1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STRATO AG 2011. All rights reserved. 4 */ 5 6 /* 7 * This module can be used to catch cases when the btrfs kernel 8 * code executes write requests to the disk that bring the file 9 * system in an inconsistent state. In such a state, a power-loss 10 * or kernel panic event would cause that the data on disk is 11 * lost or at least damaged. 12 * 13 * Code is added that examines all block write requests during 14 * runtime (including writes of the super block). Three rules 15 * are verified and an error is printed on violation of the 16 * rules: 17 * 1. It is not allowed to write a disk block which is 18 * currently referenced by the super block (either directly 19 * or indirectly). 20 * 2. When a super block is written, it is verified that all 21 * referenced (directly or indirectly) blocks fulfill the 22 * following requirements: 23 * 2a. All referenced blocks have either been present when 24 * the file system was mounted, (i.e., they have been 25 * referenced by the super block) or they have been 26 * written since then and the write completion callback 27 * was called and no write error was indicated and a 28 * FLUSH request to the device where these blocks are 29 * located was received and completed. 30 * 2b. All referenced blocks need to have a generation 31 * number which is equal to the parent's number. 32 * 33 * One issue that was found using this module was that the log 34 * tree on disk became temporarily corrupted because disk blocks 35 * that had been in use for the log tree had been freed and 36 * reused too early, while being referenced by the written super 37 * block. 38 * 39 * The search term in the kernel log that can be used to filter 40 * on the existence of detected integrity issues is 41 * "btrfs: attempt". 42 * 43 * The integrity check is enabled via mount options. These 44 * mount options are only supported if the integrity check 45 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY. 46 * 47 * Example #1, apply integrity checks to all metadata: 48 * mount /dev/sdb1 /mnt -o check_int 49 * 50 * Example #2, apply integrity checks to all metadata and 51 * to data extents: 52 * mount /dev/sdb1 /mnt -o check_int_data 53 * 54 * Example #3, apply integrity checks to all metadata and dump 55 * the tree that the super block references to kernel messages 56 * each time after a super block was written: 57 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263 58 * 59 * If the integrity check tool is included and activated in 60 * the mount options, plenty of kernel memory is used, and 61 * plenty of additional CPU cycles are spent. Enabling this 62 * functionality is not intended for normal use. In most 63 * cases, unless you are a btrfs developer who needs to verify 64 * the integrity of (super)-block write requests, do not 65 * enable the config option BTRFS_FS_CHECK_INTEGRITY to 66 * include and compile the integrity check tool. 67 * 68 * Expect millions of lines of information in the kernel log with an 69 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the 70 * kernel config to at least 26 (which is 64MB). Usually the value is 71 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be 72 * changed like this before LOG_BUF_SHIFT can be set to a high value: 73 * config LOG_BUF_SHIFT 74 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)" 75 * range 12 30 76 */ 77 78 #include <linux/sched.h> 79 #include <linux/slab.h> 80 #include <linux/buffer_head.h> 81 #include <linux/mutex.h> 82 #include <linux/genhd.h> 83 #include <linux/blkdev.h> 84 #include <linux/mm.h> 85 #include <linux/string.h> 86 #include <crypto/hash.h> 87 #include "ctree.h" 88 #include "disk-io.h" 89 #include "transaction.h" 90 #include "extent_io.h" 91 #include "volumes.h" 92 #include "print-tree.h" 93 #include "locking.h" 94 #include "check-integrity.h" 95 #include "rcu-string.h" 96 #include "compression.h" 97 98 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000 99 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000 100 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100 101 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051 102 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807 103 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530 104 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300 105 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters, 106 * excluding " [...]" */ 107 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1) 108 109 /* 110 * The definition of the bitmask fields for the print_mask. 111 * They are specified with the mount option check_integrity_print_mask. 112 */ 113 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001 114 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002 115 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004 116 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008 117 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010 118 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020 119 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040 120 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080 121 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100 122 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200 123 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400 124 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800 125 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000 126 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000 127 128 struct btrfsic_dev_state; 129 struct btrfsic_state; 130 131 struct btrfsic_block { 132 u32 magic_num; /* only used for debug purposes */ 133 unsigned int is_metadata:1; /* if it is meta-data, not data-data */ 134 unsigned int is_superblock:1; /* if it is one of the superblocks */ 135 unsigned int is_iodone:1; /* if is done by lower subsystem */ 136 unsigned int iodone_w_error:1; /* error was indicated to endio */ 137 unsigned int never_written:1; /* block was added because it was 138 * referenced, not because it was 139 * written */ 140 unsigned int mirror_num; /* large enough to hold 141 * BTRFS_SUPER_MIRROR_MAX */ 142 struct btrfsic_dev_state *dev_state; 143 u64 dev_bytenr; /* key, physical byte num on disk */ 144 u64 logical_bytenr; /* logical byte num on disk */ 145 u64 generation; 146 struct btrfs_disk_key disk_key; /* extra info to print in case of 147 * issues, will not always be correct */ 148 struct list_head collision_resolving_node; /* list node */ 149 struct list_head all_blocks_node; /* list node */ 150 151 /* the following two lists contain block_link items */ 152 struct list_head ref_to_list; /* list */ 153 struct list_head ref_from_list; /* list */ 154 struct btrfsic_block *next_in_same_bio; 155 void *orig_bio_bh_private; 156 union { 157 bio_end_io_t *bio; 158 bh_end_io_t *bh; 159 } orig_bio_bh_end_io; 160 int submit_bio_bh_rw; 161 u64 flush_gen; /* only valid if !never_written */ 162 }; 163 164 /* 165 * Elements of this type are allocated dynamically and required because 166 * each block object can refer to and can be ref from multiple blocks. 167 * The key to lookup them in the hashtable is the dev_bytenr of 168 * the block ref to plus the one from the block referred from. 169 * The fact that they are searchable via a hashtable and that a 170 * ref_cnt is maintained is not required for the btrfs integrity 171 * check algorithm itself, it is only used to make the output more 172 * beautiful in case that an error is detected (an error is defined 173 * as a write operation to a block while that block is still referenced). 174 */ 175 struct btrfsic_block_link { 176 u32 magic_num; /* only used for debug purposes */ 177 u32 ref_cnt; 178 struct list_head node_ref_to; /* list node */ 179 struct list_head node_ref_from; /* list node */ 180 struct list_head collision_resolving_node; /* list node */ 181 struct btrfsic_block *block_ref_to; 182 struct btrfsic_block *block_ref_from; 183 u64 parent_generation; 184 }; 185 186 struct btrfsic_dev_state { 187 u32 magic_num; /* only used for debug purposes */ 188 struct block_device *bdev; 189 struct btrfsic_state *state; 190 struct list_head collision_resolving_node; /* list node */ 191 struct btrfsic_block dummy_block_for_bio_bh_flush; 192 u64 last_flush_gen; 193 char name[BDEVNAME_SIZE]; 194 }; 195 196 struct btrfsic_block_hashtable { 197 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE]; 198 }; 199 200 struct btrfsic_block_link_hashtable { 201 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE]; 202 }; 203 204 struct btrfsic_dev_state_hashtable { 205 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE]; 206 }; 207 208 struct btrfsic_block_data_ctx { 209 u64 start; /* virtual bytenr */ 210 u64 dev_bytenr; /* physical bytenr on device */ 211 u32 len; 212 struct btrfsic_dev_state *dev; 213 char **datav; 214 struct page **pagev; 215 void *mem_to_free; 216 }; 217 218 /* This structure is used to implement recursion without occupying 219 * any stack space, refer to btrfsic_process_metablock() */ 220 struct btrfsic_stack_frame { 221 u32 magic; 222 u32 nr; 223 int error; 224 int i; 225 int limit_nesting; 226 int num_copies; 227 int mirror_num; 228 struct btrfsic_block *block; 229 struct btrfsic_block_data_ctx *block_ctx; 230 struct btrfsic_block *next_block; 231 struct btrfsic_block_data_ctx next_block_ctx; 232 struct btrfs_header *hdr; 233 struct btrfsic_stack_frame *prev; 234 }; 235 236 /* Some state per mounted filesystem */ 237 struct btrfsic_state { 238 u32 print_mask; 239 int include_extent_data; 240 int csum_size; 241 struct list_head all_blocks_list; 242 struct btrfsic_block_hashtable block_hashtable; 243 struct btrfsic_block_link_hashtable block_link_hashtable; 244 struct btrfs_fs_info *fs_info; 245 u64 max_superblock_generation; 246 struct btrfsic_block *latest_superblock; 247 u32 metablock_size; 248 u32 datablock_size; 249 }; 250 251 static void btrfsic_block_init(struct btrfsic_block *b); 252 static struct btrfsic_block *btrfsic_block_alloc(void); 253 static void btrfsic_block_free(struct btrfsic_block *b); 254 static void btrfsic_block_link_init(struct btrfsic_block_link *n); 255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void); 256 static void btrfsic_block_link_free(struct btrfsic_block_link *n); 257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds); 258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void); 259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds); 260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h); 261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 262 struct btrfsic_block_hashtable *h); 263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b); 264 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 265 struct block_device *bdev, 266 u64 dev_bytenr, 267 struct btrfsic_block_hashtable *h); 268 static void btrfsic_block_link_hashtable_init( 269 struct btrfsic_block_link_hashtable *h); 270 static void btrfsic_block_link_hashtable_add( 271 struct btrfsic_block_link *l, 272 struct btrfsic_block_link_hashtable *h); 273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l); 274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 275 struct block_device *bdev_ref_to, 276 u64 dev_bytenr_ref_to, 277 struct block_device *bdev_ref_from, 278 u64 dev_bytenr_ref_from, 279 struct btrfsic_block_link_hashtable *h); 280 static void btrfsic_dev_state_hashtable_init( 281 struct btrfsic_dev_state_hashtable *h); 282 static void btrfsic_dev_state_hashtable_add( 283 struct btrfsic_dev_state *ds, 284 struct btrfsic_dev_state_hashtable *h); 285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds); 286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev, 287 struct btrfsic_dev_state_hashtable *h); 288 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void); 289 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf); 290 static int btrfsic_process_superblock(struct btrfsic_state *state, 291 struct btrfs_fs_devices *fs_devices); 292 static int btrfsic_process_metablock(struct btrfsic_state *state, 293 struct btrfsic_block *block, 294 struct btrfsic_block_data_ctx *block_ctx, 295 int limit_nesting, int force_iodone_flag); 296 static void btrfsic_read_from_block_data( 297 struct btrfsic_block_data_ctx *block_ctx, 298 void *dst, u32 offset, size_t len); 299 static int btrfsic_create_link_to_next_block( 300 struct btrfsic_state *state, 301 struct btrfsic_block *block, 302 struct btrfsic_block_data_ctx 303 *block_ctx, u64 next_bytenr, 304 int limit_nesting, 305 struct btrfsic_block_data_ctx *next_block_ctx, 306 struct btrfsic_block **next_blockp, 307 int force_iodone_flag, 308 int *num_copiesp, int *mirror_nump, 309 struct btrfs_disk_key *disk_key, 310 u64 parent_generation); 311 static int btrfsic_handle_extent_data(struct btrfsic_state *state, 312 struct btrfsic_block *block, 313 struct btrfsic_block_data_ctx *block_ctx, 314 u32 item_offset, int force_iodone_flag); 315 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 316 struct btrfsic_block_data_ctx *block_ctx_out, 317 int mirror_num); 318 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx); 319 static int btrfsic_read_block(struct btrfsic_state *state, 320 struct btrfsic_block_data_ctx *block_ctx); 321 static void btrfsic_dump_database(struct btrfsic_state *state); 322 static int btrfsic_test_for_metadata(struct btrfsic_state *state, 323 char **datav, unsigned int num_pages); 324 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 325 u64 dev_bytenr, char **mapped_datav, 326 unsigned int num_pages, 327 struct bio *bio, int *bio_is_patched, 328 struct buffer_head *bh, 329 int submit_bio_bh_rw); 330 static int btrfsic_process_written_superblock( 331 struct btrfsic_state *state, 332 struct btrfsic_block *const block, 333 struct btrfs_super_block *const super_hdr); 334 static void btrfsic_bio_end_io(struct bio *bp); 335 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate); 336 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state, 337 const struct btrfsic_block *block, 338 int recursion_level); 339 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 340 struct btrfsic_block *const block, 341 int recursion_level); 342 static void btrfsic_print_add_link(const struct btrfsic_state *state, 343 const struct btrfsic_block_link *l); 344 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 345 const struct btrfsic_block_link *l); 346 static char btrfsic_get_block_type(const struct btrfsic_state *state, 347 const struct btrfsic_block *block); 348 static void btrfsic_dump_tree(const struct btrfsic_state *state); 349 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 350 const struct btrfsic_block *block, 351 int indent_level); 352 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 353 struct btrfsic_state *state, 354 struct btrfsic_block_data_ctx *next_block_ctx, 355 struct btrfsic_block *next_block, 356 struct btrfsic_block *from_block, 357 u64 parent_generation); 358 static struct btrfsic_block *btrfsic_block_lookup_or_add( 359 struct btrfsic_state *state, 360 struct btrfsic_block_data_ctx *block_ctx, 361 const char *additional_string, 362 int is_metadata, 363 int is_iodone, 364 int never_written, 365 int mirror_num, 366 int *was_created); 367 static int btrfsic_process_superblock_dev_mirror( 368 struct btrfsic_state *state, 369 struct btrfsic_dev_state *dev_state, 370 struct btrfs_device *device, 371 int superblock_mirror_num, 372 struct btrfsic_dev_state **selected_dev_state, 373 struct btrfs_super_block *selected_super); 374 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev); 375 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 376 u64 bytenr, 377 struct btrfsic_dev_state *dev_state, 378 u64 dev_bytenr); 379 380 static struct mutex btrfsic_mutex; 381 static int btrfsic_is_initialized; 382 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable; 383 384 385 static void btrfsic_block_init(struct btrfsic_block *b) 386 { 387 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER; 388 b->dev_state = NULL; 389 b->dev_bytenr = 0; 390 b->logical_bytenr = 0; 391 b->generation = BTRFSIC_GENERATION_UNKNOWN; 392 b->disk_key.objectid = 0; 393 b->disk_key.type = 0; 394 b->disk_key.offset = 0; 395 b->is_metadata = 0; 396 b->is_superblock = 0; 397 b->is_iodone = 0; 398 b->iodone_w_error = 0; 399 b->never_written = 0; 400 b->mirror_num = 0; 401 b->next_in_same_bio = NULL; 402 b->orig_bio_bh_private = NULL; 403 b->orig_bio_bh_end_io.bio = NULL; 404 INIT_LIST_HEAD(&b->collision_resolving_node); 405 INIT_LIST_HEAD(&b->all_blocks_node); 406 INIT_LIST_HEAD(&b->ref_to_list); 407 INIT_LIST_HEAD(&b->ref_from_list); 408 b->submit_bio_bh_rw = 0; 409 b->flush_gen = 0; 410 } 411 412 static struct btrfsic_block *btrfsic_block_alloc(void) 413 { 414 struct btrfsic_block *b; 415 416 b = kzalloc(sizeof(*b), GFP_NOFS); 417 if (NULL != b) 418 btrfsic_block_init(b); 419 420 return b; 421 } 422 423 static void btrfsic_block_free(struct btrfsic_block *b) 424 { 425 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num)); 426 kfree(b); 427 } 428 429 static void btrfsic_block_link_init(struct btrfsic_block_link *l) 430 { 431 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER; 432 l->ref_cnt = 1; 433 INIT_LIST_HEAD(&l->node_ref_to); 434 INIT_LIST_HEAD(&l->node_ref_from); 435 INIT_LIST_HEAD(&l->collision_resolving_node); 436 l->block_ref_to = NULL; 437 l->block_ref_from = NULL; 438 } 439 440 static struct btrfsic_block_link *btrfsic_block_link_alloc(void) 441 { 442 struct btrfsic_block_link *l; 443 444 l = kzalloc(sizeof(*l), GFP_NOFS); 445 if (NULL != l) 446 btrfsic_block_link_init(l); 447 448 return l; 449 } 450 451 static void btrfsic_block_link_free(struct btrfsic_block_link *l) 452 { 453 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num)); 454 kfree(l); 455 } 456 457 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds) 458 { 459 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER; 460 ds->bdev = NULL; 461 ds->state = NULL; 462 ds->name[0] = '\0'; 463 INIT_LIST_HEAD(&ds->collision_resolving_node); 464 ds->last_flush_gen = 0; 465 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush); 466 ds->dummy_block_for_bio_bh_flush.is_iodone = 1; 467 ds->dummy_block_for_bio_bh_flush.dev_state = ds; 468 } 469 470 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void) 471 { 472 struct btrfsic_dev_state *ds; 473 474 ds = kzalloc(sizeof(*ds), GFP_NOFS); 475 if (NULL != ds) 476 btrfsic_dev_state_init(ds); 477 478 return ds; 479 } 480 481 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds) 482 { 483 BUG_ON(!(NULL == ds || 484 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num)); 485 kfree(ds); 486 } 487 488 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h) 489 { 490 int i; 491 492 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++) 493 INIT_LIST_HEAD(h->table + i); 494 } 495 496 static void btrfsic_block_hashtable_add(struct btrfsic_block *b, 497 struct btrfsic_block_hashtable *h) 498 { 499 const unsigned int hashval = 500 (((unsigned int)(b->dev_bytenr >> 16)) ^ 501 ((unsigned int)((uintptr_t)b->dev_state->bdev))) & 502 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 503 504 list_add(&b->collision_resolving_node, h->table + hashval); 505 } 506 507 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b) 508 { 509 list_del(&b->collision_resolving_node); 510 } 511 512 static struct btrfsic_block *btrfsic_block_hashtable_lookup( 513 struct block_device *bdev, 514 u64 dev_bytenr, 515 struct btrfsic_block_hashtable *h) 516 { 517 const unsigned int hashval = 518 (((unsigned int)(dev_bytenr >> 16)) ^ 519 ((unsigned int)((uintptr_t)bdev))) & 520 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); 521 struct btrfsic_block *b; 522 523 list_for_each_entry(b, h->table + hashval, collision_resolving_node) { 524 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr) 525 return b; 526 } 527 528 return NULL; 529 } 530 531 static void btrfsic_block_link_hashtable_init( 532 struct btrfsic_block_link_hashtable *h) 533 { 534 int i; 535 536 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++) 537 INIT_LIST_HEAD(h->table + i); 538 } 539 540 static void btrfsic_block_link_hashtable_add( 541 struct btrfsic_block_link *l, 542 struct btrfsic_block_link_hashtable *h) 543 { 544 const unsigned int hashval = 545 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^ 546 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^ 547 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^ 548 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev))) 549 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 550 551 BUG_ON(NULL == l->block_ref_to); 552 BUG_ON(NULL == l->block_ref_from); 553 list_add(&l->collision_resolving_node, h->table + hashval); 554 } 555 556 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l) 557 { 558 list_del(&l->collision_resolving_node); 559 } 560 561 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( 562 struct block_device *bdev_ref_to, 563 u64 dev_bytenr_ref_to, 564 struct block_device *bdev_ref_from, 565 u64 dev_bytenr_ref_from, 566 struct btrfsic_block_link_hashtable *h) 567 { 568 const unsigned int hashval = 569 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^ 570 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^ 571 ((unsigned int)((uintptr_t)bdev_ref_to)) ^ 572 ((unsigned int)((uintptr_t)bdev_ref_from))) & 573 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); 574 struct btrfsic_block_link *l; 575 576 list_for_each_entry(l, h->table + hashval, collision_resolving_node) { 577 BUG_ON(NULL == l->block_ref_to); 578 BUG_ON(NULL == l->block_ref_from); 579 if (l->block_ref_to->dev_state->bdev == bdev_ref_to && 580 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to && 581 l->block_ref_from->dev_state->bdev == bdev_ref_from && 582 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from) 583 return l; 584 } 585 586 return NULL; 587 } 588 589 static void btrfsic_dev_state_hashtable_init( 590 struct btrfsic_dev_state_hashtable *h) 591 { 592 int i; 593 594 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++) 595 INIT_LIST_HEAD(h->table + i); 596 } 597 598 static void btrfsic_dev_state_hashtable_add( 599 struct btrfsic_dev_state *ds, 600 struct btrfsic_dev_state_hashtable *h) 601 { 602 const unsigned int hashval = 603 (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) & 604 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); 605 606 list_add(&ds->collision_resolving_node, h->table + hashval); 607 } 608 609 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds) 610 { 611 list_del(&ds->collision_resolving_node); 612 } 613 614 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev, 615 struct btrfsic_dev_state_hashtable *h) 616 { 617 const unsigned int hashval = 618 dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1); 619 struct btrfsic_dev_state *ds; 620 621 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) { 622 if (ds->bdev->bd_dev == dev) 623 return ds; 624 } 625 626 return NULL; 627 } 628 629 static int btrfsic_process_superblock(struct btrfsic_state *state, 630 struct btrfs_fs_devices *fs_devices) 631 { 632 struct btrfs_fs_info *fs_info = state->fs_info; 633 struct btrfs_super_block *selected_super; 634 struct list_head *dev_head = &fs_devices->devices; 635 struct btrfs_device *device; 636 struct btrfsic_dev_state *selected_dev_state = NULL; 637 int ret = 0; 638 int pass; 639 640 BUG_ON(NULL == state); 641 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS); 642 if (NULL == selected_super) { 643 pr_info("btrfsic: error, kmalloc failed!\n"); 644 return -ENOMEM; 645 } 646 647 list_for_each_entry(device, dev_head, dev_list) { 648 int i; 649 struct btrfsic_dev_state *dev_state; 650 651 if (!device->bdev || !device->name) 652 continue; 653 654 dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev); 655 BUG_ON(NULL == dev_state); 656 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 657 ret = btrfsic_process_superblock_dev_mirror( 658 state, dev_state, device, i, 659 &selected_dev_state, selected_super); 660 if (0 != ret && 0 == i) { 661 kfree(selected_super); 662 return ret; 663 } 664 } 665 } 666 667 if (NULL == state->latest_superblock) { 668 pr_info("btrfsic: no superblock found!\n"); 669 kfree(selected_super); 670 return -1; 671 } 672 673 state->csum_size = btrfs_super_csum_size(selected_super); 674 675 for (pass = 0; pass < 3; pass++) { 676 int num_copies; 677 int mirror_num; 678 u64 next_bytenr; 679 680 switch (pass) { 681 case 0: 682 next_bytenr = btrfs_super_root(selected_super); 683 if (state->print_mask & 684 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 685 pr_info("root@%llu\n", next_bytenr); 686 break; 687 case 1: 688 next_bytenr = btrfs_super_chunk_root(selected_super); 689 if (state->print_mask & 690 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 691 pr_info("chunk@%llu\n", next_bytenr); 692 break; 693 case 2: 694 next_bytenr = btrfs_super_log_root(selected_super); 695 if (0 == next_bytenr) 696 continue; 697 if (state->print_mask & 698 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 699 pr_info("log@%llu\n", next_bytenr); 700 break; 701 } 702 703 num_copies = btrfs_num_copies(fs_info, next_bytenr, 704 state->metablock_size); 705 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 706 pr_info("num_copies(log_bytenr=%llu) = %d\n", 707 next_bytenr, num_copies); 708 709 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 710 struct btrfsic_block *next_block; 711 struct btrfsic_block_data_ctx tmp_next_block_ctx; 712 struct btrfsic_block_link *l; 713 714 ret = btrfsic_map_block(state, next_bytenr, 715 state->metablock_size, 716 &tmp_next_block_ctx, 717 mirror_num); 718 if (ret) { 719 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n", 720 next_bytenr, mirror_num); 721 kfree(selected_super); 722 return -1; 723 } 724 725 next_block = btrfsic_block_hashtable_lookup( 726 tmp_next_block_ctx.dev->bdev, 727 tmp_next_block_ctx.dev_bytenr, 728 &state->block_hashtable); 729 BUG_ON(NULL == next_block); 730 731 l = btrfsic_block_link_hashtable_lookup( 732 tmp_next_block_ctx.dev->bdev, 733 tmp_next_block_ctx.dev_bytenr, 734 state->latest_superblock->dev_state-> 735 bdev, 736 state->latest_superblock->dev_bytenr, 737 &state->block_link_hashtable); 738 BUG_ON(NULL == l); 739 740 ret = btrfsic_read_block(state, &tmp_next_block_ctx); 741 if (ret < (int)PAGE_SIZE) { 742 pr_info("btrfsic: read @logical %llu failed!\n", 743 tmp_next_block_ctx.start); 744 btrfsic_release_block_ctx(&tmp_next_block_ctx); 745 kfree(selected_super); 746 return -1; 747 } 748 749 ret = btrfsic_process_metablock(state, 750 next_block, 751 &tmp_next_block_ctx, 752 BTRFS_MAX_LEVEL + 3, 1); 753 btrfsic_release_block_ctx(&tmp_next_block_ctx); 754 } 755 } 756 757 kfree(selected_super); 758 return ret; 759 } 760 761 static int btrfsic_process_superblock_dev_mirror( 762 struct btrfsic_state *state, 763 struct btrfsic_dev_state *dev_state, 764 struct btrfs_device *device, 765 int superblock_mirror_num, 766 struct btrfsic_dev_state **selected_dev_state, 767 struct btrfs_super_block *selected_super) 768 { 769 struct btrfs_fs_info *fs_info = state->fs_info; 770 struct btrfs_super_block *super_tmp; 771 u64 dev_bytenr; 772 struct buffer_head *bh; 773 struct btrfsic_block *superblock_tmp; 774 int pass; 775 struct block_device *const superblock_bdev = device->bdev; 776 777 /* super block bytenr is always the unmapped device bytenr */ 778 dev_bytenr = btrfs_sb_offset(superblock_mirror_num); 779 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes) 780 return -1; 781 bh = __bread(superblock_bdev, dev_bytenr / BTRFS_BDEV_BLOCKSIZE, 782 BTRFS_SUPER_INFO_SIZE); 783 if (NULL == bh) 784 return -1; 785 super_tmp = (struct btrfs_super_block *) 786 (bh->b_data + (dev_bytenr & (BTRFS_BDEV_BLOCKSIZE - 1))); 787 788 if (btrfs_super_bytenr(super_tmp) != dev_bytenr || 789 btrfs_super_magic(super_tmp) != BTRFS_MAGIC || 790 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) || 791 btrfs_super_nodesize(super_tmp) != state->metablock_size || 792 btrfs_super_sectorsize(super_tmp) != state->datablock_size) { 793 brelse(bh); 794 return 0; 795 } 796 797 superblock_tmp = 798 btrfsic_block_hashtable_lookup(superblock_bdev, 799 dev_bytenr, 800 &state->block_hashtable); 801 if (NULL == superblock_tmp) { 802 superblock_tmp = btrfsic_block_alloc(); 803 if (NULL == superblock_tmp) { 804 pr_info("btrfsic: error, kmalloc failed!\n"); 805 brelse(bh); 806 return -1; 807 } 808 /* for superblock, only the dev_bytenr makes sense */ 809 superblock_tmp->dev_bytenr = dev_bytenr; 810 superblock_tmp->dev_state = dev_state; 811 superblock_tmp->logical_bytenr = dev_bytenr; 812 superblock_tmp->generation = btrfs_super_generation(super_tmp); 813 superblock_tmp->is_metadata = 1; 814 superblock_tmp->is_superblock = 1; 815 superblock_tmp->is_iodone = 1; 816 superblock_tmp->never_written = 0; 817 superblock_tmp->mirror_num = 1 + superblock_mirror_num; 818 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 819 btrfs_info_in_rcu(fs_info, 820 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)", 821 superblock_bdev, 822 rcu_str_deref(device->name), dev_bytenr, 823 dev_state->name, dev_bytenr, 824 superblock_mirror_num); 825 list_add(&superblock_tmp->all_blocks_node, 826 &state->all_blocks_list); 827 btrfsic_block_hashtable_add(superblock_tmp, 828 &state->block_hashtable); 829 } 830 831 /* select the one with the highest generation field */ 832 if (btrfs_super_generation(super_tmp) > 833 state->max_superblock_generation || 834 0 == state->max_superblock_generation) { 835 memcpy(selected_super, super_tmp, sizeof(*selected_super)); 836 *selected_dev_state = dev_state; 837 state->max_superblock_generation = 838 btrfs_super_generation(super_tmp); 839 state->latest_superblock = superblock_tmp; 840 } 841 842 for (pass = 0; pass < 3; pass++) { 843 u64 next_bytenr; 844 int num_copies; 845 int mirror_num; 846 const char *additional_string = NULL; 847 struct btrfs_disk_key tmp_disk_key; 848 849 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; 850 tmp_disk_key.offset = 0; 851 switch (pass) { 852 case 0: 853 btrfs_set_disk_key_objectid(&tmp_disk_key, 854 BTRFS_ROOT_TREE_OBJECTID); 855 additional_string = "initial root "; 856 next_bytenr = btrfs_super_root(super_tmp); 857 break; 858 case 1: 859 btrfs_set_disk_key_objectid(&tmp_disk_key, 860 BTRFS_CHUNK_TREE_OBJECTID); 861 additional_string = "initial chunk "; 862 next_bytenr = btrfs_super_chunk_root(super_tmp); 863 break; 864 case 2: 865 btrfs_set_disk_key_objectid(&tmp_disk_key, 866 BTRFS_TREE_LOG_OBJECTID); 867 additional_string = "initial log "; 868 next_bytenr = btrfs_super_log_root(super_tmp); 869 if (0 == next_bytenr) 870 continue; 871 break; 872 } 873 874 num_copies = btrfs_num_copies(fs_info, next_bytenr, 875 state->metablock_size); 876 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 877 pr_info("num_copies(log_bytenr=%llu) = %d\n", 878 next_bytenr, num_copies); 879 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 880 struct btrfsic_block *next_block; 881 struct btrfsic_block_data_ctx tmp_next_block_ctx; 882 struct btrfsic_block_link *l; 883 884 if (btrfsic_map_block(state, next_bytenr, 885 state->metablock_size, 886 &tmp_next_block_ctx, 887 mirror_num)) { 888 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n", 889 next_bytenr, mirror_num); 890 brelse(bh); 891 return -1; 892 } 893 894 next_block = btrfsic_block_lookup_or_add( 895 state, &tmp_next_block_ctx, 896 additional_string, 1, 1, 0, 897 mirror_num, NULL); 898 if (NULL == next_block) { 899 btrfsic_release_block_ctx(&tmp_next_block_ctx); 900 brelse(bh); 901 return -1; 902 } 903 904 next_block->disk_key = tmp_disk_key; 905 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 906 l = btrfsic_block_link_lookup_or_add( 907 state, &tmp_next_block_ctx, 908 next_block, superblock_tmp, 909 BTRFSIC_GENERATION_UNKNOWN); 910 btrfsic_release_block_ctx(&tmp_next_block_ctx); 911 if (NULL == l) { 912 brelse(bh); 913 return -1; 914 } 915 } 916 } 917 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES) 918 btrfsic_dump_tree_sub(state, superblock_tmp, 0); 919 920 brelse(bh); 921 return 0; 922 } 923 924 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void) 925 { 926 struct btrfsic_stack_frame *sf; 927 928 sf = kzalloc(sizeof(*sf), GFP_NOFS); 929 if (NULL == sf) 930 pr_info("btrfsic: alloc memory failed!\n"); 931 else 932 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER; 933 return sf; 934 } 935 936 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf) 937 { 938 BUG_ON(!(NULL == sf || 939 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic)); 940 kfree(sf); 941 } 942 943 static noinline_for_stack int btrfsic_process_metablock( 944 struct btrfsic_state *state, 945 struct btrfsic_block *const first_block, 946 struct btrfsic_block_data_ctx *const first_block_ctx, 947 int first_limit_nesting, int force_iodone_flag) 948 { 949 struct btrfsic_stack_frame initial_stack_frame = { 0 }; 950 struct btrfsic_stack_frame *sf; 951 struct btrfsic_stack_frame *next_stack; 952 struct btrfs_header *const first_hdr = 953 (struct btrfs_header *)first_block_ctx->datav[0]; 954 955 BUG_ON(!first_hdr); 956 sf = &initial_stack_frame; 957 sf->error = 0; 958 sf->i = -1; 959 sf->limit_nesting = first_limit_nesting; 960 sf->block = first_block; 961 sf->block_ctx = first_block_ctx; 962 sf->next_block = NULL; 963 sf->hdr = first_hdr; 964 sf->prev = NULL; 965 966 continue_with_new_stack_frame: 967 sf->block->generation = le64_to_cpu(sf->hdr->generation); 968 if (0 == sf->hdr->level) { 969 struct btrfs_leaf *const leafhdr = 970 (struct btrfs_leaf *)sf->hdr; 971 972 if (-1 == sf->i) { 973 sf->nr = btrfs_stack_header_nritems(&leafhdr->header); 974 975 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 976 pr_info("leaf %llu items %d generation %llu owner %llu\n", 977 sf->block_ctx->start, sf->nr, 978 btrfs_stack_header_generation( 979 &leafhdr->header), 980 btrfs_stack_header_owner( 981 &leafhdr->header)); 982 } 983 984 continue_with_current_leaf_stack_frame: 985 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 986 sf->i++; 987 sf->num_copies = 0; 988 } 989 990 if (sf->i < sf->nr) { 991 struct btrfs_item disk_item; 992 u32 disk_item_offset = 993 (uintptr_t)(leafhdr->items + sf->i) - 994 (uintptr_t)leafhdr; 995 struct btrfs_disk_key *disk_key; 996 u8 type; 997 u32 item_offset; 998 u32 item_size; 999 1000 if (disk_item_offset + sizeof(struct btrfs_item) > 1001 sf->block_ctx->len) { 1002 leaf_item_out_of_bounce_error: 1003 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n", 1004 sf->block_ctx->start, 1005 sf->block_ctx->dev->name); 1006 goto one_stack_frame_backwards; 1007 } 1008 btrfsic_read_from_block_data(sf->block_ctx, 1009 &disk_item, 1010 disk_item_offset, 1011 sizeof(struct btrfs_item)); 1012 item_offset = btrfs_stack_item_offset(&disk_item); 1013 item_size = btrfs_stack_item_size(&disk_item); 1014 disk_key = &disk_item.key; 1015 type = btrfs_disk_key_type(disk_key); 1016 1017 if (BTRFS_ROOT_ITEM_KEY == type) { 1018 struct btrfs_root_item root_item; 1019 u32 root_item_offset; 1020 u64 next_bytenr; 1021 1022 root_item_offset = item_offset + 1023 offsetof(struct btrfs_leaf, items); 1024 if (root_item_offset + item_size > 1025 sf->block_ctx->len) 1026 goto leaf_item_out_of_bounce_error; 1027 btrfsic_read_from_block_data( 1028 sf->block_ctx, &root_item, 1029 root_item_offset, 1030 item_size); 1031 next_bytenr = btrfs_root_bytenr(&root_item); 1032 1033 sf->error = 1034 btrfsic_create_link_to_next_block( 1035 state, 1036 sf->block, 1037 sf->block_ctx, 1038 next_bytenr, 1039 sf->limit_nesting, 1040 &sf->next_block_ctx, 1041 &sf->next_block, 1042 force_iodone_flag, 1043 &sf->num_copies, 1044 &sf->mirror_num, 1045 disk_key, 1046 btrfs_root_generation( 1047 &root_item)); 1048 if (sf->error) 1049 goto one_stack_frame_backwards; 1050 1051 if (NULL != sf->next_block) { 1052 struct btrfs_header *const next_hdr = 1053 (struct btrfs_header *) 1054 sf->next_block_ctx.datav[0]; 1055 1056 next_stack = 1057 btrfsic_stack_frame_alloc(); 1058 if (NULL == next_stack) { 1059 sf->error = -1; 1060 btrfsic_release_block_ctx( 1061 &sf-> 1062 next_block_ctx); 1063 goto one_stack_frame_backwards; 1064 } 1065 1066 next_stack->i = -1; 1067 next_stack->block = sf->next_block; 1068 next_stack->block_ctx = 1069 &sf->next_block_ctx; 1070 next_stack->next_block = NULL; 1071 next_stack->hdr = next_hdr; 1072 next_stack->limit_nesting = 1073 sf->limit_nesting - 1; 1074 next_stack->prev = sf; 1075 sf = next_stack; 1076 goto continue_with_new_stack_frame; 1077 } 1078 } else if (BTRFS_EXTENT_DATA_KEY == type && 1079 state->include_extent_data) { 1080 sf->error = btrfsic_handle_extent_data( 1081 state, 1082 sf->block, 1083 sf->block_ctx, 1084 item_offset, 1085 force_iodone_flag); 1086 if (sf->error) 1087 goto one_stack_frame_backwards; 1088 } 1089 1090 goto continue_with_current_leaf_stack_frame; 1091 } 1092 } else { 1093 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr; 1094 1095 if (-1 == sf->i) { 1096 sf->nr = btrfs_stack_header_nritems(&nodehdr->header); 1097 1098 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1099 pr_info("node %llu level %d items %d generation %llu owner %llu\n", 1100 sf->block_ctx->start, 1101 nodehdr->header.level, sf->nr, 1102 btrfs_stack_header_generation( 1103 &nodehdr->header), 1104 btrfs_stack_header_owner( 1105 &nodehdr->header)); 1106 } 1107 1108 continue_with_current_node_stack_frame: 1109 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { 1110 sf->i++; 1111 sf->num_copies = 0; 1112 } 1113 1114 if (sf->i < sf->nr) { 1115 struct btrfs_key_ptr key_ptr; 1116 u32 key_ptr_offset; 1117 u64 next_bytenr; 1118 1119 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) - 1120 (uintptr_t)nodehdr; 1121 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) > 1122 sf->block_ctx->len) { 1123 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n", 1124 sf->block_ctx->start, 1125 sf->block_ctx->dev->name); 1126 goto one_stack_frame_backwards; 1127 } 1128 btrfsic_read_from_block_data( 1129 sf->block_ctx, &key_ptr, key_ptr_offset, 1130 sizeof(struct btrfs_key_ptr)); 1131 next_bytenr = btrfs_stack_key_blockptr(&key_ptr); 1132 1133 sf->error = btrfsic_create_link_to_next_block( 1134 state, 1135 sf->block, 1136 sf->block_ctx, 1137 next_bytenr, 1138 sf->limit_nesting, 1139 &sf->next_block_ctx, 1140 &sf->next_block, 1141 force_iodone_flag, 1142 &sf->num_copies, 1143 &sf->mirror_num, 1144 &key_ptr.key, 1145 btrfs_stack_key_generation(&key_ptr)); 1146 if (sf->error) 1147 goto one_stack_frame_backwards; 1148 1149 if (NULL != sf->next_block) { 1150 struct btrfs_header *const next_hdr = 1151 (struct btrfs_header *) 1152 sf->next_block_ctx.datav[0]; 1153 1154 next_stack = btrfsic_stack_frame_alloc(); 1155 if (NULL == next_stack) { 1156 sf->error = -1; 1157 goto one_stack_frame_backwards; 1158 } 1159 1160 next_stack->i = -1; 1161 next_stack->block = sf->next_block; 1162 next_stack->block_ctx = &sf->next_block_ctx; 1163 next_stack->next_block = NULL; 1164 next_stack->hdr = next_hdr; 1165 next_stack->limit_nesting = 1166 sf->limit_nesting - 1; 1167 next_stack->prev = sf; 1168 sf = next_stack; 1169 goto continue_with_new_stack_frame; 1170 } 1171 1172 goto continue_with_current_node_stack_frame; 1173 } 1174 } 1175 1176 one_stack_frame_backwards: 1177 if (NULL != sf->prev) { 1178 struct btrfsic_stack_frame *const prev = sf->prev; 1179 1180 /* the one for the initial block is freed in the caller */ 1181 btrfsic_release_block_ctx(sf->block_ctx); 1182 1183 if (sf->error) { 1184 prev->error = sf->error; 1185 btrfsic_stack_frame_free(sf); 1186 sf = prev; 1187 goto one_stack_frame_backwards; 1188 } 1189 1190 btrfsic_stack_frame_free(sf); 1191 sf = prev; 1192 goto continue_with_new_stack_frame; 1193 } else { 1194 BUG_ON(&initial_stack_frame != sf); 1195 } 1196 1197 return sf->error; 1198 } 1199 1200 static void btrfsic_read_from_block_data( 1201 struct btrfsic_block_data_ctx *block_ctx, 1202 void *dstv, u32 offset, size_t len) 1203 { 1204 size_t cur; 1205 size_t pgoff; 1206 char *kaddr; 1207 char *dst = (char *)dstv; 1208 size_t start_offset = offset_in_page(block_ctx->start); 1209 unsigned long i = (start_offset + offset) >> PAGE_SHIFT; 1210 1211 WARN_ON(offset + len > block_ctx->len); 1212 pgoff = offset_in_page(start_offset + offset); 1213 1214 while (len > 0) { 1215 cur = min(len, ((size_t)PAGE_SIZE - pgoff)); 1216 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE)); 1217 kaddr = block_ctx->datav[i]; 1218 memcpy(dst, kaddr + pgoff, cur); 1219 1220 dst += cur; 1221 len -= cur; 1222 pgoff = 0; 1223 i++; 1224 } 1225 } 1226 1227 static int btrfsic_create_link_to_next_block( 1228 struct btrfsic_state *state, 1229 struct btrfsic_block *block, 1230 struct btrfsic_block_data_ctx *block_ctx, 1231 u64 next_bytenr, 1232 int limit_nesting, 1233 struct btrfsic_block_data_ctx *next_block_ctx, 1234 struct btrfsic_block **next_blockp, 1235 int force_iodone_flag, 1236 int *num_copiesp, int *mirror_nump, 1237 struct btrfs_disk_key *disk_key, 1238 u64 parent_generation) 1239 { 1240 struct btrfs_fs_info *fs_info = state->fs_info; 1241 struct btrfsic_block *next_block = NULL; 1242 int ret; 1243 struct btrfsic_block_link *l; 1244 int did_alloc_block_link; 1245 int block_was_created; 1246 1247 *next_blockp = NULL; 1248 if (0 == *num_copiesp) { 1249 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr, 1250 state->metablock_size); 1251 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1252 pr_info("num_copies(log_bytenr=%llu) = %d\n", 1253 next_bytenr, *num_copiesp); 1254 *mirror_nump = 1; 1255 } 1256 1257 if (*mirror_nump > *num_copiesp) 1258 return 0; 1259 1260 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1261 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n", 1262 *mirror_nump); 1263 ret = btrfsic_map_block(state, next_bytenr, 1264 state->metablock_size, 1265 next_block_ctx, *mirror_nump); 1266 if (ret) { 1267 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1268 next_bytenr, *mirror_nump); 1269 btrfsic_release_block_ctx(next_block_ctx); 1270 *next_blockp = NULL; 1271 return -1; 1272 } 1273 1274 next_block = btrfsic_block_lookup_or_add(state, 1275 next_block_ctx, "referenced ", 1276 1, force_iodone_flag, 1277 !force_iodone_flag, 1278 *mirror_nump, 1279 &block_was_created); 1280 if (NULL == next_block) { 1281 btrfsic_release_block_ctx(next_block_ctx); 1282 *next_blockp = NULL; 1283 return -1; 1284 } 1285 if (block_was_created) { 1286 l = NULL; 1287 next_block->generation = BTRFSIC_GENERATION_UNKNOWN; 1288 } else { 1289 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1290 if (next_block->logical_bytenr != next_bytenr && 1291 !(!next_block->is_metadata && 1292 0 == next_block->logical_bytenr)) 1293 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1294 next_bytenr, next_block_ctx->dev->name, 1295 next_block_ctx->dev_bytenr, *mirror_nump, 1296 btrfsic_get_block_type(state, 1297 next_block), 1298 next_block->logical_bytenr); 1299 else 1300 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1301 next_bytenr, next_block_ctx->dev->name, 1302 next_block_ctx->dev_bytenr, *mirror_nump, 1303 btrfsic_get_block_type(state, 1304 next_block)); 1305 } 1306 next_block->logical_bytenr = next_bytenr; 1307 1308 next_block->mirror_num = *mirror_nump; 1309 l = btrfsic_block_link_hashtable_lookup( 1310 next_block_ctx->dev->bdev, 1311 next_block_ctx->dev_bytenr, 1312 block_ctx->dev->bdev, 1313 block_ctx->dev_bytenr, 1314 &state->block_link_hashtable); 1315 } 1316 1317 next_block->disk_key = *disk_key; 1318 if (NULL == l) { 1319 l = btrfsic_block_link_alloc(); 1320 if (NULL == l) { 1321 pr_info("btrfsic: error, kmalloc failed!\n"); 1322 btrfsic_release_block_ctx(next_block_ctx); 1323 *next_blockp = NULL; 1324 return -1; 1325 } 1326 1327 did_alloc_block_link = 1; 1328 l->block_ref_to = next_block; 1329 l->block_ref_from = block; 1330 l->ref_cnt = 1; 1331 l->parent_generation = parent_generation; 1332 1333 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1334 btrfsic_print_add_link(state, l); 1335 1336 list_add(&l->node_ref_to, &block->ref_to_list); 1337 list_add(&l->node_ref_from, &next_block->ref_from_list); 1338 1339 btrfsic_block_link_hashtable_add(l, 1340 &state->block_link_hashtable); 1341 } else { 1342 did_alloc_block_link = 0; 1343 if (0 == limit_nesting) { 1344 l->ref_cnt++; 1345 l->parent_generation = parent_generation; 1346 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1347 btrfsic_print_add_link(state, l); 1348 } 1349 } 1350 1351 if (limit_nesting > 0 && did_alloc_block_link) { 1352 ret = btrfsic_read_block(state, next_block_ctx); 1353 if (ret < (int)next_block_ctx->len) { 1354 pr_info("btrfsic: read block @logical %llu failed!\n", 1355 next_bytenr); 1356 btrfsic_release_block_ctx(next_block_ctx); 1357 *next_blockp = NULL; 1358 return -1; 1359 } 1360 1361 *next_blockp = next_block; 1362 } else { 1363 *next_blockp = NULL; 1364 } 1365 (*mirror_nump)++; 1366 1367 return 0; 1368 } 1369 1370 static int btrfsic_handle_extent_data( 1371 struct btrfsic_state *state, 1372 struct btrfsic_block *block, 1373 struct btrfsic_block_data_ctx *block_ctx, 1374 u32 item_offset, int force_iodone_flag) 1375 { 1376 struct btrfs_fs_info *fs_info = state->fs_info; 1377 struct btrfs_file_extent_item file_extent_item; 1378 u64 file_extent_item_offset; 1379 u64 next_bytenr; 1380 u64 num_bytes; 1381 u64 generation; 1382 struct btrfsic_block_link *l; 1383 int ret; 1384 1385 file_extent_item_offset = offsetof(struct btrfs_leaf, items) + 1386 item_offset; 1387 if (file_extent_item_offset + 1388 offsetof(struct btrfs_file_extent_item, disk_num_bytes) > 1389 block_ctx->len) { 1390 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n", 1391 block_ctx->start, block_ctx->dev->name); 1392 return -1; 1393 } 1394 1395 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1396 file_extent_item_offset, 1397 offsetof(struct btrfs_file_extent_item, disk_num_bytes)); 1398 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type || 1399 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) { 1400 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1401 pr_info("extent_data: type %u, disk_bytenr = %llu\n", 1402 file_extent_item.type, 1403 btrfs_stack_file_extent_disk_bytenr( 1404 &file_extent_item)); 1405 return 0; 1406 } 1407 1408 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) > 1409 block_ctx->len) { 1410 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n", 1411 block_ctx->start, block_ctx->dev->name); 1412 return -1; 1413 } 1414 btrfsic_read_from_block_data(block_ctx, &file_extent_item, 1415 file_extent_item_offset, 1416 sizeof(struct btrfs_file_extent_item)); 1417 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item); 1418 if (btrfs_stack_file_extent_compression(&file_extent_item) == 1419 BTRFS_COMPRESS_NONE) { 1420 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item); 1421 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item); 1422 } else { 1423 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item); 1424 } 1425 generation = btrfs_stack_file_extent_generation(&file_extent_item); 1426 1427 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1428 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n", 1429 file_extent_item.type, 1430 btrfs_stack_file_extent_disk_bytenr(&file_extent_item), 1431 btrfs_stack_file_extent_offset(&file_extent_item), 1432 num_bytes); 1433 while (num_bytes > 0) { 1434 u32 chunk_len; 1435 int num_copies; 1436 int mirror_num; 1437 1438 if (num_bytes > state->datablock_size) 1439 chunk_len = state->datablock_size; 1440 else 1441 chunk_len = num_bytes; 1442 1443 num_copies = btrfs_num_copies(fs_info, next_bytenr, 1444 state->datablock_size); 1445 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 1446 pr_info("num_copies(log_bytenr=%llu) = %d\n", 1447 next_bytenr, num_copies); 1448 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 1449 struct btrfsic_block_data_ctx next_block_ctx; 1450 struct btrfsic_block *next_block; 1451 int block_was_created; 1452 1453 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1454 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n", 1455 mirror_num); 1456 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) 1457 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n", 1458 next_bytenr, chunk_len); 1459 ret = btrfsic_map_block(state, next_bytenr, 1460 chunk_len, &next_block_ctx, 1461 mirror_num); 1462 if (ret) { 1463 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 1464 next_bytenr, mirror_num); 1465 return -1; 1466 } 1467 1468 next_block = btrfsic_block_lookup_or_add( 1469 state, 1470 &next_block_ctx, 1471 "referenced ", 1472 0, 1473 force_iodone_flag, 1474 !force_iodone_flag, 1475 mirror_num, 1476 &block_was_created); 1477 if (NULL == next_block) { 1478 pr_info("btrfsic: error, kmalloc failed!\n"); 1479 btrfsic_release_block_ctx(&next_block_ctx); 1480 return -1; 1481 } 1482 if (!block_was_created) { 1483 if ((state->print_mask & 1484 BTRFSIC_PRINT_MASK_VERBOSE) && 1485 next_block->logical_bytenr != next_bytenr && 1486 !(!next_block->is_metadata && 1487 0 == next_block->logical_bytenr)) { 1488 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n", 1489 next_bytenr, 1490 next_block_ctx.dev->name, 1491 next_block_ctx.dev_bytenr, 1492 mirror_num, 1493 next_block->logical_bytenr); 1494 } 1495 next_block->logical_bytenr = next_bytenr; 1496 next_block->mirror_num = mirror_num; 1497 } 1498 1499 l = btrfsic_block_link_lookup_or_add(state, 1500 &next_block_ctx, 1501 next_block, block, 1502 generation); 1503 btrfsic_release_block_ctx(&next_block_ctx); 1504 if (NULL == l) 1505 return -1; 1506 } 1507 1508 next_bytenr += chunk_len; 1509 num_bytes -= chunk_len; 1510 } 1511 1512 return 0; 1513 } 1514 1515 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, 1516 struct btrfsic_block_data_ctx *block_ctx_out, 1517 int mirror_num) 1518 { 1519 struct btrfs_fs_info *fs_info = state->fs_info; 1520 int ret; 1521 u64 length; 1522 struct btrfs_bio *multi = NULL; 1523 struct btrfs_device *device; 1524 1525 length = len; 1526 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 1527 bytenr, &length, &multi, mirror_num); 1528 1529 if (ret) { 1530 block_ctx_out->start = 0; 1531 block_ctx_out->dev_bytenr = 0; 1532 block_ctx_out->len = 0; 1533 block_ctx_out->dev = NULL; 1534 block_ctx_out->datav = NULL; 1535 block_ctx_out->pagev = NULL; 1536 block_ctx_out->mem_to_free = NULL; 1537 1538 return ret; 1539 } 1540 1541 device = multi->stripes[0].dev; 1542 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) || 1543 !device->bdev || !device->name) 1544 block_ctx_out->dev = NULL; 1545 else 1546 block_ctx_out->dev = btrfsic_dev_state_lookup( 1547 device->bdev->bd_dev); 1548 block_ctx_out->dev_bytenr = multi->stripes[0].physical; 1549 block_ctx_out->start = bytenr; 1550 block_ctx_out->len = len; 1551 block_ctx_out->datav = NULL; 1552 block_ctx_out->pagev = NULL; 1553 block_ctx_out->mem_to_free = NULL; 1554 1555 kfree(multi); 1556 if (NULL == block_ctx_out->dev) { 1557 ret = -ENXIO; 1558 pr_info("btrfsic: error, cannot lookup dev (#1)!\n"); 1559 } 1560 1561 return ret; 1562 } 1563 1564 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx) 1565 { 1566 if (block_ctx->mem_to_free) { 1567 unsigned int num_pages; 1568 1569 BUG_ON(!block_ctx->datav); 1570 BUG_ON(!block_ctx->pagev); 1571 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >> 1572 PAGE_SHIFT; 1573 while (num_pages > 0) { 1574 num_pages--; 1575 if (block_ctx->datav[num_pages]) { 1576 kunmap(block_ctx->pagev[num_pages]); 1577 block_ctx->datav[num_pages] = NULL; 1578 } 1579 if (block_ctx->pagev[num_pages]) { 1580 __free_page(block_ctx->pagev[num_pages]); 1581 block_ctx->pagev[num_pages] = NULL; 1582 } 1583 } 1584 1585 kfree(block_ctx->mem_to_free); 1586 block_ctx->mem_to_free = NULL; 1587 block_ctx->pagev = NULL; 1588 block_ctx->datav = NULL; 1589 } 1590 } 1591 1592 static int btrfsic_read_block(struct btrfsic_state *state, 1593 struct btrfsic_block_data_ctx *block_ctx) 1594 { 1595 unsigned int num_pages; 1596 unsigned int i; 1597 size_t size; 1598 u64 dev_bytenr; 1599 int ret; 1600 1601 BUG_ON(block_ctx->datav); 1602 BUG_ON(block_ctx->pagev); 1603 BUG_ON(block_ctx->mem_to_free); 1604 if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) { 1605 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n", 1606 block_ctx->dev_bytenr); 1607 return -1; 1608 } 1609 1610 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >> 1611 PAGE_SHIFT; 1612 size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev); 1613 block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS); 1614 if (!block_ctx->mem_to_free) 1615 return -ENOMEM; 1616 block_ctx->datav = block_ctx->mem_to_free; 1617 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages); 1618 for (i = 0; i < num_pages; i++) { 1619 block_ctx->pagev[i] = alloc_page(GFP_NOFS); 1620 if (!block_ctx->pagev[i]) 1621 return -1; 1622 } 1623 1624 dev_bytenr = block_ctx->dev_bytenr; 1625 for (i = 0; i < num_pages;) { 1626 struct bio *bio; 1627 unsigned int j; 1628 1629 bio = btrfs_io_bio_alloc(num_pages - i); 1630 bio_set_dev(bio, block_ctx->dev->bdev); 1631 bio->bi_iter.bi_sector = dev_bytenr >> 9; 1632 bio->bi_opf = REQ_OP_READ; 1633 1634 for (j = i; j < num_pages; j++) { 1635 ret = bio_add_page(bio, block_ctx->pagev[j], 1636 PAGE_SIZE, 0); 1637 if (PAGE_SIZE != ret) 1638 break; 1639 } 1640 if (j == i) { 1641 pr_info("btrfsic: error, failed to add a single page!\n"); 1642 return -1; 1643 } 1644 if (submit_bio_wait(bio)) { 1645 pr_info("btrfsic: read error at logical %llu dev %s!\n", 1646 block_ctx->start, block_ctx->dev->name); 1647 bio_put(bio); 1648 return -1; 1649 } 1650 bio_put(bio); 1651 dev_bytenr += (j - i) * PAGE_SIZE; 1652 i = j; 1653 } 1654 for (i = 0; i < num_pages; i++) 1655 block_ctx->datav[i] = kmap(block_ctx->pagev[i]); 1656 1657 return block_ctx->len; 1658 } 1659 1660 static void btrfsic_dump_database(struct btrfsic_state *state) 1661 { 1662 const struct btrfsic_block *b_all; 1663 1664 BUG_ON(NULL == state); 1665 1666 pr_info("all_blocks_list:\n"); 1667 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) { 1668 const struct btrfsic_block_link *l; 1669 1670 pr_info("%c-block @%llu (%s/%llu/%d)\n", 1671 btrfsic_get_block_type(state, b_all), 1672 b_all->logical_bytenr, b_all->dev_state->name, 1673 b_all->dev_bytenr, b_all->mirror_num); 1674 1675 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) { 1676 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n", 1677 btrfsic_get_block_type(state, b_all), 1678 b_all->logical_bytenr, b_all->dev_state->name, 1679 b_all->dev_bytenr, b_all->mirror_num, 1680 l->ref_cnt, 1681 btrfsic_get_block_type(state, l->block_ref_to), 1682 l->block_ref_to->logical_bytenr, 1683 l->block_ref_to->dev_state->name, 1684 l->block_ref_to->dev_bytenr, 1685 l->block_ref_to->mirror_num); 1686 } 1687 1688 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) { 1689 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n", 1690 btrfsic_get_block_type(state, b_all), 1691 b_all->logical_bytenr, b_all->dev_state->name, 1692 b_all->dev_bytenr, b_all->mirror_num, 1693 l->ref_cnt, 1694 btrfsic_get_block_type(state, l->block_ref_from), 1695 l->block_ref_from->logical_bytenr, 1696 l->block_ref_from->dev_state->name, 1697 l->block_ref_from->dev_bytenr, 1698 l->block_ref_from->mirror_num); 1699 } 1700 1701 pr_info("\n"); 1702 } 1703 } 1704 1705 /* 1706 * Test whether the disk block contains a tree block (leaf or node) 1707 * (note that this test fails for the super block) 1708 */ 1709 static noinline_for_stack int btrfsic_test_for_metadata( 1710 struct btrfsic_state *state, 1711 char **datav, unsigned int num_pages) 1712 { 1713 struct btrfs_fs_info *fs_info = state->fs_info; 1714 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1715 struct btrfs_header *h; 1716 u8 csum[BTRFS_CSUM_SIZE]; 1717 unsigned int i; 1718 1719 if (num_pages * PAGE_SIZE < state->metablock_size) 1720 return 1; /* not metadata */ 1721 num_pages = state->metablock_size >> PAGE_SHIFT; 1722 h = (struct btrfs_header *)datav[0]; 1723 1724 if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE)) 1725 return 1; 1726 1727 shash->tfm = fs_info->csum_shash; 1728 crypto_shash_init(shash); 1729 1730 for (i = 0; i < num_pages; i++) { 1731 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE); 1732 size_t sublen = i ? PAGE_SIZE : 1733 (PAGE_SIZE - BTRFS_CSUM_SIZE); 1734 1735 crypto_shash_update(shash, data, sublen); 1736 } 1737 crypto_shash_final(shash, csum); 1738 if (memcmp(csum, h->csum, state->csum_size)) 1739 return 1; 1740 1741 return 0; /* is metadata */ 1742 } 1743 1744 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, 1745 u64 dev_bytenr, char **mapped_datav, 1746 unsigned int num_pages, 1747 struct bio *bio, int *bio_is_patched, 1748 struct buffer_head *bh, 1749 int submit_bio_bh_rw) 1750 { 1751 int is_metadata; 1752 struct btrfsic_block *block; 1753 struct btrfsic_block_data_ctx block_ctx; 1754 int ret; 1755 struct btrfsic_state *state = dev_state->state; 1756 struct block_device *bdev = dev_state->bdev; 1757 unsigned int processed_len; 1758 1759 if (NULL != bio_is_patched) 1760 *bio_is_patched = 0; 1761 1762 again: 1763 if (num_pages == 0) 1764 return; 1765 1766 processed_len = 0; 1767 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav, 1768 num_pages)); 1769 1770 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr, 1771 &state->block_hashtable); 1772 if (NULL != block) { 1773 u64 bytenr = 0; 1774 struct btrfsic_block_link *l, *tmp; 1775 1776 if (block->is_superblock) { 1777 bytenr = btrfs_super_bytenr((struct btrfs_super_block *) 1778 mapped_datav[0]); 1779 if (num_pages * PAGE_SIZE < 1780 BTRFS_SUPER_INFO_SIZE) { 1781 pr_info("btrfsic: cannot work with too short bios!\n"); 1782 return; 1783 } 1784 is_metadata = 1; 1785 BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE)); 1786 processed_len = BTRFS_SUPER_INFO_SIZE; 1787 if (state->print_mask & 1788 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) { 1789 pr_info("[before new superblock is written]:\n"); 1790 btrfsic_dump_tree_sub(state, block, 0); 1791 } 1792 } 1793 if (is_metadata) { 1794 if (!block->is_superblock) { 1795 if (num_pages * PAGE_SIZE < 1796 state->metablock_size) { 1797 pr_info("btrfsic: cannot work with too short bios!\n"); 1798 return; 1799 } 1800 processed_len = state->metablock_size; 1801 bytenr = btrfs_stack_header_bytenr( 1802 (struct btrfs_header *) 1803 mapped_datav[0]); 1804 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, 1805 dev_state, 1806 dev_bytenr); 1807 } 1808 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) { 1809 if (block->logical_bytenr != bytenr && 1810 !(!block->is_metadata && 1811 block->logical_bytenr == 0)) 1812 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n", 1813 bytenr, dev_state->name, 1814 dev_bytenr, 1815 block->mirror_num, 1816 btrfsic_get_block_type(state, 1817 block), 1818 block->logical_bytenr); 1819 else 1820 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1821 bytenr, dev_state->name, 1822 dev_bytenr, block->mirror_num, 1823 btrfsic_get_block_type(state, 1824 block)); 1825 } 1826 block->logical_bytenr = bytenr; 1827 } else { 1828 if (num_pages * PAGE_SIZE < 1829 state->datablock_size) { 1830 pr_info("btrfsic: cannot work with too short bios!\n"); 1831 return; 1832 } 1833 processed_len = state->datablock_size; 1834 bytenr = block->logical_bytenr; 1835 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1836 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n", 1837 bytenr, dev_state->name, dev_bytenr, 1838 block->mirror_num, 1839 btrfsic_get_block_type(state, block)); 1840 } 1841 1842 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1843 pr_info("ref_to_list: %cE, ref_from_list: %cE\n", 1844 list_empty(&block->ref_to_list) ? ' ' : '!', 1845 list_empty(&block->ref_from_list) ? ' ' : '!'); 1846 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) { 1847 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n", 1848 btrfsic_get_block_type(state, block), bytenr, 1849 dev_state->name, dev_bytenr, block->mirror_num, 1850 block->generation, 1851 btrfs_disk_key_objectid(&block->disk_key), 1852 block->disk_key.type, 1853 btrfs_disk_key_offset(&block->disk_key), 1854 btrfs_stack_header_generation( 1855 (struct btrfs_header *) mapped_datav[0]), 1856 state->max_superblock_generation); 1857 btrfsic_dump_tree(state); 1858 } 1859 1860 if (!block->is_iodone && !block->never_written) { 1861 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n", 1862 btrfsic_get_block_type(state, block), bytenr, 1863 dev_state->name, dev_bytenr, block->mirror_num, 1864 block->generation, 1865 btrfs_stack_header_generation( 1866 (struct btrfs_header *) 1867 mapped_datav[0])); 1868 /* it would not be safe to go on */ 1869 btrfsic_dump_tree(state); 1870 goto continue_loop; 1871 } 1872 1873 /* 1874 * Clear all references of this block. Do not free 1875 * the block itself even if is not referenced anymore 1876 * because it still carries valuable information 1877 * like whether it was ever written and IO completed. 1878 */ 1879 list_for_each_entry_safe(l, tmp, &block->ref_to_list, 1880 node_ref_to) { 1881 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1882 btrfsic_print_rem_link(state, l); 1883 l->ref_cnt--; 1884 if (0 == l->ref_cnt) { 1885 list_del(&l->node_ref_to); 1886 list_del(&l->node_ref_from); 1887 btrfsic_block_link_hashtable_remove(l); 1888 btrfsic_block_link_free(l); 1889 } 1890 } 1891 1892 block_ctx.dev = dev_state; 1893 block_ctx.dev_bytenr = dev_bytenr; 1894 block_ctx.start = bytenr; 1895 block_ctx.len = processed_len; 1896 block_ctx.pagev = NULL; 1897 block_ctx.mem_to_free = NULL; 1898 block_ctx.datav = mapped_datav; 1899 1900 if (is_metadata || state->include_extent_data) { 1901 block->never_written = 0; 1902 block->iodone_w_error = 0; 1903 if (NULL != bio) { 1904 block->is_iodone = 0; 1905 BUG_ON(NULL == bio_is_patched); 1906 if (!*bio_is_patched) { 1907 block->orig_bio_bh_private = 1908 bio->bi_private; 1909 block->orig_bio_bh_end_io.bio = 1910 bio->bi_end_io; 1911 block->next_in_same_bio = NULL; 1912 bio->bi_private = block; 1913 bio->bi_end_io = btrfsic_bio_end_io; 1914 *bio_is_patched = 1; 1915 } else { 1916 struct btrfsic_block *chained_block = 1917 (struct btrfsic_block *) 1918 bio->bi_private; 1919 1920 BUG_ON(NULL == chained_block); 1921 block->orig_bio_bh_private = 1922 chained_block->orig_bio_bh_private; 1923 block->orig_bio_bh_end_io.bio = 1924 chained_block->orig_bio_bh_end_io. 1925 bio; 1926 block->next_in_same_bio = chained_block; 1927 bio->bi_private = block; 1928 } 1929 } else if (NULL != bh) { 1930 block->is_iodone = 0; 1931 block->orig_bio_bh_private = bh->b_private; 1932 block->orig_bio_bh_end_io.bh = bh->b_end_io; 1933 block->next_in_same_bio = NULL; 1934 bh->b_private = block; 1935 bh->b_end_io = btrfsic_bh_end_io; 1936 } else { 1937 block->is_iodone = 1; 1938 block->orig_bio_bh_private = NULL; 1939 block->orig_bio_bh_end_io.bio = NULL; 1940 block->next_in_same_bio = NULL; 1941 } 1942 } 1943 1944 block->flush_gen = dev_state->last_flush_gen + 1; 1945 block->submit_bio_bh_rw = submit_bio_bh_rw; 1946 if (is_metadata) { 1947 block->logical_bytenr = bytenr; 1948 block->is_metadata = 1; 1949 if (block->is_superblock) { 1950 BUG_ON(PAGE_SIZE != 1951 BTRFS_SUPER_INFO_SIZE); 1952 ret = btrfsic_process_written_superblock( 1953 state, 1954 block, 1955 (struct btrfs_super_block *) 1956 mapped_datav[0]); 1957 if (state->print_mask & 1958 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) { 1959 pr_info("[after new superblock is written]:\n"); 1960 btrfsic_dump_tree_sub(state, block, 0); 1961 } 1962 } else { 1963 block->mirror_num = 0; /* unknown */ 1964 ret = btrfsic_process_metablock( 1965 state, 1966 block, 1967 &block_ctx, 1968 0, 0); 1969 } 1970 if (ret) 1971 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n", 1972 dev_bytenr); 1973 } else { 1974 block->is_metadata = 0; 1975 block->mirror_num = 0; /* unknown */ 1976 block->generation = BTRFSIC_GENERATION_UNKNOWN; 1977 if (!state->include_extent_data 1978 && list_empty(&block->ref_from_list)) { 1979 /* 1980 * disk block is overwritten with extent 1981 * data (not meta data) and we are configured 1982 * to not include extent data: take the 1983 * chance and free the block's memory 1984 */ 1985 btrfsic_block_hashtable_remove(block); 1986 list_del(&block->all_blocks_node); 1987 btrfsic_block_free(block); 1988 } 1989 } 1990 btrfsic_release_block_ctx(&block_ctx); 1991 } else { 1992 /* block has not been found in hash table */ 1993 u64 bytenr; 1994 1995 if (!is_metadata) { 1996 processed_len = state->datablock_size; 1997 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 1998 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n", 1999 dev_state->name, dev_bytenr); 2000 if (!state->include_extent_data) { 2001 /* ignore that written D block */ 2002 goto continue_loop; 2003 } 2004 2005 /* this is getting ugly for the 2006 * include_extent_data case... */ 2007 bytenr = 0; /* unknown */ 2008 } else { 2009 processed_len = state->metablock_size; 2010 bytenr = btrfs_stack_header_bytenr( 2011 (struct btrfs_header *) 2012 mapped_datav[0]); 2013 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, 2014 dev_bytenr); 2015 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2016 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n", 2017 bytenr, dev_state->name, dev_bytenr); 2018 } 2019 2020 block_ctx.dev = dev_state; 2021 block_ctx.dev_bytenr = dev_bytenr; 2022 block_ctx.start = bytenr; 2023 block_ctx.len = processed_len; 2024 block_ctx.pagev = NULL; 2025 block_ctx.mem_to_free = NULL; 2026 block_ctx.datav = mapped_datav; 2027 2028 block = btrfsic_block_alloc(); 2029 if (NULL == block) { 2030 pr_info("btrfsic: error, kmalloc failed!\n"); 2031 btrfsic_release_block_ctx(&block_ctx); 2032 goto continue_loop; 2033 } 2034 block->dev_state = dev_state; 2035 block->dev_bytenr = dev_bytenr; 2036 block->logical_bytenr = bytenr; 2037 block->is_metadata = is_metadata; 2038 block->never_written = 0; 2039 block->iodone_w_error = 0; 2040 block->mirror_num = 0; /* unknown */ 2041 block->flush_gen = dev_state->last_flush_gen + 1; 2042 block->submit_bio_bh_rw = submit_bio_bh_rw; 2043 if (NULL != bio) { 2044 block->is_iodone = 0; 2045 BUG_ON(NULL == bio_is_patched); 2046 if (!*bio_is_patched) { 2047 block->orig_bio_bh_private = bio->bi_private; 2048 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2049 block->next_in_same_bio = NULL; 2050 bio->bi_private = block; 2051 bio->bi_end_io = btrfsic_bio_end_io; 2052 *bio_is_patched = 1; 2053 } else { 2054 struct btrfsic_block *chained_block = 2055 (struct btrfsic_block *) 2056 bio->bi_private; 2057 2058 BUG_ON(NULL == chained_block); 2059 block->orig_bio_bh_private = 2060 chained_block->orig_bio_bh_private; 2061 block->orig_bio_bh_end_io.bio = 2062 chained_block->orig_bio_bh_end_io.bio; 2063 block->next_in_same_bio = chained_block; 2064 bio->bi_private = block; 2065 } 2066 } else if (NULL != bh) { 2067 block->is_iodone = 0; 2068 block->orig_bio_bh_private = bh->b_private; 2069 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2070 block->next_in_same_bio = NULL; 2071 bh->b_private = block; 2072 bh->b_end_io = btrfsic_bh_end_io; 2073 } else { 2074 block->is_iodone = 1; 2075 block->orig_bio_bh_private = NULL; 2076 block->orig_bio_bh_end_io.bio = NULL; 2077 block->next_in_same_bio = NULL; 2078 } 2079 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2080 pr_info("New written %c-block @%llu (%s/%llu/%d)\n", 2081 is_metadata ? 'M' : 'D', 2082 block->logical_bytenr, block->dev_state->name, 2083 block->dev_bytenr, block->mirror_num); 2084 list_add(&block->all_blocks_node, &state->all_blocks_list); 2085 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2086 2087 if (is_metadata) { 2088 ret = btrfsic_process_metablock(state, block, 2089 &block_ctx, 0, 0); 2090 if (ret) 2091 pr_info("btrfsic: process_metablock(root @%llu) failed!\n", 2092 dev_bytenr); 2093 } 2094 btrfsic_release_block_ctx(&block_ctx); 2095 } 2096 2097 continue_loop: 2098 BUG_ON(!processed_len); 2099 dev_bytenr += processed_len; 2100 mapped_datav += processed_len >> PAGE_SHIFT; 2101 num_pages -= processed_len >> PAGE_SHIFT; 2102 goto again; 2103 } 2104 2105 static void btrfsic_bio_end_io(struct bio *bp) 2106 { 2107 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private; 2108 int iodone_w_error; 2109 2110 /* mutex is not held! This is not save if IO is not yet completed 2111 * on umount */ 2112 iodone_w_error = 0; 2113 if (bp->bi_status) 2114 iodone_w_error = 1; 2115 2116 BUG_ON(NULL == block); 2117 bp->bi_private = block->orig_bio_bh_private; 2118 bp->bi_end_io = block->orig_bio_bh_end_io.bio; 2119 2120 do { 2121 struct btrfsic_block *next_block; 2122 struct btrfsic_dev_state *const dev_state = block->dev_state; 2123 2124 if ((dev_state->state->print_mask & 2125 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2126 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n", 2127 bp->bi_status, 2128 btrfsic_get_block_type(dev_state->state, block), 2129 block->logical_bytenr, dev_state->name, 2130 block->dev_bytenr, block->mirror_num); 2131 next_block = block->next_in_same_bio; 2132 block->iodone_w_error = iodone_w_error; 2133 if (block->submit_bio_bh_rw & REQ_PREFLUSH) { 2134 dev_state->last_flush_gen++; 2135 if ((dev_state->state->print_mask & 2136 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2137 pr_info("bio_end_io() new %s flush_gen=%llu\n", 2138 dev_state->name, 2139 dev_state->last_flush_gen); 2140 } 2141 if (block->submit_bio_bh_rw & REQ_FUA) 2142 block->flush_gen = 0; /* FUA completed means block is 2143 * on disk */ 2144 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2145 block = next_block; 2146 } while (NULL != block); 2147 2148 bp->bi_end_io(bp); 2149 } 2150 2151 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate) 2152 { 2153 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private; 2154 int iodone_w_error = !uptodate; 2155 struct btrfsic_dev_state *dev_state; 2156 2157 BUG_ON(NULL == block); 2158 dev_state = block->dev_state; 2159 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2160 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n", 2161 iodone_w_error, 2162 btrfsic_get_block_type(dev_state->state, block), 2163 block->logical_bytenr, block->dev_state->name, 2164 block->dev_bytenr, block->mirror_num); 2165 2166 block->iodone_w_error = iodone_w_error; 2167 if (block->submit_bio_bh_rw & REQ_PREFLUSH) { 2168 dev_state->last_flush_gen++; 2169 if ((dev_state->state->print_mask & 2170 BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) 2171 pr_info("bh_end_io() new %s flush_gen=%llu\n", 2172 dev_state->name, dev_state->last_flush_gen); 2173 } 2174 if (block->submit_bio_bh_rw & REQ_FUA) 2175 block->flush_gen = 0; /* FUA completed means block is on disk */ 2176 2177 bh->b_private = block->orig_bio_bh_private; 2178 bh->b_end_io = block->orig_bio_bh_end_io.bh; 2179 block->is_iodone = 1; /* for FLUSH, this releases the block */ 2180 bh->b_end_io(bh, uptodate); 2181 } 2182 2183 static int btrfsic_process_written_superblock( 2184 struct btrfsic_state *state, 2185 struct btrfsic_block *const superblock, 2186 struct btrfs_super_block *const super_hdr) 2187 { 2188 struct btrfs_fs_info *fs_info = state->fs_info; 2189 int pass; 2190 2191 superblock->generation = btrfs_super_generation(super_hdr); 2192 if (!(superblock->generation > state->max_superblock_generation || 2193 0 == state->max_superblock_generation)) { 2194 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2195 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n", 2196 superblock->logical_bytenr, 2197 superblock->dev_state->name, 2198 superblock->dev_bytenr, superblock->mirror_num, 2199 btrfs_super_generation(super_hdr), 2200 state->max_superblock_generation); 2201 } else { 2202 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) 2203 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n", 2204 superblock->logical_bytenr, 2205 superblock->dev_state->name, 2206 superblock->dev_bytenr, superblock->mirror_num, 2207 btrfs_super_generation(super_hdr), 2208 state->max_superblock_generation); 2209 2210 state->max_superblock_generation = 2211 btrfs_super_generation(super_hdr); 2212 state->latest_superblock = superblock; 2213 } 2214 2215 for (pass = 0; pass < 3; pass++) { 2216 int ret; 2217 u64 next_bytenr; 2218 struct btrfsic_block *next_block; 2219 struct btrfsic_block_data_ctx tmp_next_block_ctx; 2220 struct btrfsic_block_link *l; 2221 int num_copies; 2222 int mirror_num; 2223 const char *additional_string = NULL; 2224 struct btrfs_disk_key tmp_disk_key = {0}; 2225 2226 btrfs_set_disk_key_objectid(&tmp_disk_key, 2227 BTRFS_ROOT_ITEM_KEY); 2228 btrfs_set_disk_key_objectid(&tmp_disk_key, 0); 2229 2230 switch (pass) { 2231 case 0: 2232 btrfs_set_disk_key_objectid(&tmp_disk_key, 2233 BTRFS_ROOT_TREE_OBJECTID); 2234 additional_string = "root "; 2235 next_bytenr = btrfs_super_root(super_hdr); 2236 if (state->print_mask & 2237 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2238 pr_info("root@%llu\n", next_bytenr); 2239 break; 2240 case 1: 2241 btrfs_set_disk_key_objectid(&tmp_disk_key, 2242 BTRFS_CHUNK_TREE_OBJECTID); 2243 additional_string = "chunk "; 2244 next_bytenr = btrfs_super_chunk_root(super_hdr); 2245 if (state->print_mask & 2246 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2247 pr_info("chunk@%llu\n", next_bytenr); 2248 break; 2249 case 2: 2250 btrfs_set_disk_key_objectid(&tmp_disk_key, 2251 BTRFS_TREE_LOG_OBJECTID); 2252 additional_string = "log "; 2253 next_bytenr = btrfs_super_log_root(super_hdr); 2254 if (0 == next_bytenr) 2255 continue; 2256 if (state->print_mask & 2257 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) 2258 pr_info("log@%llu\n", next_bytenr); 2259 break; 2260 } 2261 2262 num_copies = btrfs_num_copies(fs_info, next_bytenr, 2263 BTRFS_SUPER_INFO_SIZE); 2264 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) 2265 pr_info("num_copies(log_bytenr=%llu) = %d\n", 2266 next_bytenr, num_copies); 2267 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2268 int was_created; 2269 2270 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2271 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num); 2272 ret = btrfsic_map_block(state, next_bytenr, 2273 BTRFS_SUPER_INFO_SIZE, 2274 &tmp_next_block_ctx, 2275 mirror_num); 2276 if (ret) { 2277 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", 2278 next_bytenr, mirror_num); 2279 return -1; 2280 } 2281 2282 next_block = btrfsic_block_lookup_or_add( 2283 state, 2284 &tmp_next_block_ctx, 2285 additional_string, 2286 1, 0, 1, 2287 mirror_num, 2288 &was_created); 2289 if (NULL == next_block) { 2290 pr_info("btrfsic: error, kmalloc failed!\n"); 2291 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2292 return -1; 2293 } 2294 2295 next_block->disk_key = tmp_disk_key; 2296 if (was_created) 2297 next_block->generation = 2298 BTRFSIC_GENERATION_UNKNOWN; 2299 l = btrfsic_block_link_lookup_or_add( 2300 state, 2301 &tmp_next_block_ctx, 2302 next_block, 2303 superblock, 2304 BTRFSIC_GENERATION_UNKNOWN); 2305 btrfsic_release_block_ctx(&tmp_next_block_ctx); 2306 if (NULL == l) 2307 return -1; 2308 } 2309 } 2310 2311 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0))) 2312 btrfsic_dump_tree(state); 2313 2314 return 0; 2315 } 2316 2317 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, 2318 struct btrfsic_block *const block, 2319 int recursion_level) 2320 { 2321 const struct btrfsic_block_link *l; 2322 int ret = 0; 2323 2324 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2325 /* 2326 * Note that this situation can happen and does not 2327 * indicate an error in regular cases. It happens 2328 * when disk blocks are freed and later reused. 2329 * The check-integrity module is not aware of any 2330 * block free operations, it just recognizes block 2331 * write operations. Therefore it keeps the linkage 2332 * information for a block until a block is 2333 * rewritten. This can temporarily cause incorrect 2334 * and even circular linkage information. This 2335 * causes no harm unless such blocks are referenced 2336 * by the most recent super block. 2337 */ 2338 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2339 pr_info("btrfsic: abort cyclic linkage (case 1).\n"); 2340 2341 return ret; 2342 } 2343 2344 /* 2345 * This algorithm is recursive because the amount of used stack 2346 * space is very small and the max recursion depth is limited. 2347 */ 2348 list_for_each_entry(l, &block->ref_to_list, node_ref_to) { 2349 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2350 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n", 2351 recursion_level, 2352 btrfsic_get_block_type(state, block), 2353 block->logical_bytenr, block->dev_state->name, 2354 block->dev_bytenr, block->mirror_num, 2355 l->ref_cnt, 2356 btrfsic_get_block_type(state, l->block_ref_to), 2357 l->block_ref_to->logical_bytenr, 2358 l->block_ref_to->dev_state->name, 2359 l->block_ref_to->dev_bytenr, 2360 l->block_ref_to->mirror_num); 2361 if (l->block_ref_to->never_written) { 2362 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n", 2363 btrfsic_get_block_type(state, l->block_ref_to), 2364 l->block_ref_to->logical_bytenr, 2365 l->block_ref_to->dev_state->name, 2366 l->block_ref_to->dev_bytenr, 2367 l->block_ref_to->mirror_num); 2368 ret = -1; 2369 } else if (!l->block_ref_to->is_iodone) { 2370 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n", 2371 btrfsic_get_block_type(state, l->block_ref_to), 2372 l->block_ref_to->logical_bytenr, 2373 l->block_ref_to->dev_state->name, 2374 l->block_ref_to->dev_bytenr, 2375 l->block_ref_to->mirror_num); 2376 ret = -1; 2377 } else if (l->block_ref_to->iodone_w_error) { 2378 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n", 2379 btrfsic_get_block_type(state, l->block_ref_to), 2380 l->block_ref_to->logical_bytenr, 2381 l->block_ref_to->dev_state->name, 2382 l->block_ref_to->dev_bytenr, 2383 l->block_ref_to->mirror_num); 2384 ret = -1; 2385 } else if (l->parent_generation != 2386 l->block_ref_to->generation && 2387 BTRFSIC_GENERATION_UNKNOWN != 2388 l->parent_generation && 2389 BTRFSIC_GENERATION_UNKNOWN != 2390 l->block_ref_to->generation) { 2391 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n", 2392 btrfsic_get_block_type(state, l->block_ref_to), 2393 l->block_ref_to->logical_bytenr, 2394 l->block_ref_to->dev_state->name, 2395 l->block_ref_to->dev_bytenr, 2396 l->block_ref_to->mirror_num, 2397 l->block_ref_to->generation, 2398 l->parent_generation); 2399 ret = -1; 2400 } else if (l->block_ref_to->flush_gen > 2401 l->block_ref_to->dev_state->last_flush_gen) { 2402 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n", 2403 btrfsic_get_block_type(state, l->block_ref_to), 2404 l->block_ref_to->logical_bytenr, 2405 l->block_ref_to->dev_state->name, 2406 l->block_ref_to->dev_bytenr, 2407 l->block_ref_to->mirror_num, block->flush_gen, 2408 l->block_ref_to->dev_state->last_flush_gen); 2409 ret = -1; 2410 } else if (-1 == btrfsic_check_all_ref_blocks(state, 2411 l->block_ref_to, 2412 recursion_level + 2413 1)) { 2414 ret = -1; 2415 } 2416 } 2417 2418 return ret; 2419 } 2420 2421 static int btrfsic_is_block_ref_by_superblock( 2422 const struct btrfsic_state *state, 2423 const struct btrfsic_block *block, 2424 int recursion_level) 2425 { 2426 const struct btrfsic_block_link *l; 2427 2428 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { 2429 /* refer to comment at "abort cyclic linkage (case 1)" */ 2430 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2431 pr_info("btrfsic: abort cyclic linkage (case 2).\n"); 2432 2433 return 0; 2434 } 2435 2436 /* 2437 * This algorithm is recursive because the amount of used stack space 2438 * is very small and the max recursion depth is limited. 2439 */ 2440 list_for_each_entry(l, &block->ref_from_list, node_ref_from) { 2441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2442 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n", 2443 recursion_level, 2444 btrfsic_get_block_type(state, block), 2445 block->logical_bytenr, block->dev_state->name, 2446 block->dev_bytenr, block->mirror_num, 2447 l->ref_cnt, 2448 btrfsic_get_block_type(state, l->block_ref_from), 2449 l->block_ref_from->logical_bytenr, 2450 l->block_ref_from->dev_state->name, 2451 l->block_ref_from->dev_bytenr, 2452 l->block_ref_from->mirror_num); 2453 if (l->block_ref_from->is_superblock && 2454 state->latest_superblock->dev_bytenr == 2455 l->block_ref_from->dev_bytenr && 2456 state->latest_superblock->dev_state->bdev == 2457 l->block_ref_from->dev_state->bdev) 2458 return 1; 2459 else if (btrfsic_is_block_ref_by_superblock(state, 2460 l->block_ref_from, 2461 recursion_level + 2462 1)) 2463 return 1; 2464 } 2465 2466 return 0; 2467 } 2468 2469 static void btrfsic_print_add_link(const struct btrfsic_state *state, 2470 const struct btrfsic_block_link *l) 2471 { 2472 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n", 2473 l->ref_cnt, 2474 btrfsic_get_block_type(state, l->block_ref_from), 2475 l->block_ref_from->logical_bytenr, 2476 l->block_ref_from->dev_state->name, 2477 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2478 btrfsic_get_block_type(state, l->block_ref_to), 2479 l->block_ref_to->logical_bytenr, 2480 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2481 l->block_ref_to->mirror_num); 2482 } 2483 2484 static void btrfsic_print_rem_link(const struct btrfsic_state *state, 2485 const struct btrfsic_block_link *l) 2486 { 2487 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n", 2488 l->ref_cnt, 2489 btrfsic_get_block_type(state, l->block_ref_from), 2490 l->block_ref_from->logical_bytenr, 2491 l->block_ref_from->dev_state->name, 2492 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, 2493 btrfsic_get_block_type(state, l->block_ref_to), 2494 l->block_ref_to->logical_bytenr, 2495 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr, 2496 l->block_ref_to->mirror_num); 2497 } 2498 2499 static char btrfsic_get_block_type(const struct btrfsic_state *state, 2500 const struct btrfsic_block *block) 2501 { 2502 if (block->is_superblock && 2503 state->latest_superblock->dev_bytenr == block->dev_bytenr && 2504 state->latest_superblock->dev_state->bdev == block->dev_state->bdev) 2505 return 'S'; 2506 else if (block->is_superblock) 2507 return 's'; 2508 else if (block->is_metadata) 2509 return 'M'; 2510 else 2511 return 'D'; 2512 } 2513 2514 static void btrfsic_dump_tree(const struct btrfsic_state *state) 2515 { 2516 btrfsic_dump_tree_sub(state, state->latest_superblock, 0); 2517 } 2518 2519 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, 2520 const struct btrfsic_block *block, 2521 int indent_level) 2522 { 2523 const struct btrfsic_block_link *l; 2524 int indent_add; 2525 static char buf[80]; 2526 int cursor_position; 2527 2528 /* 2529 * Should better fill an on-stack buffer with a complete line and 2530 * dump it at once when it is time to print a newline character. 2531 */ 2532 2533 /* 2534 * This algorithm is recursive because the amount of used stack space 2535 * is very small and the max recursion depth is limited. 2536 */ 2537 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)", 2538 btrfsic_get_block_type(state, block), 2539 block->logical_bytenr, block->dev_state->name, 2540 block->dev_bytenr, block->mirror_num); 2541 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2542 printk("[...]\n"); 2543 return; 2544 } 2545 printk(buf); 2546 indent_level += indent_add; 2547 if (list_empty(&block->ref_to_list)) { 2548 printk("\n"); 2549 return; 2550 } 2551 if (block->mirror_num > 1 && 2552 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) { 2553 printk(" [...]\n"); 2554 return; 2555 } 2556 2557 cursor_position = indent_level; 2558 list_for_each_entry(l, &block->ref_to_list, node_ref_to) { 2559 while (cursor_position < indent_level) { 2560 printk(" "); 2561 cursor_position++; 2562 } 2563 if (l->ref_cnt > 1) 2564 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt); 2565 else 2566 indent_add = sprintf(buf, " --> "); 2567 if (indent_level + indent_add > 2568 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { 2569 printk("[...]\n"); 2570 cursor_position = 0; 2571 continue; 2572 } 2573 2574 printk(buf); 2575 2576 btrfsic_dump_tree_sub(state, l->block_ref_to, 2577 indent_level + indent_add); 2578 cursor_position = 0; 2579 } 2580 } 2581 2582 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( 2583 struct btrfsic_state *state, 2584 struct btrfsic_block_data_ctx *next_block_ctx, 2585 struct btrfsic_block *next_block, 2586 struct btrfsic_block *from_block, 2587 u64 parent_generation) 2588 { 2589 struct btrfsic_block_link *l; 2590 2591 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev, 2592 next_block_ctx->dev_bytenr, 2593 from_block->dev_state->bdev, 2594 from_block->dev_bytenr, 2595 &state->block_link_hashtable); 2596 if (NULL == l) { 2597 l = btrfsic_block_link_alloc(); 2598 if (NULL == l) { 2599 pr_info("btrfsic: error, kmalloc failed!\n"); 2600 return NULL; 2601 } 2602 2603 l->block_ref_to = next_block; 2604 l->block_ref_from = from_block; 2605 l->ref_cnt = 1; 2606 l->parent_generation = parent_generation; 2607 2608 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2609 btrfsic_print_add_link(state, l); 2610 2611 list_add(&l->node_ref_to, &from_block->ref_to_list); 2612 list_add(&l->node_ref_from, &next_block->ref_from_list); 2613 2614 btrfsic_block_link_hashtable_add(l, 2615 &state->block_link_hashtable); 2616 } else { 2617 l->ref_cnt++; 2618 l->parent_generation = parent_generation; 2619 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2620 btrfsic_print_add_link(state, l); 2621 } 2622 2623 return l; 2624 } 2625 2626 static struct btrfsic_block *btrfsic_block_lookup_or_add( 2627 struct btrfsic_state *state, 2628 struct btrfsic_block_data_ctx *block_ctx, 2629 const char *additional_string, 2630 int is_metadata, 2631 int is_iodone, 2632 int never_written, 2633 int mirror_num, 2634 int *was_created) 2635 { 2636 struct btrfsic_block *block; 2637 2638 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev, 2639 block_ctx->dev_bytenr, 2640 &state->block_hashtable); 2641 if (NULL == block) { 2642 struct btrfsic_dev_state *dev_state; 2643 2644 block = btrfsic_block_alloc(); 2645 if (NULL == block) { 2646 pr_info("btrfsic: error, kmalloc failed!\n"); 2647 return NULL; 2648 } 2649 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev); 2650 if (NULL == dev_state) { 2651 pr_info("btrfsic: error, lookup dev_state failed!\n"); 2652 btrfsic_block_free(block); 2653 return NULL; 2654 } 2655 block->dev_state = dev_state; 2656 block->dev_bytenr = block_ctx->dev_bytenr; 2657 block->logical_bytenr = block_ctx->start; 2658 block->is_metadata = is_metadata; 2659 block->is_iodone = is_iodone; 2660 block->never_written = never_written; 2661 block->mirror_num = mirror_num; 2662 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 2663 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n", 2664 additional_string, 2665 btrfsic_get_block_type(state, block), 2666 block->logical_bytenr, dev_state->name, 2667 block->dev_bytenr, mirror_num); 2668 list_add(&block->all_blocks_node, &state->all_blocks_list); 2669 btrfsic_block_hashtable_add(block, &state->block_hashtable); 2670 if (NULL != was_created) 2671 *was_created = 1; 2672 } else { 2673 if (NULL != was_created) 2674 *was_created = 0; 2675 } 2676 2677 return block; 2678 } 2679 2680 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, 2681 u64 bytenr, 2682 struct btrfsic_dev_state *dev_state, 2683 u64 dev_bytenr) 2684 { 2685 struct btrfs_fs_info *fs_info = state->fs_info; 2686 struct btrfsic_block_data_ctx block_ctx; 2687 int num_copies; 2688 int mirror_num; 2689 int match = 0; 2690 int ret; 2691 2692 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size); 2693 2694 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2695 ret = btrfsic_map_block(state, bytenr, state->metablock_size, 2696 &block_ctx, mirror_num); 2697 if (ret) { 2698 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n", 2699 bytenr, mirror_num); 2700 continue; 2701 } 2702 2703 if (dev_state->bdev == block_ctx.dev->bdev && 2704 dev_bytenr == block_ctx.dev_bytenr) { 2705 match++; 2706 btrfsic_release_block_ctx(&block_ctx); 2707 break; 2708 } 2709 btrfsic_release_block_ctx(&block_ctx); 2710 } 2711 2712 if (WARN_ON(!match)) { 2713 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n", 2714 bytenr, dev_state->name, dev_bytenr); 2715 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { 2716 ret = btrfsic_map_block(state, bytenr, 2717 state->metablock_size, 2718 &block_ctx, mirror_num); 2719 if (ret) 2720 continue; 2721 2722 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n", 2723 bytenr, block_ctx.dev->name, 2724 block_ctx.dev_bytenr, mirror_num); 2725 } 2726 } 2727 } 2728 2729 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev) 2730 { 2731 return btrfsic_dev_state_hashtable_lookup(dev, 2732 &btrfsic_dev_state_hashtable); 2733 } 2734 2735 int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh) 2736 { 2737 struct btrfsic_dev_state *dev_state; 2738 2739 if (!btrfsic_is_initialized) 2740 return submit_bh(op, op_flags, bh); 2741 2742 mutex_lock(&btrfsic_mutex); 2743 /* since btrfsic_submit_bh() might also be called before 2744 * btrfsic_mount(), this might return NULL */ 2745 dev_state = btrfsic_dev_state_lookup(bh->b_bdev->bd_dev); 2746 2747 /* Only called to write the superblock (incl. FLUSH/FUA) */ 2748 if (NULL != dev_state && 2749 (op == REQ_OP_WRITE) && bh->b_size > 0) { 2750 u64 dev_bytenr; 2751 2752 dev_bytenr = BTRFS_BDEV_BLOCKSIZE * bh->b_blocknr; 2753 if (dev_state->state->print_mask & 2754 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2755 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n", 2756 op, op_flags, (unsigned long long)bh->b_blocknr, 2757 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev); 2758 btrfsic_process_written_block(dev_state, dev_bytenr, 2759 &bh->b_data, 1, NULL, 2760 NULL, bh, op_flags); 2761 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) { 2762 if (dev_state->state->print_mask & 2763 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2764 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n", 2765 op, op_flags, bh->b_bdev); 2766 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2767 if ((dev_state->state->print_mask & 2768 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2769 BTRFSIC_PRINT_MASK_VERBOSE))) 2770 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n", 2771 dev_state->name); 2772 } else { 2773 struct btrfsic_block *const block = 2774 &dev_state->dummy_block_for_bio_bh_flush; 2775 2776 block->is_iodone = 0; 2777 block->never_written = 0; 2778 block->iodone_w_error = 0; 2779 block->flush_gen = dev_state->last_flush_gen + 1; 2780 block->submit_bio_bh_rw = op_flags; 2781 block->orig_bio_bh_private = bh->b_private; 2782 block->orig_bio_bh_end_io.bh = bh->b_end_io; 2783 block->next_in_same_bio = NULL; 2784 bh->b_private = block; 2785 bh->b_end_io = btrfsic_bh_end_io; 2786 } 2787 } 2788 mutex_unlock(&btrfsic_mutex); 2789 return submit_bh(op, op_flags, bh); 2790 } 2791 2792 static void __btrfsic_submit_bio(struct bio *bio) 2793 { 2794 struct btrfsic_dev_state *dev_state; 2795 2796 if (!btrfsic_is_initialized) 2797 return; 2798 2799 mutex_lock(&btrfsic_mutex); 2800 /* since btrfsic_submit_bio() is also called before 2801 * btrfsic_mount(), this might return NULL */ 2802 dev_state = btrfsic_dev_state_lookup(bio_dev(bio) + bio->bi_partno); 2803 if (NULL != dev_state && 2804 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) { 2805 unsigned int i = 0; 2806 u64 dev_bytenr; 2807 u64 cur_bytenr; 2808 struct bio_vec bvec; 2809 struct bvec_iter iter; 2810 int bio_is_patched; 2811 char **mapped_datav; 2812 unsigned int segs = bio_segments(bio); 2813 2814 dev_bytenr = 512 * bio->bi_iter.bi_sector; 2815 bio_is_patched = 0; 2816 if (dev_state->state->print_mask & 2817 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2818 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_disk=%p)\n", 2819 bio_op(bio), bio->bi_opf, segs, 2820 (unsigned long long)bio->bi_iter.bi_sector, 2821 dev_bytenr, bio->bi_disk); 2822 2823 mapped_datav = kmalloc_array(segs, 2824 sizeof(*mapped_datav), GFP_NOFS); 2825 if (!mapped_datav) 2826 goto leave; 2827 cur_bytenr = dev_bytenr; 2828 2829 bio_for_each_segment(bvec, bio, iter) { 2830 BUG_ON(bvec.bv_len != PAGE_SIZE); 2831 mapped_datav[i] = kmap(bvec.bv_page); 2832 i++; 2833 2834 if (dev_state->state->print_mask & 2835 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE) 2836 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n", 2837 i, cur_bytenr, bvec.bv_len, bvec.bv_offset); 2838 cur_bytenr += bvec.bv_len; 2839 } 2840 btrfsic_process_written_block(dev_state, dev_bytenr, 2841 mapped_datav, segs, 2842 bio, &bio_is_patched, 2843 NULL, bio->bi_opf); 2844 bio_for_each_segment(bvec, bio, iter) 2845 kunmap(bvec.bv_page); 2846 kfree(mapped_datav); 2847 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) { 2848 if (dev_state->state->print_mask & 2849 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) 2850 pr_info("submit_bio(rw=%d,0x%x FLUSH, disk=%p)\n", 2851 bio_op(bio), bio->bi_opf, bio->bi_disk); 2852 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { 2853 if ((dev_state->state->print_mask & 2854 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | 2855 BTRFSIC_PRINT_MASK_VERBOSE))) 2856 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n", 2857 dev_state->name); 2858 } else { 2859 struct btrfsic_block *const block = 2860 &dev_state->dummy_block_for_bio_bh_flush; 2861 2862 block->is_iodone = 0; 2863 block->never_written = 0; 2864 block->iodone_w_error = 0; 2865 block->flush_gen = dev_state->last_flush_gen + 1; 2866 block->submit_bio_bh_rw = bio->bi_opf; 2867 block->orig_bio_bh_private = bio->bi_private; 2868 block->orig_bio_bh_end_io.bio = bio->bi_end_io; 2869 block->next_in_same_bio = NULL; 2870 bio->bi_private = block; 2871 bio->bi_end_io = btrfsic_bio_end_io; 2872 } 2873 } 2874 leave: 2875 mutex_unlock(&btrfsic_mutex); 2876 } 2877 2878 void btrfsic_submit_bio(struct bio *bio) 2879 { 2880 __btrfsic_submit_bio(bio); 2881 submit_bio(bio); 2882 } 2883 2884 int btrfsic_submit_bio_wait(struct bio *bio) 2885 { 2886 __btrfsic_submit_bio(bio); 2887 return submit_bio_wait(bio); 2888 } 2889 2890 int btrfsic_mount(struct btrfs_fs_info *fs_info, 2891 struct btrfs_fs_devices *fs_devices, 2892 int including_extent_data, u32 print_mask) 2893 { 2894 int ret; 2895 struct btrfsic_state *state; 2896 struct list_head *dev_head = &fs_devices->devices; 2897 struct btrfs_device *device; 2898 2899 if (!PAGE_ALIGNED(fs_info->nodesize)) { 2900 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n", 2901 fs_info->nodesize, PAGE_SIZE); 2902 return -1; 2903 } 2904 if (!PAGE_ALIGNED(fs_info->sectorsize)) { 2905 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n", 2906 fs_info->sectorsize, PAGE_SIZE); 2907 return -1; 2908 } 2909 state = kvzalloc(sizeof(*state), GFP_KERNEL); 2910 if (!state) { 2911 pr_info("btrfs check-integrity: allocation failed!\n"); 2912 return -ENOMEM; 2913 } 2914 2915 if (!btrfsic_is_initialized) { 2916 mutex_init(&btrfsic_mutex); 2917 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable); 2918 btrfsic_is_initialized = 1; 2919 } 2920 mutex_lock(&btrfsic_mutex); 2921 state->fs_info = fs_info; 2922 state->print_mask = print_mask; 2923 state->include_extent_data = including_extent_data; 2924 state->csum_size = 0; 2925 state->metablock_size = fs_info->nodesize; 2926 state->datablock_size = fs_info->sectorsize; 2927 INIT_LIST_HEAD(&state->all_blocks_list); 2928 btrfsic_block_hashtable_init(&state->block_hashtable); 2929 btrfsic_block_link_hashtable_init(&state->block_link_hashtable); 2930 state->max_superblock_generation = 0; 2931 state->latest_superblock = NULL; 2932 2933 list_for_each_entry(device, dev_head, dev_list) { 2934 struct btrfsic_dev_state *ds; 2935 const char *p; 2936 2937 if (!device->bdev || !device->name) 2938 continue; 2939 2940 ds = btrfsic_dev_state_alloc(); 2941 if (NULL == ds) { 2942 pr_info("btrfs check-integrity: kmalloc() failed!\n"); 2943 mutex_unlock(&btrfsic_mutex); 2944 return -ENOMEM; 2945 } 2946 ds->bdev = device->bdev; 2947 ds->state = state; 2948 bdevname(ds->bdev, ds->name); 2949 ds->name[BDEVNAME_SIZE - 1] = '\0'; 2950 p = kbasename(ds->name); 2951 strlcpy(ds->name, p, sizeof(ds->name)); 2952 btrfsic_dev_state_hashtable_add(ds, 2953 &btrfsic_dev_state_hashtable); 2954 } 2955 2956 ret = btrfsic_process_superblock(state, fs_devices); 2957 if (0 != ret) { 2958 mutex_unlock(&btrfsic_mutex); 2959 btrfsic_unmount(fs_devices); 2960 return ret; 2961 } 2962 2963 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE) 2964 btrfsic_dump_database(state); 2965 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE) 2966 btrfsic_dump_tree(state); 2967 2968 mutex_unlock(&btrfsic_mutex); 2969 return 0; 2970 } 2971 2972 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices) 2973 { 2974 struct btrfsic_block *b_all, *tmp_all; 2975 struct btrfsic_state *state; 2976 struct list_head *dev_head = &fs_devices->devices; 2977 struct btrfs_device *device; 2978 2979 if (!btrfsic_is_initialized) 2980 return; 2981 2982 mutex_lock(&btrfsic_mutex); 2983 2984 state = NULL; 2985 list_for_each_entry(device, dev_head, dev_list) { 2986 struct btrfsic_dev_state *ds; 2987 2988 if (!device->bdev || !device->name) 2989 continue; 2990 2991 ds = btrfsic_dev_state_hashtable_lookup( 2992 device->bdev->bd_dev, 2993 &btrfsic_dev_state_hashtable); 2994 if (NULL != ds) { 2995 state = ds->state; 2996 btrfsic_dev_state_hashtable_remove(ds); 2997 btrfsic_dev_state_free(ds); 2998 } 2999 } 3000 3001 if (NULL == state) { 3002 pr_info("btrfsic: error, cannot find state information on umount!\n"); 3003 mutex_unlock(&btrfsic_mutex); 3004 return; 3005 } 3006 3007 /* 3008 * Don't care about keeping the lists' state up to date, 3009 * just free all memory that was allocated dynamically. 3010 * Free the blocks and the block_links. 3011 */ 3012 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list, 3013 all_blocks_node) { 3014 struct btrfsic_block_link *l, *tmp; 3015 3016 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list, 3017 node_ref_to) { 3018 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) 3019 btrfsic_print_rem_link(state, l); 3020 3021 l->ref_cnt--; 3022 if (0 == l->ref_cnt) 3023 btrfsic_block_link_free(l); 3024 } 3025 3026 if (b_all->is_iodone || b_all->never_written) 3027 btrfsic_block_free(b_all); 3028 else 3029 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n", 3030 btrfsic_get_block_type(state, b_all), 3031 b_all->logical_bytenr, b_all->dev_state->name, 3032 b_all->dev_bytenr, b_all->mirror_num); 3033 } 3034 3035 mutex_unlock(&btrfsic_mutex); 3036 3037 kvfree(state); 3038 } 3039