xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision 05bcf503)
1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and no write error was indicated and a
41  *        FLUSH request to the device where these blocks are
42  *        located was received and completed.
43  *    2b. All referenced blocks need to have a generation
44  *        number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  */
81 
82 #include <linux/sched.h>
83 #include <linux/slab.h>
84 #include <linux/buffer_head.h>
85 #include <linux/mutex.h>
86 #include <linux/crc32c.h>
87 #include <linux/genhd.h>
88 #include <linux/blkdev.h>
89 #include "ctree.h"
90 #include "disk-io.h"
91 #include "transaction.h"
92 #include "extent_io.h"
93 #include "volumes.h"
94 #include "print-tree.h"
95 #include "locking.h"
96 #include "check-integrity.h"
97 #include "rcu-string.h"
98 
99 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
100 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
101 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
102 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
103 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
104 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
105 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
106 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
107 							 * excluding " [...]" */
108 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
109 
110 /*
111  * The definition of the bitmask fields for the print_mask.
112  * They are specified with the mount option check_integrity_print_mask.
113  */
114 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
115 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
116 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
117 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
118 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
119 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
120 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
121 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
122 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
123 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
124 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
125 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
126 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
127 
128 struct btrfsic_dev_state;
129 struct btrfsic_state;
130 
131 struct btrfsic_block {
132 	u32 magic_num;		/* only used for debug purposes */
133 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
134 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
135 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
136 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
137 	unsigned int never_written:1;	/* block was added because it was
138 					 * referenced, not because it was
139 					 * written */
140 	unsigned int mirror_num:2;	/* large enough to hold
141 					 * BTRFS_SUPER_MIRROR_MAX */
142 	struct btrfsic_dev_state *dev_state;
143 	u64 dev_bytenr;		/* key, physical byte num on disk */
144 	u64 logical_bytenr;	/* logical byte num on disk */
145 	u64 generation;
146 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
147 					 * issues, will not always be correct */
148 	struct list_head collision_resolving_node;	/* list node */
149 	struct list_head all_blocks_node;	/* list node */
150 
151 	/* the following two lists contain block_link items */
152 	struct list_head ref_to_list;	/* list */
153 	struct list_head ref_from_list;	/* list */
154 	struct btrfsic_block *next_in_same_bio;
155 	void *orig_bio_bh_private;
156 	union {
157 		bio_end_io_t *bio;
158 		bh_end_io_t *bh;
159 	} orig_bio_bh_end_io;
160 	int submit_bio_bh_rw;
161 	u64 flush_gen; /* only valid if !never_written */
162 };
163 
164 /*
165  * Elements of this type are allocated dynamically and required because
166  * each block object can refer to and can be ref from multiple blocks.
167  * The key to lookup them in the hashtable is the dev_bytenr of
168  * the block ref to plus the one from the block refered from.
169  * The fact that they are searchable via a hashtable and that a
170  * ref_cnt is maintained is not required for the btrfs integrity
171  * check algorithm itself, it is only used to make the output more
172  * beautiful in case that an error is detected (an error is defined
173  * as a write operation to a block while that block is still referenced).
174  */
175 struct btrfsic_block_link {
176 	u32 magic_num;		/* only used for debug purposes */
177 	u32 ref_cnt;
178 	struct list_head node_ref_to;	/* list node */
179 	struct list_head node_ref_from;	/* list node */
180 	struct list_head collision_resolving_node;	/* list node */
181 	struct btrfsic_block *block_ref_to;
182 	struct btrfsic_block *block_ref_from;
183 	u64 parent_generation;
184 };
185 
186 struct btrfsic_dev_state {
187 	u32 magic_num;		/* only used for debug purposes */
188 	struct block_device *bdev;
189 	struct btrfsic_state *state;
190 	struct list_head collision_resolving_node;	/* list node */
191 	struct btrfsic_block dummy_block_for_bio_bh_flush;
192 	u64 last_flush_gen;
193 	char name[BDEVNAME_SIZE];
194 };
195 
196 struct btrfsic_block_hashtable {
197 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
198 };
199 
200 struct btrfsic_block_link_hashtable {
201 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
202 };
203 
204 struct btrfsic_dev_state_hashtable {
205 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
206 };
207 
208 struct btrfsic_block_data_ctx {
209 	u64 start;		/* virtual bytenr */
210 	u64 dev_bytenr;		/* physical bytenr on device */
211 	u32 len;
212 	struct btrfsic_dev_state *dev;
213 	char **datav;
214 	struct page **pagev;
215 	void *mem_to_free;
216 };
217 
218 /* This structure is used to implement recursion without occupying
219  * any stack space, refer to btrfsic_process_metablock() */
220 struct btrfsic_stack_frame {
221 	u32 magic;
222 	u32 nr;
223 	int error;
224 	int i;
225 	int limit_nesting;
226 	int num_copies;
227 	int mirror_num;
228 	struct btrfsic_block *block;
229 	struct btrfsic_block_data_ctx *block_ctx;
230 	struct btrfsic_block *next_block;
231 	struct btrfsic_block_data_ctx next_block_ctx;
232 	struct btrfs_header *hdr;
233 	struct btrfsic_stack_frame *prev;
234 };
235 
236 /* Some state per mounted filesystem */
237 struct btrfsic_state {
238 	u32 print_mask;
239 	int include_extent_data;
240 	int csum_size;
241 	struct list_head all_blocks_list;
242 	struct btrfsic_block_hashtable block_hashtable;
243 	struct btrfsic_block_link_hashtable block_link_hashtable;
244 	struct btrfs_root *root;
245 	u64 max_superblock_generation;
246 	struct btrfsic_block *latest_superblock;
247 	u32 metablock_size;
248 	u32 datablock_size;
249 };
250 
251 static void btrfsic_block_init(struct btrfsic_block *b);
252 static struct btrfsic_block *btrfsic_block_alloc(void);
253 static void btrfsic_block_free(struct btrfsic_block *b);
254 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262 					struct btrfsic_block_hashtable *h);
263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265 		struct block_device *bdev,
266 		u64 dev_bytenr,
267 		struct btrfsic_block_hashtable *h);
268 static void btrfsic_block_link_hashtable_init(
269 		struct btrfsic_block_link_hashtable *h);
270 static void btrfsic_block_link_hashtable_add(
271 		struct btrfsic_block_link *l,
272 		struct btrfsic_block_link_hashtable *h);
273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275 		struct block_device *bdev_ref_to,
276 		u64 dev_bytenr_ref_to,
277 		struct block_device *bdev_ref_from,
278 		u64 dev_bytenr_ref_from,
279 		struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_dev_state_hashtable_init(
281 		struct btrfsic_dev_state_hashtable *h);
282 static void btrfsic_dev_state_hashtable_add(
283 		struct btrfsic_dev_state *ds,
284 		struct btrfsic_dev_state_hashtable *h);
285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
287 		struct block_device *bdev,
288 		struct btrfsic_dev_state_hashtable *h);
289 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
290 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
291 static int btrfsic_process_superblock(struct btrfsic_state *state,
292 				      struct btrfs_fs_devices *fs_devices);
293 static int btrfsic_process_metablock(struct btrfsic_state *state,
294 				     struct btrfsic_block *block,
295 				     struct btrfsic_block_data_ctx *block_ctx,
296 				     int limit_nesting, int force_iodone_flag);
297 static void btrfsic_read_from_block_data(
298 	struct btrfsic_block_data_ctx *block_ctx,
299 	void *dst, u32 offset, size_t len);
300 static int btrfsic_create_link_to_next_block(
301 		struct btrfsic_state *state,
302 		struct btrfsic_block *block,
303 		struct btrfsic_block_data_ctx
304 		*block_ctx, u64 next_bytenr,
305 		int limit_nesting,
306 		struct btrfsic_block_data_ctx *next_block_ctx,
307 		struct btrfsic_block **next_blockp,
308 		int force_iodone_flag,
309 		int *num_copiesp, int *mirror_nump,
310 		struct btrfs_disk_key *disk_key,
311 		u64 parent_generation);
312 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
313 				      struct btrfsic_block *block,
314 				      struct btrfsic_block_data_ctx *block_ctx,
315 				      u32 item_offset, int force_iodone_flag);
316 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
317 			     struct btrfsic_block_data_ctx *block_ctx_out,
318 			     int mirror_num);
319 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
320 				  u32 len, struct block_device *bdev,
321 				  struct btrfsic_block_data_ctx *block_ctx_out);
322 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
323 static int btrfsic_read_block(struct btrfsic_state *state,
324 			      struct btrfsic_block_data_ctx *block_ctx);
325 static void btrfsic_dump_database(struct btrfsic_state *state);
326 static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
327 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
328 				     char **datav, unsigned int num_pages);
329 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
330 					  u64 dev_bytenr, char **mapped_datav,
331 					  unsigned int num_pages,
332 					  struct bio *bio, int *bio_is_patched,
333 					  struct buffer_head *bh,
334 					  int submit_bio_bh_rw);
335 static int btrfsic_process_written_superblock(
336 		struct btrfsic_state *state,
337 		struct btrfsic_block *const block,
338 		struct btrfs_super_block *const super_hdr);
339 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
340 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
341 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
342 					      const struct btrfsic_block *block,
343 					      int recursion_level);
344 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
345 					struct btrfsic_block *const block,
346 					int recursion_level);
347 static void btrfsic_print_add_link(const struct btrfsic_state *state,
348 				   const struct btrfsic_block_link *l);
349 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
350 				   const struct btrfsic_block_link *l);
351 static char btrfsic_get_block_type(const struct btrfsic_state *state,
352 				   const struct btrfsic_block *block);
353 static void btrfsic_dump_tree(const struct btrfsic_state *state);
354 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
355 				  const struct btrfsic_block *block,
356 				  int indent_level);
357 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
358 		struct btrfsic_state *state,
359 		struct btrfsic_block_data_ctx *next_block_ctx,
360 		struct btrfsic_block *next_block,
361 		struct btrfsic_block *from_block,
362 		u64 parent_generation);
363 static struct btrfsic_block *btrfsic_block_lookup_or_add(
364 		struct btrfsic_state *state,
365 		struct btrfsic_block_data_ctx *block_ctx,
366 		const char *additional_string,
367 		int is_metadata,
368 		int is_iodone,
369 		int never_written,
370 		int mirror_num,
371 		int *was_created);
372 static int btrfsic_process_superblock_dev_mirror(
373 		struct btrfsic_state *state,
374 		struct btrfsic_dev_state *dev_state,
375 		struct btrfs_device *device,
376 		int superblock_mirror_num,
377 		struct btrfsic_dev_state **selected_dev_state,
378 		struct btrfs_super_block *selected_super);
379 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
380 		struct block_device *bdev);
381 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
382 					   u64 bytenr,
383 					   struct btrfsic_dev_state *dev_state,
384 					   u64 dev_bytenr);
385 
386 static struct mutex btrfsic_mutex;
387 static int btrfsic_is_initialized;
388 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
389 
390 
391 static void btrfsic_block_init(struct btrfsic_block *b)
392 {
393 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
394 	b->dev_state = NULL;
395 	b->dev_bytenr = 0;
396 	b->logical_bytenr = 0;
397 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
398 	b->disk_key.objectid = 0;
399 	b->disk_key.type = 0;
400 	b->disk_key.offset = 0;
401 	b->is_metadata = 0;
402 	b->is_superblock = 0;
403 	b->is_iodone = 0;
404 	b->iodone_w_error = 0;
405 	b->never_written = 0;
406 	b->mirror_num = 0;
407 	b->next_in_same_bio = NULL;
408 	b->orig_bio_bh_private = NULL;
409 	b->orig_bio_bh_end_io.bio = NULL;
410 	INIT_LIST_HEAD(&b->collision_resolving_node);
411 	INIT_LIST_HEAD(&b->all_blocks_node);
412 	INIT_LIST_HEAD(&b->ref_to_list);
413 	INIT_LIST_HEAD(&b->ref_from_list);
414 	b->submit_bio_bh_rw = 0;
415 	b->flush_gen = 0;
416 }
417 
418 static struct btrfsic_block *btrfsic_block_alloc(void)
419 {
420 	struct btrfsic_block *b;
421 
422 	b = kzalloc(sizeof(*b), GFP_NOFS);
423 	if (NULL != b)
424 		btrfsic_block_init(b);
425 
426 	return b;
427 }
428 
429 static void btrfsic_block_free(struct btrfsic_block *b)
430 {
431 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
432 	kfree(b);
433 }
434 
435 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
436 {
437 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
438 	l->ref_cnt = 1;
439 	INIT_LIST_HEAD(&l->node_ref_to);
440 	INIT_LIST_HEAD(&l->node_ref_from);
441 	INIT_LIST_HEAD(&l->collision_resolving_node);
442 	l->block_ref_to = NULL;
443 	l->block_ref_from = NULL;
444 }
445 
446 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
447 {
448 	struct btrfsic_block_link *l;
449 
450 	l = kzalloc(sizeof(*l), GFP_NOFS);
451 	if (NULL != l)
452 		btrfsic_block_link_init(l);
453 
454 	return l;
455 }
456 
457 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
458 {
459 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
460 	kfree(l);
461 }
462 
463 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
464 {
465 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
466 	ds->bdev = NULL;
467 	ds->state = NULL;
468 	ds->name[0] = '\0';
469 	INIT_LIST_HEAD(&ds->collision_resolving_node);
470 	ds->last_flush_gen = 0;
471 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
472 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
473 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
474 }
475 
476 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
477 {
478 	struct btrfsic_dev_state *ds;
479 
480 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
481 	if (NULL != ds)
482 		btrfsic_dev_state_init(ds);
483 
484 	return ds;
485 }
486 
487 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
488 {
489 	BUG_ON(!(NULL == ds ||
490 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
491 	kfree(ds);
492 }
493 
494 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
495 {
496 	int i;
497 
498 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
499 		INIT_LIST_HEAD(h->table + i);
500 }
501 
502 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
503 					struct btrfsic_block_hashtable *h)
504 {
505 	const unsigned int hashval =
506 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
507 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
508 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
509 
510 	list_add(&b->collision_resolving_node, h->table + hashval);
511 }
512 
513 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
514 {
515 	list_del(&b->collision_resolving_node);
516 }
517 
518 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
519 		struct block_device *bdev,
520 		u64 dev_bytenr,
521 		struct btrfsic_block_hashtable *h)
522 {
523 	const unsigned int hashval =
524 	    (((unsigned int)(dev_bytenr >> 16)) ^
525 	     ((unsigned int)((uintptr_t)bdev))) &
526 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
527 	struct list_head *elem;
528 
529 	list_for_each(elem, h->table + hashval) {
530 		struct btrfsic_block *const b =
531 		    list_entry(elem, struct btrfsic_block,
532 			       collision_resolving_node);
533 
534 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
535 			return b;
536 	}
537 
538 	return NULL;
539 }
540 
541 static void btrfsic_block_link_hashtable_init(
542 		struct btrfsic_block_link_hashtable *h)
543 {
544 	int i;
545 
546 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
547 		INIT_LIST_HEAD(h->table + i);
548 }
549 
550 static void btrfsic_block_link_hashtable_add(
551 		struct btrfsic_block_link *l,
552 		struct btrfsic_block_link_hashtable *h)
553 {
554 	const unsigned int hashval =
555 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
556 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
557 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
558 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
559 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
560 
561 	BUG_ON(NULL == l->block_ref_to);
562 	BUG_ON(NULL == l->block_ref_from);
563 	list_add(&l->collision_resolving_node, h->table + hashval);
564 }
565 
566 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
567 {
568 	list_del(&l->collision_resolving_node);
569 }
570 
571 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
572 		struct block_device *bdev_ref_to,
573 		u64 dev_bytenr_ref_to,
574 		struct block_device *bdev_ref_from,
575 		u64 dev_bytenr_ref_from,
576 		struct btrfsic_block_link_hashtable *h)
577 {
578 	const unsigned int hashval =
579 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
580 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
581 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
582 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
583 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
584 	struct list_head *elem;
585 
586 	list_for_each(elem, h->table + hashval) {
587 		struct btrfsic_block_link *const l =
588 		    list_entry(elem, struct btrfsic_block_link,
589 			       collision_resolving_node);
590 
591 		BUG_ON(NULL == l->block_ref_to);
592 		BUG_ON(NULL == l->block_ref_from);
593 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
594 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
595 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
596 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
597 			return l;
598 	}
599 
600 	return NULL;
601 }
602 
603 static void btrfsic_dev_state_hashtable_init(
604 		struct btrfsic_dev_state_hashtable *h)
605 {
606 	int i;
607 
608 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
609 		INIT_LIST_HEAD(h->table + i);
610 }
611 
612 static void btrfsic_dev_state_hashtable_add(
613 		struct btrfsic_dev_state *ds,
614 		struct btrfsic_dev_state_hashtable *h)
615 {
616 	const unsigned int hashval =
617 	    (((unsigned int)((uintptr_t)ds->bdev)) &
618 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
619 
620 	list_add(&ds->collision_resolving_node, h->table + hashval);
621 }
622 
623 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
624 {
625 	list_del(&ds->collision_resolving_node);
626 }
627 
628 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
629 		struct block_device *bdev,
630 		struct btrfsic_dev_state_hashtable *h)
631 {
632 	const unsigned int hashval =
633 	    (((unsigned int)((uintptr_t)bdev)) &
634 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
635 	struct list_head *elem;
636 
637 	list_for_each(elem, h->table + hashval) {
638 		struct btrfsic_dev_state *const ds =
639 		    list_entry(elem, struct btrfsic_dev_state,
640 			       collision_resolving_node);
641 
642 		if (ds->bdev == bdev)
643 			return ds;
644 	}
645 
646 	return NULL;
647 }
648 
649 static int btrfsic_process_superblock(struct btrfsic_state *state,
650 				      struct btrfs_fs_devices *fs_devices)
651 {
652 	int ret = 0;
653 	struct btrfs_super_block *selected_super;
654 	struct list_head *dev_head = &fs_devices->devices;
655 	struct btrfs_device *device;
656 	struct btrfsic_dev_state *selected_dev_state = NULL;
657 	int pass;
658 
659 	BUG_ON(NULL == state);
660 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
661 	if (NULL == selected_super) {
662 		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
663 		return -1;
664 	}
665 
666 	list_for_each_entry(device, dev_head, dev_list) {
667 		int i;
668 		struct btrfsic_dev_state *dev_state;
669 
670 		if (!device->bdev || !device->name)
671 			continue;
672 
673 		dev_state = btrfsic_dev_state_lookup(device->bdev);
674 		BUG_ON(NULL == dev_state);
675 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
676 			ret = btrfsic_process_superblock_dev_mirror(
677 					state, dev_state, device, i,
678 					&selected_dev_state, selected_super);
679 			if (0 != ret && 0 == i) {
680 				kfree(selected_super);
681 				return ret;
682 			}
683 		}
684 	}
685 
686 	if (NULL == state->latest_superblock) {
687 		printk(KERN_INFO "btrfsic: no superblock found!\n");
688 		kfree(selected_super);
689 		return -1;
690 	}
691 
692 	state->csum_size = btrfs_super_csum_size(selected_super);
693 
694 	for (pass = 0; pass < 3; pass++) {
695 		int num_copies;
696 		int mirror_num;
697 		u64 next_bytenr;
698 
699 		switch (pass) {
700 		case 0:
701 			next_bytenr = btrfs_super_root(selected_super);
702 			if (state->print_mask &
703 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
704 				printk(KERN_INFO "root@%llu\n",
705 				       (unsigned long long)next_bytenr);
706 			break;
707 		case 1:
708 			next_bytenr = btrfs_super_chunk_root(selected_super);
709 			if (state->print_mask &
710 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
711 				printk(KERN_INFO "chunk@%llu\n",
712 				       (unsigned long long)next_bytenr);
713 			break;
714 		case 2:
715 			next_bytenr = btrfs_super_log_root(selected_super);
716 			if (0 == next_bytenr)
717 				continue;
718 			if (state->print_mask &
719 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
720 				printk(KERN_INFO "log@%llu\n",
721 				       (unsigned long long)next_bytenr);
722 			break;
723 		}
724 
725 		num_copies =
726 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
727 				     next_bytenr, state->metablock_size);
728 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
729 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
730 			       (unsigned long long)next_bytenr, num_copies);
731 
732 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
733 			struct btrfsic_block *next_block;
734 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
735 			struct btrfsic_block_link *l;
736 
737 			ret = btrfsic_map_block(state, next_bytenr,
738 						state->metablock_size,
739 						&tmp_next_block_ctx,
740 						mirror_num);
741 			if (ret) {
742 				printk(KERN_INFO "btrfsic:"
743 				       " btrfsic_map_block(root @%llu,"
744 				       " mirror %d) failed!\n",
745 				       (unsigned long long)next_bytenr,
746 				       mirror_num);
747 				kfree(selected_super);
748 				return -1;
749 			}
750 
751 			next_block = btrfsic_block_hashtable_lookup(
752 					tmp_next_block_ctx.dev->bdev,
753 					tmp_next_block_ctx.dev_bytenr,
754 					&state->block_hashtable);
755 			BUG_ON(NULL == next_block);
756 
757 			l = btrfsic_block_link_hashtable_lookup(
758 					tmp_next_block_ctx.dev->bdev,
759 					tmp_next_block_ctx.dev_bytenr,
760 					state->latest_superblock->dev_state->
761 					bdev,
762 					state->latest_superblock->dev_bytenr,
763 					&state->block_link_hashtable);
764 			BUG_ON(NULL == l);
765 
766 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
767 			if (ret < (int)PAGE_CACHE_SIZE) {
768 				printk(KERN_INFO
769 				       "btrfsic: read @logical %llu failed!\n",
770 				       (unsigned long long)
771 				       tmp_next_block_ctx.start);
772 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
773 				kfree(selected_super);
774 				return -1;
775 			}
776 
777 			ret = btrfsic_process_metablock(state,
778 							next_block,
779 							&tmp_next_block_ctx,
780 							BTRFS_MAX_LEVEL + 3, 1);
781 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
782 		}
783 	}
784 
785 	kfree(selected_super);
786 	return ret;
787 }
788 
789 static int btrfsic_process_superblock_dev_mirror(
790 		struct btrfsic_state *state,
791 		struct btrfsic_dev_state *dev_state,
792 		struct btrfs_device *device,
793 		int superblock_mirror_num,
794 		struct btrfsic_dev_state **selected_dev_state,
795 		struct btrfs_super_block *selected_super)
796 {
797 	struct btrfs_super_block *super_tmp;
798 	u64 dev_bytenr;
799 	struct buffer_head *bh;
800 	struct btrfsic_block *superblock_tmp;
801 	int pass;
802 	struct block_device *const superblock_bdev = device->bdev;
803 
804 	/* super block bytenr is always the unmapped device bytenr */
805 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
806 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
807 		return -1;
808 	bh = __bread(superblock_bdev, dev_bytenr / 4096,
809 		     BTRFS_SUPER_INFO_SIZE);
810 	if (NULL == bh)
811 		return -1;
812 	super_tmp = (struct btrfs_super_block *)
813 	    (bh->b_data + (dev_bytenr & 4095));
814 
815 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
816 	    strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
817 		    sizeof(super_tmp->magic)) ||
818 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
819 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
820 	    btrfs_super_leafsize(super_tmp) != state->metablock_size ||
821 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
822 		brelse(bh);
823 		return 0;
824 	}
825 
826 	superblock_tmp =
827 	    btrfsic_block_hashtable_lookup(superblock_bdev,
828 					   dev_bytenr,
829 					   &state->block_hashtable);
830 	if (NULL == superblock_tmp) {
831 		superblock_tmp = btrfsic_block_alloc();
832 		if (NULL == superblock_tmp) {
833 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
834 			brelse(bh);
835 			return -1;
836 		}
837 		/* for superblock, only the dev_bytenr makes sense */
838 		superblock_tmp->dev_bytenr = dev_bytenr;
839 		superblock_tmp->dev_state = dev_state;
840 		superblock_tmp->logical_bytenr = dev_bytenr;
841 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
842 		superblock_tmp->is_metadata = 1;
843 		superblock_tmp->is_superblock = 1;
844 		superblock_tmp->is_iodone = 1;
845 		superblock_tmp->never_written = 0;
846 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
847 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
848 			printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
849 				     " @%llu (%s/%llu/%d)\n",
850 				     superblock_bdev,
851 				     rcu_str_deref(device->name),
852 				     (unsigned long long)dev_bytenr,
853 				     dev_state->name,
854 				     (unsigned long long)dev_bytenr,
855 				     superblock_mirror_num);
856 		list_add(&superblock_tmp->all_blocks_node,
857 			 &state->all_blocks_list);
858 		btrfsic_block_hashtable_add(superblock_tmp,
859 					    &state->block_hashtable);
860 	}
861 
862 	/* select the one with the highest generation field */
863 	if (btrfs_super_generation(super_tmp) >
864 	    state->max_superblock_generation ||
865 	    0 == state->max_superblock_generation) {
866 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
867 		*selected_dev_state = dev_state;
868 		state->max_superblock_generation =
869 		    btrfs_super_generation(super_tmp);
870 		state->latest_superblock = superblock_tmp;
871 	}
872 
873 	for (pass = 0; pass < 3; pass++) {
874 		u64 next_bytenr;
875 		int num_copies;
876 		int mirror_num;
877 		const char *additional_string = NULL;
878 		struct btrfs_disk_key tmp_disk_key;
879 
880 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
881 		tmp_disk_key.offset = 0;
882 		switch (pass) {
883 		case 0:
884 			tmp_disk_key.objectid =
885 			    cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
886 			additional_string = "initial root ";
887 			next_bytenr = btrfs_super_root(super_tmp);
888 			break;
889 		case 1:
890 			tmp_disk_key.objectid =
891 			    cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
892 			additional_string = "initial chunk ";
893 			next_bytenr = btrfs_super_chunk_root(super_tmp);
894 			break;
895 		case 2:
896 			tmp_disk_key.objectid =
897 			    cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
898 			additional_string = "initial log ";
899 			next_bytenr = btrfs_super_log_root(super_tmp);
900 			if (0 == next_bytenr)
901 				continue;
902 			break;
903 		}
904 
905 		num_copies =
906 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
907 				     next_bytenr, state->metablock_size);
908 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
909 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
910 			       (unsigned long long)next_bytenr, num_copies);
911 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
912 			struct btrfsic_block *next_block;
913 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
914 			struct btrfsic_block_link *l;
915 
916 			if (btrfsic_map_block(state, next_bytenr,
917 					      state->metablock_size,
918 					      &tmp_next_block_ctx,
919 					      mirror_num)) {
920 				printk(KERN_INFO "btrfsic: btrfsic_map_block("
921 				       "bytenr @%llu, mirror %d) failed!\n",
922 				       (unsigned long long)next_bytenr,
923 				       mirror_num);
924 				brelse(bh);
925 				return -1;
926 			}
927 
928 			next_block = btrfsic_block_lookup_or_add(
929 					state, &tmp_next_block_ctx,
930 					additional_string, 1, 1, 0,
931 					mirror_num, NULL);
932 			if (NULL == next_block) {
933 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 				brelse(bh);
935 				return -1;
936 			}
937 
938 			next_block->disk_key = tmp_disk_key;
939 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940 			l = btrfsic_block_link_lookup_or_add(
941 					state, &tmp_next_block_ctx,
942 					next_block, superblock_tmp,
943 					BTRFSIC_GENERATION_UNKNOWN);
944 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
945 			if (NULL == l) {
946 				brelse(bh);
947 				return -1;
948 			}
949 		}
950 	}
951 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
953 
954 	brelse(bh);
955 	return 0;
956 }
957 
958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
959 {
960 	struct btrfsic_stack_frame *sf;
961 
962 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
963 	if (NULL == sf)
964 		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965 	else
966 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967 	return sf;
968 }
969 
970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
971 {
972 	BUG_ON(!(NULL == sf ||
973 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974 	kfree(sf);
975 }
976 
977 static int btrfsic_process_metablock(
978 		struct btrfsic_state *state,
979 		struct btrfsic_block *const first_block,
980 		struct btrfsic_block_data_ctx *const first_block_ctx,
981 		int first_limit_nesting, int force_iodone_flag)
982 {
983 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
984 	struct btrfsic_stack_frame *sf;
985 	struct btrfsic_stack_frame *next_stack;
986 	struct btrfs_header *const first_hdr =
987 		(struct btrfs_header *)first_block_ctx->datav[0];
988 
989 	BUG_ON(!first_hdr);
990 	sf = &initial_stack_frame;
991 	sf->error = 0;
992 	sf->i = -1;
993 	sf->limit_nesting = first_limit_nesting;
994 	sf->block = first_block;
995 	sf->block_ctx = first_block_ctx;
996 	sf->next_block = NULL;
997 	sf->hdr = first_hdr;
998 	sf->prev = NULL;
999 
1000 continue_with_new_stack_frame:
1001 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002 	if (0 == sf->hdr->level) {
1003 		struct btrfs_leaf *const leafhdr =
1004 		    (struct btrfs_leaf *)sf->hdr;
1005 
1006 		if (-1 == sf->i) {
1007 			sf->nr = le32_to_cpu(leafhdr->header.nritems);
1008 
1009 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010 				printk(KERN_INFO
1011 				       "leaf %llu items %d generation %llu"
1012 				       " owner %llu\n",
1013 				       (unsigned long long)
1014 				       sf->block_ctx->start,
1015 				       sf->nr,
1016 				       (unsigned long long)
1017 				       le64_to_cpu(leafhdr->header.generation),
1018 				       (unsigned long long)
1019 				       le64_to_cpu(leafhdr->header.owner));
1020 		}
1021 
1022 continue_with_current_leaf_stack_frame:
1023 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1024 			sf->i++;
1025 			sf->num_copies = 0;
1026 		}
1027 
1028 		if (sf->i < sf->nr) {
1029 			struct btrfs_item disk_item;
1030 			u32 disk_item_offset =
1031 				(uintptr_t)(leafhdr->items + sf->i) -
1032 				(uintptr_t)leafhdr;
1033 			struct btrfs_disk_key *disk_key;
1034 			u8 type;
1035 			u32 item_offset;
1036 			u32 item_size;
1037 
1038 			if (disk_item_offset + sizeof(struct btrfs_item) >
1039 			    sf->block_ctx->len) {
1040 leaf_item_out_of_bounce_error:
1041 				printk(KERN_INFO
1042 				       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1043 				       sf->block_ctx->start,
1044 				       sf->block_ctx->dev->name);
1045 				goto one_stack_frame_backwards;
1046 			}
1047 			btrfsic_read_from_block_data(sf->block_ctx,
1048 						     &disk_item,
1049 						     disk_item_offset,
1050 						     sizeof(struct btrfs_item));
1051 			item_offset = le32_to_cpu(disk_item.offset);
1052 			item_size = le32_to_cpu(disk_item.size);
1053 			disk_key = &disk_item.key;
1054 			type = disk_key->type;
1055 
1056 			if (BTRFS_ROOT_ITEM_KEY == type) {
1057 				struct btrfs_root_item root_item;
1058 				u32 root_item_offset;
1059 				u64 next_bytenr;
1060 
1061 				root_item_offset = item_offset +
1062 					offsetof(struct btrfs_leaf, items);
1063 				if (root_item_offset + item_size >
1064 				    sf->block_ctx->len)
1065 					goto leaf_item_out_of_bounce_error;
1066 				btrfsic_read_from_block_data(
1067 					sf->block_ctx, &root_item,
1068 					root_item_offset,
1069 					item_size);
1070 				next_bytenr = le64_to_cpu(root_item.bytenr);
1071 
1072 				sf->error =
1073 				    btrfsic_create_link_to_next_block(
1074 						state,
1075 						sf->block,
1076 						sf->block_ctx,
1077 						next_bytenr,
1078 						sf->limit_nesting,
1079 						&sf->next_block_ctx,
1080 						&sf->next_block,
1081 						force_iodone_flag,
1082 						&sf->num_copies,
1083 						&sf->mirror_num,
1084 						disk_key,
1085 						le64_to_cpu(root_item.
1086 						generation));
1087 				if (sf->error)
1088 					goto one_stack_frame_backwards;
1089 
1090 				if (NULL != sf->next_block) {
1091 					struct btrfs_header *const next_hdr =
1092 					    (struct btrfs_header *)
1093 					    sf->next_block_ctx.datav[0];
1094 
1095 					next_stack =
1096 					    btrfsic_stack_frame_alloc();
1097 					if (NULL == next_stack) {
1098 						btrfsic_release_block_ctx(
1099 								&sf->
1100 								next_block_ctx);
1101 						goto one_stack_frame_backwards;
1102 					}
1103 
1104 					next_stack->i = -1;
1105 					next_stack->block = sf->next_block;
1106 					next_stack->block_ctx =
1107 					    &sf->next_block_ctx;
1108 					next_stack->next_block = NULL;
1109 					next_stack->hdr = next_hdr;
1110 					next_stack->limit_nesting =
1111 					    sf->limit_nesting - 1;
1112 					next_stack->prev = sf;
1113 					sf = next_stack;
1114 					goto continue_with_new_stack_frame;
1115 				}
1116 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1117 				   state->include_extent_data) {
1118 				sf->error = btrfsic_handle_extent_data(
1119 						state,
1120 						sf->block,
1121 						sf->block_ctx,
1122 						item_offset,
1123 						force_iodone_flag);
1124 				if (sf->error)
1125 					goto one_stack_frame_backwards;
1126 			}
1127 
1128 			goto continue_with_current_leaf_stack_frame;
1129 		}
1130 	} else {
1131 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1132 
1133 		if (-1 == sf->i) {
1134 			sf->nr = le32_to_cpu(nodehdr->header.nritems);
1135 
1136 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1137 				printk(KERN_INFO "node %llu level %d items %d"
1138 				       " generation %llu owner %llu\n",
1139 				       (unsigned long long)
1140 				       sf->block_ctx->start,
1141 				       nodehdr->header.level, sf->nr,
1142 				       (unsigned long long)
1143 				       le64_to_cpu(nodehdr->header.generation),
1144 				       (unsigned long long)
1145 				       le64_to_cpu(nodehdr->header.owner));
1146 		}
1147 
1148 continue_with_current_node_stack_frame:
1149 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1150 			sf->i++;
1151 			sf->num_copies = 0;
1152 		}
1153 
1154 		if (sf->i < sf->nr) {
1155 			struct btrfs_key_ptr key_ptr;
1156 			u32 key_ptr_offset;
1157 			u64 next_bytenr;
1158 
1159 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1160 					  (uintptr_t)nodehdr;
1161 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1162 			    sf->block_ctx->len) {
1163 				printk(KERN_INFO
1164 				       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1165 				       sf->block_ctx->start,
1166 				       sf->block_ctx->dev->name);
1167 				goto one_stack_frame_backwards;
1168 			}
1169 			btrfsic_read_from_block_data(
1170 				sf->block_ctx, &key_ptr, key_ptr_offset,
1171 				sizeof(struct btrfs_key_ptr));
1172 			next_bytenr = le64_to_cpu(key_ptr.blockptr);
1173 
1174 			sf->error = btrfsic_create_link_to_next_block(
1175 					state,
1176 					sf->block,
1177 					sf->block_ctx,
1178 					next_bytenr,
1179 					sf->limit_nesting,
1180 					&sf->next_block_ctx,
1181 					&sf->next_block,
1182 					force_iodone_flag,
1183 					&sf->num_copies,
1184 					&sf->mirror_num,
1185 					&key_ptr.key,
1186 					le64_to_cpu(key_ptr.generation));
1187 			if (sf->error)
1188 				goto one_stack_frame_backwards;
1189 
1190 			if (NULL != sf->next_block) {
1191 				struct btrfs_header *const next_hdr =
1192 				    (struct btrfs_header *)
1193 				    sf->next_block_ctx.datav[0];
1194 
1195 				next_stack = btrfsic_stack_frame_alloc();
1196 				if (NULL == next_stack)
1197 					goto one_stack_frame_backwards;
1198 
1199 				next_stack->i = -1;
1200 				next_stack->block = sf->next_block;
1201 				next_stack->block_ctx = &sf->next_block_ctx;
1202 				next_stack->next_block = NULL;
1203 				next_stack->hdr = next_hdr;
1204 				next_stack->limit_nesting =
1205 				    sf->limit_nesting - 1;
1206 				next_stack->prev = sf;
1207 				sf = next_stack;
1208 				goto continue_with_new_stack_frame;
1209 			}
1210 
1211 			goto continue_with_current_node_stack_frame;
1212 		}
1213 	}
1214 
1215 one_stack_frame_backwards:
1216 	if (NULL != sf->prev) {
1217 		struct btrfsic_stack_frame *const prev = sf->prev;
1218 
1219 		/* the one for the initial block is freed in the caller */
1220 		btrfsic_release_block_ctx(sf->block_ctx);
1221 
1222 		if (sf->error) {
1223 			prev->error = sf->error;
1224 			btrfsic_stack_frame_free(sf);
1225 			sf = prev;
1226 			goto one_stack_frame_backwards;
1227 		}
1228 
1229 		btrfsic_stack_frame_free(sf);
1230 		sf = prev;
1231 		goto continue_with_new_stack_frame;
1232 	} else {
1233 		BUG_ON(&initial_stack_frame != sf);
1234 	}
1235 
1236 	return sf->error;
1237 }
1238 
1239 static void btrfsic_read_from_block_data(
1240 	struct btrfsic_block_data_ctx *block_ctx,
1241 	void *dstv, u32 offset, size_t len)
1242 {
1243 	size_t cur;
1244 	size_t offset_in_page;
1245 	char *kaddr;
1246 	char *dst = (char *)dstv;
1247 	size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1248 	unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1249 
1250 	WARN_ON(offset + len > block_ctx->len);
1251 	offset_in_page = (start_offset + offset) &
1252 			 ((unsigned long)PAGE_CACHE_SIZE - 1);
1253 
1254 	while (len > 0) {
1255 		cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1256 		BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1257 			    PAGE_CACHE_SHIFT);
1258 		kaddr = block_ctx->datav[i];
1259 		memcpy(dst, kaddr + offset_in_page, cur);
1260 
1261 		dst += cur;
1262 		len -= cur;
1263 		offset_in_page = 0;
1264 		i++;
1265 	}
1266 }
1267 
1268 static int btrfsic_create_link_to_next_block(
1269 		struct btrfsic_state *state,
1270 		struct btrfsic_block *block,
1271 		struct btrfsic_block_data_ctx *block_ctx,
1272 		u64 next_bytenr,
1273 		int limit_nesting,
1274 		struct btrfsic_block_data_ctx *next_block_ctx,
1275 		struct btrfsic_block **next_blockp,
1276 		int force_iodone_flag,
1277 		int *num_copiesp, int *mirror_nump,
1278 		struct btrfs_disk_key *disk_key,
1279 		u64 parent_generation)
1280 {
1281 	struct btrfsic_block *next_block = NULL;
1282 	int ret;
1283 	struct btrfsic_block_link *l;
1284 	int did_alloc_block_link;
1285 	int block_was_created;
1286 
1287 	*next_blockp = NULL;
1288 	if (0 == *num_copiesp) {
1289 		*num_copiesp =
1290 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
1291 				     next_bytenr, state->metablock_size);
1292 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1293 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1294 			       (unsigned long long)next_bytenr, *num_copiesp);
1295 		*mirror_nump = 1;
1296 	}
1297 
1298 	if (*mirror_nump > *num_copiesp)
1299 		return 0;
1300 
1301 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1302 		printk(KERN_INFO
1303 		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1304 		       *mirror_nump);
1305 	ret = btrfsic_map_block(state, next_bytenr,
1306 				state->metablock_size,
1307 				next_block_ctx, *mirror_nump);
1308 	if (ret) {
1309 		printk(KERN_INFO
1310 		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1311 		       (unsigned long long)next_bytenr, *mirror_nump);
1312 		btrfsic_release_block_ctx(next_block_ctx);
1313 		*next_blockp = NULL;
1314 		return -1;
1315 	}
1316 
1317 	next_block = btrfsic_block_lookup_or_add(state,
1318 						 next_block_ctx, "referenced ",
1319 						 1, force_iodone_flag,
1320 						 !force_iodone_flag,
1321 						 *mirror_nump,
1322 						 &block_was_created);
1323 	if (NULL == next_block) {
1324 		btrfsic_release_block_ctx(next_block_ctx);
1325 		*next_blockp = NULL;
1326 		return -1;
1327 	}
1328 	if (block_was_created) {
1329 		l = NULL;
1330 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1331 	} else {
1332 		if (next_block->logical_bytenr != next_bytenr &&
1333 		    !(!next_block->is_metadata &&
1334 		      0 == next_block->logical_bytenr)) {
1335 			printk(KERN_INFO
1336 			       "Referenced block @%llu (%s/%llu/%d)"
1337 			       " found in hash table, %c,"
1338 			       " bytenr mismatch (!= stored %llu).\n",
1339 			       (unsigned long long)next_bytenr,
1340 			       next_block_ctx->dev->name,
1341 			       (unsigned long long)next_block_ctx->dev_bytenr,
1342 			       *mirror_nump,
1343 			       btrfsic_get_block_type(state, next_block),
1344 			       (unsigned long long)next_block->logical_bytenr);
1345 		} else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1346 			printk(KERN_INFO
1347 			       "Referenced block @%llu (%s/%llu/%d)"
1348 			       " found in hash table, %c.\n",
1349 			       (unsigned long long)next_bytenr,
1350 			       next_block_ctx->dev->name,
1351 			       (unsigned long long)next_block_ctx->dev_bytenr,
1352 			       *mirror_nump,
1353 			       btrfsic_get_block_type(state, next_block));
1354 		next_block->logical_bytenr = next_bytenr;
1355 
1356 		next_block->mirror_num = *mirror_nump;
1357 		l = btrfsic_block_link_hashtable_lookup(
1358 				next_block_ctx->dev->bdev,
1359 				next_block_ctx->dev_bytenr,
1360 				block_ctx->dev->bdev,
1361 				block_ctx->dev_bytenr,
1362 				&state->block_link_hashtable);
1363 	}
1364 
1365 	next_block->disk_key = *disk_key;
1366 	if (NULL == l) {
1367 		l = btrfsic_block_link_alloc();
1368 		if (NULL == l) {
1369 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1370 			btrfsic_release_block_ctx(next_block_ctx);
1371 			*next_blockp = NULL;
1372 			return -1;
1373 		}
1374 
1375 		did_alloc_block_link = 1;
1376 		l->block_ref_to = next_block;
1377 		l->block_ref_from = block;
1378 		l->ref_cnt = 1;
1379 		l->parent_generation = parent_generation;
1380 
1381 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1382 			btrfsic_print_add_link(state, l);
1383 
1384 		list_add(&l->node_ref_to, &block->ref_to_list);
1385 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1386 
1387 		btrfsic_block_link_hashtable_add(l,
1388 						 &state->block_link_hashtable);
1389 	} else {
1390 		did_alloc_block_link = 0;
1391 		if (0 == limit_nesting) {
1392 			l->ref_cnt++;
1393 			l->parent_generation = parent_generation;
1394 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1395 				btrfsic_print_add_link(state, l);
1396 		}
1397 	}
1398 
1399 	if (limit_nesting > 0 && did_alloc_block_link) {
1400 		ret = btrfsic_read_block(state, next_block_ctx);
1401 		if (ret < (int)next_block_ctx->len) {
1402 			printk(KERN_INFO
1403 			       "btrfsic: read block @logical %llu failed!\n",
1404 			       (unsigned long long)next_bytenr);
1405 			btrfsic_release_block_ctx(next_block_ctx);
1406 			*next_blockp = NULL;
1407 			return -1;
1408 		}
1409 
1410 		*next_blockp = next_block;
1411 	} else {
1412 		*next_blockp = NULL;
1413 	}
1414 	(*mirror_nump)++;
1415 
1416 	return 0;
1417 }
1418 
1419 static int btrfsic_handle_extent_data(
1420 		struct btrfsic_state *state,
1421 		struct btrfsic_block *block,
1422 		struct btrfsic_block_data_ctx *block_ctx,
1423 		u32 item_offset, int force_iodone_flag)
1424 {
1425 	int ret;
1426 	struct btrfs_file_extent_item file_extent_item;
1427 	u64 file_extent_item_offset;
1428 	u64 next_bytenr;
1429 	u64 num_bytes;
1430 	u64 generation;
1431 	struct btrfsic_block_link *l;
1432 
1433 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1434 				  item_offset;
1435 	if (file_extent_item_offset +
1436 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1437 	    block_ctx->len) {
1438 		printk(KERN_INFO
1439 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1440 		       block_ctx->start, block_ctx->dev->name);
1441 		return -1;
1442 	}
1443 
1444 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1445 		file_extent_item_offset,
1446 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1447 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1448 	    ((u64)0) == le64_to_cpu(file_extent_item.disk_bytenr)) {
1449 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1450 			printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1451 			       file_extent_item.type,
1452 			       (unsigned long long)
1453 			       le64_to_cpu(file_extent_item.disk_bytenr));
1454 		return 0;
1455 	}
1456 
1457 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1458 	    block_ctx->len) {
1459 		printk(KERN_INFO
1460 		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1461 		       block_ctx->start, block_ctx->dev->name);
1462 		return -1;
1463 	}
1464 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1465 				     file_extent_item_offset,
1466 				     sizeof(struct btrfs_file_extent_item));
1467 	next_bytenr = le64_to_cpu(file_extent_item.disk_bytenr) +
1468 		      le64_to_cpu(file_extent_item.offset);
1469 	generation = le64_to_cpu(file_extent_item.generation);
1470 	num_bytes = le64_to_cpu(file_extent_item.num_bytes);
1471 	generation = le64_to_cpu(file_extent_item.generation);
1472 
1473 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474 		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1475 		       " offset = %llu, num_bytes = %llu\n",
1476 		       file_extent_item.type,
1477 		       (unsigned long long)
1478 		       le64_to_cpu(file_extent_item.disk_bytenr),
1479 		       (unsigned long long)le64_to_cpu(file_extent_item.offset),
1480 		       (unsigned long long)num_bytes);
1481 	while (num_bytes > 0) {
1482 		u32 chunk_len;
1483 		int num_copies;
1484 		int mirror_num;
1485 
1486 		if (num_bytes > state->datablock_size)
1487 			chunk_len = state->datablock_size;
1488 		else
1489 			chunk_len = num_bytes;
1490 
1491 		num_copies =
1492 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
1493 				     next_bytenr, state->datablock_size);
1494 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1495 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1496 			       (unsigned long long)next_bytenr, num_copies);
1497 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1498 			struct btrfsic_block_data_ctx next_block_ctx;
1499 			struct btrfsic_block *next_block;
1500 			int block_was_created;
1501 
1502 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1503 				printk(KERN_INFO "btrfsic_handle_extent_data("
1504 				       "mirror_num=%d)\n", mirror_num);
1505 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1506 				printk(KERN_INFO
1507 				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1508 				       (unsigned long long)next_bytenr,
1509 				       chunk_len);
1510 			ret = btrfsic_map_block(state, next_bytenr,
1511 						chunk_len, &next_block_ctx,
1512 						mirror_num);
1513 			if (ret) {
1514 				printk(KERN_INFO
1515 				       "btrfsic: btrfsic_map_block(@%llu,"
1516 				       " mirror=%d) failed!\n",
1517 				       (unsigned long long)next_bytenr,
1518 				       mirror_num);
1519 				return -1;
1520 			}
1521 
1522 			next_block = btrfsic_block_lookup_or_add(
1523 					state,
1524 					&next_block_ctx,
1525 					"referenced ",
1526 					0,
1527 					force_iodone_flag,
1528 					!force_iodone_flag,
1529 					mirror_num,
1530 					&block_was_created);
1531 			if (NULL == next_block) {
1532 				printk(KERN_INFO
1533 				       "btrfsic: error, kmalloc failed!\n");
1534 				btrfsic_release_block_ctx(&next_block_ctx);
1535 				return -1;
1536 			}
1537 			if (!block_was_created) {
1538 				if (next_block->logical_bytenr != next_bytenr &&
1539 				    !(!next_block->is_metadata &&
1540 				      0 == next_block->logical_bytenr)) {
1541 					printk(KERN_INFO
1542 					       "Referenced block"
1543 					       " @%llu (%s/%llu/%d)"
1544 					       " found in hash table, D,"
1545 					       " bytenr mismatch"
1546 					       " (!= stored %llu).\n",
1547 					       (unsigned long long)next_bytenr,
1548 					       next_block_ctx.dev->name,
1549 					       (unsigned long long)
1550 					       next_block_ctx.dev_bytenr,
1551 					       mirror_num,
1552 					       (unsigned long long)
1553 					       next_block->logical_bytenr);
1554 				}
1555 				next_block->logical_bytenr = next_bytenr;
1556 				next_block->mirror_num = mirror_num;
1557 			}
1558 
1559 			l = btrfsic_block_link_lookup_or_add(state,
1560 							     &next_block_ctx,
1561 							     next_block, block,
1562 							     generation);
1563 			btrfsic_release_block_ctx(&next_block_ctx);
1564 			if (NULL == l)
1565 				return -1;
1566 		}
1567 
1568 		next_bytenr += chunk_len;
1569 		num_bytes -= chunk_len;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1576 			     struct btrfsic_block_data_ctx *block_ctx_out,
1577 			     int mirror_num)
1578 {
1579 	int ret;
1580 	u64 length;
1581 	struct btrfs_bio *multi = NULL;
1582 	struct btrfs_device *device;
1583 
1584 	length = len;
1585 	ret = btrfs_map_block(&state->root->fs_info->mapping_tree, READ,
1586 			      bytenr, &length, &multi, mirror_num);
1587 
1588 	device = multi->stripes[0].dev;
1589 	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1590 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1591 	block_ctx_out->start = bytenr;
1592 	block_ctx_out->len = len;
1593 	block_ctx_out->datav = NULL;
1594 	block_ctx_out->pagev = NULL;
1595 	block_ctx_out->mem_to_free = NULL;
1596 
1597 	if (0 == ret)
1598 		kfree(multi);
1599 	if (NULL == block_ctx_out->dev) {
1600 		ret = -ENXIO;
1601 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1602 	}
1603 
1604 	return ret;
1605 }
1606 
1607 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1608 				  u32 len, struct block_device *bdev,
1609 				  struct btrfsic_block_data_ctx *block_ctx_out)
1610 {
1611 	block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1612 	block_ctx_out->dev_bytenr = bytenr;
1613 	block_ctx_out->start = bytenr;
1614 	block_ctx_out->len = len;
1615 	block_ctx_out->datav = NULL;
1616 	block_ctx_out->pagev = NULL;
1617 	block_ctx_out->mem_to_free = NULL;
1618 	if (NULL != block_ctx_out->dev) {
1619 		return 0;
1620 	} else {
1621 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1622 		return -ENXIO;
1623 	}
1624 }
1625 
1626 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1627 {
1628 	if (block_ctx->mem_to_free) {
1629 		unsigned int num_pages;
1630 
1631 		BUG_ON(!block_ctx->datav);
1632 		BUG_ON(!block_ctx->pagev);
1633 		num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1634 			    PAGE_CACHE_SHIFT;
1635 		while (num_pages > 0) {
1636 			num_pages--;
1637 			if (block_ctx->datav[num_pages]) {
1638 				kunmap(block_ctx->pagev[num_pages]);
1639 				block_ctx->datav[num_pages] = NULL;
1640 			}
1641 			if (block_ctx->pagev[num_pages]) {
1642 				__free_page(block_ctx->pagev[num_pages]);
1643 				block_ctx->pagev[num_pages] = NULL;
1644 			}
1645 		}
1646 
1647 		kfree(block_ctx->mem_to_free);
1648 		block_ctx->mem_to_free = NULL;
1649 		block_ctx->pagev = NULL;
1650 		block_ctx->datav = NULL;
1651 	}
1652 }
1653 
1654 static int btrfsic_read_block(struct btrfsic_state *state,
1655 			      struct btrfsic_block_data_ctx *block_ctx)
1656 {
1657 	unsigned int num_pages;
1658 	unsigned int i;
1659 	u64 dev_bytenr;
1660 	int ret;
1661 
1662 	BUG_ON(block_ctx->datav);
1663 	BUG_ON(block_ctx->pagev);
1664 	BUG_ON(block_ctx->mem_to_free);
1665 	if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1666 		printk(KERN_INFO
1667 		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1668 		       (unsigned long long)block_ctx->dev_bytenr);
1669 		return -1;
1670 	}
1671 
1672 	num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1673 		    PAGE_CACHE_SHIFT;
1674 	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1675 					  sizeof(*block_ctx->pagev)) *
1676 					 num_pages, GFP_NOFS);
1677 	if (!block_ctx->mem_to_free)
1678 		return -1;
1679 	block_ctx->datav = block_ctx->mem_to_free;
1680 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1681 	for (i = 0; i < num_pages; i++) {
1682 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1683 		if (!block_ctx->pagev[i])
1684 			return -1;
1685 	}
1686 
1687 	dev_bytenr = block_ctx->dev_bytenr;
1688 	for (i = 0; i < num_pages;) {
1689 		struct bio *bio;
1690 		unsigned int j;
1691 		DECLARE_COMPLETION_ONSTACK(complete);
1692 
1693 		bio = bio_alloc(GFP_NOFS, num_pages - i);
1694 		if (!bio) {
1695 			printk(KERN_INFO
1696 			       "btrfsic: bio_alloc() for %u pages failed!\n",
1697 			       num_pages - i);
1698 			return -1;
1699 		}
1700 		bio->bi_bdev = block_ctx->dev->bdev;
1701 		bio->bi_sector = dev_bytenr >> 9;
1702 		bio->bi_end_io = btrfsic_complete_bio_end_io;
1703 		bio->bi_private = &complete;
1704 
1705 		for (j = i; j < num_pages; j++) {
1706 			ret = bio_add_page(bio, block_ctx->pagev[j],
1707 					   PAGE_CACHE_SIZE, 0);
1708 			if (PAGE_CACHE_SIZE != ret)
1709 				break;
1710 		}
1711 		if (j == i) {
1712 			printk(KERN_INFO
1713 			       "btrfsic: error, failed to add a single page!\n");
1714 			return -1;
1715 		}
1716 		submit_bio(READ, bio);
1717 
1718 		/* this will also unplug the queue */
1719 		wait_for_completion(&complete);
1720 
1721 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1722 			printk(KERN_INFO
1723 			       "btrfsic: read error at logical %llu dev %s!\n",
1724 			       block_ctx->start, block_ctx->dev->name);
1725 			bio_put(bio);
1726 			return -1;
1727 		}
1728 		bio_put(bio);
1729 		dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1730 		i = j;
1731 	}
1732 	for (i = 0; i < num_pages; i++) {
1733 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1734 		if (!block_ctx->datav[i]) {
1735 			printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1736 			       block_ctx->dev->name);
1737 			return -1;
1738 		}
1739 	}
1740 
1741 	return block_ctx->len;
1742 }
1743 
1744 static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1745 {
1746 	complete((struct completion *)bio->bi_private);
1747 }
1748 
1749 static void btrfsic_dump_database(struct btrfsic_state *state)
1750 {
1751 	struct list_head *elem_all;
1752 
1753 	BUG_ON(NULL == state);
1754 
1755 	printk(KERN_INFO "all_blocks_list:\n");
1756 	list_for_each(elem_all, &state->all_blocks_list) {
1757 		const struct btrfsic_block *const b_all =
1758 		    list_entry(elem_all, struct btrfsic_block,
1759 			       all_blocks_node);
1760 		struct list_head *elem_ref_to;
1761 		struct list_head *elem_ref_from;
1762 
1763 		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1764 		       btrfsic_get_block_type(state, b_all),
1765 		       (unsigned long long)b_all->logical_bytenr,
1766 		       b_all->dev_state->name,
1767 		       (unsigned long long)b_all->dev_bytenr,
1768 		       b_all->mirror_num);
1769 
1770 		list_for_each(elem_ref_to, &b_all->ref_to_list) {
1771 			const struct btrfsic_block_link *const l =
1772 			    list_entry(elem_ref_to,
1773 				       struct btrfsic_block_link,
1774 				       node_ref_to);
1775 
1776 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1777 			       " refers %u* to"
1778 			       " %c @%llu (%s/%llu/%d)\n",
1779 			       btrfsic_get_block_type(state, b_all),
1780 			       (unsigned long long)b_all->logical_bytenr,
1781 			       b_all->dev_state->name,
1782 			       (unsigned long long)b_all->dev_bytenr,
1783 			       b_all->mirror_num,
1784 			       l->ref_cnt,
1785 			       btrfsic_get_block_type(state, l->block_ref_to),
1786 			       (unsigned long long)
1787 			       l->block_ref_to->logical_bytenr,
1788 			       l->block_ref_to->dev_state->name,
1789 			       (unsigned long long)l->block_ref_to->dev_bytenr,
1790 			       l->block_ref_to->mirror_num);
1791 		}
1792 
1793 		list_for_each(elem_ref_from, &b_all->ref_from_list) {
1794 			const struct btrfsic_block_link *const l =
1795 			    list_entry(elem_ref_from,
1796 				       struct btrfsic_block_link,
1797 				       node_ref_from);
1798 
1799 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1800 			       " is ref %u* from"
1801 			       " %c @%llu (%s/%llu/%d)\n",
1802 			       btrfsic_get_block_type(state, b_all),
1803 			       (unsigned long long)b_all->logical_bytenr,
1804 			       b_all->dev_state->name,
1805 			       (unsigned long long)b_all->dev_bytenr,
1806 			       b_all->mirror_num,
1807 			       l->ref_cnt,
1808 			       btrfsic_get_block_type(state, l->block_ref_from),
1809 			       (unsigned long long)
1810 			       l->block_ref_from->logical_bytenr,
1811 			       l->block_ref_from->dev_state->name,
1812 			       (unsigned long long)
1813 			       l->block_ref_from->dev_bytenr,
1814 			       l->block_ref_from->mirror_num);
1815 		}
1816 
1817 		printk(KERN_INFO "\n");
1818 	}
1819 }
1820 
1821 /*
1822  * Test whether the disk block contains a tree block (leaf or node)
1823  * (note that this test fails for the super block)
1824  */
1825 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1826 				     char **datav, unsigned int num_pages)
1827 {
1828 	struct btrfs_header *h;
1829 	u8 csum[BTRFS_CSUM_SIZE];
1830 	u32 crc = ~(u32)0;
1831 	unsigned int i;
1832 
1833 	if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1834 		return 1; /* not metadata */
1835 	num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1836 	h = (struct btrfs_header *)datav[0];
1837 
1838 	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1839 		return 1;
1840 
1841 	for (i = 0; i < num_pages; i++) {
1842 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1843 		size_t sublen = i ? PAGE_CACHE_SIZE :
1844 				    (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1845 
1846 		crc = crc32c(crc, data, sublen);
1847 	}
1848 	btrfs_csum_final(crc, csum);
1849 	if (memcmp(csum, h->csum, state->csum_size))
1850 		return 1;
1851 
1852 	return 0; /* is metadata */
1853 }
1854 
1855 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1856 					  u64 dev_bytenr, char **mapped_datav,
1857 					  unsigned int num_pages,
1858 					  struct bio *bio, int *bio_is_patched,
1859 					  struct buffer_head *bh,
1860 					  int submit_bio_bh_rw)
1861 {
1862 	int is_metadata;
1863 	struct btrfsic_block *block;
1864 	struct btrfsic_block_data_ctx block_ctx;
1865 	int ret;
1866 	struct btrfsic_state *state = dev_state->state;
1867 	struct block_device *bdev = dev_state->bdev;
1868 	unsigned int processed_len;
1869 
1870 	if (NULL != bio_is_patched)
1871 		*bio_is_patched = 0;
1872 
1873 again:
1874 	if (num_pages == 0)
1875 		return;
1876 
1877 	processed_len = 0;
1878 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1879 						      num_pages));
1880 
1881 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1882 					       &state->block_hashtable);
1883 	if (NULL != block) {
1884 		u64 bytenr = 0;
1885 		struct list_head *elem_ref_to;
1886 		struct list_head *tmp_ref_to;
1887 
1888 		if (block->is_superblock) {
1889 			bytenr = le64_to_cpu(((struct btrfs_super_block *)
1890 					      mapped_datav[0])->bytenr);
1891 			if (num_pages * PAGE_CACHE_SIZE <
1892 			    BTRFS_SUPER_INFO_SIZE) {
1893 				printk(KERN_INFO
1894 				       "btrfsic: cannot work with too short bios!\n");
1895 				return;
1896 			}
1897 			is_metadata = 1;
1898 			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1899 			processed_len = BTRFS_SUPER_INFO_SIZE;
1900 			if (state->print_mask &
1901 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1902 				printk(KERN_INFO
1903 				       "[before new superblock is written]:\n");
1904 				btrfsic_dump_tree_sub(state, block, 0);
1905 			}
1906 		}
1907 		if (is_metadata) {
1908 			if (!block->is_superblock) {
1909 				if (num_pages * PAGE_CACHE_SIZE <
1910 				    state->metablock_size) {
1911 					printk(KERN_INFO
1912 					       "btrfsic: cannot work with too short bios!\n");
1913 					return;
1914 				}
1915 				processed_len = state->metablock_size;
1916 				bytenr = le64_to_cpu(((struct btrfs_header *)
1917 						      mapped_datav[0])->bytenr);
1918 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1919 							       dev_state,
1920 							       dev_bytenr);
1921 			}
1922 			if (block->logical_bytenr != bytenr) {
1923 				printk(KERN_INFO
1924 				       "Written block @%llu (%s/%llu/%d)"
1925 				       " found in hash table, %c,"
1926 				       " bytenr mismatch"
1927 				       " (!= stored %llu).\n",
1928 				       (unsigned long long)bytenr,
1929 				       dev_state->name,
1930 				       (unsigned long long)dev_bytenr,
1931 				       block->mirror_num,
1932 				       btrfsic_get_block_type(state, block),
1933 				       (unsigned long long)
1934 				       block->logical_bytenr);
1935 				block->logical_bytenr = bytenr;
1936 			} else if (state->print_mask &
1937 				   BTRFSIC_PRINT_MASK_VERBOSE)
1938 				printk(KERN_INFO
1939 				       "Written block @%llu (%s/%llu/%d)"
1940 				       " found in hash table, %c.\n",
1941 				       (unsigned long long)bytenr,
1942 				       dev_state->name,
1943 				       (unsigned long long)dev_bytenr,
1944 				       block->mirror_num,
1945 				       btrfsic_get_block_type(state, block));
1946 		} else {
1947 			if (num_pages * PAGE_CACHE_SIZE <
1948 			    state->datablock_size) {
1949 				printk(KERN_INFO
1950 				       "btrfsic: cannot work with too short bios!\n");
1951 				return;
1952 			}
1953 			processed_len = state->datablock_size;
1954 			bytenr = block->logical_bytenr;
1955 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1956 				printk(KERN_INFO
1957 				       "Written block @%llu (%s/%llu/%d)"
1958 				       " found in hash table, %c.\n",
1959 				       (unsigned long long)bytenr,
1960 				       dev_state->name,
1961 				       (unsigned long long)dev_bytenr,
1962 				       block->mirror_num,
1963 				       btrfsic_get_block_type(state, block));
1964 		}
1965 
1966 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1967 			printk(KERN_INFO
1968 			       "ref_to_list: %cE, ref_from_list: %cE\n",
1969 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1970 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1971 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1972 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1973 			       " @%llu (%s/%llu/%d), old(gen=%llu,"
1974 			       " objectid=%llu, type=%d, offset=%llu),"
1975 			       " new(gen=%llu),"
1976 			       " which is referenced by most recent superblock"
1977 			       " (superblockgen=%llu)!\n",
1978 			       btrfsic_get_block_type(state, block),
1979 			       (unsigned long long)bytenr,
1980 			       dev_state->name,
1981 			       (unsigned long long)dev_bytenr,
1982 			       block->mirror_num,
1983 			       (unsigned long long)block->generation,
1984 			       (unsigned long long)
1985 			       le64_to_cpu(block->disk_key.objectid),
1986 			       block->disk_key.type,
1987 			       (unsigned long long)
1988 			       le64_to_cpu(block->disk_key.offset),
1989 			       (unsigned long long)
1990 			       le64_to_cpu(((struct btrfs_header *)
1991 					    mapped_datav[0])->generation),
1992 			       (unsigned long long)
1993 			       state->max_superblock_generation);
1994 			btrfsic_dump_tree(state);
1995 		}
1996 
1997 		if (!block->is_iodone && !block->never_written) {
1998 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1999 			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
2000 			       " which is not yet iodone!\n",
2001 			       btrfsic_get_block_type(state, block),
2002 			       (unsigned long long)bytenr,
2003 			       dev_state->name,
2004 			       (unsigned long long)dev_bytenr,
2005 			       block->mirror_num,
2006 			       (unsigned long long)block->generation,
2007 			       (unsigned long long)
2008 			       le64_to_cpu(((struct btrfs_header *)
2009 					    mapped_datav[0])->generation));
2010 			/* it would not be safe to go on */
2011 			btrfsic_dump_tree(state);
2012 			goto continue_loop;
2013 		}
2014 
2015 		/*
2016 		 * Clear all references of this block. Do not free
2017 		 * the block itself even if is not referenced anymore
2018 		 * because it still carries valueable information
2019 		 * like whether it was ever written and IO completed.
2020 		 */
2021 		list_for_each_safe(elem_ref_to, tmp_ref_to,
2022 				   &block->ref_to_list) {
2023 			struct btrfsic_block_link *const l =
2024 			    list_entry(elem_ref_to,
2025 				       struct btrfsic_block_link,
2026 				       node_ref_to);
2027 
2028 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2029 				btrfsic_print_rem_link(state, l);
2030 			l->ref_cnt--;
2031 			if (0 == l->ref_cnt) {
2032 				list_del(&l->node_ref_to);
2033 				list_del(&l->node_ref_from);
2034 				btrfsic_block_link_hashtable_remove(l);
2035 				btrfsic_block_link_free(l);
2036 			}
2037 		}
2038 
2039 		if (block->is_superblock)
2040 			ret = btrfsic_map_superblock(state, bytenr,
2041 						     processed_len,
2042 						     bdev, &block_ctx);
2043 		else
2044 			ret = btrfsic_map_block(state, bytenr, processed_len,
2045 						&block_ctx, 0);
2046 		if (ret) {
2047 			printk(KERN_INFO
2048 			       "btrfsic: btrfsic_map_block(root @%llu)"
2049 			       " failed!\n", (unsigned long long)bytenr);
2050 			goto continue_loop;
2051 		}
2052 		block_ctx.datav = mapped_datav;
2053 		/* the following is required in case of writes to mirrors,
2054 		 * use the same that was used for the lookup */
2055 		block_ctx.dev = dev_state;
2056 		block_ctx.dev_bytenr = dev_bytenr;
2057 
2058 		if (is_metadata || state->include_extent_data) {
2059 			block->never_written = 0;
2060 			block->iodone_w_error = 0;
2061 			if (NULL != bio) {
2062 				block->is_iodone = 0;
2063 				BUG_ON(NULL == bio_is_patched);
2064 				if (!*bio_is_patched) {
2065 					block->orig_bio_bh_private =
2066 					    bio->bi_private;
2067 					block->orig_bio_bh_end_io.bio =
2068 					    bio->bi_end_io;
2069 					block->next_in_same_bio = NULL;
2070 					bio->bi_private = block;
2071 					bio->bi_end_io = btrfsic_bio_end_io;
2072 					*bio_is_patched = 1;
2073 				} else {
2074 					struct btrfsic_block *chained_block =
2075 					    (struct btrfsic_block *)
2076 					    bio->bi_private;
2077 
2078 					BUG_ON(NULL == chained_block);
2079 					block->orig_bio_bh_private =
2080 					    chained_block->orig_bio_bh_private;
2081 					block->orig_bio_bh_end_io.bio =
2082 					    chained_block->orig_bio_bh_end_io.
2083 					    bio;
2084 					block->next_in_same_bio = chained_block;
2085 					bio->bi_private = block;
2086 				}
2087 			} else if (NULL != bh) {
2088 				block->is_iodone = 0;
2089 				block->orig_bio_bh_private = bh->b_private;
2090 				block->orig_bio_bh_end_io.bh = bh->b_end_io;
2091 				block->next_in_same_bio = NULL;
2092 				bh->b_private = block;
2093 				bh->b_end_io = btrfsic_bh_end_io;
2094 			} else {
2095 				block->is_iodone = 1;
2096 				block->orig_bio_bh_private = NULL;
2097 				block->orig_bio_bh_end_io.bio = NULL;
2098 				block->next_in_same_bio = NULL;
2099 			}
2100 		}
2101 
2102 		block->flush_gen = dev_state->last_flush_gen + 1;
2103 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2104 		if (is_metadata) {
2105 			block->logical_bytenr = bytenr;
2106 			block->is_metadata = 1;
2107 			if (block->is_superblock) {
2108 				BUG_ON(PAGE_CACHE_SIZE !=
2109 				       BTRFS_SUPER_INFO_SIZE);
2110 				ret = btrfsic_process_written_superblock(
2111 						state,
2112 						block,
2113 						(struct btrfs_super_block *)
2114 						mapped_datav[0]);
2115 				if (state->print_mask &
2116 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2117 					printk(KERN_INFO
2118 					"[after new superblock is written]:\n");
2119 					btrfsic_dump_tree_sub(state, block, 0);
2120 				}
2121 			} else {
2122 				block->mirror_num = 0;	/* unknown */
2123 				ret = btrfsic_process_metablock(
2124 						state,
2125 						block,
2126 						&block_ctx,
2127 						0, 0);
2128 			}
2129 			if (ret)
2130 				printk(KERN_INFO
2131 				       "btrfsic: btrfsic_process_metablock"
2132 				       "(root @%llu) failed!\n",
2133 				       (unsigned long long)dev_bytenr);
2134 		} else {
2135 			block->is_metadata = 0;
2136 			block->mirror_num = 0;	/* unknown */
2137 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
2138 			if (!state->include_extent_data
2139 			    && list_empty(&block->ref_from_list)) {
2140 				/*
2141 				 * disk block is overwritten with extent
2142 				 * data (not meta data) and we are configured
2143 				 * to not include extent data: take the
2144 				 * chance and free the block's memory
2145 				 */
2146 				btrfsic_block_hashtable_remove(block);
2147 				list_del(&block->all_blocks_node);
2148 				btrfsic_block_free(block);
2149 			}
2150 		}
2151 		btrfsic_release_block_ctx(&block_ctx);
2152 	} else {
2153 		/* block has not been found in hash table */
2154 		u64 bytenr;
2155 
2156 		if (!is_metadata) {
2157 			processed_len = state->datablock_size;
2158 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2159 				printk(KERN_INFO "Written block (%s/%llu/?)"
2160 				       " !found in hash table, D.\n",
2161 				       dev_state->name,
2162 				       (unsigned long long)dev_bytenr);
2163 			if (!state->include_extent_data) {
2164 				/* ignore that written D block */
2165 				goto continue_loop;
2166 			}
2167 
2168 			/* this is getting ugly for the
2169 			 * include_extent_data case... */
2170 			bytenr = 0;	/* unknown */
2171 			block_ctx.start = bytenr;
2172 			block_ctx.len = processed_len;
2173 			block_ctx.mem_to_free = NULL;
2174 			block_ctx.pagev = NULL;
2175 		} else {
2176 			processed_len = state->metablock_size;
2177 			bytenr = le64_to_cpu(((struct btrfs_header *)
2178 					      mapped_datav[0])->bytenr);
2179 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2180 						       dev_bytenr);
2181 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2182 				printk(KERN_INFO
2183 				       "Written block @%llu (%s/%llu/?)"
2184 				       " !found in hash table, M.\n",
2185 				       (unsigned long long)bytenr,
2186 				       dev_state->name,
2187 				       (unsigned long long)dev_bytenr);
2188 
2189 			ret = btrfsic_map_block(state, bytenr, processed_len,
2190 						&block_ctx, 0);
2191 			if (ret) {
2192 				printk(KERN_INFO
2193 				       "btrfsic: btrfsic_map_block(root @%llu)"
2194 				       " failed!\n",
2195 				       (unsigned long long)dev_bytenr);
2196 				goto continue_loop;
2197 			}
2198 		}
2199 		block_ctx.datav = mapped_datav;
2200 		/* the following is required in case of writes to mirrors,
2201 		 * use the same that was used for the lookup */
2202 		block_ctx.dev = dev_state;
2203 		block_ctx.dev_bytenr = dev_bytenr;
2204 
2205 		block = btrfsic_block_alloc();
2206 		if (NULL == block) {
2207 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2208 			btrfsic_release_block_ctx(&block_ctx);
2209 			goto continue_loop;
2210 		}
2211 		block->dev_state = dev_state;
2212 		block->dev_bytenr = dev_bytenr;
2213 		block->logical_bytenr = bytenr;
2214 		block->is_metadata = is_metadata;
2215 		block->never_written = 0;
2216 		block->iodone_w_error = 0;
2217 		block->mirror_num = 0;	/* unknown */
2218 		block->flush_gen = dev_state->last_flush_gen + 1;
2219 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2220 		if (NULL != bio) {
2221 			block->is_iodone = 0;
2222 			BUG_ON(NULL == bio_is_patched);
2223 			if (!*bio_is_patched) {
2224 				block->orig_bio_bh_private = bio->bi_private;
2225 				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2226 				block->next_in_same_bio = NULL;
2227 				bio->bi_private = block;
2228 				bio->bi_end_io = btrfsic_bio_end_io;
2229 				*bio_is_patched = 1;
2230 			} else {
2231 				struct btrfsic_block *chained_block =
2232 				    (struct btrfsic_block *)
2233 				    bio->bi_private;
2234 
2235 				BUG_ON(NULL == chained_block);
2236 				block->orig_bio_bh_private =
2237 				    chained_block->orig_bio_bh_private;
2238 				block->orig_bio_bh_end_io.bio =
2239 				    chained_block->orig_bio_bh_end_io.bio;
2240 				block->next_in_same_bio = chained_block;
2241 				bio->bi_private = block;
2242 			}
2243 		} else if (NULL != bh) {
2244 			block->is_iodone = 0;
2245 			block->orig_bio_bh_private = bh->b_private;
2246 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2247 			block->next_in_same_bio = NULL;
2248 			bh->b_private = block;
2249 			bh->b_end_io = btrfsic_bh_end_io;
2250 		} else {
2251 			block->is_iodone = 1;
2252 			block->orig_bio_bh_private = NULL;
2253 			block->orig_bio_bh_end_io.bio = NULL;
2254 			block->next_in_same_bio = NULL;
2255 		}
2256 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2257 			printk(KERN_INFO
2258 			       "New written %c-block @%llu (%s/%llu/%d)\n",
2259 			       is_metadata ? 'M' : 'D',
2260 			       (unsigned long long)block->logical_bytenr,
2261 			       block->dev_state->name,
2262 			       (unsigned long long)block->dev_bytenr,
2263 			       block->mirror_num);
2264 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2265 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2266 
2267 		if (is_metadata) {
2268 			ret = btrfsic_process_metablock(state, block,
2269 							&block_ctx, 0, 0);
2270 			if (ret)
2271 				printk(KERN_INFO
2272 				       "btrfsic: process_metablock(root @%llu)"
2273 				       " failed!\n",
2274 				       (unsigned long long)dev_bytenr);
2275 		}
2276 		btrfsic_release_block_ctx(&block_ctx);
2277 	}
2278 
2279 continue_loop:
2280 	BUG_ON(!processed_len);
2281 	dev_bytenr += processed_len;
2282 	mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2283 	num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2284 	goto again;
2285 }
2286 
2287 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2288 {
2289 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2290 	int iodone_w_error;
2291 
2292 	/* mutex is not held! This is not save if IO is not yet completed
2293 	 * on umount */
2294 	iodone_w_error = 0;
2295 	if (bio_error_status)
2296 		iodone_w_error = 1;
2297 
2298 	BUG_ON(NULL == block);
2299 	bp->bi_private = block->orig_bio_bh_private;
2300 	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2301 
2302 	do {
2303 		struct btrfsic_block *next_block;
2304 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2305 
2306 		if ((dev_state->state->print_mask &
2307 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2308 			printk(KERN_INFO
2309 			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2310 			       bio_error_status,
2311 			       btrfsic_get_block_type(dev_state->state, block),
2312 			       (unsigned long long)block->logical_bytenr,
2313 			       dev_state->name,
2314 			       (unsigned long long)block->dev_bytenr,
2315 			       block->mirror_num);
2316 		next_block = block->next_in_same_bio;
2317 		block->iodone_w_error = iodone_w_error;
2318 		if (block->submit_bio_bh_rw & REQ_FLUSH) {
2319 			dev_state->last_flush_gen++;
2320 			if ((dev_state->state->print_mask &
2321 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2322 				printk(KERN_INFO
2323 				       "bio_end_io() new %s flush_gen=%llu\n",
2324 				       dev_state->name,
2325 				       (unsigned long long)
2326 				       dev_state->last_flush_gen);
2327 		}
2328 		if (block->submit_bio_bh_rw & REQ_FUA)
2329 			block->flush_gen = 0; /* FUA completed means block is
2330 					       * on disk */
2331 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2332 		block = next_block;
2333 	} while (NULL != block);
2334 
2335 	bp->bi_end_io(bp, bio_error_status);
2336 }
2337 
2338 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2339 {
2340 	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2341 	int iodone_w_error = !uptodate;
2342 	struct btrfsic_dev_state *dev_state;
2343 
2344 	BUG_ON(NULL == block);
2345 	dev_state = block->dev_state;
2346 	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2347 		printk(KERN_INFO
2348 		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2349 		       iodone_w_error,
2350 		       btrfsic_get_block_type(dev_state->state, block),
2351 		       (unsigned long long)block->logical_bytenr,
2352 		       block->dev_state->name,
2353 		       (unsigned long long)block->dev_bytenr,
2354 		       block->mirror_num);
2355 
2356 	block->iodone_w_error = iodone_w_error;
2357 	if (block->submit_bio_bh_rw & REQ_FLUSH) {
2358 		dev_state->last_flush_gen++;
2359 		if ((dev_state->state->print_mask &
2360 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2361 			printk(KERN_INFO
2362 			       "bh_end_io() new %s flush_gen=%llu\n",
2363 			       dev_state->name,
2364 			       (unsigned long long)dev_state->last_flush_gen);
2365 	}
2366 	if (block->submit_bio_bh_rw & REQ_FUA)
2367 		block->flush_gen = 0; /* FUA completed means block is on disk */
2368 
2369 	bh->b_private = block->orig_bio_bh_private;
2370 	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2371 	block->is_iodone = 1; /* for FLUSH, this releases the block */
2372 	bh->b_end_io(bh, uptodate);
2373 }
2374 
2375 static int btrfsic_process_written_superblock(
2376 		struct btrfsic_state *state,
2377 		struct btrfsic_block *const superblock,
2378 		struct btrfs_super_block *const super_hdr)
2379 {
2380 	int pass;
2381 
2382 	superblock->generation = btrfs_super_generation(super_hdr);
2383 	if (!(superblock->generation > state->max_superblock_generation ||
2384 	      0 == state->max_superblock_generation)) {
2385 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2386 			printk(KERN_INFO
2387 			       "btrfsic: superblock @%llu (%s/%llu/%d)"
2388 			       " with old gen %llu <= %llu\n",
2389 			       (unsigned long long)superblock->logical_bytenr,
2390 			       superblock->dev_state->name,
2391 			       (unsigned long long)superblock->dev_bytenr,
2392 			       superblock->mirror_num,
2393 			       (unsigned long long)
2394 			       btrfs_super_generation(super_hdr),
2395 			       (unsigned long long)
2396 			       state->max_superblock_generation);
2397 	} else {
2398 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2399 			printk(KERN_INFO
2400 			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2401 			       " with new gen %llu > %llu\n",
2402 			       (unsigned long long)superblock->logical_bytenr,
2403 			       superblock->dev_state->name,
2404 			       (unsigned long long)superblock->dev_bytenr,
2405 			       superblock->mirror_num,
2406 			       (unsigned long long)
2407 			       btrfs_super_generation(super_hdr),
2408 			       (unsigned long long)
2409 			       state->max_superblock_generation);
2410 
2411 		state->max_superblock_generation =
2412 		    btrfs_super_generation(super_hdr);
2413 		state->latest_superblock = superblock;
2414 	}
2415 
2416 	for (pass = 0; pass < 3; pass++) {
2417 		int ret;
2418 		u64 next_bytenr;
2419 		struct btrfsic_block *next_block;
2420 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2421 		struct btrfsic_block_link *l;
2422 		int num_copies;
2423 		int mirror_num;
2424 		const char *additional_string = NULL;
2425 		struct btrfs_disk_key tmp_disk_key;
2426 
2427 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
2428 		tmp_disk_key.offset = 0;
2429 
2430 		switch (pass) {
2431 		case 0:
2432 			tmp_disk_key.objectid =
2433 			    cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
2434 			additional_string = "root ";
2435 			next_bytenr = btrfs_super_root(super_hdr);
2436 			if (state->print_mask &
2437 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2438 				printk(KERN_INFO "root@%llu\n",
2439 				       (unsigned long long)next_bytenr);
2440 			break;
2441 		case 1:
2442 			tmp_disk_key.objectid =
2443 			    cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
2444 			additional_string = "chunk ";
2445 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2446 			if (state->print_mask &
2447 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2448 				printk(KERN_INFO "chunk@%llu\n",
2449 				       (unsigned long long)next_bytenr);
2450 			break;
2451 		case 2:
2452 			tmp_disk_key.objectid =
2453 			    cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
2454 			additional_string = "log ";
2455 			next_bytenr = btrfs_super_log_root(super_hdr);
2456 			if (0 == next_bytenr)
2457 				continue;
2458 			if (state->print_mask &
2459 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2460 				printk(KERN_INFO "log@%llu\n",
2461 				       (unsigned long long)next_bytenr);
2462 			break;
2463 		}
2464 
2465 		num_copies =
2466 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
2467 				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2468 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2469 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2470 			       (unsigned long long)next_bytenr, num_copies);
2471 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2472 			int was_created;
2473 
2474 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2475 				printk(KERN_INFO
2476 				       "btrfsic_process_written_superblock("
2477 				       "mirror_num=%d)\n", mirror_num);
2478 			ret = btrfsic_map_block(state, next_bytenr,
2479 						BTRFS_SUPER_INFO_SIZE,
2480 						&tmp_next_block_ctx,
2481 						mirror_num);
2482 			if (ret) {
2483 				printk(KERN_INFO
2484 				       "btrfsic: btrfsic_map_block(@%llu,"
2485 				       " mirror=%d) failed!\n",
2486 				       (unsigned long long)next_bytenr,
2487 				       mirror_num);
2488 				return -1;
2489 			}
2490 
2491 			next_block = btrfsic_block_lookup_or_add(
2492 					state,
2493 					&tmp_next_block_ctx,
2494 					additional_string,
2495 					1, 0, 1,
2496 					mirror_num,
2497 					&was_created);
2498 			if (NULL == next_block) {
2499 				printk(KERN_INFO
2500 				       "btrfsic: error, kmalloc failed!\n");
2501 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2502 				return -1;
2503 			}
2504 
2505 			next_block->disk_key = tmp_disk_key;
2506 			if (was_created)
2507 				next_block->generation =
2508 				    BTRFSIC_GENERATION_UNKNOWN;
2509 			l = btrfsic_block_link_lookup_or_add(
2510 					state,
2511 					&tmp_next_block_ctx,
2512 					next_block,
2513 					superblock,
2514 					BTRFSIC_GENERATION_UNKNOWN);
2515 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2516 			if (NULL == l)
2517 				return -1;
2518 		}
2519 	}
2520 
2521 	if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2522 		WARN_ON(1);
2523 		btrfsic_dump_tree(state);
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2530 					struct btrfsic_block *const block,
2531 					int recursion_level)
2532 {
2533 	struct list_head *elem_ref_to;
2534 	int ret = 0;
2535 
2536 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2537 		/*
2538 		 * Note that this situation can happen and does not
2539 		 * indicate an error in regular cases. It happens
2540 		 * when disk blocks are freed and later reused.
2541 		 * The check-integrity module is not aware of any
2542 		 * block free operations, it just recognizes block
2543 		 * write operations. Therefore it keeps the linkage
2544 		 * information for a block until a block is
2545 		 * rewritten. This can temporarily cause incorrect
2546 		 * and even circular linkage informations. This
2547 		 * causes no harm unless such blocks are referenced
2548 		 * by the most recent super block.
2549 		 */
2550 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2551 			printk(KERN_INFO
2552 			       "btrfsic: abort cyclic linkage (case 1).\n");
2553 
2554 		return ret;
2555 	}
2556 
2557 	/*
2558 	 * This algorithm is recursive because the amount of used stack
2559 	 * space is very small and the max recursion depth is limited.
2560 	 */
2561 	list_for_each(elem_ref_to, &block->ref_to_list) {
2562 		const struct btrfsic_block_link *const l =
2563 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2564 			       node_ref_to);
2565 
2566 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2567 			printk(KERN_INFO
2568 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2569 			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
2570 			       recursion_level,
2571 			       btrfsic_get_block_type(state, block),
2572 			       (unsigned long long)block->logical_bytenr,
2573 			       block->dev_state->name,
2574 			       (unsigned long long)block->dev_bytenr,
2575 			       block->mirror_num,
2576 			       l->ref_cnt,
2577 			       btrfsic_get_block_type(state, l->block_ref_to),
2578 			       (unsigned long long)
2579 			       l->block_ref_to->logical_bytenr,
2580 			       l->block_ref_to->dev_state->name,
2581 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2582 			       l->block_ref_to->mirror_num);
2583 		if (l->block_ref_to->never_written) {
2584 			printk(KERN_INFO "btrfs: attempt to write superblock"
2585 			       " which references block %c @%llu (%s/%llu/%d)"
2586 			       " which is never written!\n",
2587 			       btrfsic_get_block_type(state, l->block_ref_to),
2588 			       (unsigned long long)
2589 			       l->block_ref_to->logical_bytenr,
2590 			       l->block_ref_to->dev_state->name,
2591 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2592 			       l->block_ref_to->mirror_num);
2593 			ret = -1;
2594 		} else if (!l->block_ref_to->is_iodone) {
2595 			printk(KERN_INFO "btrfs: attempt to write superblock"
2596 			       " which references block %c @%llu (%s/%llu/%d)"
2597 			       " which is not yet iodone!\n",
2598 			       btrfsic_get_block_type(state, l->block_ref_to),
2599 			       (unsigned long long)
2600 			       l->block_ref_to->logical_bytenr,
2601 			       l->block_ref_to->dev_state->name,
2602 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2603 			       l->block_ref_to->mirror_num);
2604 			ret = -1;
2605 		} else if (l->block_ref_to->iodone_w_error) {
2606 			printk(KERN_INFO "btrfs: attempt to write superblock"
2607 			       " which references block %c @%llu (%s/%llu/%d)"
2608 			       " which has write error!\n",
2609 			       btrfsic_get_block_type(state, l->block_ref_to),
2610 			       (unsigned long long)
2611 			       l->block_ref_to->logical_bytenr,
2612 			       l->block_ref_to->dev_state->name,
2613 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2614 			       l->block_ref_to->mirror_num);
2615 			ret = -1;
2616 		} else if (l->parent_generation !=
2617 			   l->block_ref_to->generation &&
2618 			   BTRFSIC_GENERATION_UNKNOWN !=
2619 			   l->parent_generation &&
2620 			   BTRFSIC_GENERATION_UNKNOWN !=
2621 			   l->block_ref_to->generation) {
2622 			printk(KERN_INFO "btrfs: attempt to write superblock"
2623 			       " which references block %c @%llu (%s/%llu/%d)"
2624 			       " with generation %llu !="
2625 			       " parent generation %llu!\n",
2626 			       btrfsic_get_block_type(state, l->block_ref_to),
2627 			       (unsigned long long)
2628 			       l->block_ref_to->logical_bytenr,
2629 			       l->block_ref_to->dev_state->name,
2630 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2631 			       l->block_ref_to->mirror_num,
2632 			       (unsigned long long)l->block_ref_to->generation,
2633 			       (unsigned long long)l->parent_generation);
2634 			ret = -1;
2635 		} else if (l->block_ref_to->flush_gen >
2636 			   l->block_ref_to->dev_state->last_flush_gen) {
2637 			printk(KERN_INFO "btrfs: attempt to write superblock"
2638 			       " which references block %c @%llu (%s/%llu/%d)"
2639 			       " which is not flushed out of disk's write cache"
2640 			       " (block flush_gen=%llu,"
2641 			       " dev->flush_gen=%llu)!\n",
2642 			       btrfsic_get_block_type(state, l->block_ref_to),
2643 			       (unsigned long long)
2644 			       l->block_ref_to->logical_bytenr,
2645 			       l->block_ref_to->dev_state->name,
2646 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2647 			       l->block_ref_to->mirror_num,
2648 			       (unsigned long long)block->flush_gen,
2649 			       (unsigned long long)
2650 			       l->block_ref_to->dev_state->last_flush_gen);
2651 			ret = -1;
2652 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2653 							      l->block_ref_to,
2654 							      recursion_level +
2655 							      1)) {
2656 			ret = -1;
2657 		}
2658 	}
2659 
2660 	return ret;
2661 }
2662 
2663 static int btrfsic_is_block_ref_by_superblock(
2664 		const struct btrfsic_state *state,
2665 		const struct btrfsic_block *block,
2666 		int recursion_level)
2667 {
2668 	struct list_head *elem_ref_from;
2669 
2670 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2671 		/* refer to comment at "abort cyclic linkage (case 1)" */
2672 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2673 			printk(KERN_INFO
2674 			       "btrfsic: abort cyclic linkage (case 2).\n");
2675 
2676 		return 0;
2677 	}
2678 
2679 	/*
2680 	 * This algorithm is recursive because the amount of used stack space
2681 	 * is very small and the max recursion depth is limited.
2682 	 */
2683 	list_for_each(elem_ref_from, &block->ref_from_list) {
2684 		const struct btrfsic_block_link *const l =
2685 		    list_entry(elem_ref_from, struct btrfsic_block_link,
2686 			       node_ref_from);
2687 
2688 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2689 			printk(KERN_INFO
2690 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2691 			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2692 			       recursion_level,
2693 			       btrfsic_get_block_type(state, block),
2694 			       (unsigned long long)block->logical_bytenr,
2695 			       block->dev_state->name,
2696 			       (unsigned long long)block->dev_bytenr,
2697 			       block->mirror_num,
2698 			       l->ref_cnt,
2699 			       btrfsic_get_block_type(state, l->block_ref_from),
2700 			       (unsigned long long)
2701 			       l->block_ref_from->logical_bytenr,
2702 			       l->block_ref_from->dev_state->name,
2703 			       (unsigned long long)
2704 			       l->block_ref_from->dev_bytenr,
2705 			       l->block_ref_from->mirror_num);
2706 		if (l->block_ref_from->is_superblock &&
2707 		    state->latest_superblock->dev_bytenr ==
2708 		    l->block_ref_from->dev_bytenr &&
2709 		    state->latest_superblock->dev_state->bdev ==
2710 		    l->block_ref_from->dev_state->bdev)
2711 			return 1;
2712 		else if (btrfsic_is_block_ref_by_superblock(state,
2713 							    l->block_ref_from,
2714 							    recursion_level +
2715 							    1))
2716 			return 1;
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2723 				   const struct btrfsic_block_link *l)
2724 {
2725 	printk(KERN_INFO
2726 	       "Add %u* link from %c @%llu (%s/%llu/%d)"
2727 	       " to %c @%llu (%s/%llu/%d).\n",
2728 	       l->ref_cnt,
2729 	       btrfsic_get_block_type(state, l->block_ref_from),
2730 	       (unsigned long long)l->block_ref_from->logical_bytenr,
2731 	       l->block_ref_from->dev_state->name,
2732 	       (unsigned long long)l->block_ref_from->dev_bytenr,
2733 	       l->block_ref_from->mirror_num,
2734 	       btrfsic_get_block_type(state, l->block_ref_to),
2735 	       (unsigned long long)l->block_ref_to->logical_bytenr,
2736 	       l->block_ref_to->dev_state->name,
2737 	       (unsigned long long)l->block_ref_to->dev_bytenr,
2738 	       l->block_ref_to->mirror_num);
2739 }
2740 
2741 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2742 				   const struct btrfsic_block_link *l)
2743 {
2744 	printk(KERN_INFO
2745 	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
2746 	       " to %c @%llu (%s/%llu/%d).\n",
2747 	       l->ref_cnt,
2748 	       btrfsic_get_block_type(state, l->block_ref_from),
2749 	       (unsigned long long)l->block_ref_from->logical_bytenr,
2750 	       l->block_ref_from->dev_state->name,
2751 	       (unsigned long long)l->block_ref_from->dev_bytenr,
2752 	       l->block_ref_from->mirror_num,
2753 	       btrfsic_get_block_type(state, l->block_ref_to),
2754 	       (unsigned long long)l->block_ref_to->logical_bytenr,
2755 	       l->block_ref_to->dev_state->name,
2756 	       (unsigned long long)l->block_ref_to->dev_bytenr,
2757 	       l->block_ref_to->mirror_num);
2758 }
2759 
2760 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2761 				   const struct btrfsic_block *block)
2762 {
2763 	if (block->is_superblock &&
2764 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2765 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2766 		return 'S';
2767 	else if (block->is_superblock)
2768 		return 's';
2769 	else if (block->is_metadata)
2770 		return 'M';
2771 	else
2772 		return 'D';
2773 }
2774 
2775 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2776 {
2777 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2778 }
2779 
2780 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2781 				  const struct btrfsic_block *block,
2782 				  int indent_level)
2783 {
2784 	struct list_head *elem_ref_to;
2785 	int indent_add;
2786 	static char buf[80];
2787 	int cursor_position;
2788 
2789 	/*
2790 	 * Should better fill an on-stack buffer with a complete line and
2791 	 * dump it at once when it is time to print a newline character.
2792 	 */
2793 
2794 	/*
2795 	 * This algorithm is recursive because the amount of used stack space
2796 	 * is very small and the max recursion depth is limited.
2797 	 */
2798 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2799 			     btrfsic_get_block_type(state, block),
2800 			     (unsigned long long)block->logical_bytenr,
2801 			     block->dev_state->name,
2802 			     (unsigned long long)block->dev_bytenr,
2803 			     block->mirror_num);
2804 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2805 		printk("[...]\n");
2806 		return;
2807 	}
2808 	printk(buf);
2809 	indent_level += indent_add;
2810 	if (list_empty(&block->ref_to_list)) {
2811 		printk("\n");
2812 		return;
2813 	}
2814 	if (block->mirror_num > 1 &&
2815 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2816 		printk(" [...]\n");
2817 		return;
2818 	}
2819 
2820 	cursor_position = indent_level;
2821 	list_for_each(elem_ref_to, &block->ref_to_list) {
2822 		const struct btrfsic_block_link *const l =
2823 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2824 			       node_ref_to);
2825 
2826 		while (cursor_position < indent_level) {
2827 			printk(" ");
2828 			cursor_position++;
2829 		}
2830 		if (l->ref_cnt > 1)
2831 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2832 		else
2833 			indent_add = sprintf(buf, " --> ");
2834 		if (indent_level + indent_add >
2835 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2836 			printk("[...]\n");
2837 			cursor_position = 0;
2838 			continue;
2839 		}
2840 
2841 		printk(buf);
2842 
2843 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2844 				      indent_level + indent_add);
2845 		cursor_position = 0;
2846 	}
2847 }
2848 
2849 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2850 		struct btrfsic_state *state,
2851 		struct btrfsic_block_data_ctx *next_block_ctx,
2852 		struct btrfsic_block *next_block,
2853 		struct btrfsic_block *from_block,
2854 		u64 parent_generation)
2855 {
2856 	struct btrfsic_block_link *l;
2857 
2858 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2859 						next_block_ctx->dev_bytenr,
2860 						from_block->dev_state->bdev,
2861 						from_block->dev_bytenr,
2862 						&state->block_link_hashtable);
2863 	if (NULL == l) {
2864 		l = btrfsic_block_link_alloc();
2865 		if (NULL == l) {
2866 			printk(KERN_INFO
2867 			       "btrfsic: error, kmalloc" " failed!\n");
2868 			return NULL;
2869 		}
2870 
2871 		l->block_ref_to = next_block;
2872 		l->block_ref_from = from_block;
2873 		l->ref_cnt = 1;
2874 		l->parent_generation = parent_generation;
2875 
2876 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2877 			btrfsic_print_add_link(state, l);
2878 
2879 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2880 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2881 
2882 		btrfsic_block_link_hashtable_add(l,
2883 						 &state->block_link_hashtable);
2884 	} else {
2885 		l->ref_cnt++;
2886 		l->parent_generation = parent_generation;
2887 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2888 			btrfsic_print_add_link(state, l);
2889 	}
2890 
2891 	return l;
2892 }
2893 
2894 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2895 		struct btrfsic_state *state,
2896 		struct btrfsic_block_data_ctx *block_ctx,
2897 		const char *additional_string,
2898 		int is_metadata,
2899 		int is_iodone,
2900 		int never_written,
2901 		int mirror_num,
2902 		int *was_created)
2903 {
2904 	struct btrfsic_block *block;
2905 
2906 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2907 					       block_ctx->dev_bytenr,
2908 					       &state->block_hashtable);
2909 	if (NULL == block) {
2910 		struct btrfsic_dev_state *dev_state;
2911 
2912 		block = btrfsic_block_alloc();
2913 		if (NULL == block) {
2914 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2915 			return NULL;
2916 		}
2917 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2918 		if (NULL == dev_state) {
2919 			printk(KERN_INFO
2920 			       "btrfsic: error, lookup dev_state failed!\n");
2921 			btrfsic_block_free(block);
2922 			return NULL;
2923 		}
2924 		block->dev_state = dev_state;
2925 		block->dev_bytenr = block_ctx->dev_bytenr;
2926 		block->logical_bytenr = block_ctx->start;
2927 		block->is_metadata = is_metadata;
2928 		block->is_iodone = is_iodone;
2929 		block->never_written = never_written;
2930 		block->mirror_num = mirror_num;
2931 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2932 			printk(KERN_INFO
2933 			       "New %s%c-block @%llu (%s/%llu/%d)\n",
2934 			       additional_string,
2935 			       btrfsic_get_block_type(state, block),
2936 			       (unsigned long long)block->logical_bytenr,
2937 			       dev_state->name,
2938 			       (unsigned long long)block->dev_bytenr,
2939 			       mirror_num);
2940 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2941 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2942 		if (NULL != was_created)
2943 			*was_created = 1;
2944 	} else {
2945 		if (NULL != was_created)
2946 			*was_created = 0;
2947 	}
2948 
2949 	return block;
2950 }
2951 
2952 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2953 					   u64 bytenr,
2954 					   struct btrfsic_dev_state *dev_state,
2955 					   u64 dev_bytenr)
2956 {
2957 	int num_copies;
2958 	int mirror_num;
2959 	int ret;
2960 	struct btrfsic_block_data_ctx block_ctx;
2961 	int match = 0;
2962 
2963 	num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree,
2964 				      bytenr, state->metablock_size);
2965 
2966 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2967 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2968 					&block_ctx, mirror_num);
2969 		if (ret) {
2970 			printk(KERN_INFO "btrfsic:"
2971 			       " btrfsic_map_block(logical @%llu,"
2972 			       " mirror %d) failed!\n",
2973 			       (unsigned long long)bytenr, mirror_num);
2974 			continue;
2975 		}
2976 
2977 		if (dev_state->bdev == block_ctx.dev->bdev &&
2978 		    dev_bytenr == block_ctx.dev_bytenr) {
2979 			match++;
2980 			btrfsic_release_block_ctx(&block_ctx);
2981 			break;
2982 		}
2983 		btrfsic_release_block_ctx(&block_ctx);
2984 	}
2985 
2986 	if (!match) {
2987 		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2988 		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2989 		       " phys_bytenr=%llu)!\n",
2990 		       (unsigned long long)bytenr, dev_state->name,
2991 		       (unsigned long long)dev_bytenr);
2992 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2993 			ret = btrfsic_map_block(state, bytenr,
2994 						state->metablock_size,
2995 						&block_ctx, mirror_num);
2996 			if (ret)
2997 				continue;
2998 
2999 			printk(KERN_INFO "Read logical bytenr @%llu maps to"
3000 			       " (%s/%llu/%d)\n",
3001 			       (unsigned long long)bytenr,
3002 			       block_ctx.dev->name,
3003 			       (unsigned long long)block_ctx.dev_bytenr,
3004 			       mirror_num);
3005 		}
3006 		WARN_ON(1);
3007 	}
3008 }
3009 
3010 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
3011 		struct block_device *bdev)
3012 {
3013 	struct btrfsic_dev_state *ds;
3014 
3015 	ds = btrfsic_dev_state_hashtable_lookup(bdev,
3016 						&btrfsic_dev_state_hashtable);
3017 	return ds;
3018 }
3019 
3020 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
3021 {
3022 	struct btrfsic_dev_state *dev_state;
3023 
3024 	if (!btrfsic_is_initialized)
3025 		return submit_bh(rw, bh);
3026 
3027 	mutex_lock(&btrfsic_mutex);
3028 	/* since btrfsic_submit_bh() might also be called before
3029 	 * btrfsic_mount(), this might return NULL */
3030 	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
3031 
3032 	/* Only called to write the superblock (incl. FLUSH/FUA) */
3033 	if (NULL != dev_state &&
3034 	    (rw & WRITE) && bh->b_size > 0) {
3035 		u64 dev_bytenr;
3036 
3037 		dev_bytenr = 4096 * bh->b_blocknr;
3038 		if (dev_state->state->print_mask &
3039 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3040 			printk(KERN_INFO
3041 			       "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
3042 			       " size=%lu, data=%p, bdev=%p)\n",
3043 			       rw, (unsigned long)bh->b_blocknr,
3044 			       (unsigned long long)dev_bytenr,
3045 			       (unsigned long)bh->b_size, bh->b_data,
3046 			       bh->b_bdev);
3047 		btrfsic_process_written_block(dev_state, dev_bytenr,
3048 					      &bh->b_data, 1, NULL,
3049 					      NULL, bh, rw);
3050 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3051 		if (dev_state->state->print_mask &
3052 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3053 			printk(KERN_INFO
3054 			       "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
3055 			       rw, bh->b_bdev);
3056 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3057 			if ((dev_state->state->print_mask &
3058 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3059 			      BTRFSIC_PRINT_MASK_VERBOSE)))
3060 				printk(KERN_INFO
3061 				       "btrfsic_submit_bh(%s) with FLUSH"
3062 				       " but dummy block already in use"
3063 				       " (ignored)!\n",
3064 				       dev_state->name);
3065 		} else {
3066 			struct btrfsic_block *const block =
3067 				&dev_state->dummy_block_for_bio_bh_flush;
3068 
3069 			block->is_iodone = 0;
3070 			block->never_written = 0;
3071 			block->iodone_w_error = 0;
3072 			block->flush_gen = dev_state->last_flush_gen + 1;
3073 			block->submit_bio_bh_rw = rw;
3074 			block->orig_bio_bh_private = bh->b_private;
3075 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
3076 			block->next_in_same_bio = NULL;
3077 			bh->b_private = block;
3078 			bh->b_end_io = btrfsic_bh_end_io;
3079 		}
3080 	}
3081 	mutex_unlock(&btrfsic_mutex);
3082 	return submit_bh(rw, bh);
3083 }
3084 
3085 void btrfsic_submit_bio(int rw, struct bio *bio)
3086 {
3087 	struct btrfsic_dev_state *dev_state;
3088 
3089 	if (!btrfsic_is_initialized) {
3090 		submit_bio(rw, bio);
3091 		return;
3092 	}
3093 
3094 	mutex_lock(&btrfsic_mutex);
3095 	/* since btrfsic_submit_bio() is also called before
3096 	 * btrfsic_mount(), this might return NULL */
3097 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3098 	if (NULL != dev_state &&
3099 	    (rw & WRITE) && NULL != bio->bi_io_vec) {
3100 		unsigned int i;
3101 		u64 dev_bytenr;
3102 		int bio_is_patched;
3103 		char **mapped_datav;
3104 
3105 		dev_bytenr = 512 * bio->bi_sector;
3106 		bio_is_patched = 0;
3107 		if (dev_state->state->print_mask &
3108 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3109 			printk(KERN_INFO
3110 			       "submit_bio(rw=0x%x, bi_vcnt=%u,"
3111 			       " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
3112 			       rw, bio->bi_vcnt, (unsigned long)bio->bi_sector,
3113 			       (unsigned long long)dev_bytenr,
3114 			       bio->bi_bdev);
3115 
3116 		mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3117 				       GFP_NOFS);
3118 		if (!mapped_datav)
3119 			goto leave;
3120 		for (i = 0; i < bio->bi_vcnt; i++) {
3121 			BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3122 			mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3123 			if (!mapped_datav[i]) {
3124 				while (i > 0) {
3125 					i--;
3126 					kunmap(bio->bi_io_vec[i].bv_page);
3127 				}
3128 				kfree(mapped_datav);
3129 				goto leave;
3130 			}
3131 			if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3132 			     BTRFSIC_PRINT_MASK_VERBOSE) ==
3133 			    (dev_state->state->print_mask &
3134 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3135 			      BTRFSIC_PRINT_MASK_VERBOSE)))
3136 				printk(KERN_INFO
3137 				       "#%u: page=%p, len=%u, offset=%u\n",
3138 				       i, bio->bi_io_vec[i].bv_page,
3139 				       bio->bi_io_vec[i].bv_len,
3140 				       bio->bi_io_vec[i].bv_offset);
3141 		}
3142 		btrfsic_process_written_block(dev_state, dev_bytenr,
3143 					      mapped_datav, bio->bi_vcnt,
3144 					      bio, &bio_is_patched,
3145 					      NULL, rw);
3146 		while (i > 0) {
3147 			i--;
3148 			kunmap(bio->bi_io_vec[i].bv_page);
3149 		}
3150 		kfree(mapped_datav);
3151 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3152 		if (dev_state->state->print_mask &
3153 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3154 			printk(KERN_INFO
3155 			       "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3156 			       rw, bio->bi_bdev);
3157 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3158 			if ((dev_state->state->print_mask &
3159 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3160 			      BTRFSIC_PRINT_MASK_VERBOSE)))
3161 				printk(KERN_INFO
3162 				       "btrfsic_submit_bio(%s) with FLUSH"
3163 				       " but dummy block already in use"
3164 				       " (ignored)!\n",
3165 				       dev_state->name);
3166 		} else {
3167 			struct btrfsic_block *const block =
3168 				&dev_state->dummy_block_for_bio_bh_flush;
3169 
3170 			block->is_iodone = 0;
3171 			block->never_written = 0;
3172 			block->iodone_w_error = 0;
3173 			block->flush_gen = dev_state->last_flush_gen + 1;
3174 			block->submit_bio_bh_rw = rw;
3175 			block->orig_bio_bh_private = bio->bi_private;
3176 			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3177 			block->next_in_same_bio = NULL;
3178 			bio->bi_private = block;
3179 			bio->bi_end_io = btrfsic_bio_end_io;
3180 		}
3181 	}
3182 leave:
3183 	mutex_unlock(&btrfsic_mutex);
3184 
3185 	submit_bio(rw, bio);
3186 }
3187 
3188 int btrfsic_mount(struct btrfs_root *root,
3189 		  struct btrfs_fs_devices *fs_devices,
3190 		  int including_extent_data, u32 print_mask)
3191 {
3192 	int ret;
3193 	struct btrfsic_state *state;
3194 	struct list_head *dev_head = &fs_devices->devices;
3195 	struct btrfs_device *device;
3196 
3197 	if (root->nodesize != root->leafsize) {
3198 		printk(KERN_INFO
3199 		       "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3200 		       root->nodesize, root->leafsize);
3201 		return -1;
3202 	}
3203 	if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3204 		printk(KERN_INFO
3205 		       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3206 		       root->nodesize, (unsigned long)PAGE_CACHE_SIZE);
3207 		return -1;
3208 	}
3209 	if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3210 		printk(KERN_INFO
3211 		       "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3212 		       root->leafsize, (unsigned long)PAGE_CACHE_SIZE);
3213 		return -1;
3214 	}
3215 	if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3216 		printk(KERN_INFO
3217 		       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3218 		       root->sectorsize, (unsigned long)PAGE_CACHE_SIZE);
3219 		return -1;
3220 	}
3221 	state = kzalloc(sizeof(*state), GFP_NOFS);
3222 	if (NULL == state) {
3223 		printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3224 		return -1;
3225 	}
3226 
3227 	if (!btrfsic_is_initialized) {
3228 		mutex_init(&btrfsic_mutex);
3229 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3230 		btrfsic_is_initialized = 1;
3231 	}
3232 	mutex_lock(&btrfsic_mutex);
3233 	state->root = root;
3234 	state->print_mask = print_mask;
3235 	state->include_extent_data = including_extent_data;
3236 	state->csum_size = 0;
3237 	state->metablock_size = root->nodesize;
3238 	state->datablock_size = root->sectorsize;
3239 	INIT_LIST_HEAD(&state->all_blocks_list);
3240 	btrfsic_block_hashtable_init(&state->block_hashtable);
3241 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3242 	state->max_superblock_generation = 0;
3243 	state->latest_superblock = NULL;
3244 
3245 	list_for_each_entry(device, dev_head, dev_list) {
3246 		struct btrfsic_dev_state *ds;
3247 		char *p;
3248 
3249 		if (!device->bdev || !device->name)
3250 			continue;
3251 
3252 		ds = btrfsic_dev_state_alloc();
3253 		if (NULL == ds) {
3254 			printk(KERN_INFO
3255 			       "btrfs check-integrity: kmalloc() failed!\n");
3256 			mutex_unlock(&btrfsic_mutex);
3257 			return -1;
3258 		}
3259 		ds->bdev = device->bdev;
3260 		ds->state = state;
3261 		bdevname(ds->bdev, ds->name);
3262 		ds->name[BDEVNAME_SIZE - 1] = '\0';
3263 		for (p = ds->name; *p != '\0'; p++);
3264 		while (p > ds->name && *p != '/')
3265 			p--;
3266 		if (*p == '/')
3267 			p++;
3268 		strlcpy(ds->name, p, sizeof(ds->name));
3269 		btrfsic_dev_state_hashtable_add(ds,
3270 						&btrfsic_dev_state_hashtable);
3271 	}
3272 
3273 	ret = btrfsic_process_superblock(state, fs_devices);
3274 	if (0 != ret) {
3275 		mutex_unlock(&btrfsic_mutex);
3276 		btrfsic_unmount(root, fs_devices);
3277 		return ret;
3278 	}
3279 
3280 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3281 		btrfsic_dump_database(state);
3282 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3283 		btrfsic_dump_tree(state);
3284 
3285 	mutex_unlock(&btrfsic_mutex);
3286 	return 0;
3287 }
3288 
3289 void btrfsic_unmount(struct btrfs_root *root,
3290 		     struct btrfs_fs_devices *fs_devices)
3291 {
3292 	struct list_head *elem_all;
3293 	struct list_head *tmp_all;
3294 	struct btrfsic_state *state;
3295 	struct list_head *dev_head = &fs_devices->devices;
3296 	struct btrfs_device *device;
3297 
3298 	if (!btrfsic_is_initialized)
3299 		return;
3300 
3301 	mutex_lock(&btrfsic_mutex);
3302 
3303 	state = NULL;
3304 	list_for_each_entry(device, dev_head, dev_list) {
3305 		struct btrfsic_dev_state *ds;
3306 
3307 		if (!device->bdev || !device->name)
3308 			continue;
3309 
3310 		ds = btrfsic_dev_state_hashtable_lookup(
3311 				device->bdev,
3312 				&btrfsic_dev_state_hashtable);
3313 		if (NULL != ds) {
3314 			state = ds->state;
3315 			btrfsic_dev_state_hashtable_remove(ds);
3316 			btrfsic_dev_state_free(ds);
3317 		}
3318 	}
3319 
3320 	if (NULL == state) {
3321 		printk(KERN_INFO
3322 		       "btrfsic: error, cannot find state information"
3323 		       " on umount!\n");
3324 		mutex_unlock(&btrfsic_mutex);
3325 		return;
3326 	}
3327 
3328 	/*
3329 	 * Don't care about keeping the lists' state up to date,
3330 	 * just free all memory that was allocated dynamically.
3331 	 * Free the blocks and the block_links.
3332 	 */
3333 	list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3334 		struct btrfsic_block *const b_all =
3335 		    list_entry(elem_all, struct btrfsic_block,
3336 			       all_blocks_node);
3337 		struct list_head *elem_ref_to;
3338 		struct list_head *tmp_ref_to;
3339 
3340 		list_for_each_safe(elem_ref_to, tmp_ref_to,
3341 				   &b_all->ref_to_list) {
3342 			struct btrfsic_block_link *const l =
3343 			    list_entry(elem_ref_to,
3344 				       struct btrfsic_block_link,
3345 				       node_ref_to);
3346 
3347 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3348 				btrfsic_print_rem_link(state, l);
3349 
3350 			l->ref_cnt--;
3351 			if (0 == l->ref_cnt)
3352 				btrfsic_block_link_free(l);
3353 		}
3354 
3355 		if (b_all->is_iodone || b_all->never_written)
3356 			btrfsic_block_free(b_all);
3357 		else
3358 			printk(KERN_INFO "btrfs: attempt to free %c-block"
3359 			       " @%llu (%s/%llu/%d) on umount which is"
3360 			       " not yet iodone!\n",
3361 			       btrfsic_get_block_type(state, b_all),
3362 			       (unsigned long long)b_all->logical_bytenr,
3363 			       b_all->dev_state->name,
3364 			       (unsigned long long)b_all->dev_bytenr,
3365 			       b_all->mirror_num);
3366 	}
3367 
3368 	mutex_unlock(&btrfsic_mutex);
3369 
3370 	kfree(state);
3371 }
3372