1 /* 2 * Copyright (C) STRATO AG 2011. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 /* 20 * This module can be used to catch cases when the btrfs kernel 21 * code executes write requests to the disk that bring the file 22 * system in an inconsistent state. In such a state, a power-loss 23 * or kernel panic event would cause that the data on disk is 24 * lost or at least damaged. 25 * 26 * Code is added that examines all block write requests during 27 * runtime (including writes of the super block). Three rules 28 * are verified and an error is printed on violation of the 29 * rules: 30 * 1. It is not allowed to write a disk block which is 31 * currently referenced by the super block (either directly 32 * or indirectly). 33 * 2. When a super block is written, it is verified that all 34 * referenced (directly or indirectly) blocks fulfill the 35 * following requirements: 36 * 2a. All referenced blocks have either been present when 37 * the file system was mounted, (i.e., they have been 38 * referenced by the super block) or they have been 39 * written since then and the write completion callback 40 * was called and no write error was indicated and a 41 * FLUSH request to the device where these blocks are 42 * located was received and completed. 43 * 2b. All referenced blocks need to have a generation 44 * number which is equal to the parent's number. 45 * 46 * One issue that was found using this module was that the log 47 * tree on disk became temporarily corrupted because disk blocks 48 * that had been in use for the log tree had been freed and 49 * reused too early, while being referenced by the written super 50 * block. 51 * 52 * The search term in the kernel log that can be used to filter 53 * on the existence of detected integrity issues is 54 * "btrfs: attempt". 55 * 56 * The integrity check is enabled via mount options. These 57 * mount options are only supported if the integrity check 58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY. 59 * 60 * Example #1, apply integrity checks to all metadata: 61 * mount /dev/sdb1 /mnt -o check_int 62 * 63 * Example #2, apply integrity checks to all metadata and 64 * to data extents: 65 * mount /dev/sdb1 /mnt -o check_int_data 66 * 67 * Example #3, apply integrity checks to all metadata and dump 68 * the tree that the super block references to kernel messages 69 * each time after a super block was written: 70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263 71 * 72 * If the integrity check tool is included and activated in 73 * the mount options, plenty of kernel memory is used, and 74 * plenty of additional CPU cycles are spent. Enabling this 75 * functionality is not intended for normal use. In most 76 * cases, unless you are a btrfs developer who needs to verify 77 * the integrity of (super)-block write requests, do not 78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to 79 * include and compile the integrity check tool. 80 * 81 * Expect millions of lines of information in the kernel log with an 82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the 83 * kernel config to at least 26 (which is 64MB). Usually the value is 84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be 85 * changed like this before LOG_BUF_SHIFT can be set to a high value: 86 * config LOG_BUF_SHIFT 87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" 88 * range 12 30 89 */ 90 91 #include <linux/sched.h> 92 #include <linux/slab.h> 93 #include <linux/buffer_head.h> 94 #include <linux/mutex.h> 95 #include <linux/genhd.h> 96 #include <linux/blkdev.h> 97 #include <linux/mm.h> 98 #include <linux/string.h> 99 #include "ctree.h" 100 #include "disk-io.h" 101 #include "hash.h" 102 #include "transaction.h" 103 #include "extent_io.h" 104 #include "volumes.h" 105 #include "print-tree.h" 106 #include "locking.h" 107 #include "check-integrity.h" 108 #include "rcu-string.h" 109 #include "compression.h" 110 111 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000 112 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000 113 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100 114 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051 115 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807 116 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530 117 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300 118 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters, 119 * excluding " [...]" */ 120 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1) 121 122 /* 123 * The definition of the bitmask fields for the print_mask. 124 * They are specified with the mount option check_integrity_print_mask. 125 */ 126 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001 127 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002 128 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004 129 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008 130 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010 131 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020 132 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040 133 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080 134 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100 135 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200 136 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400 137 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800 138 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000 139 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000 140 141 struct btrfsic_dev_state; 142 struct btrfsic_state; 143 144 struct btrfsic_block { 145 u32 magic_num; /* only used for debug purposes */ 146 unsigned int is_metadata:1; /* if it is meta-data, not data-data */ 147 unsigned int is_superblock:1; /* if it is one of the superblocks */ 148 unsigned int is_iodone:1; /* if is done by lower subsystem */ 149 unsigned int iodone_w_error:1; /* error was indicated to endio */ 150 unsigned int never_written:1; /* block was added because it was 151 * referenced, not because it was 152 * written */ 153 unsigned int mirror_num; /* large enough to hold 154 * BTRFS_SUPER_MIRROR_MAX */ 155 struct btrfsic_dev_state *dev_state; 156 u64 dev_bytenr; /* key, physical byte num on disk */ 157 u64 logical_bytenr; /* logical byte num on disk */ 158 u64 generation; 159 struct btrfs_disk_key disk_key; /* extra info to print in case of 160 * issues, will not always be correct */ 161 struct list_head collision_resolving_node; /* list node */ 162 struct list_head all_blocks_node; /* list node */ 163 164 /* the following two lists contain block_link items */ 165 struct list_head ref_to_list; /* list */ 166 struct list_head ref_from_list; /* list */ 167 struct btrfsic_block *next_in_same_bio; 168 void *orig_bio_bh_private; 169 union { 170 bio_end_io_t *bio; 171 bh_end_io_t *bh; 172 } orig_bio_bh_end_io; 173 int submit_bio_bh_rw; 174 u64 flush_gen; /* only valid if !never_written */ 175 }; 176 177 /* 178 * Elements of this type are allocated dynamically and required because 179 * each block object can refer to and can be ref from multiple blocks. 180 * The key to lookup them in the hashtable is the dev_bytenr of 181 * the block ref to plus the one from the block referred from. 182 * The fact that they are searchable via a hashtable and that a 183 * ref_cnt is maintained is not required for the btrfs integrity 184 * check algorithm itself, it is only used to make the output more 185 * beautiful in case that an error is detected (an error is defined 186 * as a write operation to a block while that block is still referenced). 187 */ 188 struct btrfsic_block_link { 189 u32 magic_num; /* only used for debug purposes */ 190 u32 ref_cnt; 191 struct list_head node_ref_to; /* list node */ 192 struct list_head node_ref_from; /* list node */ 193 struct list_head collision_resolving_node; /* list node */ 194 struct btrfsic_block *block_ref_to; 195 struct btrfsic_block *block_ref_from; 196 u64 parent_generation; 197 }; 198 199 struct btrfsic_dev_state { 200 u32 magic_num; /* only used for debug purposes */ 201 struct block_device *bdev; 202 struct btrfsic_state *state; 203 struct list_head collision_resolving_node; /* list node */ 204 struct btrfsic_block dummy_block_for_bio_bh_flush; 205 u64 last_flush_gen; 206 char name[BDEVNAME_SIZE]; 207 }; 208 209 struct btrfsic_block_hashtable { 210 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE]; 211 }; 212 213 struct btrfsic_block_link_hashtable { 214 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE]; 215 }; 216 217 struct btrfsic_dev_state_hashtable { 218 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE]; 219 }; 220 221 struct btrfsic_block_data_ctx { 222 u64 start; /* virtual bytenr */ 223 u64 dev_bytenr; /* physical bytenr on device */ 224 u32 len; 225 struct btrfsic_dev_state *dev; 226 char **datav; 227 struct page **pagev; 228 void *mem_to_free; 229 }; 230 231 /* This structure is used to implement recursion without occupying 232 * any stack space, refer to btrfsic_process_metablock() */ 233 struct btrfsic_stack_frame { 234 u32 magic; 235 u32 nr; 236 int error; 237 int i; 238 int limit_nesting; 239 int num_copies; 240 int mirror_num; 241 struct btrfsic_block *block; 242 struct btrfsic_block_data_ctx *block_ctx; 243 struct btrfsic_block *next_block; 244 struct btrfsic_block_data_ctx next_block_ctx; 245 struct btrfs_header *hdr; 246 struct btrfsic_stack_frame *prev; 247 }; 248 249 /* Some state per mounted filesystem */ 250 struct btrfsic_state { 251 u32 print_mask; 252 int include_extent_data; 253 int csum_size; 254 struct list_head all_blocks_list; 255 struct btrfsic_block_hashtable block_hashtable; 256 struct btrfsic_block_link_hashtable block_link_hashtable; 257 struct btrfs_fs_info *fs_info; 258 u64 max_superblock_generation; 259 struct btrfsic_block *latest_superblock; 260 u32 metablock_size; 261 u32 datablock_size; 262 }; 263 264 static void btrfsic_block_init(struct btrfsic_block *b); 265 static struct btrfsic_block *btrfsic_block_alloc(void); 266 static void btrfsic_block_free(struct btrfsic_block *b); 267 static void btrfsic_block_link_init(struct btrfsic_block_link *n); 268 static struct btrfsic_block_link *btrfsic_block_link_alloc(void); 269 static void btrfsic_block_link_free(struct btrfsic_block_link *n); 270 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds); 271 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void); 272 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds); 273 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h); 274 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 275 struct btrfsic_block_hashtable *h); 276 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b); 277 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 278 struct block_device *bdev, 279 u64 dev_bytenr, 280 struct btrfsic_block_hashtable *h); 281 static void btrfsic_block_link_hashtable_init( 282 struct btrfsic_block_link_hashtable *h); 283 static void btrfsic_block_link_hashtable_add( 284 struct btrfsic_block_link *l, 285 struct btrfsic_block_link_hashtable *h); 286 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l); 287 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 288 struct block_device *bdev_ref_to, 289 u64 dev_bytenr_ref_to, 290 struct block_device *bdev_ref_from, 291 u64 dev_bytenr_ref_from, 292 struct btrfsic_block_link_hashtable *h); 293 static void btrfsic_dev_state_hashtable_init( 294 struct btrfsic_dev_state_hashtable *h); 295 static void btrfsic_dev_state_hashtable_add( 296 struct btrfsic_dev_state *ds, 297 struct btrfsic_dev_state_hashtable *h); 298 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds); 299 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 300 struct block_device *bdev, 301 struct btrfsic_dev_state_hashtable *h); 302 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void); 303 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf); 304 static int btrfsic_process_superblock(struct btrfsic_state *state, 305 struct btrfs_fs_devices *fs_devices); 306 static int btrfsic_process_metablock(struct btrfsic_state *state, 307 struct btrfsic_block *block, 308 struct btrfsic_block_data_ctx *block_ctx, 309 int limit_nesting, int force_iodone_flag); 310 static void btrfsic_read_from_block_data( 311 struct btrfsic_block_data_ctx *block_ctx, 312 void *dst, u32 offset, size_t len); 313 static int btrfsic_create_link_to_next_block( 314 struct btrfsic_state *state, 315 struct btrfsic_block *block, 316 struct btrfsic_block_data_ctx 317 *block_ctx, u64 next_bytenr, 318 int limit_nesting, 319 struct btrfsic_block_data_ctx *next_block_ctx, 320 struct btrfsic_block **next_blockp, 321 int force_iodone_flag, 322 int *num_copiesp, int *mirror_nump, 323 struct btrfs_disk_key *disk_key, 324 u64 parent_generation); 325 static int btrfsic_handle_extent_data(struct btrfsic_state *state, 326 struct btrfsic_block *block, 327 struct btrfsic_block_data_ctx *block_ctx, 328 u32 item_offset, int force_iodone_flag); 329 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 330 struct btrfsic_block_data_ctx *block_ctx_out, 331 int mirror_num); 332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx); 333 static int btrfsic_read_block(struct btrfsic_state *state, 334 struct btrfsic_block_data_ctx *block_ctx); 335 static void btrfsic_dump_database(struct btrfsic_state *state); 336 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 337 char **datav, unsigned int num_pages); 338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 339 u64 dev_bytenr, char **mapped_datav, 340 unsigned int num_pages, 341 struct bio *bio, int *bio_is_patched, 342 struct buffer_head *bh, 343 int submit_bio_bh_rw); 344 static int btrfsic_process_written_superblock( 345 struct btrfsic_state *state, 346 struct btrfsic_block *const block, 347 struct btrfs_super_block *const super_hdr); 348 static void btrfsic_bio_end_io(struct bio *bp); 349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate); 350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state, 351 const struct btrfsic_block *block, 352 int recursion_level); 353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 354 struct btrfsic_block *const block, 355 int recursion_level); 356 static void btrfsic_print_add_link(const struct btrfsic_state *state, 357 const struct btrfsic_block_link *l); 358 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 359 const struct btrfsic_block_link *l); 360 static char btrfsic_get_block_type(const struct btrfsic_state *state, 361 const struct btrfsic_block *block); 362 static void btrfsic_dump_tree(const struct btrfsic_state *state); 363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 364 const struct btrfsic_block *block, 365 int indent_level); 366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 367 struct btrfsic_state *state, 368 struct btrfsic_block_data_ctx *next_block_ctx, 369 struct btrfsic_block *next_block, 370 struct btrfsic_block *from_block, 371 u64 parent_generation); 372 static struct btrfsic_block *btrfsic_block_lookup_or_add( 373 struct btrfsic_state *state, 374 struct btrfsic_block_data_ctx *block_ctx, 375 const char *additional_string, 376 int is_metadata, 377 int is_iodone, 378 int never_written, 379 int mirror_num, 380 int *was_created); 381 static int btrfsic_process_superblock_dev_mirror( 382 struct btrfsic_state *state, 383 struct btrfsic_dev_state *dev_state, 384 struct btrfs_device *device, 385 int superblock_mirror_num, 386 struct btrfsic_dev_state **selected_dev_state, 387 struct btrfs_super_block *selected_super); 388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 389 struct block_device *bdev); 390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 391 u64 bytenr, 392 struct btrfsic_dev_state *dev_state, 393 u64 dev_bytenr); 394 395 static struct mutex btrfsic_mutex; 396 static int btrfsic_is_initialized; 397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable; 398 399 400 static void btrfsic_block_init(struct btrfsic_block *b) 401 { 402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER; 403 b->dev_state = NULL; 404 b->dev_bytenr = 0; 405 b->logical_bytenr = 0; 406 b->generation = BTRFSIC_GENERATION_UNKNOWN; 407 b->disk_key.objectid = 0; 408 b->disk_key.type = 0; 409 b->disk_key.offset = 0; 410 b->is_metadata = 0; 411 b->is_superblock = 0; 412 b->is_iodone = 0; 413 b->iodone_w_error = 0; 414 b->never_written = 0; 415 b->mirror_num = 0; 416 b->next_in_same_bio = NULL; 417 b->orig_bio_bh_private = NULL; 418 b->orig_bio_bh_end_io.bio = NULL; 419 INIT_LIST_HEAD(&b->collision_resolving_node); 420 INIT_LIST_HEAD(&b->all_blocks_node); 421 INIT_LIST_HEAD(&b->ref_to_list); 422 INIT_LIST_HEAD(&b->ref_from_list); 423 b->submit_bio_bh_rw = 0; 424 b->flush_gen = 0; 425 } 426 427 static struct btrfsic_block *btrfsic_block_alloc(void) 428 { 429 struct btrfsic_block *b; 430 431 b = kzalloc(sizeof(*b), GFP_NOFS); 432 if (NULL != b) 433 btrfsic_block_init(b); 434 435 return b; 436 } 437 438 static void btrfsic_block_free(struct btrfsic_block *b) 439 { 440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num)); 441 kfree(b); 442 } 443 444 static void btrfsic_block_link_init(struct btrfsic_block_link *l) 445 { 446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER; 447 l->ref_cnt = 1; 448 INIT_LIST_HEAD(&l->node_ref_to); 449 INIT_LIST_HEAD(&l->node_ref_from); 450 INIT_LIST_HEAD(&l->collision_resolving_node); 451 l->block_ref_to = NULL; 452 l->block_ref_from = NULL; 453 } 454 455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void) 456 { 457 struct btrfsic_block_link *l; 458 459 l = kzalloc(sizeof(*l), GFP_NOFS); 460 if (NULL != l) 461 btrfsic_block_link_init(l); 462 463 return l; 464 } 465 466 static void btrfsic_block_link_free(struct btrfsic_block_link *l) 467 { 468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num)); 469 kfree(l); 470 } 471 472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds) 473 { 474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER; 475 ds->bdev = NULL; 476 ds->state = NULL; 477 ds->name[0] = '\0'; 478 INIT_LIST_HEAD(&ds->collision_resolving_node); 479 ds->last_flush_gen = 0; 480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush); 481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1; 482 ds->dummy_block_for_bio_bh_flush.dev_state = ds; 483 } 484 485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void) 486 { 487 struct btrfsic_dev_state *ds; 488 489 ds = kzalloc(sizeof(*ds), GFP_NOFS); 490 if (NULL != ds) 491 btrfsic_dev_state_init(ds); 492 493 return ds; 494 } 495 496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds) 497 { 498 BUG_ON(!(NULL == ds || 499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num)); 500 kfree(ds); 501 } 502 503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h) 504 { 505 int i; 506 507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++) 508 INIT_LIST_HEAD(h->table + i); 509 } 510 511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 512 struct btrfsic_block_hashtable *h) 513 { 514 const unsigned int hashval = 515 (((unsigned int)(b->dev_bytenr >> 16)) ^ 516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) & 517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 518 519 list_add(&b->collision_resolving_node, h->table + hashval); 520 } 521 522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b) 523 { 524 list_del(&b->collision_resolving_node); 525 } 526 527 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 528 struct block_device *bdev, 529 u64 dev_bytenr, 530 struct btrfsic_block_hashtable *h) 531 { 532 const unsigned int hashval = 533 (((unsigned int)(dev_bytenr >> 16)) ^ 534 ((unsigned int)((uintptr_t)bdev))) & 535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 536 struct btrfsic_block *b; 537 538 list_for_each_entry(b, h->table + hashval, collision_resolving_node) { 539 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr) 540 return b; 541 } 542 543 return NULL; 544 } 545 546 static void btrfsic_block_link_hashtable_init( 547 struct btrfsic_block_link_hashtable *h) 548 { 549 int i; 550 551 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++) 552 INIT_LIST_HEAD(h->table + i); 553 } 554 555 static void btrfsic_block_link_hashtable_add( 556 struct btrfsic_block_link *l, 557 struct btrfsic_block_link_hashtable *h) 558 { 559 const unsigned int hashval = 560 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^ 561 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^ 562 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^ 563 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev))) 564 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 565 566 BUG_ON(NULL == l->block_ref_to); 567 BUG_ON(NULL == l->block_ref_from); 568 list_add(&l->collision_resolving_node, h->table + hashval); 569 } 570 571 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l) 572 { 573 list_del(&l->collision_resolving_node); 574 } 575 576 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 577 struct block_device *bdev_ref_to, 578 u64 dev_bytenr_ref_to, 579 struct block_device *bdev_ref_from, 580 u64 dev_bytenr_ref_from, 581 struct btrfsic_block_link_hashtable *h) 582 { 583 const unsigned int hashval = 584 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^ 585 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^ 586 ((unsigned int)((uintptr_t)bdev_ref_to)) ^ 587 ((unsigned int)((uintptr_t)bdev_ref_from))) & 588 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 589 struct btrfsic_block_link *l; 590 591 list_for_each_entry(l, h->table + hashval, collision_resolving_node) { 592 BUG_ON(NULL == l->block_ref_to); 593 BUG_ON(NULL == l->block_ref_from); 594 if (l->block_ref_to->dev_state->bdev == bdev_ref_to && 595 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to && 596 l->block_ref_from->dev_state->bdev == bdev_ref_from && 597 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from) 598 return l; 599 } 600 601 return NULL; 602 } 603 604 static void btrfsic_dev_state_hashtable_init( 605 struct btrfsic_dev_state_hashtable *h) 606 { 607 int i; 608 609 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++) 610 INIT_LIST_HEAD(h->table + i); 611 } 612 613 static void btrfsic_dev_state_hashtable_add( 614 struct btrfsic_dev_state *ds, 615 struct btrfsic_dev_state_hashtable *h) 616 { 617 const unsigned int hashval = 618 (((unsigned int)((uintptr_t)ds->bdev)) & 619 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 620 621 list_add(&ds->collision_resolving_node, h->table + hashval); 622 } 623 624 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds) 625 { 626 list_del(&ds->collision_resolving_node); 627 } 628 629 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( 630 struct block_device *bdev, 631 struct btrfsic_dev_state_hashtable *h) 632 { 633 const unsigned int hashval = 634 (((unsigned int)((uintptr_t)bdev)) & 635 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 636 struct btrfsic_dev_state *ds; 637 638 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) { 639 if (ds->bdev == bdev) 640 return ds; 641 } 642 643 return NULL; 644 } 645 646 static int btrfsic_process_superblock(struct btrfsic_state *state, 647 struct btrfs_fs_devices *fs_devices) 648 { 649 struct btrfs_fs_info *fs_info = state->fs_info; 650 struct btrfs_super_block *selected_super; 651 struct list_head *dev_head = &fs_devices->devices; 652 struct btrfs_device *device; 653 struct btrfsic_dev_state *selected_dev_state = NULL; 654 int ret = 0; 655 int pass; 656 657 BUG_ON(NULL == state); 658 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS); 659 if (NULL == selected_super) { 660 pr_info("btrfsic: error, kmalloc failed!\n"); 661 return -ENOMEM; 662 } 663 664 list_for_each_entry(device, dev_head, dev_list) { 665 int i; 666 struct btrfsic_dev_state *dev_state; 667 668 if (!device->bdev || !device->name) 669 continue; 670 671 dev_state = btrfsic_dev_state_lookup(device->bdev); 672 BUG_ON(NULL == dev_state); 673 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 674 ret = btrfsic_process_superblock_dev_mirror( 675 state, dev_state, device, i, 676 &selected_dev_state, selected_super); 677 if (0 != ret && 0 == i) { 678 kfree(selected_super); 679 return ret; 680 } 681 } 682 } 683 684 if (NULL == state->latest_superblock) { 685 pr_info("btrfsic: no superblock found!\n"); 686 kfree(selected_super); 687 return -1; 688 } 689 690 state->csum_size = btrfs_super_csum_size(selected_super); 691 692 for (pass = 0; pass < 3; pass++) { 693 int num_copies; 694 int mirror_num; 695 u64 next_bytenr; 696 697 switch (pass) { 698 case 0: 699 next_bytenr = btrfs_super_root(selected_super); 700 if (state->print_mask & 701 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 702 pr_info("root@%llu\n", next_bytenr); 703 break; 704 case 1: 705 next_bytenr = btrfs_super_chunk_root(selected_super); 706 if (state->print_mask & 707 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 708 pr_info("chunk@%llu\n", next_bytenr); 709 break; 710 case 2: 711 next_bytenr = btrfs_super_log_root(selected_super); 712 if (0 == next_bytenr) 713 continue; 714 if (state->print_mask & 715 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 716 pr_info("log@%llu\n", next_bytenr); 717 break; 718 } 719 720 num_copies = btrfs_num_copies(fs_info, next_bytenr, 721 state->metablock_size); 722 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 723 pr_info("num_copies(log_bytenr=%llu) = %d\n", 724 next_bytenr, num_copies); 725 726 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 727 struct btrfsic_block *next_block; 728 struct btrfsic_block_data_ctx tmp_next_block_ctx; 729 struct btrfsic_block_link *l; 730 731 ret = btrfsic_map_block(state, next_bytenr, 732 state->metablock_size, 733 &tmp_next_block_ctx, 734 mirror_num); 735 if (ret) { 736 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n", 737 next_bytenr, mirror_num); 738 kfree(selected_super); 739 return -1; 740 } 741 742 next_block = btrfsic_block_hashtable_lookup( 743 tmp_next_block_ctx.dev->bdev, 744 tmp_next_block_ctx.dev_bytenr, 745 &state->block_hashtable); 746 BUG_ON(NULL == next_block); 747 748 l = btrfsic_block_link_hashtable_lookup( 749 tmp_next_block_ctx.dev->bdev, 750 tmp_next_block_ctx.dev_bytenr, 751 state->latest_superblock->dev_state-> 752 bdev, 753 state->latest_superblock->dev_bytenr, 754 &state->block_link_hashtable); 755 BUG_ON(NULL == l); 756 757 ret = btrfsic_read_block(state, &tmp_next_block_ctx); 758 if (ret < (int)PAGE_SIZE) { 759 pr_info("btrfsic: read @logical %llu failed!\n", 760 tmp_next_block_ctx.start); 761 btrfsic_release_block_ctx(&tmp_next_block_ctx); 762 kfree(selected_super); 763 return -1; 764 } 765 766 ret = btrfsic_process_metablock(state, 767 next_block, 768 &tmp_next_block_ctx, 769 BTRFS_MAX_LEVEL + 3, 1); 770 btrfsic_release_block_ctx(&tmp_next_block_ctx); 771 } 772 } 773 774 kfree(selected_super); 775 return ret; 776 } 777 778 static int btrfsic_process_superblock_dev_mirror( 779 struct btrfsic_state *state, 780 struct btrfsic_dev_state *dev_state, 781 struct btrfs_device *device, 782 int superblock_mirror_num, 783 struct btrfsic_dev_state **selected_dev_state, 784 struct btrfs_super_block *selected_super) 785 { 786 struct btrfs_fs_info *fs_info = state->fs_info; 787 struct btrfs_super_block *super_tmp; 788 u64 dev_bytenr; 789 struct buffer_head *bh; 790 struct btrfsic_block *superblock_tmp; 791 int pass; 792 struct block_device *const superblock_bdev = device->bdev; 793 794 /* super block bytenr is always the unmapped device bytenr */ 795 dev_bytenr = btrfs_sb_offset(superblock_mirror_num); 796 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes) 797 return -1; 798 bh = __bread(superblock_bdev, dev_bytenr / 4096, 799 BTRFS_SUPER_INFO_SIZE); 800 if (NULL == bh) 801 return -1; 802 super_tmp = (struct btrfs_super_block *) 803 (bh->b_data + (dev_bytenr & 4095)); 804 805 if (btrfs_super_bytenr(super_tmp) != dev_bytenr || 806 btrfs_super_magic(super_tmp) != BTRFS_MAGIC || 807 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) || 808 btrfs_super_nodesize(super_tmp) != state->metablock_size || 809 btrfs_super_sectorsize(super_tmp) != state->datablock_size) { 810 brelse(bh); 811 return 0; 812 } 813 814 superblock_tmp = 815 btrfsic_block_hashtable_lookup(superblock_bdev, 816 dev_bytenr, 817 &state->block_hashtable); 818 if (NULL == superblock_tmp) { 819 superblock_tmp = btrfsic_block_alloc(); 820 if (NULL == superblock_tmp) { 821 pr_info("btrfsic: error, kmalloc failed!\n"); 822 brelse(bh); 823 return -1; 824 } 825 /* for superblock, only the dev_bytenr makes sense */ 826 superblock_tmp->dev_bytenr = dev_bytenr; 827 superblock_tmp->dev_state = dev_state; 828 superblock_tmp->logical_bytenr = dev_bytenr; 829 superblock_tmp->generation = btrfs_super_generation(super_tmp); 830 superblock_tmp->is_metadata = 1; 831 superblock_tmp->is_superblock = 1; 832 superblock_tmp->is_iodone = 1; 833 superblock_tmp->never_written = 0; 834 superblock_tmp->mirror_num = 1 + superblock_mirror_num; 835 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 836 btrfs_info_in_rcu(fs_info, 837 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)", 838 superblock_bdev, 839 rcu_str_deref(device->name), dev_bytenr, 840 dev_state->name, dev_bytenr, 841 superblock_mirror_num); 842 list_add(&superblock_tmp->all_blocks_node, 843 &state->all_blocks_list); 844 btrfsic_block_hashtable_add(superblock_tmp, 845 &state->block_hashtable); 846 } 847 848 /* select the one with the highest generation field */ 849 if (btrfs_super_generation(super_tmp) > 850 state->max_superblock_generation || 851 0 == state->max_superblock_generation) { 852 memcpy(selected_super, super_tmp, sizeof(*selected_super)); 853 *selected_dev_state = dev_state; 854 state->max_superblock_generation = 855 btrfs_super_generation(super_tmp); 856 state->latest_superblock = superblock_tmp; 857 } 858 859 for (pass = 0; pass < 3; pass++) { 860 u64 next_bytenr; 861 int num_copies; 862 int mirror_num; 863 const char *additional_string = NULL; 864 struct btrfs_disk_key tmp_disk_key; 865 866 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; 867 tmp_disk_key.offset = 0; 868 switch (pass) { 869 case 0: 870 btrfs_set_disk_key_objectid(&tmp_disk_key, 871 BTRFS_ROOT_TREE_OBJECTID); 872 additional_string = "initial root "; 873 next_bytenr = btrfs_super_root(super_tmp); 874 break; 875 case 1: 876 btrfs_set_disk_key_objectid(&tmp_disk_key, 877 BTRFS_CHUNK_TREE_OBJECTID); 878 additional_string = "initial chunk "; 879 next_bytenr = btrfs_super_chunk_root(super_tmp); 880 break; 881 case 2: 882 btrfs_set_disk_key_objectid(&tmp_disk_key, 883 BTRFS_TREE_LOG_OBJECTID); 884 additional_string = "initial log "; 885 next_bytenr = btrfs_super_log_root(super_tmp); 886 if (0 == next_bytenr) 887 continue; 888 break; 889 } 890 891 num_copies = btrfs_num_copies(fs_info, next_bytenr, 892 state->metablock_size); 893 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 894 pr_info("num_copies(log_bytenr=%llu) = %d\n", 895 next_bytenr, num_copies); 896 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 897 struct btrfsic_block *next_block; 898 struct btrfsic_block_data_ctx tmp_next_block_ctx; 899 struct btrfsic_block_link *l; 900 901 if (btrfsic_map_block(state, next_bytenr, 902 state->metablock_size, 903 &tmp_next_block_ctx, 904 mirror_num)) { 905 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n", 906 next_bytenr, mirror_num); 907 brelse(bh); 908 return -1; 909 } 910 911 next_block = btrfsic_block_lookup_or_add( 912 state, &tmp_next_block_ctx, 913 additional_string, 1, 1, 0, 914 mirror_num, NULL); 915 if (NULL == next_block) { 916 btrfsic_release_block_ctx(&tmp_next_block_ctx); 917 brelse(bh); 918 return -1; 919 } 920 921 next_block->disk_key = tmp_disk_key; 922 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 923 l = btrfsic_block_link_lookup_or_add( 924 state, &tmp_next_block_ctx, 925 next_block, superblock_tmp, 926 BTRFSIC_GENERATION_UNKNOWN); 927 btrfsic_release_block_ctx(&tmp_next_block_ctx); 928 if (NULL == l) { 929 brelse(bh); 930 return -1; 931 } 932 } 933 } 934 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES) 935 btrfsic_dump_tree_sub(state, superblock_tmp, 0); 936 937 brelse(bh); 938 return 0; 939 } 940 941 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void) 942 { 943 struct btrfsic_stack_frame *sf; 944 945 sf = kzalloc(sizeof(*sf), GFP_NOFS); 946 if (NULL == sf) 947 pr_info("btrfsic: alloc memory failed!\n"); 948 else 949 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER; 950 return sf; 951 } 952 953 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf) 954 { 955 BUG_ON(!(NULL == sf || 956 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic)); 957 kfree(sf); 958 } 959 960 static int btrfsic_process_metablock( 961 struct btrfsic_state *state, 962 struct btrfsic_block *const first_block, 963 struct btrfsic_block_data_ctx *const first_block_ctx, 964 int first_limit_nesting, int force_iodone_flag) 965 { 966 struct btrfsic_stack_frame initial_stack_frame = { 0 }; 967 struct btrfsic_stack_frame *sf; 968 struct btrfsic_stack_frame *next_stack; 969 struct btrfs_header *const first_hdr = 970 (struct btrfs_header *)first_block_ctx->datav[0]; 971 972 BUG_ON(!first_hdr); 973 sf = &initial_stack_frame; 974 sf->error = 0; 975 sf->i = -1; 976 sf->limit_nesting = first_limit_nesting; 977 sf->block = first_block; 978 sf->block_ctx = first_block_ctx; 979 sf->next_block = NULL; 980 sf->hdr = first_hdr; 981 sf->prev = NULL; 982 983 continue_with_new_stack_frame: 984 sf->block->generation = le64_to_cpu(sf->hdr->generation); 985 if (0 == sf->hdr->level) { 986 struct btrfs_leaf *const leafhdr = 987 (struct btrfs_leaf *)sf->hdr; 988 989 if (-1 == sf->i) { 990 sf->nr = btrfs_stack_header_nritems(&leafhdr->header); 991 992 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 993 pr_info("leaf %llu items %d generation %llu owner %llu\n", 994 sf->block_ctx->start, sf->nr, 995 btrfs_stack_header_generation( 996 &leafhdr->header), 997 btrfs_stack_header_owner( 998 &leafhdr->header)); 999 } 1000 1001 continue_with_current_leaf_stack_frame: 1002 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1003 sf->i++; 1004 sf->num_copies = 0; 1005 } 1006 1007 if (sf->i < sf->nr) { 1008 struct btrfs_item disk_item; 1009 u32 disk_item_offset = 1010 (uintptr_t)(leafhdr->items + sf->i) - 1011 (uintptr_t)leafhdr; 1012 struct btrfs_disk_key *disk_key; 1013 u8 type; 1014 u32 item_offset; 1015 u32 item_size; 1016 1017 if (disk_item_offset + sizeof(struct btrfs_item) > 1018 sf->block_ctx->len) { 1019 leaf_item_out_of_bounce_error: 1020 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n", 1021 sf->block_ctx->start, 1022 sf->block_ctx->dev->name); 1023 goto one_stack_frame_backwards; 1024 } 1025 btrfsic_read_from_block_data(sf->block_ctx, 1026 &disk_item, 1027 disk_item_offset, 1028 sizeof(struct btrfs_item)); 1029 item_offset = btrfs_stack_item_offset(&disk_item); 1030 item_size = btrfs_stack_item_size(&disk_item); 1031 disk_key = &disk_item.key; 1032 type = btrfs_disk_key_type(disk_key); 1033 1034 if (BTRFS_ROOT_ITEM_KEY == type) { 1035 struct btrfs_root_item root_item; 1036 u32 root_item_offset; 1037 u64 next_bytenr; 1038 1039 root_item_offset = item_offset + 1040 offsetof(struct btrfs_leaf, items); 1041 if (root_item_offset + item_size > 1042 sf->block_ctx->len) 1043 goto leaf_item_out_of_bounce_error; 1044 btrfsic_read_from_block_data( 1045 sf->block_ctx, &root_item, 1046 root_item_offset, 1047 item_size); 1048 next_bytenr = btrfs_root_bytenr(&root_item); 1049 1050 sf->error = 1051 btrfsic_create_link_to_next_block( 1052 state, 1053 sf->block, 1054 sf->block_ctx, 1055 next_bytenr, 1056 sf->limit_nesting, 1057 &sf->next_block_ctx, 1058 &sf->next_block, 1059 force_iodone_flag, 1060 &sf->num_copies, 1061 &sf->mirror_num, 1062 disk_key, 1063 btrfs_root_generation( 1064 &root_item)); 1065 if (sf->error) 1066 goto one_stack_frame_backwards; 1067 1068 if (NULL != sf->next_block) { 1069 struct btrfs_header *const next_hdr = 1070 (struct btrfs_header *) 1071 sf->next_block_ctx.datav[0]; 1072 1073 next_stack = 1074 btrfsic_stack_frame_alloc(); 1075 if (NULL == next_stack) { 1076 sf->error = -1; 1077 btrfsic_release_block_ctx( 1078 &sf-> 1079 next_block_ctx); 1080 goto one_stack_frame_backwards; 1081 } 1082 1083 next_stack->i = -1; 1084 next_stack->block = sf->next_block; 1085 next_stack->block_ctx = 1086 &sf->next_block_ctx; 1087 next_stack->next_block = NULL; 1088 next_stack->hdr = next_hdr; 1089 next_stack->limit_nesting = 1090 sf->limit_nesting - 1; 1091 next_stack->prev = sf; 1092 sf = next_stack; 1093 goto continue_with_new_stack_frame; 1094 } 1095 } else if (BTRFS_EXTENT_DATA_KEY == type && 1096 state->include_extent_data) { 1097 sf->error = btrfsic_handle_extent_data( 1098 state, 1099 sf->block, 1100 sf->block_ctx, 1101 item_offset, 1102 force_iodone_flag); 1103 if (sf->error) 1104 goto one_stack_frame_backwards; 1105 } 1106 1107 goto continue_with_current_leaf_stack_frame; 1108 } 1109 } else { 1110 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr; 1111 1112 if (-1 == sf->i) { 1113 sf->nr = btrfs_stack_header_nritems(&nodehdr->header); 1114 1115 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1116 pr_info("node %llu level %d items %d generation %llu owner %llu\n", 1117 sf->block_ctx->start, 1118 nodehdr->header.level, sf->nr, 1119 btrfs_stack_header_generation( 1120 &nodehdr->header), 1121 btrfs_stack_header_owner( 1122 &nodehdr->header)); 1123 } 1124 1125 continue_with_current_node_stack_frame: 1126 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1127 sf->i++; 1128 sf->num_copies = 0; 1129 } 1130 1131 if (sf->i < sf->nr) { 1132 struct btrfs_key_ptr key_ptr; 1133 u32 key_ptr_offset; 1134 u64 next_bytenr; 1135 1136 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) - 1137 (uintptr_t)nodehdr; 1138 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) > 1139 sf->block_ctx->len) { 1140 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n", 1141 sf->block_ctx->start, 1142 sf->block_ctx->dev->name); 1143 goto one_stack_frame_backwards; 1144 } 1145 btrfsic_read_from_block_data( 1146 sf->block_ctx, &key_ptr, key_ptr_offset, 1147 sizeof(struct btrfs_key_ptr)); 1148 next_bytenr = btrfs_stack_key_blockptr(&key_ptr); 1149 1150 sf->error = btrfsic_create_link_to_next_block( 1151 state, 1152 sf->block, 1153 sf->block_ctx, 1154 next_bytenr, 1155 sf->limit_nesting, 1156 &sf->next_block_ctx, 1157 &sf->next_block, 1158 force_iodone_flag, 1159 &sf->num_copies, 1160 &sf->mirror_num, 1161 &key_ptr.key, 1162 btrfs_stack_key_generation(&key_ptr)); 1163 if (sf->error) 1164 goto one_stack_frame_backwards; 1165 1166 if (NULL != sf->next_block) { 1167 struct btrfs_header *const next_hdr = 1168 (struct btrfs_header *) 1169 sf->next_block_ctx.datav[0]; 1170 1171 next_stack = btrfsic_stack_frame_alloc(); 1172 if (NULL == next_stack) { 1173 sf->error = -1; 1174 goto one_stack_frame_backwards; 1175 } 1176 1177 next_stack->i = -1; 1178 next_stack->block = sf->next_block; 1179 next_stack->block_ctx = &sf->next_block_ctx; 1180 next_stack->next_block = NULL; 1181 next_stack->hdr = next_hdr; 1182 next_stack->limit_nesting = 1183 sf->limit_nesting - 1; 1184 next_stack->prev = sf; 1185 sf = next_stack; 1186 goto continue_with_new_stack_frame; 1187 } 1188 1189 goto continue_with_current_node_stack_frame; 1190 } 1191 } 1192 1193 one_stack_frame_backwards: 1194 if (NULL != sf->prev) { 1195 struct btrfsic_stack_frame *const prev = sf->prev; 1196 1197 /* the one for the initial block is freed in the caller */ 1198 btrfsic_release_block_ctx(sf->block_ctx); 1199 1200 if (sf->error) { 1201 prev->error = sf->error; 1202 btrfsic_stack_frame_free(sf); 1203 sf = prev; 1204 goto one_stack_frame_backwards; 1205 } 1206 1207 btrfsic_stack_frame_free(sf); 1208 sf = prev; 1209 goto continue_with_new_stack_frame; 1210 } else { 1211 BUG_ON(&initial_stack_frame != sf); 1212 } 1213 1214 return sf->error; 1215 } 1216 1217 static void btrfsic_read_from_block_data( 1218 struct btrfsic_block_data_ctx *block_ctx, 1219 void *dstv, u32 offset, size_t len) 1220 { 1221 size_t cur; 1222 size_t offset_in_page; 1223 char *kaddr; 1224 char *dst = (char *)dstv; 1225 size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1); 1226 unsigned long i = (start_offset + offset) >> PAGE_SHIFT; 1227 1228 WARN_ON(offset + len > block_ctx->len); 1229 offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1); 1230 1231 while (len > 0) { 1232 cur = min(len, ((size_t)PAGE_SIZE - offset_in_page)); 1233 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE)); 1234 kaddr = block_ctx->datav[i]; 1235 memcpy(dst, kaddr + offset_in_page, cur); 1236 1237 dst += cur; 1238 len -= cur; 1239 offset_in_page = 0; 1240 i++; 1241 } 1242 } 1243 1244 static int btrfsic_create_link_to_next_block( 1245 struct btrfsic_state *state, 1246 struct btrfsic_block *block, 1247 struct btrfsic_block_data_ctx *block_ctx, 1248 u64 next_bytenr, 1249 int limit_nesting, 1250 struct btrfsic_block_data_ctx *next_block_ctx, 1251 struct btrfsic_block **next_blockp, 1252 int force_iodone_flag, 1253 int *num_copiesp, int *mirror_nump, 1254 struct btrfs_disk_key *disk_key, 1255 u64 parent_generation) 1256 { 1257 struct btrfs_fs_info *fs_info = state->fs_info; 1258 struct btrfsic_block *next_block = NULL; 1259 int ret; 1260 struct btrfsic_block_link *l; 1261 int did_alloc_block_link; 1262 int block_was_created; 1263 1264 *next_blockp = NULL; 1265 if (0 == *num_copiesp) { 1266 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr, 1267 state->metablock_size); 1268 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1269 pr_info("num_copies(log_bytenr=%llu) = %d\n", 1270 next_bytenr, *num_copiesp); 1271 *mirror_nump = 1; 1272 } 1273 1274 if (*mirror_nump > *num_copiesp) 1275 return 0; 1276 1277 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1278 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n", 1279 *mirror_nump); 1280 ret = btrfsic_map_block(state, next_bytenr, 1281 state->metablock_size, 1282 next_block_ctx, *mirror_nump); 1283 if (ret) { 1284 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1285 next_bytenr, *mirror_nump); 1286 btrfsic_release_block_ctx(next_block_ctx); 1287 *next_blockp = NULL; 1288 return -1; 1289 } 1290 1291 next_block = btrfsic_block_lookup_or_add(state, 1292 next_block_ctx, "referenced ", 1293 1, force_iodone_flag, 1294 !force_iodone_flag, 1295 *mirror_nump, 1296 &block_was_created); 1297 if (NULL == next_block) { 1298 btrfsic_release_block_ctx(next_block_ctx); 1299 *next_blockp = NULL; 1300 return -1; 1301 } 1302 if (block_was_created) { 1303 l = NULL; 1304 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 1305 } else { 1306 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1307 if (next_block->logical_bytenr != next_bytenr && 1308 !(!next_block->is_metadata && 1309 0 == next_block->logical_bytenr)) 1310 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1311 next_bytenr, next_block_ctx->dev->name, 1312 next_block_ctx->dev_bytenr, *mirror_nump, 1313 btrfsic_get_block_type(state, 1314 next_block), 1315 next_block->logical_bytenr); 1316 else 1317 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1318 next_bytenr, next_block_ctx->dev->name, 1319 next_block_ctx->dev_bytenr, *mirror_nump, 1320 btrfsic_get_block_type(state, 1321 next_block)); 1322 } 1323 next_block->logical_bytenr = next_bytenr; 1324 1325 next_block->mirror_num = *mirror_nump; 1326 l = btrfsic_block_link_hashtable_lookup( 1327 next_block_ctx->dev->bdev, 1328 next_block_ctx->dev_bytenr, 1329 block_ctx->dev->bdev, 1330 block_ctx->dev_bytenr, 1331 &state->block_link_hashtable); 1332 } 1333 1334 next_block->disk_key = *disk_key; 1335 if (NULL == l) { 1336 l = btrfsic_block_link_alloc(); 1337 if (NULL == l) { 1338 pr_info("btrfsic: error, kmalloc failed!\n"); 1339 btrfsic_release_block_ctx(next_block_ctx); 1340 *next_blockp = NULL; 1341 return -1; 1342 } 1343 1344 did_alloc_block_link = 1; 1345 l->block_ref_to = next_block; 1346 l->block_ref_from = block; 1347 l->ref_cnt = 1; 1348 l->parent_generation = parent_generation; 1349 1350 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1351 btrfsic_print_add_link(state, l); 1352 1353 list_add(&l->node_ref_to, &block->ref_to_list); 1354 list_add(&l->node_ref_from, &next_block->ref_from_list); 1355 1356 btrfsic_block_link_hashtable_add(l, 1357 &state->block_link_hashtable); 1358 } else { 1359 did_alloc_block_link = 0; 1360 if (0 == limit_nesting) { 1361 l->ref_cnt++; 1362 l->parent_generation = parent_generation; 1363 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1364 btrfsic_print_add_link(state, l); 1365 } 1366 } 1367 1368 if (limit_nesting > 0 && did_alloc_block_link) { 1369 ret = btrfsic_read_block(state, next_block_ctx); 1370 if (ret < (int)next_block_ctx->len) { 1371 pr_info("btrfsic: read block @logical %llu failed!\n", 1372 next_bytenr); 1373 btrfsic_release_block_ctx(next_block_ctx); 1374 *next_blockp = NULL; 1375 return -1; 1376 } 1377 1378 *next_blockp = next_block; 1379 } else { 1380 *next_blockp = NULL; 1381 } 1382 (*mirror_nump)++; 1383 1384 return 0; 1385 } 1386 1387 static int btrfsic_handle_extent_data( 1388 struct btrfsic_state *state, 1389 struct btrfsic_block *block, 1390 struct btrfsic_block_data_ctx *block_ctx, 1391 u32 item_offset, int force_iodone_flag) 1392 { 1393 struct btrfs_fs_info *fs_info = state->fs_info; 1394 struct btrfs_file_extent_item file_extent_item; 1395 u64 file_extent_item_offset; 1396 u64 next_bytenr; 1397 u64 num_bytes; 1398 u64 generation; 1399 struct btrfsic_block_link *l; 1400 int ret; 1401 1402 file_extent_item_offset = offsetof(struct btrfs_leaf, items) + 1403 item_offset; 1404 if (file_extent_item_offset + 1405 offsetof(struct btrfs_file_extent_item, disk_num_bytes) > 1406 block_ctx->len) { 1407 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n", 1408 block_ctx->start, block_ctx->dev->name); 1409 return -1; 1410 } 1411 1412 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1413 file_extent_item_offset, 1414 offsetof(struct btrfs_file_extent_item, disk_num_bytes)); 1415 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type || 1416 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) { 1417 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1418 pr_info("extent_data: type %u, disk_bytenr = %llu\n", 1419 file_extent_item.type, 1420 btrfs_stack_file_extent_disk_bytenr( 1421 &file_extent_item)); 1422 return 0; 1423 } 1424 1425 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) > 1426 block_ctx->len) { 1427 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n", 1428 block_ctx->start, block_ctx->dev->name); 1429 return -1; 1430 } 1431 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1432 file_extent_item_offset, 1433 sizeof(struct btrfs_file_extent_item)); 1434 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item); 1435 if (btrfs_stack_file_extent_compression(&file_extent_item) == 1436 BTRFS_COMPRESS_NONE) { 1437 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item); 1438 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item); 1439 } else { 1440 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item); 1441 } 1442 generation = btrfs_stack_file_extent_generation(&file_extent_item); 1443 1444 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1445 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n", 1446 file_extent_item.type, 1447 btrfs_stack_file_extent_disk_bytenr(&file_extent_item), 1448 btrfs_stack_file_extent_offset(&file_extent_item), 1449 num_bytes); 1450 while (num_bytes > 0) { 1451 u32 chunk_len; 1452 int num_copies; 1453 int mirror_num; 1454 1455 if (num_bytes > state->datablock_size) 1456 chunk_len = state->datablock_size; 1457 else 1458 chunk_len = num_bytes; 1459 1460 num_copies = btrfs_num_copies(fs_info, next_bytenr, 1461 state->datablock_size); 1462 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1463 pr_info("num_copies(log_bytenr=%llu) = %d\n", 1464 next_bytenr, num_copies); 1465 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 1466 struct btrfsic_block_data_ctx next_block_ctx; 1467 struct btrfsic_block *next_block; 1468 int block_was_created; 1469 1470 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1471 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n", 1472 mirror_num); 1473 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1474 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n", 1475 next_bytenr, chunk_len); 1476 ret = btrfsic_map_block(state, next_bytenr, 1477 chunk_len, &next_block_ctx, 1478 mirror_num); 1479 if (ret) { 1480 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1481 next_bytenr, mirror_num); 1482 return -1; 1483 } 1484 1485 next_block = btrfsic_block_lookup_or_add( 1486 state, 1487 &next_block_ctx, 1488 "referenced ", 1489 0, 1490 force_iodone_flag, 1491 !force_iodone_flag, 1492 mirror_num, 1493 &block_was_created); 1494 if (NULL == next_block) { 1495 pr_info("btrfsic: error, kmalloc failed!\n"); 1496 btrfsic_release_block_ctx(&next_block_ctx); 1497 return -1; 1498 } 1499 if (!block_was_created) { 1500 if ((state->print_mask & 1501 BTRFSIC_PRINT_MASK_VERBOSE) && 1502 next_block->logical_bytenr != next_bytenr && 1503 !(!next_block->is_metadata && 1504 0 == next_block->logical_bytenr)) { 1505 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n", 1506 next_bytenr, 1507 next_block_ctx.dev->name, 1508 next_block_ctx.dev_bytenr, 1509 mirror_num, 1510 next_block->logical_bytenr); 1511 } 1512 next_block->logical_bytenr = next_bytenr; 1513 next_block->mirror_num = mirror_num; 1514 } 1515 1516 l = btrfsic_block_link_lookup_or_add(state, 1517 &next_block_ctx, 1518 next_block, block, 1519 generation); 1520 btrfsic_release_block_ctx(&next_block_ctx); 1521 if (NULL == l) 1522 return -1; 1523 } 1524 1525 next_bytenr += chunk_len; 1526 num_bytes -= chunk_len; 1527 } 1528 1529 return 0; 1530 } 1531 1532 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 1533 struct btrfsic_block_data_ctx *block_ctx_out, 1534 int mirror_num) 1535 { 1536 struct btrfs_fs_info *fs_info = state->fs_info; 1537 int ret; 1538 u64 length; 1539 struct btrfs_bio *multi = NULL; 1540 struct btrfs_device *device; 1541 1542 length = len; 1543 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 1544 bytenr, &length, &multi, mirror_num); 1545 1546 if (ret) { 1547 block_ctx_out->start = 0; 1548 block_ctx_out->dev_bytenr = 0; 1549 block_ctx_out->len = 0; 1550 block_ctx_out->dev = NULL; 1551 block_ctx_out->datav = NULL; 1552 block_ctx_out->pagev = NULL; 1553 block_ctx_out->mem_to_free = NULL; 1554 1555 return ret; 1556 } 1557 1558 device = multi->stripes[0].dev; 1559 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev); 1560 block_ctx_out->dev_bytenr = multi->stripes[0].physical; 1561 block_ctx_out->start = bytenr; 1562 block_ctx_out->len = len; 1563 block_ctx_out->datav = NULL; 1564 block_ctx_out->pagev = NULL; 1565 block_ctx_out->mem_to_free = NULL; 1566 1567 kfree(multi); 1568 if (NULL == block_ctx_out->dev) { 1569 ret = -ENXIO; 1570 pr_info("btrfsic: error, cannot lookup dev (#1)!\n"); 1571 } 1572 1573 return ret; 1574 } 1575 1576 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx) 1577 { 1578 if (block_ctx->mem_to_free) { 1579 unsigned int num_pages; 1580 1581 BUG_ON(!block_ctx->datav); 1582 BUG_ON(!block_ctx->pagev); 1583 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >> 1584 PAGE_SHIFT; 1585 while (num_pages > 0) { 1586 num_pages--; 1587 if (block_ctx->datav[num_pages]) { 1588 kunmap(block_ctx->pagev[num_pages]); 1589 block_ctx->datav[num_pages] = NULL; 1590 } 1591 if (block_ctx->pagev[num_pages]) { 1592 __free_page(block_ctx->pagev[num_pages]); 1593 block_ctx->pagev[num_pages] = NULL; 1594 } 1595 } 1596 1597 kfree(block_ctx->mem_to_free); 1598 block_ctx->mem_to_free = NULL; 1599 block_ctx->pagev = NULL; 1600 block_ctx->datav = NULL; 1601 } 1602 } 1603 1604 static int btrfsic_read_block(struct btrfsic_state *state, 1605 struct btrfsic_block_data_ctx *block_ctx) 1606 { 1607 unsigned int num_pages; 1608 unsigned int i; 1609 u64 dev_bytenr; 1610 int ret; 1611 1612 BUG_ON(block_ctx->datav); 1613 BUG_ON(block_ctx->pagev); 1614 BUG_ON(block_ctx->mem_to_free); 1615 if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) { 1616 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n", 1617 block_ctx->dev_bytenr); 1618 return -1; 1619 } 1620 1621 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >> 1622 PAGE_SHIFT; 1623 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) + 1624 sizeof(*block_ctx->pagev)) * 1625 num_pages, GFP_NOFS); 1626 if (!block_ctx->mem_to_free) 1627 return -ENOMEM; 1628 block_ctx->datav = block_ctx->mem_to_free; 1629 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages); 1630 for (i = 0; i < num_pages; i++) { 1631 block_ctx->pagev[i] = alloc_page(GFP_NOFS); 1632 if (!block_ctx->pagev[i]) 1633 return -1; 1634 } 1635 1636 dev_bytenr = block_ctx->dev_bytenr; 1637 for (i = 0; i < num_pages;) { 1638 struct bio *bio; 1639 unsigned int j; 1640 1641 bio = btrfs_io_bio_alloc(num_pages - i); 1642 bio->bi_bdev = block_ctx->dev->bdev; 1643 bio->bi_iter.bi_sector = dev_bytenr >> 9; 1644 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1645 1646 for (j = i; j < num_pages; j++) { 1647 ret = bio_add_page(bio, block_ctx->pagev[j], 1648 PAGE_SIZE, 0); 1649 if (PAGE_SIZE != ret) 1650 break; 1651 } 1652 if (j == i) { 1653 pr_info("btrfsic: error, failed to add a single page!\n"); 1654 return -1; 1655 } 1656 if (submit_bio_wait(bio)) { 1657 pr_info("btrfsic: read error at logical %llu dev %s!\n", 1658 block_ctx->start, block_ctx->dev->name); 1659 bio_put(bio); 1660 return -1; 1661 } 1662 bio_put(bio); 1663 dev_bytenr += (j - i) * PAGE_SIZE; 1664 i = j; 1665 } 1666 for (i = 0; i < num_pages; i++) 1667 block_ctx->datav[i] = kmap(block_ctx->pagev[i]); 1668 1669 return block_ctx->len; 1670 } 1671 1672 static void btrfsic_dump_database(struct btrfsic_state *state) 1673 { 1674 const struct btrfsic_block *b_all; 1675 1676 BUG_ON(NULL == state); 1677 1678 pr_info("all_blocks_list:\n"); 1679 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) { 1680 const struct btrfsic_block_link *l; 1681 1682 pr_info("%c-block @%llu (%s/%llu/%d)\n", 1683 btrfsic_get_block_type(state, b_all), 1684 b_all->logical_bytenr, b_all->dev_state->name, 1685 b_all->dev_bytenr, b_all->mirror_num); 1686 1687 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) { 1688 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n", 1689 btrfsic_get_block_type(state, b_all), 1690 b_all->logical_bytenr, b_all->dev_state->name, 1691 b_all->dev_bytenr, b_all->mirror_num, 1692 l->ref_cnt, 1693 btrfsic_get_block_type(state, l->block_ref_to), 1694 l->block_ref_to->logical_bytenr, 1695 l->block_ref_to->dev_state->name, 1696 l->block_ref_to->dev_bytenr, 1697 l->block_ref_to->mirror_num); 1698 } 1699 1700 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) { 1701 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n", 1702 btrfsic_get_block_type(state, b_all), 1703 b_all->logical_bytenr, b_all->dev_state->name, 1704 b_all->dev_bytenr, b_all->mirror_num, 1705 l->ref_cnt, 1706 btrfsic_get_block_type(state, l->block_ref_from), 1707 l->block_ref_from->logical_bytenr, 1708 l->block_ref_from->dev_state->name, 1709 l->block_ref_from->dev_bytenr, 1710 l->block_ref_from->mirror_num); 1711 } 1712 1713 pr_info("\n"); 1714 } 1715 } 1716 1717 /* 1718 * Test whether the disk block contains a tree block (leaf or node) 1719 * (note that this test fails for the super block) 1720 */ 1721 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 1722 char **datav, unsigned int num_pages) 1723 { 1724 struct btrfs_fs_info *fs_info = state->fs_info; 1725 struct btrfs_header *h; 1726 u8 csum[BTRFS_CSUM_SIZE]; 1727 u32 crc = ~(u32)0; 1728 unsigned int i; 1729 1730 if (num_pages * PAGE_SIZE < state->metablock_size) 1731 return 1; /* not metadata */ 1732 num_pages = state->metablock_size >> PAGE_SHIFT; 1733 h = (struct btrfs_header *)datav[0]; 1734 1735 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1736 return 1; 1737 1738 for (i = 0; i < num_pages; i++) { 1739 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE); 1740 size_t sublen = i ? PAGE_SIZE : 1741 (PAGE_SIZE - BTRFS_CSUM_SIZE); 1742 1743 crc = btrfs_crc32c(crc, data, sublen); 1744 } 1745 btrfs_csum_final(crc, csum); 1746 if (memcmp(csum, h->csum, state->csum_size)) 1747 return 1; 1748 1749 return 0; /* is metadata */ 1750 } 1751 1752 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 1753 u64 dev_bytenr, char **mapped_datav, 1754 unsigned int num_pages, 1755 struct bio *bio, int *bio_is_patched, 1756 struct buffer_head *bh, 1757 int submit_bio_bh_rw) 1758 { 1759 int is_metadata; 1760 struct btrfsic_block *block; 1761 struct btrfsic_block_data_ctx block_ctx; 1762 int ret; 1763 struct btrfsic_state *state = dev_state->state; 1764 struct block_device *bdev = dev_state->bdev; 1765 unsigned int processed_len; 1766 1767 if (NULL != bio_is_patched) 1768 *bio_is_patched = 0; 1769 1770 again: 1771 if (num_pages == 0) 1772 return; 1773 1774 processed_len = 0; 1775 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav, 1776 num_pages)); 1777 1778 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr, 1779 &state->block_hashtable); 1780 if (NULL != block) { 1781 u64 bytenr = 0; 1782 struct btrfsic_block_link *l, *tmp; 1783 1784 if (block->is_superblock) { 1785 bytenr = btrfs_super_bytenr((struct btrfs_super_block *) 1786 mapped_datav[0]); 1787 if (num_pages * PAGE_SIZE < 1788 BTRFS_SUPER_INFO_SIZE) { 1789 pr_info("btrfsic: cannot work with too short bios!\n"); 1790 return; 1791 } 1792 is_metadata = 1; 1793 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1)); 1794 processed_len = BTRFS_SUPER_INFO_SIZE; 1795 if (state->print_mask & 1796 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) { 1797 pr_info("[before new superblock is written]:\n"); 1798 btrfsic_dump_tree_sub(state, block, 0); 1799 } 1800 } 1801 if (is_metadata) { 1802 if (!block->is_superblock) { 1803 if (num_pages * PAGE_SIZE < 1804 state->metablock_size) { 1805 pr_info("btrfsic: cannot work with too short bios!\n"); 1806 return; 1807 } 1808 processed_len = state->metablock_size; 1809 bytenr = btrfs_stack_header_bytenr( 1810 (struct btrfs_header *) 1811 mapped_datav[0]); 1812 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, 1813 dev_state, 1814 dev_bytenr); 1815 } 1816 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1817 if (block->logical_bytenr != bytenr && 1818 !(!block->is_metadata && 1819 block->logical_bytenr == 0)) 1820 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1821 bytenr, dev_state->name, 1822 dev_bytenr, 1823 block->mirror_num, 1824 btrfsic_get_block_type(state, 1825 block), 1826 block->logical_bytenr); 1827 else 1828 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1829 bytenr, dev_state->name, 1830 dev_bytenr, block->mirror_num, 1831 btrfsic_get_block_type(state, 1832 block)); 1833 } 1834 block->logical_bytenr = bytenr; 1835 } else { 1836 if (num_pages * PAGE_SIZE < 1837 state->datablock_size) { 1838 pr_info("btrfsic: cannot work with too short bios!\n"); 1839 return; 1840 } 1841 processed_len = state->datablock_size; 1842 bytenr = block->logical_bytenr; 1843 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1844 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1845 bytenr, dev_state->name, dev_bytenr, 1846 block->mirror_num, 1847 btrfsic_get_block_type(state, block)); 1848 } 1849 1850 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1851 pr_info("ref_to_list: %cE, ref_from_list: %cE\n", 1852 list_empty(&block->ref_to_list) ? ' ' : '!', 1853 list_empty(&block->ref_from_list) ? ' ' : '!'); 1854 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) { 1855 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n", 1856 btrfsic_get_block_type(state, block), bytenr, 1857 dev_state->name, dev_bytenr, block->mirror_num, 1858 block->generation, 1859 btrfs_disk_key_objectid(&block->disk_key), 1860 block->disk_key.type, 1861 btrfs_disk_key_offset(&block->disk_key), 1862 btrfs_stack_header_generation( 1863 (struct btrfs_header *) mapped_datav[0]), 1864 state->max_superblock_generation); 1865 btrfsic_dump_tree(state); 1866 } 1867 1868 if (!block->is_iodone && !block->never_written) { 1869 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n", 1870 btrfsic_get_block_type(state, block), bytenr, 1871 dev_state->name, dev_bytenr, block->mirror_num, 1872 block->generation, 1873 btrfs_stack_header_generation( 1874 (struct btrfs_header *) 1875 mapped_datav[0])); 1876 /* it would not be safe to go on */ 1877 btrfsic_dump_tree(state); 1878 goto continue_loop; 1879 } 1880 1881 /* 1882 * Clear all references of this block. Do not free 1883 * the block itself even if is not referenced anymore 1884 * because it still carries valuable information 1885 * like whether it was ever written and IO completed. 1886 */ 1887 list_for_each_entry_safe(l, tmp, &block->ref_to_list, 1888 node_ref_to) { 1889 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1890 btrfsic_print_rem_link(state, l); 1891 l->ref_cnt--; 1892 if (0 == l->ref_cnt) { 1893 list_del(&l->node_ref_to); 1894 list_del(&l->node_ref_from); 1895 btrfsic_block_link_hashtable_remove(l); 1896 btrfsic_block_link_free(l); 1897 } 1898 } 1899 1900 block_ctx.dev = dev_state; 1901 block_ctx.dev_bytenr = dev_bytenr; 1902 block_ctx.start = bytenr; 1903 block_ctx.len = processed_len; 1904 block_ctx.pagev = NULL; 1905 block_ctx.mem_to_free = NULL; 1906 block_ctx.datav = mapped_datav; 1907 1908 if (is_metadata || state->include_extent_data) { 1909 block->never_written = 0; 1910 block->iodone_w_error = 0; 1911 if (NULL != bio) { 1912 block->is_iodone = 0; 1913 BUG_ON(NULL == bio_is_patched); 1914 if (!*bio_is_patched) { 1915 block->orig_bio_bh_private = 1916 bio->bi_private; 1917 block->orig_bio_bh_end_io.bio = 1918 bio->bi_end_io; 1919 block->next_in_same_bio = NULL; 1920 bio->bi_private = block; 1921 bio->bi_end_io = btrfsic_bio_end_io; 1922 *bio_is_patched = 1; 1923 } else { 1924 struct btrfsic_block *chained_block = 1925 (struct btrfsic_block *) 1926 bio->bi_private; 1927 1928 BUG_ON(NULL == chained_block); 1929 block->orig_bio_bh_private = 1930 chained_block->orig_bio_bh_private; 1931 block->orig_bio_bh_end_io.bio = 1932 chained_block->orig_bio_bh_end_io. 1933 bio; 1934 block->next_in_same_bio = chained_block; 1935 bio->bi_private = block; 1936 } 1937 } else if (NULL != bh) { 1938 block->is_iodone = 0; 1939 block->orig_bio_bh_private = bh->b_private; 1940 block->orig_bio_bh_end_io.bh = bh->b_end_io; 1941 block->next_in_same_bio = NULL; 1942 bh->b_private = block; 1943 bh->b_end_io = btrfsic_bh_end_io; 1944 } else { 1945 block->is_iodone = 1; 1946 block->orig_bio_bh_private = NULL; 1947 block->orig_bio_bh_end_io.bio = NULL; 1948 block->next_in_same_bio = NULL; 1949 } 1950 } 1951 1952 block->flush_gen = dev_state->last_flush_gen + 1; 1953 block->submit_bio_bh_rw = submit_bio_bh_rw; 1954 if (is_metadata) { 1955 block->logical_bytenr = bytenr; 1956 block->is_metadata = 1; 1957 if (block->is_superblock) { 1958 BUG_ON(PAGE_SIZE != 1959 BTRFS_SUPER_INFO_SIZE); 1960 ret = btrfsic_process_written_superblock( 1961 state, 1962 block, 1963 (struct btrfs_super_block *) 1964 mapped_datav[0]); 1965 if (state->print_mask & 1966 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) { 1967 pr_info("[after new superblock is written]:\n"); 1968 btrfsic_dump_tree_sub(state, block, 0); 1969 } 1970 } else { 1971 block->mirror_num = 0; /* unknown */ 1972 ret = btrfsic_process_metablock( 1973 state, 1974 block, 1975 &block_ctx, 1976 0, 0); 1977 } 1978 if (ret) 1979 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n", 1980 dev_bytenr); 1981 } else { 1982 block->is_metadata = 0; 1983 block->mirror_num = 0; /* unknown */ 1984 block->generation = BTRFSIC_GENERATION_UNKNOWN; 1985 if (!state->include_extent_data 1986 && list_empty(&block->ref_from_list)) { 1987 /* 1988 * disk block is overwritten with extent 1989 * data (not meta data) and we are configured 1990 * to not include extent data: take the 1991 * chance and free the block's memory 1992 */ 1993 btrfsic_block_hashtable_remove(block); 1994 list_del(&block->all_blocks_node); 1995 btrfsic_block_free(block); 1996 } 1997 } 1998 btrfsic_release_block_ctx(&block_ctx); 1999 } else { 2000 /* block has not been found in hash table */ 2001 u64 bytenr; 2002 2003 if (!is_metadata) { 2004 processed_len = state->datablock_size; 2005 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2006 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n", 2007 dev_state->name, dev_bytenr); 2008 if (!state->include_extent_data) { 2009 /* ignore that written D block */ 2010 goto continue_loop; 2011 } 2012 2013 /* this is getting ugly for the 2014 * include_extent_data case... */ 2015 bytenr = 0; /* unknown */ 2016 } else { 2017 processed_len = state->metablock_size; 2018 bytenr = btrfs_stack_header_bytenr( 2019 (struct btrfs_header *) 2020 mapped_datav[0]); 2021 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, 2022 dev_bytenr); 2023 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2024 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n", 2025 bytenr, dev_state->name, dev_bytenr); 2026 } 2027 2028 block_ctx.dev = dev_state; 2029 block_ctx.dev_bytenr = dev_bytenr; 2030 block_ctx.start = bytenr; 2031 block_ctx.len = processed_len; 2032 block_ctx.pagev = NULL; 2033 block_ctx.mem_to_free = NULL; 2034 block_ctx.datav = mapped_datav; 2035 2036 block = btrfsic_block_alloc(); 2037 if (NULL == block) { 2038 pr_info("btrfsic: error, kmalloc failed!\n"); 2039 btrfsic_release_block_ctx(&block_ctx); 2040 goto continue_loop; 2041 } 2042 block->dev_state = dev_state; 2043 block->dev_bytenr = dev_bytenr; 2044 block->logical_bytenr = bytenr; 2045 block->is_metadata = is_metadata; 2046 block->never_written = 0; 2047 block->iodone_w_error = 0; 2048 block->mirror_num = 0; /* unknown */ 2049 block->flush_gen = dev_state->last_flush_gen + 1; 2050 block->submit_bio_bh_rw = submit_bio_bh_rw; 2051 if (NULL != bio) { 2052 block->is_iodone = 0; 2053 BUG_ON(NULL == bio_is_patched); 2054 if (!*bio_is_patched) { 2055 block->orig_bio_bh_private = bio->bi_private; 2056 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2057 block->next_in_same_bio = NULL; 2058 bio->bi_private = block; 2059 bio->bi_end_io = btrfsic_bio_end_io; 2060 *bio_is_patched = 1; 2061 } else { 2062 struct btrfsic_block *chained_block = 2063 (struct btrfsic_block *) 2064 bio->bi_private; 2065 2066 BUG_ON(NULL == chained_block); 2067 block->orig_bio_bh_private = 2068 chained_block->orig_bio_bh_private; 2069 block->orig_bio_bh_end_io.bio = 2070 chained_block->orig_bio_bh_end_io.bio; 2071 block->next_in_same_bio = chained_block; 2072 bio->bi_private = block; 2073 } 2074 } else if (NULL != bh) { 2075 block->is_iodone = 0; 2076 block->orig_bio_bh_private = bh->b_private; 2077 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2078 block->next_in_same_bio = NULL; 2079 bh->b_private = block; 2080 bh->b_end_io = btrfsic_bh_end_io; 2081 } else { 2082 block->is_iodone = 1; 2083 block->orig_bio_bh_private = NULL; 2084 block->orig_bio_bh_end_io.bio = NULL; 2085 block->next_in_same_bio = NULL; 2086 } 2087 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2088 pr_info("New written %c-block @%llu (%s/%llu/%d)\n", 2089 is_metadata ? 'M' : 'D', 2090 block->logical_bytenr, block->dev_state->name, 2091 block->dev_bytenr, block->mirror_num); 2092 list_add(&block->all_blocks_node, &state->all_blocks_list); 2093 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2094 2095 if (is_metadata) { 2096 ret = btrfsic_process_metablock(state, block, 2097 &block_ctx, 0, 0); 2098 if (ret) 2099 pr_info("btrfsic: process_metablock(root @%llu) failed!\n", 2100 dev_bytenr); 2101 } 2102 btrfsic_release_block_ctx(&block_ctx); 2103 } 2104 2105 continue_loop: 2106 BUG_ON(!processed_len); 2107 dev_bytenr += processed_len; 2108 mapped_datav += processed_len >> PAGE_SHIFT; 2109 num_pages -= processed_len >> PAGE_SHIFT; 2110 goto again; 2111 } 2112 2113 static void btrfsic_bio_end_io(struct bio *bp) 2114 { 2115 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private; 2116 int iodone_w_error; 2117 2118 /* mutex is not held! This is not save if IO is not yet completed 2119 * on umount */ 2120 iodone_w_error = 0; 2121 if (bp->bi_status) 2122 iodone_w_error = 1; 2123 2124 BUG_ON(NULL == block); 2125 bp->bi_private = block->orig_bio_bh_private; 2126 bp->bi_end_io = block->orig_bio_bh_end_io.bio; 2127 2128 do { 2129 struct btrfsic_block *next_block; 2130 struct btrfsic_dev_state *const dev_state = block->dev_state; 2131 2132 if ((dev_state->state->print_mask & 2133 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2134 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n", 2135 bp->bi_status, 2136 btrfsic_get_block_type(dev_state->state, block), 2137 block->logical_bytenr, dev_state->name, 2138 block->dev_bytenr, block->mirror_num); 2139 next_block = block->next_in_same_bio; 2140 block->iodone_w_error = iodone_w_error; 2141 if (block->submit_bio_bh_rw & REQ_PREFLUSH) { 2142 dev_state->last_flush_gen++; 2143 if ((dev_state->state->print_mask & 2144 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2145 pr_info("bio_end_io() new %s flush_gen=%llu\n", 2146 dev_state->name, 2147 dev_state->last_flush_gen); 2148 } 2149 if (block->submit_bio_bh_rw & REQ_FUA) 2150 block->flush_gen = 0; /* FUA completed means block is 2151 * on disk */ 2152 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2153 block = next_block; 2154 } while (NULL != block); 2155 2156 bp->bi_end_io(bp); 2157 } 2158 2159 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate) 2160 { 2161 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private; 2162 int iodone_w_error = !uptodate; 2163 struct btrfsic_dev_state *dev_state; 2164 2165 BUG_ON(NULL == block); 2166 dev_state = block->dev_state; 2167 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2168 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n", 2169 iodone_w_error, 2170 btrfsic_get_block_type(dev_state->state, block), 2171 block->logical_bytenr, block->dev_state->name, 2172 block->dev_bytenr, block->mirror_num); 2173 2174 block->iodone_w_error = iodone_w_error; 2175 if (block->submit_bio_bh_rw & REQ_PREFLUSH) { 2176 dev_state->last_flush_gen++; 2177 if ((dev_state->state->print_mask & 2178 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2179 pr_info("bh_end_io() new %s flush_gen=%llu\n", 2180 dev_state->name, dev_state->last_flush_gen); 2181 } 2182 if (block->submit_bio_bh_rw & REQ_FUA) 2183 block->flush_gen = 0; /* FUA completed means block is on disk */ 2184 2185 bh->b_private = block->orig_bio_bh_private; 2186 bh->b_end_io = block->orig_bio_bh_end_io.bh; 2187 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2188 bh->b_end_io(bh, uptodate); 2189 } 2190 2191 static int btrfsic_process_written_superblock( 2192 struct btrfsic_state *state, 2193 struct btrfsic_block *const superblock, 2194 struct btrfs_super_block *const super_hdr) 2195 { 2196 struct btrfs_fs_info *fs_info = state->fs_info; 2197 int pass; 2198 2199 superblock->generation = btrfs_super_generation(super_hdr); 2200 if (!(superblock->generation > state->max_superblock_generation || 2201 0 == state->max_superblock_generation)) { 2202 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2203 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n", 2204 superblock->logical_bytenr, 2205 superblock->dev_state->name, 2206 superblock->dev_bytenr, superblock->mirror_num, 2207 btrfs_super_generation(super_hdr), 2208 state->max_superblock_generation); 2209 } else { 2210 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2211 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n", 2212 superblock->logical_bytenr, 2213 superblock->dev_state->name, 2214 superblock->dev_bytenr, superblock->mirror_num, 2215 btrfs_super_generation(super_hdr), 2216 state->max_superblock_generation); 2217 2218 state->max_superblock_generation = 2219 btrfs_super_generation(super_hdr); 2220 state->latest_superblock = superblock; 2221 } 2222 2223 for (pass = 0; pass < 3; pass++) { 2224 int ret; 2225 u64 next_bytenr; 2226 struct btrfsic_block *next_block; 2227 struct btrfsic_block_data_ctx tmp_next_block_ctx; 2228 struct btrfsic_block_link *l; 2229 int num_copies; 2230 int mirror_num; 2231 const char *additional_string = NULL; 2232 struct btrfs_disk_key tmp_disk_key = {0}; 2233 2234 btrfs_set_disk_key_objectid(&tmp_disk_key, 2235 BTRFS_ROOT_ITEM_KEY); 2236 btrfs_set_disk_key_objectid(&tmp_disk_key, 0); 2237 2238 switch (pass) { 2239 case 0: 2240 btrfs_set_disk_key_objectid(&tmp_disk_key, 2241 BTRFS_ROOT_TREE_OBJECTID); 2242 additional_string = "root "; 2243 next_bytenr = btrfs_super_root(super_hdr); 2244 if (state->print_mask & 2245 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2246 pr_info("root@%llu\n", next_bytenr); 2247 break; 2248 case 1: 2249 btrfs_set_disk_key_objectid(&tmp_disk_key, 2250 BTRFS_CHUNK_TREE_OBJECTID); 2251 additional_string = "chunk "; 2252 next_bytenr = btrfs_super_chunk_root(super_hdr); 2253 if (state->print_mask & 2254 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2255 pr_info("chunk@%llu\n", next_bytenr); 2256 break; 2257 case 2: 2258 btrfs_set_disk_key_objectid(&tmp_disk_key, 2259 BTRFS_TREE_LOG_OBJECTID); 2260 additional_string = "log "; 2261 next_bytenr = btrfs_super_log_root(super_hdr); 2262 if (0 == next_bytenr) 2263 continue; 2264 if (state->print_mask & 2265 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2266 pr_info("log@%llu\n", next_bytenr); 2267 break; 2268 } 2269 2270 num_copies = btrfs_num_copies(fs_info, next_bytenr, 2271 BTRFS_SUPER_INFO_SIZE); 2272 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 2273 pr_info("num_copies(log_bytenr=%llu) = %d\n", 2274 next_bytenr, num_copies); 2275 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2276 int was_created; 2277 2278 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2279 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num); 2280 ret = btrfsic_map_block(state, next_bytenr, 2281 BTRFS_SUPER_INFO_SIZE, 2282 &tmp_next_block_ctx, 2283 mirror_num); 2284 if (ret) { 2285 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 2286 next_bytenr, mirror_num); 2287 return -1; 2288 } 2289 2290 next_block = btrfsic_block_lookup_or_add( 2291 state, 2292 &tmp_next_block_ctx, 2293 additional_string, 2294 1, 0, 1, 2295 mirror_num, 2296 &was_created); 2297 if (NULL == next_block) { 2298 pr_info("btrfsic: error, kmalloc failed!\n"); 2299 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2300 return -1; 2301 } 2302 2303 next_block->disk_key = tmp_disk_key; 2304 if (was_created) 2305 next_block->generation = 2306 BTRFSIC_GENERATION_UNKNOWN; 2307 l = btrfsic_block_link_lookup_or_add( 2308 state, 2309 &tmp_next_block_ctx, 2310 next_block, 2311 superblock, 2312 BTRFSIC_GENERATION_UNKNOWN); 2313 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2314 if (NULL == l) 2315 return -1; 2316 } 2317 } 2318 2319 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0))) 2320 btrfsic_dump_tree(state); 2321 2322 return 0; 2323 } 2324 2325 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 2326 struct btrfsic_block *const block, 2327 int recursion_level) 2328 { 2329 const struct btrfsic_block_link *l; 2330 int ret = 0; 2331 2332 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2333 /* 2334 * Note that this situation can happen and does not 2335 * indicate an error in regular cases. It happens 2336 * when disk blocks are freed and later reused. 2337 * The check-integrity module is not aware of any 2338 * block free operations, it just recognizes block 2339 * write operations. Therefore it keeps the linkage 2340 * information for a block until a block is 2341 * rewritten. This can temporarily cause incorrect 2342 * and even circular linkage informations. This 2343 * causes no harm unless such blocks are referenced 2344 * by the most recent super block. 2345 */ 2346 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2347 pr_info("btrfsic: abort cyclic linkage (case 1).\n"); 2348 2349 return ret; 2350 } 2351 2352 /* 2353 * This algorithm is recursive because the amount of used stack 2354 * space is very small and the max recursion depth is limited. 2355 */ 2356 list_for_each_entry(l, &block->ref_to_list, node_ref_to) { 2357 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2358 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n", 2359 recursion_level, 2360 btrfsic_get_block_type(state, block), 2361 block->logical_bytenr, block->dev_state->name, 2362 block->dev_bytenr, block->mirror_num, 2363 l->ref_cnt, 2364 btrfsic_get_block_type(state, l->block_ref_to), 2365 l->block_ref_to->logical_bytenr, 2366 l->block_ref_to->dev_state->name, 2367 l->block_ref_to->dev_bytenr, 2368 l->block_ref_to->mirror_num); 2369 if (l->block_ref_to->never_written) { 2370 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n", 2371 btrfsic_get_block_type(state, l->block_ref_to), 2372 l->block_ref_to->logical_bytenr, 2373 l->block_ref_to->dev_state->name, 2374 l->block_ref_to->dev_bytenr, 2375 l->block_ref_to->mirror_num); 2376 ret = -1; 2377 } else if (!l->block_ref_to->is_iodone) { 2378 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n", 2379 btrfsic_get_block_type(state, l->block_ref_to), 2380 l->block_ref_to->logical_bytenr, 2381 l->block_ref_to->dev_state->name, 2382 l->block_ref_to->dev_bytenr, 2383 l->block_ref_to->mirror_num); 2384 ret = -1; 2385 } else if (l->block_ref_to->iodone_w_error) { 2386 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n", 2387 btrfsic_get_block_type(state, l->block_ref_to), 2388 l->block_ref_to->logical_bytenr, 2389 l->block_ref_to->dev_state->name, 2390 l->block_ref_to->dev_bytenr, 2391 l->block_ref_to->mirror_num); 2392 ret = -1; 2393 } else if (l->parent_generation != 2394 l->block_ref_to->generation && 2395 BTRFSIC_GENERATION_UNKNOWN != 2396 l->parent_generation && 2397 BTRFSIC_GENERATION_UNKNOWN != 2398 l->block_ref_to->generation) { 2399 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n", 2400 btrfsic_get_block_type(state, l->block_ref_to), 2401 l->block_ref_to->logical_bytenr, 2402 l->block_ref_to->dev_state->name, 2403 l->block_ref_to->dev_bytenr, 2404 l->block_ref_to->mirror_num, 2405 l->block_ref_to->generation, 2406 l->parent_generation); 2407 ret = -1; 2408 } else if (l->block_ref_to->flush_gen > 2409 l->block_ref_to->dev_state->last_flush_gen) { 2410 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n", 2411 btrfsic_get_block_type(state, l->block_ref_to), 2412 l->block_ref_to->logical_bytenr, 2413 l->block_ref_to->dev_state->name, 2414 l->block_ref_to->dev_bytenr, 2415 l->block_ref_to->mirror_num, block->flush_gen, 2416 l->block_ref_to->dev_state->last_flush_gen); 2417 ret = -1; 2418 } else if (-1 == btrfsic_check_all_ref_blocks(state, 2419 l->block_ref_to, 2420 recursion_level + 2421 1)) { 2422 ret = -1; 2423 } 2424 } 2425 2426 return ret; 2427 } 2428 2429 static int btrfsic_is_block_ref_by_superblock( 2430 const struct btrfsic_state *state, 2431 const struct btrfsic_block *block, 2432 int recursion_level) 2433 { 2434 const struct btrfsic_block_link *l; 2435 2436 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2437 /* refer to comment at "abort cyclic linkage (case 1)" */ 2438 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2439 pr_info("btrfsic: abort cyclic linkage (case 2).\n"); 2440 2441 return 0; 2442 } 2443 2444 /* 2445 * This algorithm is recursive because the amount of used stack space 2446 * is very small and the max recursion depth is limited. 2447 */ 2448 list_for_each_entry(l, &block->ref_from_list, node_ref_from) { 2449 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2450 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n", 2451 recursion_level, 2452 btrfsic_get_block_type(state, block), 2453 block->logical_bytenr, block->dev_state->name, 2454 block->dev_bytenr, block->mirror_num, 2455 l->ref_cnt, 2456 btrfsic_get_block_type(state, l->block_ref_from), 2457 l->block_ref_from->logical_bytenr, 2458 l->block_ref_from->dev_state->name, 2459 l->block_ref_from->dev_bytenr, 2460 l->block_ref_from->mirror_num); 2461 if (l->block_ref_from->is_superblock && 2462 state->latest_superblock->dev_bytenr == 2463 l->block_ref_from->dev_bytenr && 2464 state->latest_superblock->dev_state->bdev == 2465 l->block_ref_from->dev_state->bdev) 2466 return 1; 2467 else if (btrfsic_is_block_ref_by_superblock(state, 2468 l->block_ref_from, 2469 recursion_level + 2470 1)) 2471 return 1; 2472 } 2473 2474 return 0; 2475 } 2476 2477 static void btrfsic_print_add_link(const struct btrfsic_state *state, 2478 const struct btrfsic_block_link *l) 2479 { 2480 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n", 2481 l->ref_cnt, 2482 btrfsic_get_block_type(state, l->block_ref_from), 2483 l->block_ref_from->logical_bytenr, 2484 l->block_ref_from->dev_state->name, 2485 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2486 btrfsic_get_block_type(state, l->block_ref_to), 2487 l->block_ref_to->logical_bytenr, 2488 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2489 l->block_ref_to->mirror_num); 2490 } 2491 2492 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 2493 const struct btrfsic_block_link *l) 2494 { 2495 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n", 2496 l->ref_cnt, 2497 btrfsic_get_block_type(state, l->block_ref_from), 2498 l->block_ref_from->logical_bytenr, 2499 l->block_ref_from->dev_state->name, 2500 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2501 btrfsic_get_block_type(state, l->block_ref_to), 2502 l->block_ref_to->logical_bytenr, 2503 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2504 l->block_ref_to->mirror_num); 2505 } 2506 2507 static char btrfsic_get_block_type(const struct btrfsic_state *state, 2508 const struct btrfsic_block *block) 2509 { 2510 if (block->is_superblock && 2511 state->latest_superblock->dev_bytenr == block->dev_bytenr && 2512 state->latest_superblock->dev_state->bdev == block->dev_state->bdev) 2513 return 'S'; 2514 else if (block->is_superblock) 2515 return 's'; 2516 else if (block->is_metadata) 2517 return 'M'; 2518 else 2519 return 'D'; 2520 } 2521 2522 static void btrfsic_dump_tree(const struct btrfsic_state *state) 2523 { 2524 btrfsic_dump_tree_sub(state, state->latest_superblock, 0); 2525 } 2526 2527 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 2528 const struct btrfsic_block *block, 2529 int indent_level) 2530 { 2531 const struct btrfsic_block_link *l; 2532 int indent_add; 2533 static char buf[80]; 2534 int cursor_position; 2535 2536 /* 2537 * Should better fill an on-stack buffer with a complete line and 2538 * dump it at once when it is time to print a newline character. 2539 */ 2540 2541 /* 2542 * This algorithm is recursive because the amount of used stack space 2543 * is very small and the max recursion depth is limited. 2544 */ 2545 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)", 2546 btrfsic_get_block_type(state, block), 2547 block->logical_bytenr, block->dev_state->name, 2548 block->dev_bytenr, block->mirror_num); 2549 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2550 printk("[...]\n"); 2551 return; 2552 } 2553 printk(buf); 2554 indent_level += indent_add; 2555 if (list_empty(&block->ref_to_list)) { 2556 printk("\n"); 2557 return; 2558 } 2559 if (block->mirror_num > 1 && 2560 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) { 2561 printk(" [...]\n"); 2562 return; 2563 } 2564 2565 cursor_position = indent_level; 2566 list_for_each_entry(l, &block->ref_to_list, node_ref_to) { 2567 while (cursor_position < indent_level) { 2568 printk(" "); 2569 cursor_position++; 2570 } 2571 if (l->ref_cnt > 1) 2572 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt); 2573 else 2574 indent_add = sprintf(buf, " --> "); 2575 if (indent_level + indent_add > 2576 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2577 printk("[...]\n"); 2578 cursor_position = 0; 2579 continue; 2580 } 2581 2582 printk(buf); 2583 2584 btrfsic_dump_tree_sub(state, l->block_ref_to, 2585 indent_level + indent_add); 2586 cursor_position = 0; 2587 } 2588 } 2589 2590 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 2591 struct btrfsic_state *state, 2592 struct btrfsic_block_data_ctx *next_block_ctx, 2593 struct btrfsic_block *next_block, 2594 struct btrfsic_block *from_block, 2595 u64 parent_generation) 2596 { 2597 struct btrfsic_block_link *l; 2598 2599 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev, 2600 next_block_ctx->dev_bytenr, 2601 from_block->dev_state->bdev, 2602 from_block->dev_bytenr, 2603 &state->block_link_hashtable); 2604 if (NULL == l) { 2605 l = btrfsic_block_link_alloc(); 2606 if (NULL == l) { 2607 pr_info("btrfsic: error, kmalloc failed!\n"); 2608 return NULL; 2609 } 2610 2611 l->block_ref_to = next_block; 2612 l->block_ref_from = from_block; 2613 l->ref_cnt = 1; 2614 l->parent_generation = parent_generation; 2615 2616 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2617 btrfsic_print_add_link(state, l); 2618 2619 list_add(&l->node_ref_to, &from_block->ref_to_list); 2620 list_add(&l->node_ref_from, &next_block->ref_from_list); 2621 2622 btrfsic_block_link_hashtable_add(l, 2623 &state->block_link_hashtable); 2624 } else { 2625 l->ref_cnt++; 2626 l->parent_generation = parent_generation; 2627 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2628 btrfsic_print_add_link(state, l); 2629 } 2630 2631 return l; 2632 } 2633 2634 static struct btrfsic_block *btrfsic_block_lookup_or_add( 2635 struct btrfsic_state *state, 2636 struct btrfsic_block_data_ctx *block_ctx, 2637 const char *additional_string, 2638 int is_metadata, 2639 int is_iodone, 2640 int never_written, 2641 int mirror_num, 2642 int *was_created) 2643 { 2644 struct btrfsic_block *block; 2645 2646 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev, 2647 block_ctx->dev_bytenr, 2648 &state->block_hashtable); 2649 if (NULL == block) { 2650 struct btrfsic_dev_state *dev_state; 2651 2652 block = btrfsic_block_alloc(); 2653 if (NULL == block) { 2654 pr_info("btrfsic: error, kmalloc failed!\n"); 2655 return NULL; 2656 } 2657 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev); 2658 if (NULL == dev_state) { 2659 pr_info("btrfsic: error, lookup dev_state failed!\n"); 2660 btrfsic_block_free(block); 2661 return NULL; 2662 } 2663 block->dev_state = dev_state; 2664 block->dev_bytenr = block_ctx->dev_bytenr; 2665 block->logical_bytenr = block_ctx->start; 2666 block->is_metadata = is_metadata; 2667 block->is_iodone = is_iodone; 2668 block->never_written = never_written; 2669 block->mirror_num = mirror_num; 2670 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2671 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n", 2672 additional_string, 2673 btrfsic_get_block_type(state, block), 2674 block->logical_bytenr, dev_state->name, 2675 block->dev_bytenr, mirror_num); 2676 list_add(&block->all_blocks_node, &state->all_blocks_list); 2677 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2678 if (NULL != was_created) 2679 *was_created = 1; 2680 } else { 2681 if (NULL != was_created) 2682 *was_created = 0; 2683 } 2684 2685 return block; 2686 } 2687 2688 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 2689 u64 bytenr, 2690 struct btrfsic_dev_state *dev_state, 2691 u64 dev_bytenr) 2692 { 2693 struct btrfs_fs_info *fs_info = state->fs_info; 2694 struct btrfsic_block_data_ctx block_ctx; 2695 int num_copies; 2696 int mirror_num; 2697 int match = 0; 2698 int ret; 2699 2700 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size); 2701 2702 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2703 ret = btrfsic_map_block(state, bytenr, state->metablock_size, 2704 &block_ctx, mirror_num); 2705 if (ret) { 2706 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n", 2707 bytenr, mirror_num); 2708 continue; 2709 } 2710 2711 if (dev_state->bdev == block_ctx.dev->bdev && 2712 dev_bytenr == block_ctx.dev_bytenr) { 2713 match++; 2714 btrfsic_release_block_ctx(&block_ctx); 2715 break; 2716 } 2717 btrfsic_release_block_ctx(&block_ctx); 2718 } 2719 2720 if (WARN_ON(!match)) { 2721 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n", 2722 bytenr, dev_state->name, dev_bytenr); 2723 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2724 ret = btrfsic_map_block(state, bytenr, 2725 state->metablock_size, 2726 &block_ctx, mirror_num); 2727 if (ret) 2728 continue; 2729 2730 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n", 2731 bytenr, block_ctx.dev->name, 2732 block_ctx.dev_bytenr, mirror_num); 2733 } 2734 } 2735 } 2736 2737 static struct btrfsic_dev_state *btrfsic_dev_state_lookup( 2738 struct block_device *bdev) 2739 { 2740 return btrfsic_dev_state_hashtable_lookup(bdev, 2741 &btrfsic_dev_state_hashtable); 2742 } 2743 2744 int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh) 2745 { 2746 struct btrfsic_dev_state *dev_state; 2747 2748 if (!btrfsic_is_initialized) 2749 return submit_bh(op, op_flags, bh); 2750 2751 mutex_lock(&btrfsic_mutex); 2752 /* since btrfsic_submit_bh() might also be called before 2753 * btrfsic_mount(), this might return NULL */ 2754 dev_state = btrfsic_dev_state_lookup(bh->b_bdev); 2755 2756 /* Only called to write the superblock (incl. FLUSH/FUA) */ 2757 if (NULL != dev_state && 2758 (op == REQ_OP_WRITE) && bh->b_size > 0) { 2759 u64 dev_bytenr; 2760 2761 dev_bytenr = 4096 * bh->b_blocknr; 2762 if (dev_state->state->print_mask & 2763 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2764 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n", 2765 op, op_flags, (unsigned long long)bh->b_blocknr, 2766 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev); 2767 btrfsic_process_written_block(dev_state, dev_bytenr, 2768 &bh->b_data, 1, NULL, 2769 NULL, bh, op_flags); 2770 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) { 2771 if (dev_state->state->print_mask & 2772 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2773 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n", 2774 op, op_flags, bh->b_bdev); 2775 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2776 if ((dev_state->state->print_mask & 2777 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2778 BTRFSIC_PRINT_MASK_VERBOSE))) 2779 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n", 2780 dev_state->name); 2781 } else { 2782 struct btrfsic_block *const block = 2783 &dev_state->dummy_block_for_bio_bh_flush; 2784 2785 block->is_iodone = 0; 2786 block->never_written = 0; 2787 block->iodone_w_error = 0; 2788 block->flush_gen = dev_state->last_flush_gen + 1; 2789 block->submit_bio_bh_rw = op_flags; 2790 block->orig_bio_bh_private = bh->b_private; 2791 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2792 block->next_in_same_bio = NULL; 2793 bh->b_private = block; 2794 bh->b_end_io = btrfsic_bh_end_io; 2795 } 2796 } 2797 mutex_unlock(&btrfsic_mutex); 2798 return submit_bh(op, op_flags, bh); 2799 } 2800 2801 static void __btrfsic_submit_bio(struct bio *bio) 2802 { 2803 struct btrfsic_dev_state *dev_state; 2804 2805 if (!btrfsic_is_initialized) 2806 return; 2807 2808 mutex_lock(&btrfsic_mutex); 2809 /* since btrfsic_submit_bio() is also called before 2810 * btrfsic_mount(), this might return NULL */ 2811 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev); 2812 if (NULL != dev_state && 2813 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) { 2814 unsigned int i = 0; 2815 u64 dev_bytenr; 2816 u64 cur_bytenr; 2817 struct bio_vec bvec; 2818 struct bvec_iter iter; 2819 int bio_is_patched; 2820 char **mapped_datav; 2821 unsigned int segs = bio_segments(bio); 2822 2823 dev_bytenr = 512 * bio->bi_iter.bi_sector; 2824 bio_is_patched = 0; 2825 if (dev_state->state->print_mask & 2826 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2827 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n", 2828 bio_op(bio), bio->bi_opf, segs, 2829 (unsigned long long)bio->bi_iter.bi_sector, 2830 dev_bytenr, bio->bi_bdev); 2831 2832 mapped_datav = kmalloc_array(segs, 2833 sizeof(*mapped_datav), GFP_NOFS); 2834 if (!mapped_datav) 2835 goto leave; 2836 cur_bytenr = dev_bytenr; 2837 2838 bio_for_each_segment(bvec, bio, iter) { 2839 BUG_ON(bvec.bv_len != PAGE_SIZE); 2840 mapped_datav[i] = kmap(bvec.bv_page); 2841 i++; 2842 2843 if (dev_state->state->print_mask & 2844 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE) 2845 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n", 2846 i, cur_bytenr, bvec.bv_len, bvec.bv_offset); 2847 cur_bytenr += bvec.bv_len; 2848 } 2849 btrfsic_process_written_block(dev_state, dev_bytenr, 2850 mapped_datav, segs, 2851 bio, &bio_is_patched, 2852 NULL, bio->bi_opf); 2853 bio_for_each_segment(bvec, bio, iter) 2854 kunmap(bvec.bv_page); 2855 kfree(mapped_datav); 2856 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) { 2857 if (dev_state->state->print_mask & 2858 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2859 pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n", 2860 bio_op(bio), bio->bi_opf, bio->bi_bdev); 2861 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2862 if ((dev_state->state->print_mask & 2863 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2864 BTRFSIC_PRINT_MASK_VERBOSE))) 2865 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n", 2866 dev_state->name); 2867 } else { 2868 struct btrfsic_block *const block = 2869 &dev_state->dummy_block_for_bio_bh_flush; 2870 2871 block->is_iodone = 0; 2872 block->never_written = 0; 2873 block->iodone_w_error = 0; 2874 block->flush_gen = dev_state->last_flush_gen + 1; 2875 block->submit_bio_bh_rw = bio->bi_opf; 2876 block->orig_bio_bh_private = bio->bi_private; 2877 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2878 block->next_in_same_bio = NULL; 2879 bio->bi_private = block; 2880 bio->bi_end_io = btrfsic_bio_end_io; 2881 } 2882 } 2883 leave: 2884 mutex_unlock(&btrfsic_mutex); 2885 } 2886 2887 void btrfsic_submit_bio(struct bio *bio) 2888 { 2889 __btrfsic_submit_bio(bio); 2890 submit_bio(bio); 2891 } 2892 2893 int btrfsic_submit_bio_wait(struct bio *bio) 2894 { 2895 __btrfsic_submit_bio(bio); 2896 return submit_bio_wait(bio); 2897 } 2898 2899 int btrfsic_mount(struct btrfs_fs_info *fs_info, 2900 struct btrfs_fs_devices *fs_devices, 2901 int including_extent_data, u32 print_mask) 2902 { 2903 int ret; 2904 struct btrfsic_state *state; 2905 struct list_head *dev_head = &fs_devices->devices; 2906 struct btrfs_device *device; 2907 2908 if (fs_info->nodesize & ((u64)PAGE_SIZE - 1)) { 2909 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n", 2910 fs_info->nodesize, PAGE_SIZE); 2911 return -1; 2912 } 2913 if (fs_info->sectorsize & ((u64)PAGE_SIZE - 1)) { 2914 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n", 2915 fs_info->sectorsize, PAGE_SIZE); 2916 return -1; 2917 } 2918 state = kvzalloc(sizeof(*state), GFP_KERNEL); 2919 if (!state) { 2920 pr_info("btrfs check-integrity: allocation failed!\n"); 2921 return -1; 2922 } 2923 2924 if (!btrfsic_is_initialized) { 2925 mutex_init(&btrfsic_mutex); 2926 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable); 2927 btrfsic_is_initialized = 1; 2928 } 2929 mutex_lock(&btrfsic_mutex); 2930 state->fs_info = fs_info; 2931 state->print_mask = print_mask; 2932 state->include_extent_data = including_extent_data; 2933 state->csum_size = 0; 2934 state->metablock_size = fs_info->nodesize; 2935 state->datablock_size = fs_info->sectorsize; 2936 INIT_LIST_HEAD(&state->all_blocks_list); 2937 btrfsic_block_hashtable_init(&state->block_hashtable); 2938 btrfsic_block_link_hashtable_init(&state->block_link_hashtable); 2939 state->max_superblock_generation = 0; 2940 state->latest_superblock = NULL; 2941 2942 list_for_each_entry(device, dev_head, dev_list) { 2943 struct btrfsic_dev_state *ds; 2944 const char *p; 2945 2946 if (!device->bdev || !device->name) 2947 continue; 2948 2949 ds = btrfsic_dev_state_alloc(); 2950 if (NULL == ds) { 2951 pr_info("btrfs check-integrity: kmalloc() failed!\n"); 2952 mutex_unlock(&btrfsic_mutex); 2953 return -1; 2954 } 2955 ds->bdev = device->bdev; 2956 ds->state = state; 2957 bdevname(ds->bdev, ds->name); 2958 ds->name[BDEVNAME_SIZE - 1] = '\0'; 2959 p = kbasename(ds->name); 2960 strlcpy(ds->name, p, sizeof(ds->name)); 2961 btrfsic_dev_state_hashtable_add(ds, 2962 &btrfsic_dev_state_hashtable); 2963 } 2964 2965 ret = btrfsic_process_superblock(state, fs_devices); 2966 if (0 != ret) { 2967 mutex_unlock(&btrfsic_mutex); 2968 btrfsic_unmount(fs_devices); 2969 return ret; 2970 } 2971 2972 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE) 2973 btrfsic_dump_database(state); 2974 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE) 2975 btrfsic_dump_tree(state); 2976 2977 mutex_unlock(&btrfsic_mutex); 2978 return 0; 2979 } 2980 2981 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices) 2982 { 2983 struct btrfsic_block *b_all, *tmp_all; 2984 struct btrfsic_state *state; 2985 struct list_head *dev_head = &fs_devices->devices; 2986 struct btrfs_device *device; 2987 2988 if (!btrfsic_is_initialized) 2989 return; 2990 2991 mutex_lock(&btrfsic_mutex); 2992 2993 state = NULL; 2994 list_for_each_entry(device, dev_head, dev_list) { 2995 struct btrfsic_dev_state *ds; 2996 2997 if (!device->bdev || !device->name) 2998 continue; 2999 3000 ds = btrfsic_dev_state_hashtable_lookup( 3001 device->bdev, 3002 &btrfsic_dev_state_hashtable); 3003 if (NULL != ds) { 3004 state = ds->state; 3005 btrfsic_dev_state_hashtable_remove(ds); 3006 btrfsic_dev_state_free(ds); 3007 } 3008 } 3009 3010 if (NULL == state) { 3011 pr_info("btrfsic: error, cannot find state information on umount!\n"); 3012 mutex_unlock(&btrfsic_mutex); 3013 return; 3014 } 3015 3016 /* 3017 * Don't care about keeping the lists' state up to date, 3018 * just free all memory that was allocated dynamically. 3019 * Free the blocks and the block_links. 3020 */ 3021 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list, 3022 all_blocks_node) { 3023 struct btrfsic_block_link *l, *tmp; 3024 3025 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list, 3026 node_ref_to) { 3027 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 3028 btrfsic_print_rem_link(state, l); 3029 3030 l->ref_cnt--; 3031 if (0 == l->ref_cnt) 3032 btrfsic_block_link_free(l); 3033 } 3034 3035 if (b_all->is_iodone || b_all->never_written) 3036 btrfsic_block_free(b_all); 3037 else 3038 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n", 3039 btrfsic_get_block_type(state, b_all), 3040 b_all->logical_bytenr, b_all->dev_state->name, 3041 b_all->dev_bytenr, b_all->mirror_num); 3042 } 3043 3044 mutex_unlock(&btrfsic_mutex); 3045 3046 kvfree(state); 3047 } 3048