfsic_block_link_hashtable_add(l,
1381 						 &state->block_link_hashtable);
1382 	} else {
1383 		did_alloc_block_link = 0;
1384 		if (0 == limit_nesting) {
1385 			l->ref_cnt++;
1386 			l->parent_generation = parent_generation;
1387 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1388 				btrfsic_print_add_link(state, l);
1389 		}
1390 	}
1391 
1392 	if (limit_nesting > 0 && did_alloc_block_link) {
1393 		ret = btrfsic_read_block(state, next_block_ctx);
1394 		if (ret < (int)next_block_ctx->len) {
1395 			printk(KERN_INFO
1396 			       "btrfsic: read block @logical %llu failed!\n",
1397 			       next_bytenr);
1398 			btrfsic_release_block_ctx(next_block_ctx);
1399 			*next_blockp = NULL;
1400 			return -1;
1401 		}
1402 
1403 		*next_blockp = next_block;
1404 	} else {
1405 		*next_blockp = NULL;
1406 	}
1407 	(*mirror_nump)++;
1408 
1409 	return 0;
1410 }
1411 
1412 static int btrfsic_handle_extent_data(
1413 		struct btrfsic_state *state,
1414 		struct btrfsic_block *block,
1415 		struct btrfsic_block_data_ctx *block_ctx,
1416 		u32 item_offset, int force_iodone_flag)
1417 {
1418 	int ret;
1419 	struct btrfs_file_extent_item file_extent_item;
1420 	u64 file_extent_item_offset;
1421 	u64 next_bytenr;
1422 	u64 num_bytes;
1423 	u64 generation;
1424 	struct btrfsic_block_link *l;
1425 
1426 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1427 				  item_offset;
1428 	if (file_extent_item_offset +
1429 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1430 	    block_ctx->len) {
1431 		printk(KERN_INFO
1432 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1433 		       block_ctx->start, block_ctx->dev->name);
1434 		return -1;
1435 	}
1436 
1437 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1438 		file_extent_item_offset,
1439 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1440 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1441 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1442 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1443 			printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1444 			       file_extent_item.type,
1445 			       btrfs_stack_file_extent_disk_bytenr(
1446 			       &file_extent_item));
1447 		return 0;
1448 	}
1449 
1450 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1451 	    block_ctx->len) {
1452 		printk(KERN_INFO
1453 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1454 		       block_ctx->start, block_ctx->dev->name);
1455 		return -1;
1456 	}
1457 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1458 				     file_extent_item_offset,
1459 				     sizeof(struct btrfs_file_extent_item));
1460 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item) +
1461 		      btrfs_stack_file_extent_offset(&file_extent_item);
1462 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1463 	num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1464 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1465 
1466 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1467 		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1468 		       " offset = %llu, num_bytes = %llu\n",
1469 		       file_extent_item.type,
1470 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1471 		       btrfs_stack_file_extent_offset(&file_extent_item),
1472 		       num_bytes);
1473 	while (num_bytes > 0) {
1474 		u32 chunk_len;
1475 		int num_copies;
1476 		int mirror_num;
1477 
1478 		if (num_bytes > state->datablock_size)
1479 			chunk_len = state->datablock_size;
1480 		else
1481 			chunk_len = num_bytes;
1482 
1483 		num_copies =
1484 		    btrfs_num_copies(state->root->fs_info,
1485 				     next_bytenr, state->datablock_size);
1486 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1487 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1488 			       next_bytenr, num_copies);
1489 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1490 			struct btrfsic_block_data_ctx next_block_ctx;
1491 			struct btrfsic_block *next_block;
1492 			int block_was_created;
1493 
1494 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1495 				printk(KERN_INFO "btrfsic_handle_extent_data("
1496 				       "mirror_num=%d)\n", mirror_num);
1497 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1498 				printk(KERN_INFO
1499 				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1500 				       next_bytenr, chunk_len);
1501 			ret = btrfsic_map_block(state, next_bytenr,
1502 						chunk_len, &next_block_ctx,
1503 						mirror_num);
1504 			if (ret) {
1505 				printk(KERN_INFO
1506 				       "btrfsic: btrfsic_map_block(@%llu,"
1507 				       " mirror=%d) failed!\n",
1508 				       next_bytenr, mirror_num);
1509 				return -1;
1510 			}
1511 
1512 			next_block = btrfsic_block_lookup_or_add(
1513 					state,
1514 					&next_block_ctx,
1515 					"referenced ",
1516 					0,
1517 					force_iodone_flag,
1518 					!force_iodone_flag,
1519 					mirror_num,
1520 					&block_was_created);
1521 			if (NULL == next_block) {
1522 				printk(KERN_INFO
1523 				       "btrfsic: error, kmalloc failed!\n");
1524 				btrfsic_release_block_ctx(&next_block_ctx);
1525 				return -1;
1526 			}
1527 			if (!block_was_created) {
1528 				if (next_block->logical_bytenr != next_bytenr &&
1529 				    !(!next_block->is_metadata &&
1530 				      0 == next_block->logical_bytenr)) {
1531 					printk(KERN_INFO
1532 					       "Referenced block"
1533 					       " @%llu (%s/%llu/%d)"
1534 					       " found in hash table, D,"
1535 					       " bytenr mismatch"
1536 					       " (!= stored %llu).\n",
1537 					       next_bytenr,
1538 					       next_block_ctx.dev->name,
1539 					       next_block_ctx.dev_bytenr,
1540 					       mirror_num,
1541 					       next_block->logical_bytenr);
1542 				}
1543 				next_block->logical_bytenr = next_bytenr;
1544 				next_block->mirror_num = mirror_num;
1545 			}
1546 
1547 			l = btrfsic_block_link_lookup_or_add(state,
1548 							     &next_block_ctx,
1549 							     next_block, block,
1550 							     generation);
1551 			btrfsic_release_block_ctx(&next_block_ctx);
1552 			if (NULL == l)
1553 				return -1;
1554 		}
1555 
1556 		next_bytenr += chunk_len;
1557 		num_bytes -= chunk_len;
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1564 			     struct btrfsic_block_data_ctx *block_ctx_out,
1565 			     int mirror_num)
1566 {
1567 	int ret;
1568 	u64 length;
1569 	struct btrfs_bio *multi = NULL;
1570 	struct btrfs_device *device;
1571 
1572 	length = len;
1573 	ret = btrfs_map_block(state->root->fs_info, READ,
1574 			      bytenr, &length, &multi, mirror_num);
1575 
1576 	if (ret) {
1577 		block_ctx_out->start = 0;
1578 		block_ctx_out->dev_bytenr = 0;
1579 		block_ctx_out->len = 0;
1580 		block_ctx_out->dev = NULL;
1581 		block_ctx_out->datav = NULL;
1582 		block_ctx_out->pagev = NULL;
1583 		block_ctx_out->mem_to_free = NULL;
1584 
1585 		return ret;
1586 	}
1587 
1588 	device = multi->stripes[0].dev;
1589 	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1590 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1591 	block_ctx_out->start = bytenr;
1592 	block_ctx_out->len = len;
1593 	block_ctx_out->datav = NULL;
1594 	block_ctx_out->pagev = NULL;
1595 	block_ctx_out->mem_to_free = NULL;
1596 
1597 	kfree(multi);
1598 	if (NULL == block_ctx_out->dev) {
1599 		ret = -ENXIO;
1600 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1601 	}
1602 
1603 	return ret;
1604 }
1605 
1606 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1607 				  u32 len, struct block_device *bdev,
1608 				  struct btrfsic_block_data_ctx *block_ctx_out)
1609 {
1610 	block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1611 	block_ctx_out->dev_bytenr = bytenr;
1612 	block_ctx_out->start = bytenr;
1613 	block_ctx_out->len = len;
1614 	block_ctx_out->datav = NULL;
1615 	block_ctx_out->pagev = NULL;
1616 	block_ctx_out->mem_to_free = NULL;
1617 	if (NULL != block_ctx_out->dev) {
1618 		return 0;
1619 	} else {
1620 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1621 		return -ENXIO;
1622 	}
1623 }
1624 
1625 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1626 {
1627 	if (block_ctx->mem_to_free) {
1628 		unsigned int num_pages;
1629 
1630 		BUG_ON(!block_ctx->datav);
1631 		BUG_ON(!block_ctx->pagev);
1632 		num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1633 			    PAGE_CACHE_SHIFT;
1634 		while (num_pages > 0) {
1635 			num_pages--;
1636 			if (block_ctx->datav[num_pages]) {
1637 				kunmap(block_ctx->pagev[num_pages]);
1638 				block_ctx->datav[num_pages] = NULL;
1639 			}
1640 			if (block_ctx->pagev[num_pages]) {
1641 				__free_page(block_ctx->pagev[num_pages]);
1642 				block_ctx->pagev[num_pages] = NULL;
1643 			}
1644 		}
1645 
1646 		kfree(block_ctx->mem_to_free);
1647 		block_ctx->mem_to_free = NULL;
1648 		block_ctx->pagev = NULL;
1649 		block_ctx->datav = NULL;
1650 	}
1651 }
1652 
1653 static int btrfsic_read_block(struct btrfsic_state *state,
1654 			      struct btrfsic_block_data_ctx *block_ctx)
1655 {
1656 	unsigned int num_pages;
1657 	unsigned int i;
1658 	u64 dev_bytenr;
1659 	int ret;
1660 
1661 	BUG_ON(block_ctx->datav);
1662 	BUG_ON(block_ctx->pagev);
1663 	BUG_ON(block_ctx->mem_to_free);
1664 	if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1665 		printk(KERN_INFO
1666 		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1667 		       block_ctx->dev_bytenr);
1668 		return -1;
1669 	}
1670 
1671 	num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1672 		    PAGE_CACHE_SHIFT;
1673 	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1674 					  sizeof(*block_ctx->pagev)) *
1675 					 num_pages, GFP_NOFS);
1676 	if (!block_ctx->mem_to_free)
1677 		return -1;
1678 	block_ctx->datav = block_ctx->mem_to_free;
1679 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1680 	for (i = 0; i < num_pages; i++) {
1681 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1682 		if (!block_ctx->pagev[i])
1683 			return -1;
1684 	}
1685 
1686 	dev_bytenr = block_ctx->dev_bytenr;
1687 	for (i = 0; i < num_pages;) {
1688 		struct bio *bio;
1689 		unsigned int j;
1690 		DECLARE_COMPLETION_ONSTACK(complete);
1691 
1692 		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1693 		if (!bio) {
1694 			printk(KERN_INFO
1695 			       "btrfsic: bio_alloc() for %u pages failed!\n",
1696 			       num_pages - i);
1697 			return -1;
1698 		}
1699 		bio->bi_bdev = block_ctx->dev->bdev;
1700 		bio->bi_sector = dev_bytenr >> 9;
1701 		bio->bi_end_io = btrfsic_complete_bio_end_io;
1702 		bio->bi_private = &complete;
1703 
1704 		for (j = i; j < num_pages; j++) {
1705 			ret = bio_add_page(bio, block_ctx->pagev[j],
1706 					   PAGE_CACHE_SIZE, 0);
1707 			if (PAGE_CACHE_SIZE != ret)
1708 				break;
1709 		}
1710 		if (j == i) {
1711 			printk(KERN_INFO
1712 			       "btrfsic: error, failed to add a single page!\n");
1713 			return -1;
1714 		}
1715 		submit_bio(READ, bio);
1716 
1717 		/* this will also unplug the queue */
1718 		wait_for_completion(&complete);
1719 
1720 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1721 			printk(KERN_INFO
1722 			       "btrfsic: read error at logical %llu dev %s!\n",
1723 			       block_ctx->start, block_ctx->dev->name);
1724 			bio_put(bio);
1725 			return -1;
1726 		}
1727 		bio_put(bio);
1728 		dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1729 		i = j;
1730 	}
1731 	for (i = 0; i < num_pages; i++) {
1732 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1733 		if (!block_ctx->datav[i]) {
1734 			printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1735 			       block_ctx->dev->name);
1736 			return -1;
1737 		}
1738 	}
1739 
1740 	return block_ctx->len;
1741 }
1742 
1743 static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1744 {
1745 	complete((struct completion *)bio->bi_private);
1746 }
1747 
1748 static void btrfsic_dump_database(struct btrfsic_state *state)
1749 {
1750 	struct list_head *elem_all;
1751 
1752 	BUG_ON(NULL == state);
1753 
1754 	printk(KERN_INFO "all_blocks_list:\n");
1755 	list_for_each(elem_all, &state->all_blocks_list) {
1756 		const struct btrfsic_block *const b_all =
1757 		    list_entry(elem_all, struct btrfsic_block,
1758 			       all_blocks_node);
1759 		struct list_head *elem_ref_to;
1760 		struct list_head *elem_ref_from;
1761 
1762 		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1763 		       btrfsic_get_block_type(state, b_all),
1764 		       b_all->logical_bytenr, b_all->dev_state->name,
1765 		       b_all->dev_bytenr, b_all->mirror_num);
1766 
1767 		list_for_each(elem_ref_to, &b_all->ref_to_list) {
1768 			const struct btrfsic_block_link *const l =
1769 			    list_entry(elem_ref_to,
1770 				       struct btrfsic_block_link,
1771 				       node_ref_to);
1772 
1773 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1774 			       " refers %u* to"
1775 			       " %c @%llu (%s/%llu/%d)\n",
1776 			       btrfsic_get_block_type(state, b_all),
1777 			       b_all->logical_bytenr, b_all->dev_state->name,
1778 			       b_all->dev_bytenr, b_all->mirror_num,
1779 			       l->ref_cnt,
1780 			       btrfsic_get_block_type(state, l->block_ref_to),
1781 			       l->block_ref_to->logical_bytenr,
1782 			       l->block_ref_to->dev_state->name,
1783 			       l->block_ref_to->dev_bytenr,
1784 			       l->block_ref_to->mirror_num);
1785 		}
1786 
1787 		list_for_each(elem_ref_from, &b_all->ref_from_list) {
1788 			const struct btrfsic_block_link *const l =
1789 			    list_entry(elem_ref_from,
1790 				       struct btrfsic_block_link,
1791 				       node_ref_from);
1792 
1793 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1794 			       " is ref %u* from"
1795 			       " %c @%llu (%s/%llu/%d)\n",
1796 			       btrfsic_get_block_type(state, b_all),
1797 			       b_all->logical_bytenr, b_all->dev_state->name,
1798 			       b_all->dev_bytenr, b_all->mirror_num,
1799 			       l->ref_cnt,
1800 			       btrfsic_get_block_type(state, l->block_ref_from),
1801 			       l->block_ref_from->logical_bytenr,
1802 			       l->block_ref_from->dev_state->name,
1803 			       l->block_ref_from->dev_bytenr,
1804 			       l->block_ref_from->mirror_num);
1805 		}
1806 
1807 		printk(KERN_INFO "\n");
1808 	}
1809 }
1810 
1811 /*
1812  * Test whether the disk block contains a tree block (leaf or node)
1813  * (note that this test fails for the super block)
1814  */
1815 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1816 				     char **datav, unsigned int num_pages)
1817 {
1818 	struct btrfs_header *h;
1819 	u8 csum[BTRFS_CSUM_SIZE];
1820 	u32 crc = ~(u32)0;
1821 	unsigned int i;
1822 
1823 	if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1824 		return 1; /* not metadata */
1825 	num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1826 	h = (struct btrfs_header *)datav[0];
1827 
1828 	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1829 		return 1;
1830 
1831 	for (i = 0; i < num_pages; i++) {
1832 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1833 		size_t sublen = i ? PAGE_CACHE_SIZE :
1834 				    (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1835 
1836 		crc = crc32c(crc, data, sublen);
1837 	}
1838 	btrfs_csum_final(crc, csum);
1839 	if (memcmp(csum, h->csum, state->csum_size))
1840 		return 1;
1841 
1842 	return 0; /* is metadata */
1843 }
1844 
1845 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1846 					  u64 dev_bytenr, char **mapped_datav,
1847 					  unsigned int num_pages,
1848 					  struct bio *bio, int *bio_is_patched,
1849 					  struct buffer_head *bh,
1850 					  int submit_bio_bh_rw)
1851 {
1852 	int is_metadata;
1853 	struct btrfsic_block *block;
1854 	struct btrfsic_block_data_ctx block_ctx;
1855 	int ret;
1856 	struct btrfsic_state *state = dev_state->state;
1857 	struct block_device *bdev = dev_state->bdev;
1858 	unsigned int processed_len;
1859 
1860 	if (NULL != bio_is_patched)
1861 		*bio_is_patched = 0;
1862 
1863 again:
1864 	if (num_pages == 0)
1865 		return;
1866 
1867 	processed_len = 0;
1868 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1869 						      num_pages));
1870 
1871 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1872 					       &state->block_hashtable);
1873 	if (NULL != block) {
1874 		u64 bytenr = 0;
1875 		struct list_head *elem_ref_to;
1876 		struct list_head *tmp_ref_to;
1877 
1878 		if (block->is_superblock) {
1879 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1880 						    mapped_datav[0]);
1881 			if (num_pages * PAGE_CACHE_SIZE <
1882 			    BTRFS_SUPER_INFO_SIZE) {
1883 				printk(KERN_INFO
1884 				       "btrfsic: cannot work with too short bios!\n");
1885 				return;
1886 			}
1887 			is_metadata = 1;
1888 			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1889 			processed_len = BTRFS_SUPER_INFO_SIZE;
1890 			if (state->print_mask &
1891 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1892 				printk(KERN_INFO
1893 				       "[before new superblock is written]:\n");
1894 				btrfsic_dump_tree_sub(state, block, 0);
1895 			}
1896 		}
1897 		if (is_metadata) {
1898 			if (!block->is_superblock) {
1899 				if (num_pages * PAGE_CACHE_SIZE <
1900 				    state->metablock_size) {
1901 					printk(KERN_INFO
1902 					       "btrfsic: cannot work with too short bios!\n");
1903 					return;
1904 				}
1905 				processed_len = state->metablock_size;
1906 				bytenr = btrfs_stack_header_bytenr(
1907 						(struct btrfs_header *)
1908 						mapped_datav[0]);
1909 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1910 							       dev_state,
1911 							       dev_bytenr);
1912 			}
1913 			if (block->logical_bytenr != bytenr &&
1914 			    !(!block->is_metadata &&
1915 			      block->logical_bytenr == 0))
1916 				printk(KERN_INFO
1917 				       "Written block @%llu (%s/%llu/%d)"
1918 				       " found in hash table, %c,"
1919 				       " bytenr mismatch"
1920 				       " (!= stored %llu).\n",
1921 				       bytenr, dev_state->name, dev_bytenr,
1922 				       block->mirror_num,
1923 				       btrfsic_get_block_type(state, block),
1924 				       block->logical_bytenr);
1925 			else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1926 				printk(KERN_INFO
1927 				       "Written block @%llu (%s/%llu/%d)"
1928 				       " found in hash table, %c.\n",
1929 				       bytenr, dev_state->name, dev_bytenr,
1930 				       block->mirror_num,
1931 				       btrfsic_get_block_type(state, block));
1932 			block->logical_bytenr = bytenr;
1933 		} else {
1934 			if (num_pages * PAGE_CACHE_SIZE <
1935 			    state->datablock_size) {
1936 				printk(KERN_INFO
1937 				       "btrfsic: cannot work with too short bios!\n");
1938 				return;
1939 			}
1940 			processed_len = state->datablock_size;
1941 			bytenr = block->logical_bytenr;
1942 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1943 				printk(KERN_INFO
1944 				       "Written block @%llu (%s/%llu/%d)"
1945 				       " found in hash table, %c.\n",
1946 				       bytenr, dev_state->name, dev_bytenr,
1947 				       block->mirror_num,
1948 				       btrfsic_get_block_type(state, block));
1949 		}
1950 
1951 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1952 			printk(KERN_INFO
1953 			       "ref_to_list: %cE, ref_from_list: %cE\n",
1954 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1955 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1956 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1957 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1958 			       " @%llu (%s/%llu/%d), old(gen=%llu,"
1959 			       " objectid=%llu, type=%d, offset=%llu),"
1960 			       " new(gen=%llu),"
1961 			       " which is referenced by most recent superblock"
1962 			       " (superblockgen=%llu)!\n",
1963 			       btrfsic_get_block_type(state, block), bytenr,
1964 			       dev_state->name, dev_bytenr, block->mirror_num,
1965 			       block->generation,
1966 			       btrfs_disk_key_objectid(&block->disk_key),
1967 			       block->disk_key.type,
1968 			       btrfs_disk_key_offset(&block->disk_key),
1969 			       btrfs_stack_header_generation(
1970 				       (struct btrfs_header *) mapped_datav[0]),
1971 			       state->max_superblock_generation);
1972 			btrfsic_dump_tree(state);
1973 		}
1974 
1975 		if (!block->is_iodone && !block->never_written) {
1976 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1977 			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1978 			       " which is not yet iodone!\n",
1979 			       btrfsic_get_block_type(state, block), bytenr,
1980 			       dev_state->name, dev_bytenr, block->mirror_num,
1981 			       block->generation,
1982 			       btrfs_stack_header_generation(
1983 				       (struct btrfs_header *)
1984 				       mapped_datav[0]));
1985 			/* it would not be safe to go on */
1986 			btrfsic_dump_tree(state);
1987 			goto continue_loop;
1988 		}
1989 
1990 		/*
1991 		 * Clear all references of this block. Do not free
1992 		 * the block itself even if is not referenced anymore
1993 		 * because it still carries valueable information
1994 		 * like whether it was ever written and IO completed.
1995 		 */
1996 		list_for_each_safe(elem_ref_to, tmp_ref_to,
1997 				   &block->ref_to_list) {
1998 			struct btrfsic_block_link *const l =
1999 			    list_entry(elem_ref_to,
2000 				       struct btrfsic_block_link,
2001 				       node_ref_to);
2002 
2003 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2004 				btrfsic_print_rem_link(state, l);
2005 			l->ref_cnt--;
2006 			if (0 == l->ref_cnt) {
2007 				list_del(&l->node_ref_to);
2008 				list_del(&l->node_ref_from);
2009 				btrfsic_block_link_hashtable_remove(l);
2010 				btrfsic_block_link_free(l);
2011 			}
2012 		}
2013 
2014 		if (block->is_superblock)
2015 			ret = btrfsic_map_superblock(state, bytenr,
2016 						     processed_len,
2017 						     bdev, &block_ctx);
2018 		else
2019 			ret = btrfsic_map_block(state, bytenr, processed_len,
2020 						&block_ctx, 0);
2021 		if (ret) {
2022 			printk(KERN_INFO
2023 			       "btrfsic: btrfsic_map_block(root @%llu)"
2024 			       " failed!\n", bytenr);
2025 			goto continue_loop;
2026 		}
2027 		block_ctx.datav = mapped_datav;
2028 		/* the following is required in case of writes to mirrors,
2029 		 * use the same that was used for the lookup */
2030 		block_ctx.dev = dev_state;
2031 		block_ctx.dev_bytenr = dev_bytenr;
2032 
2033 		if (is_metadata || state->include_extent_data) {
2034 			block->never_written = 0;
2035 			block->iodone_w_error = 0;
2036 			if (NULL != bio) {
2037 				block->is_iodone = 0;
2038 				BUG_ON(NULL == bio_is_patched);
2039 				if (!*bio_is_patched) {
2040 					block->orig_bio_bh_private =
2041 					    bio->bi_private;
2042 					block->orig_bio_bh_end_io.bio =
2043 					    bio->bi_end_io;
2044 					block->next_in_same_bio = NULL;
2045 					bio->bi_private = block;
2046 					bio->bi_end_io = btrfsic_bio_end_io;
2047 					*bio_is_patched = 1;
2048 				} else {
2049 					struct btrfsic_block *chained_block =
2050 					    (struct btrfsic_block *)
2051 					    bio->bi_private;
2052 
2053 					BUG_ON(NULL == chained_block);
2054 					block->orig_bio_bh_private =
2055 					    chained_block->orig_bio_bh_private;
2056 					block->orig_bio_bh_end_io.bio =
2057 					    chained_block->orig_bio_bh_end_io.
2058 					    bio;
2059 					block->next_in_same_bio = chained_block;
2060 					bio->bi_private = block;
2061 				}
2062 			} else if (NULL != bh) {
2063 				block->is_iodone = 0;
2064 				block->orig_bio_bh_private = bh->b_private;
2065 				block->orig_bio_bh_end_io.bh = bh->b_end_io;
2066 				block->next_in_same_bio = NULL;
2067 				bh->b_private = block;
2068 				bh->b_end_io = btrfsic_bh_end_io;
2069 			} else {
2070 				block->is_iodone = 1;
2071 				block->orig_bio_bh_private = NULL;
2072 				block->orig_bio_bh_end_io.bio = NULL;
2073 				block->next_in_same_bio = NULL;
2074 			}
2075 		}
2076 
2077 		block->flush_gen = dev_state->last_flush_gen + 1;
2078 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2079 		if (is_metadata) {
2080 			block->logical_bytenr = bytenr;
2081 			block->is_metadata = 1;
2082 			if (block->is_superblock) {
2083 				BUG_ON(PAGE_CACHE_SIZE !=
2084 				       BTRFS_SUPER_INFO_SIZE);
2085 				ret = btrfsic_process_written_superblock(
2086 						state,
2087 						block,
2088 						(struct btrfs_super_block *)
2089 						mapped_datav[0]);
2090 				if (state->print_mask &
2091 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2092 					printk(KERN_INFO
2093 					"[after new superblock is written]:\n");
2094 					btrfsic_dump_tree_sub(state, block, 0);
2095 				}
2096 			} else {
2097 				block->mirror_num = 0;	/* unknown */
2098 				ret = btrfsic_process_metablock(
2099 						state,
2100 						block,
2101 						&block_ctx,
2102 						0, 0);
2103 			}
2104 			if (ret)
2105 				printk(KERN_INFO
2106 				       "btrfsic: btrfsic_process_metablock"
2107 				       "(root @%llu) failed!\n",
2108 				       dev_bytenr);
2109 		} else {
2110 			block->is_metadata = 0;
2111 			block->mirror_num = 0;	/* unknown */
2112 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
2113 			if (!state->include_extent_data
2114 			    && list_empty(&block->ref_from_list)) {
2115 				/*
2116 				 * disk block is overwritten with extent
2117 				 * data (not meta data) and we are configured
2118 				 * to not include extent data: take the
2119 				 * chance and free the block's memory
2120 				 */
2121 				btrfsic_block_hashtable_remove(block);
2122 				list_del(&block->all_blocks_node);
2123 				btrfsic_block_free(block);
2124 			}
2125 		}
2126 		btrfsic_release_block_ctx(&block_ctx);
2127 	} else {
2128 		/* block has not been found in hash table */
2129 		u64 bytenr;
2130 
2131 		if (!is_metadata) {
2132 			processed_len = state->datablock_size;
2133 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2134 				printk(KERN_INFO "Written block (%s/%llu/?)"
2135 				       " !found in hash table, D.\n",
2136 				       dev_state->name, dev_bytenr);
2137 			if (!state->include_extent_data) {
2138 				/* ignore that written D block */
2139 				goto continue_loop;
2140 			}
2141 
2142 			/* this is getting ugly for the
2143 			 * include_extent_data case... */
2144 			bytenr = 0;	/* unknown */
2145 			block_ctx.start = bytenr;
2146 			block_ctx.len = processed_len;
2147 			block_ctx.mem_to_free = NULL;
2148 			block_ctx.pagev = NULL;
2149 		} else {
2150 			processed_len = state->metablock_size;
2151 			bytenr = btrfs_stack_header_bytenr(
2152 					(struct btrfs_header *)
2153 					mapped_datav[0]);
2154 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2155 						       dev_bytenr);
2156 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2157 				printk(KERN_INFO
2158 				       "Written block @%llu (%s/%llu/?)"
2159 				       " !found in hash table, M.\n",
2160 				       bytenr, dev_state->name, dev_bytenr);
2161 
2162 			ret = btrfsic_map_block(state, bytenr, processed_len,
2163 						&block_ctx, 0);
2164 			if (ret) {
2165 				printk(KERN_INFO
2166 				       "btrfsic: btrfsic_map_block(root @%llu)"
2167 				       " failed!\n",
2168 				       dev_bytenr);
2169 				goto continue_loop;
2170 			}
2171 		}
2172 		block_ctx.datav = mapped_datav;
2173 		/* the following is required in case of writes to mirrors,
2174 		 * use the same that was used for the lookup */
2175 		block_ctx.dev = dev_state;
2176 		block_ctx.dev_bytenr = dev_bytenr;
2177 
2178 		block = btrfsic_block_alloc();
2179 		if (NULL == block) {
2180 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2181 			btrfsic_release_block_ctx(&block_ctx);
2182 			goto continue_loop;
2183 		}
2184 		block->dev_state = dev_state;
2185 		block->dev_bytenr = dev_bytenr;
2186 		block->logical_bytenr = bytenr;
2187 		block->is_metadata = is_metadata;
2188 		block->never_written = 0;
2189 		block->iodone_w_error = 0;
2190 		block->mirror_num = 0;	/* unknown */
2191 		block->flush_gen = dev_state->last_flush_gen + 1;
2192 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2193 		if (NULL != bio) {
2194 			block->is_iodone = 0;
2195 			BUG_ON(NULL == bio_is_patched);
2196 			if (!*bio_is_patched) {
2197 				block->orig_bio_bh_private = bio->bi_private;
2198 				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2199 				block->next_in_same_bio = NULL;
2200 				bio->bi_private = block;
2201 				bio->bi_end_io = btrfsic_bio_end_io;
2202 				*bio_is_patched = 1;
2203 			} else {
2204 				struct btrfsic_block *chained_block =
2205 				    (struct btrfsic_block *)
2206 				    bio->bi_private;
2207 
2208 				BUG_ON(NULL == chained_block);
2209 				block->orig_bio_bh_private =
2210 				    chained_block->orig_bio_bh_private;
2211 				block->orig_bio_bh_end_io.bio =
2212 				    chained_block->orig_bio_bh_end_io.bio;
2213 				block->next_in_same_bio = chained_block;
2214 				bio->bi_private = block;
2215 			}
2216 		} else if (NULL != bh) {
2217 			block->is_iodone = 0;
2218 			block->orig_bio_bh_private = bh->b_private;
2219 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2220 			block->next_in_same_bio = NULL;
2221 			bh->b_private = block;
2222 			bh->b_end_io = btrfsic_bh_end_io;
2223 		} else {
2224 			block->is_iodone = 1;
2225 			block->orig_bio_bh_private = NULL;
2226 			block->orig_bio_bh_end_io.bio = NULL;
2227 			block->next_in_same_bio = NULL;
2228 		}
2229 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2230 			printk(KERN_INFO
2231 			       "New written %c-block @%llu (%s/%llu/%d)\n",
2232 			       is_metadata ? 'M' : 'D',
2233 			       block->logical_bytenr, block->dev_state->name,
2234 			       block->dev_bytenr, block->mirror_num);
2235 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2236 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2237 
2238 		if (is_metadata) {
2239 			ret = btrfsic_process_metablock(state, block,
2240 							&block_ctx, 0, 0);
2241 			if (ret)
2242 				printk(KERN_INFO
2243 				       "btrfsic: process_metablock(root @%llu)"
2244 				       " failed!\n",
2245 				       dev_bytenr);
2246 		}
2247 		btrfsic_release_block_ctx(&block_ctx);
2248 	}
2249 
2250 continue_loop:
2251 	BUG_ON(!processed_len);
2252 	dev_bytenr += processed_len;
2253 	mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2254 	num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2255 	goto again;
2256 }
2257 
2258 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2259 {
2260 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2261 	int iodone_w_error;
2262 
2263 	/* mutex is not held! This is not save if IO is not yet completed
2264 	 * on umount */
2265 	iodone_w_error = 0;
2266 	if (bio_error_status)
2267 		iodone_w_error = 1;
2268 
2269 	BUG_ON(NULL == block);
2270 	bp->bi_private = block->orig_bio_bh_private;
2271 	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2272 
2273 	do {
2274 		struct btrfsic_block *next_block;
2275 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2276 
2277 		if ((dev_state->state->print_mask &
2278 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2279 			printk(KERN_INFO
2280 			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2281 			       bio_error_status,
2282 			       btrfsic_get_block_type(dev_state->state, block),
2283 			       block->logical_bytenr, dev_state->name,
2284 			       block->dev_bytenr, block->mirror_num);
2285 		next_block = block->next_in_same_bio;
2286 		block->iodone_w_error = iodone_w_error;
2287 		if (block->submit_bio_bh_rw & REQ_FLUSH) {
2288 			dev_state->last_flush_gen++;
2289 			if ((dev_state->state->print_mask &
2290 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2291 				printk(KERN_INFO
2292 				       "bio_end_io() new %s flush_gen=%llu\n",
2293 				       dev_state->name,
2294 				       dev_state->last_flush_gen);
2295 		}
2296 		if (block->submit_bio_bh_rw & REQ_FUA)
2297 			block->flush_gen = 0; /* FUA completed means block is
2298 					       * on disk */
2299 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2300 		block = next_block;
2301 	} while (NULL != block);
2302 
2303 	bp->bi_end_io(bp, bio_error_status);
2304 }
2305 
2306 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2307 {
2308 	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2309 	int iodone_w_error = !uptodate;
2310 	struct btrfsic_dev_state *dev_state;
2311 
2312 	BUG_ON(NULL == block);
2313 	dev_state = block->dev_state;
2314 	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2315 		printk(KERN_INFO
2316 		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2317 		       iodone_w_error,
2318 		       btrfsic_get_block_type(dev_state->state, block),
2319 		       block->logical_bytenr, block->dev_state->name,
2320 		       block->dev_bytenr, block->mirror_num);
2321 
2322 	block->iodone_w_error = iodone_w_error;
2323 	if (block->submit_bio_bh_rw & REQ_FLUSH) {
2324 		dev_state->last_flush_gen++;
2325 		if ((dev_state->state->print_mask &
2326 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2327 			printk(KERN_INFO
2328 			       "bh_end_io() new %s flush_gen=%llu\n",
2329 			       dev_state->name, dev_state->last_flush_gen);
2330 	}
2331 	if (block->submit_bio_bh_rw & REQ_FUA)
2332 		block->flush_gen = 0; /* FUA completed means block is on disk */
2333 
2334 	bh->b_private = block->orig_bio_bh_private;
2335 	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2336 	block->is_iodone = 1; /* for FLUSH, this releases the block */
2337 	bh->b_end_io(bh, uptodate);
2338 }
2339 
2340 static int btrfsic_process_written_superblock(
2341 		struct btrfsic_state *state,
2342 		struct btrfsic_block *const superblock,
2343 		struct btrfs_super_block *const super_hdr)
2344 {
2345 	int pass;
2346 
2347 	superblock->generation = btrfs_super_generation(super_hdr);
2348 	if (!(superblock->generation > state->max_superblock_generation ||
2349 	      0 == state->max_superblock_generation)) {
2350 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2351 			printk(KERN_INFO
2352 			       "btrfsic: superblock @%llu (%s/%llu/%d)"
2353 			       " with old gen %llu <= %llu\n",
2354 			       superblock->logical_bytenr,
2355 			       superblock->dev_state->name,
2356 			       superblock->dev_bytenr, superblock->mirror_num,
2357 			       btrfs_super_generation(super_hdr),
2358 			       state->max_superblock_generation);
2359 	} else {
2360 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2361 			printk(KERN_INFO
2362 			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2363 			       " with new gen %llu > %llu\n",
2364 			       superblock->logical_bytenr,
2365 			       superblock->dev_state->name,
2366 			       superblock->dev_bytenr, superblock->mirror_num,
2367 			       btrfs_super_generation(super_hdr),
2368 			       state->max_superblock_generation);
2369 
2370 		state->max_superblock_generation =
2371 		    btrfs_super_generation(super_hdr);
2372 		state->latest_superblock = superblock;
2373 	}
2374 
2375 	for (pass = 0; pass < 3; pass++) {
2376 		int ret;
2377 		u64 next_bytenr;
2378 		struct btrfsic_block *next_block;
2379 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2380 		struct btrfsic_block_link *l;
2381 		int num_copies;
2382 		int mirror_num;
2383 		const char *additional_string = NULL;
2384 		struct btrfs_disk_key tmp_disk_key = {0};
2385 
2386 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2387 					    BTRFS_ROOT_ITEM_KEY);
2388 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2389 
2390 		switch (pass) {
2391 		case 0:
2392 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2393 						    BTRFS_ROOT_TREE_OBJECTID);
2394 			additional_string = "root ";
2395 			next_bytenr = btrfs_super_root(super_hdr);
2396 			if (state->print_mask &
2397 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2398 				printk(KERN_INFO "root@%llu\n", next_bytenr);
2399 			break;
2400 		case 1:
2401 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2402 						    BTRFS_CHUNK_TREE_OBJECTID);
2403 			additional_string = "chunk ";
2404 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2405 			if (state->print_mask &
2406 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2407 				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2408 			break;
2409 		case 2:
2410 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2411 						    BTRFS_TREE_LOG_OBJECTID);
2412 			additional_string = "log ";
2413 			next_bytenr = btrfs_super_log_root(super_hdr);
2414 			if (0 == next_bytenr)
2415 				continue;
2416 			if (state->print_mask &
2417 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2418 				printk(KERN_INFO "log@%llu\n", next_bytenr);
2419 			break;
2420 		}
2421 
2422 		num_copies =
2423 		    btrfs_num_copies(state->root->fs_info,
2424 				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2425 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2426 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2427 			       next_bytenr, num_copies);
2428 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2429 			int was_created;
2430 
2431 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2432 				printk(KERN_INFO
2433 				       "btrfsic_process_written_superblock("
2434 				       "mirror_num=%d)\n", mirror_num);
2435 			ret = btrfsic_map_block(state, next_bytenr,
2436 						BTRFS_SUPER_INFO_SIZE,
2437 						&tmp_next_block_ctx,
2438 						mirror_num);
2439 			if (ret) {
2440 				printk(KERN_INFO
2441 				       "btrfsic: btrfsic_map_block(@%llu,"
2442 				       " mirror=%d) failed!\n",
2443 				       next_bytenr, mirror_num);
2444 				return -1;
2445 			}
2446 
2447 			next_block = btrfsic_block_lookup_or_add(
2448 					state,
2449 					&tmp_next_block_ctx,
2450 					additional_string,
2451 					1, 0, 1,
2452 					mirror_num,
2453 					&was_created);
2454 			if (NULL == next_block) {
2455 				printk(KERN_INFO
2456 				       "btrfsic: error, kmalloc failed!\n");
2457 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2458 				return -1;
2459 			}
2460 
2461 			next_block->disk_key = tmp_disk_key;
2462 			if (was_created)
2463 				next_block->generation =
2464 				    BTRFSIC_GENERATION_UNKNOWN;
2465 			l = btrfsic_block_link_lookup_or_add(
2466 					state,
2467 					&tmp_next_block_ctx,
2468 					next_block,
2469 					superblock,
2470 					BTRFSIC_GENERATION_UNKNOWN);
2471 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2472 			if (NULL == l)
2473 				return -1;
2474 		}
2475 	}
2476 
2477 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2478 		btrfsic_dump_tree(state);
2479 
2480 	return 0;
2481 }
2482 
2483 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2484 					struct btrfsic_block *const block,
2485 					int recursion_level)
2486 {
2487 	struct list_head *elem_ref_to;
2488 	int ret = 0;
2489 
2490 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2491 		/*
2492 		 * Note that this situation can happen and does not
2493 		 * indicate an error in regular cases. It happens
2494 		 * when disk blocks are freed and later reused.
2495 		 * The check-integrity module is not aware of any
2496 		 * block free operations, it just recognizes block
2497 		 * write operations. Therefore it keeps the linkage
2498 		 * information for a block until a block is
2499 		 * rewritten. This can temporarily cause incorrect
2500 		 * and even circular linkage informations. This
2501 		 * causes no harm unless such blocks are referenced
2502 		 * by the most recent super block.
2503 		 */
2504 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2505 			printk(KERN_INFO
2506 			       "btrfsic: abort cyclic linkage (case 1).\n");
2507 
2508 		return ret;
2509 	}
2510 
2511 	/*
2512 	 * This algorithm is recursive because the amount of used stack
2513 	 * space is very small and the max recursion depth is limited.
2514 	 */
2515 	list_for_each(elem_ref_to, &block->ref_to_list) {
2516 		const struct btrfsic_block_link *const l =
2517 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2518 			       node_ref_to);
2519 
2520 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2521 			printk(KERN_INFO
2522 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2523 			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
2524 			       recursion_level,
2525 			       btrfsic_get_block_type(state, block),
2526 			       block->logical_bytenr, block->dev_state->name,
2527 			       block->dev_bytenr, block->mirror_num,
2528 			       l->ref_cnt,
2529 			       btrfsic_get_block_type(state, l->block_ref_to),
2530 			       l->block_ref_to->logical_bytenr,
2531 			       l->block_ref_to->dev_state->name,
2532 			       l->block_ref_to->dev_bytenr,
2533 			       l->block_ref_to->mirror_num);
2534 		if (l->block_ref_to->never_written) {
2535 			printk(KERN_INFO "btrfs: attempt to write superblock"
2536 			       " which references block %c @%llu (%s/%llu/%d)"
2537 			       " which is never written!\n",
2538 			       btrfsic_get_block_type(state, l->block_ref_to),
2539 			       l->block_ref_to->logical_bytenr,
2540 			       l->block_ref_to->dev_state->name,
2541 			       l->block_ref_to->dev_bytenr,
2542 			       l->block_ref_to->mirror_num);
2543 			ret = -1;
2544 		} else if (!l->block_ref_to->is_iodone) {
2545 			printk(KERN_INFO "btrfs: attempt to write superblock"
2546 			       " which references block %c @%llu (%s/%llu/%d)"
2547 			       " which is not yet iodone!\n",
2548 			       btrfsic_get_block_type(state, l->block_ref_to),
2549 			       l->block_ref_to->logical_bytenr,
2550 			       l->block_ref_to->dev_state->name,
2551 			       l->block_ref_to->dev_bytenr,
2552 			       l->block_ref_to->mirror_num);
2553 			ret = -1;
2554 		} else if (l->block_ref_to->iodone_w_error) {
2555 			printk(KERN_INFO "btrfs: attempt to write superblock"
2556 			       " which references block %c @%llu (%s/%llu/%d)"
2557 			       " which has write error!\n",
2558 			       btrfsic_get_block_type(state, l->block_ref_to),
2559 			       l->block_ref_to->logical_bytenr,
2560 			       l->block_ref_to->dev_state->name,
2561 			       l->block_ref_to->dev_bytenr,
2562 			       l->block_ref_to->mirror_num);
2563 			ret = -1;
2564 		} else if (l->parent_generation !=
2565 			   l->block_ref_to->generation &&
2566 			   BTRFSIC_GENERATION_UNKNOWN !=
2567 			   l->parent_generation &&
2568 			   BTRFSIC_GENERATION_UNKNOWN !=
2569 			   l->block_ref_to->generation) {
2570 			printk(KERN_INFO "btrfs: attempt to write superblock"
2571 			       " which references block %c @%llu (%s/%llu/%d)"
2572 			       " with generation %llu !="
2573 			       " parent generation %llu!\n",
2574 			       btrfsic_get_block_type(state, l->block_ref_to),
2575 			       l->block_ref_to->logical_bytenr,
2576 			       l->block_ref_to->dev_state->name,
2577 			       l->block_ref_to->dev_bytenr,
2578 			       l->block_ref_to->mirror_num,
2579 			       l->block_ref_to->generation,
2580 			       l->parent_generation);
2581 			ret = -1;
2582 		} else if (l->block_ref_to->flush_gen >
2583 			   l->block_ref_to->dev_state->last_flush_gen) {
2584 			printk(KERN_INFO "btrfs: attempt to write superblock"
2585 			       " which references block %c @%llu (%s/%llu/%d)"
2586 			       " which is not flushed out of disk's write cache"
2587 			       " (block flush_gen=%llu,"
2588 			       " dev->flush_gen=%llu)!\n",
2589 			       btrfsic_get_block_type(state, l->block_ref_to),
2590 			       l->block_ref_to->logical_bytenr,
2591 			       l->block_ref_to->dev_state->name,
2592 			       l->block_ref_to->dev_bytenr,
2593 			       l->block_ref_to->mirror_num, block->flush_gen,
2594 			       l->block_ref_to->dev_state->last_flush_gen);
2595 			ret = -1;
2596 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2597 							      l->block_ref_to,
2598 							      recursion_level +
2599 							      1)) {
2600 			ret = -1;
2601 		}
2602 	}
2603 
2604 	return ret;
2605 }
2606 
2607 static int btrfsic_is_block_ref_by_superblock(
2608 		const struct btrfsic_state *state,
2609 		const struct btrfsic_block *block,
2610 		int recursion_level)
2611 {
2612 	struct list_head *elem_ref_from;
2613 
2614 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2615 		/* refer to comment at "abort cyclic linkage (case 1)" */
2616 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2617 			printk(KERN_INFO
2618 			       "btrfsic: abort cyclic linkage (case 2).\n");
2619 
2620 		return 0;
2621 	}
2622 
2623 	/*
2624 	 * This algorithm is recursive because the amount of used stack space
2625 	 * is very small and the max recursion depth is limited.
2626 	 */
2627 	list_for_each(elem_ref_from, &block->ref_from_list) {
2628 		const struct btrfsic_block_link *const l =
2629 		    list_entry(elem_ref_from, struct btrfsic_block_link,
2630 			       node_ref_from);
2631 
2632 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2633 			printk(KERN_INFO
2634 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2635 			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2636 			       recursion_level,
2637 			       btrfsic_get_block_type(state, block),
2638 			       block->logical_bytenr, block->dev_state->name,
2639 			       block->dev_bytenr, block->mirror_num,
2640 			       l->ref_cnt,
2641 			       btrfsic_get_block_type(state, l->block_ref_from),
2642 			       l->block_ref_from->logical_bytenr,
2643 			       l->block_ref_from->dev_state->name,
2644 			       l->block_ref_from->dev_bytenr,
2645 			       l->block_ref_from->mirror_num);
2646 		if (l->block_ref_from->is_superblock &&
2647 		    state->latest_superblock->dev_bytenr ==
2648 		    l->block_ref_from->dev_bytenr &&
2649 		    state->latest_superblock->dev_state->bdev ==
2650 		    l->block_ref_from->dev_state->bdev)
2651 			return 1;
2652 		else if (btrfsic_is_block_ref_by_superblock(state,
2653 							    l->block_ref_from,
2654 							    recursion_level +
2655 							    1))
2656 			return 1;
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2663 				   const struct btrfsic_block_link *l)
2664 {
2665 	printk(KERN_INFO
2666 	       "Add %u* link from %c @%llu (%s/%llu/%d)"
2667 	       " to %c @%llu (%s/%llu/%d).\n",
2668 	       l->ref_cnt,
2669 	       btrfsic_get_block_type(state, l->block_ref_from),
2670 	       l->block_ref_from->logical_bytenr,
2671 	       l->block_ref_from->dev_state->name,
2672 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2673 	       btrfsic_get_block_type(state, l->block_ref_to),
2674 	       l->block_ref_to->logical_bytenr,
2675 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2676 	       l->block_ref_to->mirror_num);
2677 }
2678 
2679 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2680 				   const struct btrfsic_block_link *l)
2681 {
2682 	printk(KERN_INFO
2683 	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
2684 	       " to %c @%llu (%s/%llu/%d).\n",
2685 	       l->ref_cnt,
2686 	       btrfsic_get_block_type(state, l->block_ref_from),
2687 	       l->block_ref_from->logical_bytenr,
2688 	       l->block_ref_from->dev_state->name,
2689 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2690 	       btrfsic_get_block_type(state, l->block_ref_to),
2691 	       l->block_ref_to->logical_bytenr,
2692 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2693 	       l->block_ref_to->mirror_num);
2694 }
2695 
2696 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2697 				   const struct btrfsic_block *block)
2698 {
2699 	if (block->is_superblock &&
2700 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2701 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2702 		return 'S';
2703 	else if (block->is_superblock)
2704 		return 's';
2705 	else if (block->is_metadata)
2706 		return 'M';
2707 	else
2708 		return 'D';
2709 }
2710 
2711 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2712 {
2713 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2714 }
2715 
2716 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2717 				  const struct btrfsic_block *block,
2718 				  int indent_level)
2719 {
2720 	struct list_head *elem_ref_to;
2721 	int indent_add;
2722 	static char buf[80];
2723 	int cursor_position;
2724 
2725 	/*
2726 	 * Should better fill an on-stack buffer with a complete line and
2727 	 * dump it at once when it is time to print a newline character.
2728 	 */
2729 
2730 	/*
2731 	 * This algorithm is recursive because the amount of used stack space
2732 	 * is very small and the max recursion depth is limited.
2733 	 */
2734 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2735 			     btrfsic_get_block_type(state, block),
2736 			     block->logical_bytenr, block->dev_state->name,
2737 			     block->dev_bytenr, block->mirror_num);
2738 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2739 		printk("[...]\n");
2740 		return;
2741 	}
2742 	printk(buf);
2743 	indent_level += indent_add;
2744 	if (list_empty(&block->ref_to_list)) {
2745 		printk("\n");
2746 		return;
2747 	}
2748 	if (block->mirror_num > 1 &&
2749 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2750 		printk(" [...]\n");
2751 		return;
2752 	}
2753 
2754 	cursor_position = indent_level;
2755 	list_for_each(elem_ref_to, &block->ref_to_list) {
2756 		const struct btrfsic_block_link *const l =
2757 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2758 			       node_ref_to);
2759 
2760 		while (cursor_position < indent_level) {
2761 			printk(" ");
2762 			cursor_position++;
2763 		}
2764 		if (l->ref_cnt > 1)
2765 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2766 		else
2767 			indent_add = sprintf(buf, " --> ");
2768 		if (indent_level + indent_add >
2769 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2770 			printk("[...]\n");
2771 			cursor_position = 0;
2772 			continue;
2773 		}
2774 
2775 		printk(buf);
2776 
2777 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2778 				      indent_level + indent_add);
2779 		cursor_position = 0;
2780 	}
2781 }
2782 
2783 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2784 		struct btrfsic_state *state,
2785 		struct btrfsic_block_data_ctx *next_block_ctx,
2786 		struct btrfsic_block *next_block,
2787 		struct btrfsic_block *from_block,
2788 		u64 parent_generation)
2789 {
2790 	struct btrfsic_block_link *l;
2791 
2792 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2793 						next_block_ctx->dev_bytenr,
2794 						from_block->dev_state->bdev,
2795 						from_block->dev_bytenr,
2796 						&state->block_link_hashtable);
2797 	if (NULL == l) {
2798 		l = btrfsic_block_link_alloc();
2799 		if (NULL == l) {
2800 			printk(KERN_INFO
2801 			       "btrfsic: error, kmalloc" " failed!\n");
2802 			return NULL;
2803 		}
2804 
2805 		l->block_ref_to = next_block;
2806 		l->block_ref_from = from_block;
2807 		l->ref_cnt = 1;
2808 		l->parent_generation = parent_generation;
2809 
2810 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2811 			btrfsic_print_add_link(state, l);
2812 
2813 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2814 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2815 
2816 		btrfsic_block_link_hashtable_add(l,
2817 						 &state->block_link_hashtable);
2818 	} else {
2819 		l->ref_cnt++;
2820 		l->parent_generation = parent_generation;
2821 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2822 			btrfsic_print_add_link(state, l);
2823 	}
2824 
2825 	return l;
2826 }
2827 
2828 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2829 		struct btrfsic_state *state,
2830 		struct btrfsic_block_data_ctx *block_ctx,
2831 		const char *additional_string,
2832 		int is_metadata,
2833 		int is_iodone,
2834 		int never_written,
2835 		int mirror_num,
2836 		int *was_created)
2837 {
2838 	struct btrfsic_block *block;
2839 
2840 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2841 					       block_ctx->dev_bytenr,
2842 					       &state->block_hashtable);
2843 	if (NULL == block) {
2844 		struct btrfsic_dev_state *dev_state;
2845 
2846 		block = btrfsic_block_alloc();
2847 		if (NULL == block) {
2848 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2849 			return NULL;
2850 		}
2851 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2852 		if (NULL == dev_state) {
2853 			printk(KERN_INFO
2854 			       "btrfsic: error, lookup dev_state failed!\n");
2855 			btrfsic_block_free(block);
2856 			return NULL;
2857 		}
2858 		block->dev_state = dev_state;
2859 		block->dev_bytenr = block_ctx->dev_bytenr;
2860 		block->logical_bytenr = block_ctx->start;
2861 		block->is_metadata = is_metadata;
2862 		block->is_iodone = is_iodone;
2863 		block->never_written = never_written;
2864 		block->mirror_num = mirror_num;
2865 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2866 			printk(KERN_INFO
2867 			       "New %s%c-block @%llu (%s/%llu/%d)\n",
2868 			       additional_string,
2869 			       btrfsic_get_block_type(state, block),
2870 			       block->logical_bytenr, dev_state->name,
2871 			       block->dev_bytenr, mirror_num);
2872 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2873 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2874 		if (NULL != was_created)
2875 			*was_created = 1;
2876 	} else {
2877 		if (NULL != was_created)
2878 			*was_created = 0;
2879 	}
2880 
2881 	return block;
2882 }
2883 
2884 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2885 					   u64 bytenr,
2886 					   struct btrfsic_dev_state *dev_state,
2887 					   u64 dev_bytenr)
2888 {
2889 	int num_copies;
2890 	int mirror_num;
2891 	int ret;
2892 	struct btrfsic_block_data_ctx block_ctx;
2893 	int match = 0;
2894 
2895 	num_copies = btrfs_num_copies(state->root->fs_info,
2896 				      bytenr, state->metablock_size);
2897 
2898 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2899 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2900 					&block_ctx, mirror_num);
2901 		if (ret) {
2902 			printk(KERN_INFO "btrfsic:"
2903 			       " btrfsic_map_block(logical @%llu,"
2904 			       " mirror %d) failed!\n",
2905 			       bytenr, mirror_num);
2906 			continue;
2907 		}
2908 
2909 		if (dev_state->bdev == block_ctx.dev->bdev &&
2910 		    dev_bytenr == block_ctx.dev_bytenr) {
2911 			match++;
2912 			btrfsic_release_block_ctx(&block_ctx);
2913 			break;
2914 		}
2915 		btrfsic_release_block_ctx(&block_ctx);
2916 	}
2917 
2918 	if (WARN_ON(!match)) {
2919 		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2920 		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2921 		       " phys_bytenr=%llu)!\n",
2922 		       bytenr, dev_state->name, dev_bytenr);
2923 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2924 			ret = btrfsic_map_block(state, bytenr,
2925 						state->metablock_size,
2926 						&block_ctx, mirror_num);
2927 			if (ret)
2928 				continue;
2929 
2930 			printk(KERN_INFO "Read logical bytenr @%llu maps to"
2931 			       " (%s/%llu/%d)\n",
2932 			       bytenr, block_ctx.dev->name,
2933 			       block_ctx.dev_bytenr, mirror_num);
2934 		}
2935 	}
2936 }
2937 
2938 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2939 		struct block_device *bdev)
2940 {
2941 	struct btrfsic_dev_state *ds;
2942 
2943 	ds = btrfsic_dev_state_hashtable_lookup(bdev,
2944 						&btrfsic_dev_state_hashtable);
2945 	return ds;
2946 }
2947 
2948 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2949 {
2950 	struct btrfsic_dev_state *dev_state;
2951 
2952 	if (!btrfsic_is_initialized)
2953 		return submit_bh(rw, bh);
2954 
2955 	mutex_lock(&btrfsic_mutex);
2956 	/* since btrfsic_submit_bh() might also be called before
2957 	 * btrfsic_mount(), this might return NULL */
2958 	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2959 
2960 	/* Only called to write the superblock (incl. FLUSH/FUA) */
2961 	if (NULL != dev_state &&
2962 	    (rw & WRITE) && bh->b_size > 0) {
2963 		u64 dev_bytenr;
2964 
2965 		dev_bytenr = 4096 * bh->b_blocknr;
2966 		if (dev_state->state->print_mask &
2967 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2968 			printk(KERN_INFO
2969 			       "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2970 			       " size=%zu, data=%p, bdev=%p)\n",
2971 			       rw, (unsigned long long)bh->b_blocknr,
2972 			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2973 		btrfsic_process_written_block(dev_state, dev_bytenr,
2974 					      &bh->b_data, 1, NULL,
2975 					      NULL, bh, rw);
2976 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2977 		if (dev_state->state->print_mask &
2978 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2979 			printk(KERN_INFO
2980 			       "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2981 			       rw, bh->b_bdev);
2982 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2983 			if ((dev_state->state->print_mask &
2984 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2985 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2986 				printk(KERN_INFO
2987 				       "btrfsic_submit_bh(%s) with FLUSH"
2988 				       " but dummy block already in use"
2989 				       " (ignored)!\n",
2990 				       dev_state->name);
2991 		} else {
2992 			struct btrfsic_block *const block =
2993 				&dev_state->dummy_block_for_bio_bh_flush;
2994 
2995 			block->is_iodone = 0;
2996 			block->never_written = 0;
2997 			block->iodone_w_error = 0;
2998 			block->flush_gen = dev_state->last_flush_gen + 1;
2999 			block->submit_bio_bh_rw = rw;
3000 			block->orig_bio_bh_private = bh->b_private;
3001 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
3002 			block->next_in_same_bio = NULL;
3003 			bh->b_private = block;
3004 			bh->b_end_io = btrfsic_bh_end_io;
3005 		}
3006 	}
3007 	mutex_unlock(&btrfsic_mutex);
3008 	return submit_bh(rw, bh);
3009 }
3010 
3011 void btrfsic_submit_bio(int rw, struct bio *bio)
3012 {
3013 	struct btrfsic_dev_state *dev_state;
3014 
3015 	if (!btrfsic_is_initialized) {
3016 		submit_bio(rw, bio);
3017 		return;
3018 	}
3019 
3020 	mutex_lock(&btrfsic_mutex);
3021 	/* since btrfsic_submit_bio() is also called before
3022 	 * btrfsic_mount(), this might return NULL */
3023 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3024 	if (NULL != dev_state &&
3025 	    (rw & WRITE) && NULL != bio->bi_io_vec) {
3026 		unsigned int i;
3027 		u64 dev_bytenr;
3028 		u64 cur_bytenr;
3029 		int bio_is_patched;
3030 		char **mapped_datav;
3031 
3032 		dev_bytenr = 512 * bio->bi_sector;
3033 		bio_is_patched = 0;
3034 		if (dev_state->state->print_mask &
3035 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3036 			printk(KERN_INFO
3037 			       "submit_bio(rw=0x%x, bi_vcnt=%u,"
3038 			       " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3039 			       rw, bio->bi_vcnt,
3040 			       (unsigned long long)bio->bi_sector, dev_bytenr,
3041 			       bio->bi_bdev);
3042 
3043 		mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3044 				       GFP_NOFS);
3045 		if (!mapped_datav)
3046 			goto leave;
3047 		cur_bytenr = dev_bytenr;
3048 		for (i = 0; i < bio->bi_vcnt; i++) {
3049 			BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3050 			mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3051 			if (!mapped_datav[i]) {
3052 				while (i > 0) {
3053 					i--;
3054 					kunmap(bio->bi_io_vec[i].bv_page);
3055 				}
3056 				kfree(mapped_datav);
3057 				goto leave;
3058 			}
3059 			if (dev_state->state->print_mask &
3060 			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3061 				printk(KERN_INFO
3062 				       "#%u: bytenr=%llu, len=%u, offset=%u\n",
3063 				       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3064 				       bio->bi_io_vec[i].bv_offset);
3065 			cur_bytenr += bio->bi_io_vec[i].bv_len;
3066 		}
3067 		btrfsic_process_written_block(dev_state, dev_bytenr,
3068 					      mapped_datav, bio->bi_vcnt,
3069 					      bio, &bio_is_patched,
3070 					      NULL, rw);
3071 		while (i > 0) {
3072 			i--;
3073 			kunmap(bio->bi_io_vec[i].bv_page);
3074 		}
3075 		kfree(mapped_datav);
3076 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3077 		if (dev_state->state->print_mask &
3078 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3079 			printk(KERN_INFO
3080 			       "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3081 			       rw, bio->bi_bdev);
3082 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3083 			if ((dev_state->state->print_mask &
3084 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3085 			      BTRFSIC_PRINT_MASK_VERBOSE)))
3086 				printk(KERN_INFO
3087 				       "btrfsic_submit_bio(%s) with FLUSH"
3088 				       " but dummy block already in use"
3089 				       " (ignored)!\n",
3090 				       dev_state->name);
3091 		} else {
3092 			struct btrfsic_block *const block =
3093 				&dev_state->dummy_block_for_bio_bh_flush;
3094 
3095 			block->is_iodone = 0;
3096 			block->never_written = 0;
3097 			block->iodone_w_error = 0;
3098 			block->flush_gen = dev_state->last_flush_gen + 1;
3099 			block->submit_bio_bh_rw = rw;
3100 			block->orig_bio_bh_private = bio->bi_private;
3101 			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3102 			block->next_in_same_bio = NULL;
3103 			bio->bi_private = block;
3104 			bio->bi_end_io = btrfsic_bio_end_io;
3105 		}
3106 	}
3107 leave:
3108 	mutex_unlock(&btrfsic_mutex);
3109 
3110 	submit_bio(rw, bio);
3111 }
3112 
3113 int btrfsic_mount(struct btrfs_root *root,
3114 		  struct btrfs_fs_devices *fs_devices,
3115 		  int including_extent_data, u32 print_mask)
3116 {
3117 	int ret;
3118 	struct btrfsic_state *state;
3119 	struct list_head *dev_head = &fs_devices->devices;
3120 	struct btrfs_device *device;
3121 
3122 	if (root->nodesize != root->leafsize) {
3123 		printk(KERN_INFO
3124 		       "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3125 		       root->nodesize, root->leafsize);
3126 		return -1;
3127 	}
3128 	if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3129 		printk(KERN_INFO
3130 		       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3131 		       root->nodesize, PAGE_CACHE_SIZE);
3132 		return -1;
3133 	}
3134 	if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3135 		printk(KERN_INFO
3136 		       "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3137 		       root->leafsize, PAGE_CACHE_SIZE);
3138 		return -1;
3139 	}
3140 	if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3141 		printk(KERN_INFO
3142 		       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3143 		       root->sectorsize, PAGE_CACHE_SIZE);
3144 		return -1;
3145 	}
3146 	state = kzalloc(sizeof(*state), GFP_NOFS);
3147 	if (NULL == state) {
3148 		printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3149 		return -1;
3150 	}
3151 
3152 	if (!btrfsic_is_initialized) {
3153 		mutex_init(&btrfsic_mutex);
3154 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3155 		btrfsic_is_initialized = 1;
3156 	}
3157 	mutex_lock(&btrfsic_mutex);
3158 	state->root = root;
3159 	state->print_mask = print_mask;
3160 	state->include_extent_data = including_extent_data;
3161 	state->csum_size = 0;
3162 	state->metablock_size = root->nodesize;
3163 	state->datablock_size = root->sectorsize;
3164 	INIT_LIST_HEAD(&state->all_blocks_list);
3165 	btrfsic_block_hashtable_init(&state->block_hashtable);
3166 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3167 	state->max_superblock_generation = 0;
3168 	state->latest_superblock = NULL;
3169 
3170 	list_for_each_entry(device, dev_head, dev_list) {
3171 		struct btrfsic_dev_state *ds;
3172 		char *p;
3173 
3174 		if (!device->bdev || !device->name)
3175 			continue;
3176 
3177 		ds = btrfsic_dev_state_alloc();
3178 		if (NULL == ds) {
3179 			printk(KERN_INFO
3180 			       "btrfs check-integrity: kmalloc() failed!\n");
3181 			mutex_unlock(&btrfsic_mutex);
3182 			return -1;
3183 		}
3184 		ds->bdev = device->bdev;
3185 		ds->state = state;
3186 		bdevname(ds->bdev, ds->name);
3187 		ds->name[BDEVNAME_SIZE - 1] = '\0';
3188 		for (p = ds->name; *p != '\0'; p++);
3189 		while (p > ds->name && *p != '/')
3190 			p--;
3191 		if (*p == '/')
3192 			p++;
3193 		strlcpy(ds->name, p, sizeof(ds->name));
3194 		btrfsic_dev_state_hashtable_add(ds,
3195 						&btrfsic_dev_state_hashtable);
3196 	}
3197 
3198 	ret = btrfsic_process_superblock(state, fs_devices);
3199 	if (0 != ret) {
3200 		mutex_unlock(&btrfsic_mutex);
3201 		btrfsic_unmount(root, fs_devices);
3202 		return ret;
3203 	}
3204 
3205 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3206 		btrfsic_dump_database(state);
3207 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3208 		btrfsic_dump_tree(state);
3209 
3210 	mutex_unlock(&btrfsic_mutex);
3211 	return 0;
3212 }
3213 
3214 void btrfsic_unmount(struct btrfs_root *root,
3215 		     struct btrfs_fs_devices *fs_devices)
3216 {
3217 	struct list_head *elem_all;
3218 	struct list_head *tmp_all;
3219 	struct btrfsic_state *state;
3220 	struct list_head *dev_head = &fs_devices->devices;
3221 	struct btrfs_device *device;
3222 
3223 	if (!btrfsic_is_initialized)
3224 		return;
3225 
3226 	mutex_lock(&btrfsic_mutex);
3227 
3228 	state = NULL;
3229 	list_for_each_entry(device, dev_head, dev_list) {
3230 		struct btrfsic_dev_state *ds;
3231 
3232 		if (!device->bdev || !device->name)
3233 			continue;
3234 
3235 		ds = btrfsic_dev_state_hashtable_lookup(
3236 				device->bdev,
3237 				&btrfsic_dev_state_hashtable);
3238 		if (NULL != ds) {
3239 			state = ds->state;
3240 			btrfsic_dev_state_hashtable_remove(ds);
3241 			btrfsic_dev_state_free(ds);
3242 		}
3243 	}
3244 
3245 	if (NULL == state) {
3246 		printk(KERN_INFO
3247 		       "btrfsic: error, cannot find state information"
3248 		       " on umount!\n");
3249 		mutex_unlock(&btrfsic_mutex);
3250 		return;
3251 	}
3252 
3253 	/*
3254 	 * Don't care about keeping the lists' state up to date,
3255 	 * just free all memory that was allocated dynamically.
3256 	 * Free the blocks and the block_links.
3257 	 */
3258 	list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3259 		struct btrfsic_block *const b_all =
3260 		    list_entry(elem_all, struct btrfsic_block,
3261 			       all_blocks_node);
3262 		struct list_head *elem_ref_to;
3263 		struct list_head *tmp_ref_to;
3264 
3265 		list_for_each_safe(elem_ref_to, tmp_ref_to,
3266 				   &b_all->ref_to_list) {
3267 			struct btrfsic_block_link *const l =
3268 			    list_entry(elem_ref_to,
3269 				       struct btrfsic_block_link,
3270 				       node_ref_to);
3271 
3272 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3273 				btrfsic_print_rem_link(state, l);
3274 
3275 			l->ref_cnt--;
3276 			if (0 == l->ref_cnt)
3277 				btrfsic_block_link_free(l);
3278 		}
3279 
3280 		if (b_all->is_iodone || b_all->never_written)
3281 			btrfsic_block_free(b_all);
3282 		else
3283 			printk(KERN_INFO "btrfs: attempt to free %c-block"
3284 			       " @%llu (%s/%llu/%d) on umount which is"
3285 			       " not yet iodone!\n",
3286 			       btrfsic_get_block_type(state, b_all),
3287 			       b_all->logical_bytenr, b_all->dev_state->name,
3288 			       b_all->dev_bytenr, b_all->mirror_num);
3289 	}
3290 
3291 	mutex_unlock(&btrfsic_mutex);
3292 
3293 	kfree(state);
3294 }
3295