xref: /openbmc/linux/fs/btrfs/check-integrity.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STRATO AG 2011.  All rights reserved.
4  */
5 
6 /*
7  * This module can be used to catch cases when the btrfs kernel
8  * code executes write requests to the disk that bring the file
9  * system in an inconsistent state. In such a state, a power-loss
10  * or kernel panic event would cause that the data on disk is
11  * lost or at least damaged.
12  *
13  * Code is added that examines all block write requests during
14  * runtime (including writes of the super block). Three rules
15  * are verified and an error is printed on violation of the
16  * rules:
17  * 1. It is not allowed to write a disk block which is
18  *    currently referenced by the super block (either directly
19  *    or indirectly).
20  * 2. When a super block is written, it is verified that all
21  *    referenced (directly or indirectly) blocks fulfill the
22  *    following requirements:
23  *    2a. All referenced blocks have either been present when
24  *        the file system was mounted, (i.e., they have been
25  *        referenced by the super block) or they have been
26  *        written since then and the write completion callback
27  *        was called and no write error was indicated and a
28  *        FLUSH request to the device where these blocks are
29  *        located was received and completed.
30  *    2b. All referenced blocks need to have a generation
31  *        number which is equal to the parent's number.
32  *
33  * One issue that was found using this module was that the log
34  * tree on disk became temporarily corrupted because disk blocks
35  * that had been in use for the log tree had been freed and
36  * reused too early, while being referenced by the written super
37  * block.
38  *
39  * The search term in the kernel log that can be used to filter
40  * on the existence of detected integrity issues is
41  * "btrfs: attempt".
42  *
43  * The integrity check is enabled via mount options. These
44  * mount options are only supported if the integrity check
45  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
46  *
47  * Example #1, apply integrity checks to all metadata:
48  * mount /dev/sdb1 /mnt -o check_int
49  *
50  * Example #2, apply integrity checks to all metadata and
51  * to data extents:
52  * mount /dev/sdb1 /mnt -o check_int_data
53  *
54  * Example #3, apply integrity checks to all metadata and dump
55  * the tree that the super block references to kernel messages
56  * each time after a super block was written:
57  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
58  *
59  * If the integrity check tool is included and activated in
60  * the mount options, plenty of kernel memory is used, and
61  * plenty of additional CPU cycles are spent. Enabling this
62  * functionality is not intended for normal use. In most
63  * cases, unless you are a btrfs developer who needs to verify
64  * the integrity of (super)-block write requests, do not
65  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
66  * include and compile the integrity check tool.
67  *
68  * Expect millions of lines of information in the kernel log with an
69  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
70  * kernel config to at least 26 (which is 64MB). Usually the value is
71  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
72  * changed like this before LOG_BUF_SHIFT can be set to a high value:
73  * config LOG_BUF_SHIFT
74  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
75  *       range 12 30
76  */
77 
78 #include <linux/sched.h>
79 #include <linux/slab.h>
80 #include <linux/mutex.h>
81 #include <linux/genhd.h>
82 #include <linux/blkdev.h>
83 #include <linux/mm.h>
84 #include <linux/string.h>
85 #include <crypto/hash.h>
86 #include "ctree.h"
87 #include "disk-io.h"
88 #include "transaction.h"
89 #include "extent_io.h"
90 #include "volumes.h"
91 #include "print-tree.h"
92 #include "locking.h"
93 #include "check-integrity.h"
94 #include "rcu-string.h"
95 #include "compression.h"
96 
97 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
98 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
99 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
100 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
101 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
102 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
103 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
104 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
105 							 * excluding " [...]" */
106 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
107 
108 /*
109  * The definition of the bitmask fields for the print_mask.
110  * They are specified with the mount option check_integrity_print_mask.
111  */
112 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
113 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
114 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
115 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
116 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
117 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
118 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
119 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
120 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
121 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
122 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
123 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
124 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
125 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
126 
127 struct btrfsic_dev_state;
128 struct btrfsic_state;
129 
130 struct btrfsic_block {
131 	u32 magic_num;		/* only used for debug purposes */
132 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
133 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
134 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
135 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
136 	unsigned int never_written:1;	/* block was added because it was
137 					 * referenced, not because it was
138 					 * written */
139 	unsigned int mirror_num;	/* large enough to hold
140 					 * BTRFS_SUPER_MIRROR_MAX */
141 	struct btrfsic_dev_state *dev_state;
142 	u64 dev_bytenr;		/* key, physical byte num on disk */
143 	u64 logical_bytenr;	/* logical byte num on disk */
144 	u64 generation;
145 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
146 					 * issues, will not always be correct */
147 	struct list_head collision_resolving_node;	/* list node */
148 	struct list_head all_blocks_node;	/* list node */
149 
150 	/* the following two lists contain block_link items */
151 	struct list_head ref_to_list;	/* list */
152 	struct list_head ref_from_list;	/* list */
153 	struct btrfsic_block *next_in_same_bio;
154 	void *orig_bio_private;
155 	bio_end_io_t *orig_bio_end_io;
156 	int submit_bio_bh_rw;
157 	u64 flush_gen; /* only valid if !never_written */
158 };
159 
160 /*
161  * Elements of this type are allocated dynamically and required because
162  * each block object can refer to and can be ref from multiple blocks.
163  * The key to lookup them in the hashtable is the dev_bytenr of
164  * the block ref to plus the one from the block referred from.
165  * The fact that they are searchable via a hashtable and that a
166  * ref_cnt is maintained is not required for the btrfs integrity
167  * check algorithm itself, it is only used to make the output more
168  * beautiful in case that an error is detected (an error is defined
169  * as a write operation to a block while that block is still referenced).
170  */
171 struct btrfsic_block_link {
172 	u32 magic_num;		/* only used for debug purposes */
173 	u32 ref_cnt;
174 	struct list_head node_ref_to;	/* list node */
175 	struct list_head node_ref_from;	/* list node */
176 	struct list_head collision_resolving_node;	/* list node */
177 	struct btrfsic_block *block_ref_to;
178 	struct btrfsic_block *block_ref_from;
179 	u64 parent_generation;
180 };
181 
182 struct btrfsic_dev_state {
183 	u32 magic_num;		/* only used for debug purposes */
184 	struct block_device *bdev;
185 	struct btrfsic_state *state;
186 	struct list_head collision_resolving_node;	/* list node */
187 	struct btrfsic_block dummy_block_for_bio_bh_flush;
188 	u64 last_flush_gen;
189 	char name[BDEVNAME_SIZE];
190 };
191 
192 struct btrfsic_block_hashtable {
193 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
194 };
195 
196 struct btrfsic_block_link_hashtable {
197 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
198 };
199 
200 struct btrfsic_dev_state_hashtable {
201 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
202 };
203 
204 struct btrfsic_block_data_ctx {
205 	u64 start;		/* virtual bytenr */
206 	u64 dev_bytenr;		/* physical bytenr on device */
207 	u32 len;
208 	struct btrfsic_dev_state *dev;
209 	char **datav;
210 	struct page **pagev;
211 	void *mem_to_free;
212 };
213 
214 /* This structure is used to implement recursion without occupying
215  * any stack space, refer to btrfsic_process_metablock() */
216 struct btrfsic_stack_frame {
217 	u32 magic;
218 	u32 nr;
219 	int error;
220 	int i;
221 	int limit_nesting;
222 	int num_copies;
223 	int mirror_num;
224 	struct btrfsic_block *block;
225 	struct btrfsic_block_data_ctx *block_ctx;
226 	struct btrfsic_block *next_block;
227 	struct btrfsic_block_data_ctx next_block_ctx;
228 	struct btrfs_header *hdr;
229 	struct btrfsic_stack_frame *prev;
230 };
231 
232 /* Some state per mounted filesystem */
233 struct btrfsic_state {
234 	u32 print_mask;
235 	int include_extent_data;
236 	int csum_size;
237 	struct list_head all_blocks_list;
238 	struct btrfsic_block_hashtable block_hashtable;
239 	struct btrfsic_block_link_hashtable block_link_hashtable;
240 	struct btrfs_fs_info *fs_info;
241 	u64 max_superblock_generation;
242 	struct btrfsic_block *latest_superblock;
243 	u32 metablock_size;
244 	u32 datablock_size;
245 };
246 
247 static void btrfsic_block_init(struct btrfsic_block *b);
248 static struct btrfsic_block *btrfsic_block_alloc(void);
249 static void btrfsic_block_free(struct btrfsic_block *b);
250 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
251 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
252 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
253 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
254 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
255 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
256 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
257 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
258 					struct btrfsic_block_hashtable *h);
259 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
260 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
261 		struct block_device *bdev,
262 		u64 dev_bytenr,
263 		struct btrfsic_block_hashtable *h);
264 static void btrfsic_block_link_hashtable_init(
265 		struct btrfsic_block_link_hashtable *h);
266 static void btrfsic_block_link_hashtable_add(
267 		struct btrfsic_block_link *l,
268 		struct btrfsic_block_link_hashtable *h);
269 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
270 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
271 		struct block_device *bdev_ref_to,
272 		u64 dev_bytenr_ref_to,
273 		struct block_device *bdev_ref_from,
274 		u64 dev_bytenr_ref_from,
275 		struct btrfsic_block_link_hashtable *h);
276 static void btrfsic_dev_state_hashtable_init(
277 		struct btrfsic_dev_state_hashtable *h);
278 static void btrfsic_dev_state_hashtable_add(
279 		struct btrfsic_dev_state *ds,
280 		struct btrfsic_dev_state_hashtable *h);
281 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
282 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
283 		struct btrfsic_dev_state_hashtable *h);
284 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
285 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
286 static int btrfsic_process_superblock(struct btrfsic_state *state,
287 				      struct btrfs_fs_devices *fs_devices);
288 static int btrfsic_process_metablock(struct btrfsic_state *state,
289 				     struct btrfsic_block *block,
290 				     struct btrfsic_block_data_ctx *block_ctx,
291 				     int limit_nesting, int force_iodone_flag);
292 static void btrfsic_read_from_block_data(
293 	struct btrfsic_block_data_ctx *block_ctx,
294 	void *dst, u32 offset, size_t len);
295 static int btrfsic_create_link_to_next_block(
296 		struct btrfsic_state *state,
297 		struct btrfsic_block *block,
298 		struct btrfsic_block_data_ctx
299 		*block_ctx, u64 next_bytenr,
300 		int limit_nesting,
301 		struct btrfsic_block_data_ctx *next_block_ctx,
302 		struct btrfsic_block **next_blockp,
303 		int force_iodone_flag,
304 		int *num_copiesp, int *mirror_nump,
305 		struct btrfs_disk_key *disk_key,
306 		u64 parent_generation);
307 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
308 				      struct btrfsic_block *block,
309 				      struct btrfsic_block_data_ctx *block_ctx,
310 				      u32 item_offset, int force_iodone_flag);
311 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
312 			     struct btrfsic_block_data_ctx *block_ctx_out,
313 			     int mirror_num);
314 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
315 static int btrfsic_read_block(struct btrfsic_state *state,
316 			      struct btrfsic_block_data_ctx *block_ctx);
317 static void btrfsic_dump_database(struct btrfsic_state *state);
318 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
319 				     char **datav, unsigned int num_pages);
320 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
321 					  u64 dev_bytenr, char **mapped_datav,
322 					  unsigned int num_pages,
323 					  struct bio *bio, int *bio_is_patched,
324 					  int submit_bio_bh_rw);
325 static int btrfsic_process_written_superblock(
326 		struct btrfsic_state *state,
327 		struct btrfsic_block *const block,
328 		struct btrfs_super_block *const super_hdr);
329 static void btrfsic_bio_end_io(struct bio *bp);
330 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
331 					      const struct btrfsic_block *block,
332 					      int recursion_level);
333 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
334 					struct btrfsic_block *const block,
335 					int recursion_level);
336 static void btrfsic_print_add_link(const struct btrfsic_state *state,
337 				   const struct btrfsic_block_link *l);
338 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
339 				   const struct btrfsic_block_link *l);
340 static char btrfsic_get_block_type(const struct btrfsic_state *state,
341 				   const struct btrfsic_block *block);
342 static void btrfsic_dump_tree(const struct btrfsic_state *state);
343 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
344 				  const struct btrfsic_block *block,
345 				  int indent_level);
346 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
347 		struct btrfsic_state *state,
348 		struct btrfsic_block_data_ctx *next_block_ctx,
349 		struct btrfsic_block *next_block,
350 		struct btrfsic_block *from_block,
351 		u64 parent_generation);
352 static struct btrfsic_block *btrfsic_block_lookup_or_add(
353 		struct btrfsic_state *state,
354 		struct btrfsic_block_data_ctx *block_ctx,
355 		const char *additional_string,
356 		int is_metadata,
357 		int is_iodone,
358 		int never_written,
359 		int mirror_num,
360 		int *was_created);
361 static int btrfsic_process_superblock_dev_mirror(
362 		struct btrfsic_state *state,
363 		struct btrfsic_dev_state *dev_state,
364 		struct btrfs_device *device,
365 		int superblock_mirror_num,
366 		struct btrfsic_dev_state **selected_dev_state,
367 		struct btrfs_super_block *selected_super);
368 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
369 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
370 					   u64 bytenr,
371 					   struct btrfsic_dev_state *dev_state,
372 					   u64 dev_bytenr);
373 
374 static struct mutex btrfsic_mutex;
375 static int btrfsic_is_initialized;
376 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
377 
378 
379 static void btrfsic_block_init(struct btrfsic_block *b)
380 {
381 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
382 	b->dev_state = NULL;
383 	b->dev_bytenr = 0;
384 	b->logical_bytenr = 0;
385 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
386 	b->disk_key.objectid = 0;
387 	b->disk_key.type = 0;
388 	b->disk_key.offset = 0;
389 	b->is_metadata = 0;
390 	b->is_superblock = 0;
391 	b->is_iodone = 0;
392 	b->iodone_w_error = 0;
393 	b->never_written = 0;
394 	b->mirror_num = 0;
395 	b->next_in_same_bio = NULL;
396 	b->orig_bio_private = NULL;
397 	b->orig_bio_end_io = NULL;
398 	INIT_LIST_HEAD(&b->collision_resolving_node);
399 	INIT_LIST_HEAD(&b->all_blocks_node);
400 	INIT_LIST_HEAD(&b->ref_to_list);
401 	INIT_LIST_HEAD(&b->ref_from_list);
402 	b->submit_bio_bh_rw = 0;
403 	b->flush_gen = 0;
404 }
405 
406 static struct btrfsic_block *btrfsic_block_alloc(void)
407 {
408 	struct btrfsic_block *b;
409 
410 	b = kzalloc(sizeof(*b), GFP_NOFS);
411 	if (NULL != b)
412 		btrfsic_block_init(b);
413 
414 	return b;
415 }
416 
417 static void btrfsic_block_free(struct btrfsic_block *b)
418 {
419 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
420 	kfree(b);
421 }
422 
423 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
424 {
425 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
426 	l->ref_cnt = 1;
427 	INIT_LIST_HEAD(&l->node_ref_to);
428 	INIT_LIST_HEAD(&l->node_ref_from);
429 	INIT_LIST_HEAD(&l->collision_resolving_node);
430 	l->block_ref_to = NULL;
431 	l->block_ref_from = NULL;
432 }
433 
434 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
435 {
436 	struct btrfsic_block_link *l;
437 
438 	l = kzalloc(sizeof(*l), GFP_NOFS);
439 	if (NULL != l)
440 		btrfsic_block_link_init(l);
441 
442 	return l;
443 }
444 
445 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
446 {
447 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
448 	kfree(l);
449 }
450 
451 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
452 {
453 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
454 	ds->bdev = NULL;
455 	ds->state = NULL;
456 	ds->name[0] = '\0';
457 	INIT_LIST_HEAD(&ds->collision_resolving_node);
458 	ds->last_flush_gen = 0;
459 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
460 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
461 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
462 }
463 
464 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
465 {
466 	struct btrfsic_dev_state *ds;
467 
468 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
469 	if (NULL != ds)
470 		btrfsic_dev_state_init(ds);
471 
472 	return ds;
473 }
474 
475 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
476 {
477 	BUG_ON(!(NULL == ds ||
478 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
479 	kfree(ds);
480 }
481 
482 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
483 {
484 	int i;
485 
486 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
487 		INIT_LIST_HEAD(h->table + i);
488 }
489 
490 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
491 					struct btrfsic_block_hashtable *h)
492 {
493 	const unsigned int hashval =
494 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
495 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
496 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
497 
498 	list_add(&b->collision_resolving_node, h->table + hashval);
499 }
500 
501 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
502 {
503 	list_del(&b->collision_resolving_node);
504 }
505 
506 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
507 		struct block_device *bdev,
508 		u64 dev_bytenr,
509 		struct btrfsic_block_hashtable *h)
510 {
511 	const unsigned int hashval =
512 	    (((unsigned int)(dev_bytenr >> 16)) ^
513 	     ((unsigned int)((uintptr_t)bdev))) &
514 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
515 	struct btrfsic_block *b;
516 
517 	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
518 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
519 			return b;
520 	}
521 
522 	return NULL;
523 }
524 
525 static void btrfsic_block_link_hashtable_init(
526 		struct btrfsic_block_link_hashtable *h)
527 {
528 	int i;
529 
530 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
531 		INIT_LIST_HEAD(h->table + i);
532 }
533 
534 static void btrfsic_block_link_hashtable_add(
535 		struct btrfsic_block_link *l,
536 		struct btrfsic_block_link_hashtable *h)
537 {
538 	const unsigned int hashval =
539 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
540 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
541 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
542 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
543 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
544 
545 	BUG_ON(NULL == l->block_ref_to);
546 	BUG_ON(NULL == l->block_ref_from);
547 	list_add(&l->collision_resolving_node, h->table + hashval);
548 }
549 
550 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
551 {
552 	list_del(&l->collision_resolving_node);
553 }
554 
555 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
556 		struct block_device *bdev_ref_to,
557 		u64 dev_bytenr_ref_to,
558 		struct block_device *bdev_ref_from,
559 		u64 dev_bytenr_ref_from,
560 		struct btrfsic_block_link_hashtable *h)
561 {
562 	const unsigned int hashval =
563 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
564 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
565 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
566 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
567 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
568 	struct btrfsic_block_link *l;
569 
570 	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
571 		BUG_ON(NULL == l->block_ref_to);
572 		BUG_ON(NULL == l->block_ref_from);
573 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
574 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
575 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
576 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
577 			return l;
578 	}
579 
580 	return NULL;
581 }
582 
583 static void btrfsic_dev_state_hashtable_init(
584 		struct btrfsic_dev_state_hashtable *h)
585 {
586 	int i;
587 
588 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
589 		INIT_LIST_HEAD(h->table + i);
590 }
591 
592 static void btrfsic_dev_state_hashtable_add(
593 		struct btrfsic_dev_state *ds,
594 		struct btrfsic_dev_state_hashtable *h)
595 {
596 	const unsigned int hashval =
597 	    (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
598 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
599 
600 	list_add(&ds->collision_resolving_node, h->table + hashval);
601 }
602 
603 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
604 {
605 	list_del(&ds->collision_resolving_node);
606 }
607 
608 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
609 		struct btrfsic_dev_state_hashtable *h)
610 {
611 	const unsigned int hashval =
612 		dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
613 	struct btrfsic_dev_state *ds;
614 
615 	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
616 		if (ds->bdev->bd_dev == dev)
617 			return ds;
618 	}
619 
620 	return NULL;
621 }
622 
623 static int btrfsic_process_superblock(struct btrfsic_state *state,
624 				      struct btrfs_fs_devices *fs_devices)
625 {
626 	struct btrfs_super_block *selected_super;
627 	struct list_head *dev_head = &fs_devices->devices;
628 	struct btrfs_device *device;
629 	struct btrfsic_dev_state *selected_dev_state = NULL;
630 	int ret = 0;
631 	int pass;
632 
633 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
634 	if (NULL == selected_super) {
635 		pr_info("btrfsic: error, kmalloc failed!\n");
636 		return -ENOMEM;
637 	}
638 
639 	list_for_each_entry(device, dev_head, dev_list) {
640 		int i;
641 		struct btrfsic_dev_state *dev_state;
642 
643 		if (!device->bdev || !device->name)
644 			continue;
645 
646 		dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
647 		BUG_ON(NULL == dev_state);
648 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
649 			ret = btrfsic_process_superblock_dev_mirror(
650 					state, dev_state, device, i,
651 					&selected_dev_state, selected_super);
652 			if (0 != ret && 0 == i) {
653 				kfree(selected_super);
654 				return ret;
655 			}
656 		}
657 	}
658 
659 	if (NULL == state->latest_superblock) {
660 		pr_info("btrfsic: no superblock found!\n");
661 		kfree(selected_super);
662 		return -1;
663 	}
664 
665 	state->csum_size = btrfs_super_csum_size(selected_super);
666 
667 	for (pass = 0; pass < 3; pass++) {
668 		int num_copies;
669 		int mirror_num;
670 		u64 next_bytenr;
671 
672 		switch (pass) {
673 		case 0:
674 			next_bytenr = btrfs_super_root(selected_super);
675 			if (state->print_mask &
676 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
677 				pr_info("root@%llu\n", next_bytenr);
678 			break;
679 		case 1:
680 			next_bytenr = btrfs_super_chunk_root(selected_super);
681 			if (state->print_mask &
682 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
683 				pr_info("chunk@%llu\n", next_bytenr);
684 			break;
685 		case 2:
686 			next_bytenr = btrfs_super_log_root(selected_super);
687 			if (0 == next_bytenr)
688 				continue;
689 			if (state->print_mask &
690 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
691 				pr_info("log@%llu\n", next_bytenr);
692 			break;
693 		}
694 
695 		num_copies = btrfs_num_copies(state->fs_info, next_bytenr,
696 					      state->metablock_size);
697 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
698 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
699 			       next_bytenr, num_copies);
700 
701 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
702 			struct btrfsic_block *next_block;
703 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
704 			struct btrfsic_block_link *l;
705 
706 			ret = btrfsic_map_block(state, next_bytenr,
707 						state->metablock_size,
708 						&tmp_next_block_ctx,
709 						mirror_num);
710 			if (ret) {
711 				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
712 				       next_bytenr, mirror_num);
713 				kfree(selected_super);
714 				return -1;
715 			}
716 
717 			next_block = btrfsic_block_hashtable_lookup(
718 					tmp_next_block_ctx.dev->bdev,
719 					tmp_next_block_ctx.dev_bytenr,
720 					&state->block_hashtable);
721 			BUG_ON(NULL == next_block);
722 
723 			l = btrfsic_block_link_hashtable_lookup(
724 					tmp_next_block_ctx.dev->bdev,
725 					tmp_next_block_ctx.dev_bytenr,
726 					state->latest_superblock->dev_state->
727 					bdev,
728 					state->latest_superblock->dev_bytenr,
729 					&state->block_link_hashtable);
730 			BUG_ON(NULL == l);
731 
732 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
733 			if (ret < (int)PAGE_SIZE) {
734 				pr_info("btrfsic: read @logical %llu failed!\n",
735 				       tmp_next_block_ctx.start);
736 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
737 				kfree(selected_super);
738 				return -1;
739 			}
740 
741 			ret = btrfsic_process_metablock(state,
742 							next_block,
743 							&tmp_next_block_ctx,
744 							BTRFS_MAX_LEVEL + 3, 1);
745 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
746 		}
747 	}
748 
749 	kfree(selected_super);
750 	return ret;
751 }
752 
753 static int btrfsic_process_superblock_dev_mirror(
754 		struct btrfsic_state *state,
755 		struct btrfsic_dev_state *dev_state,
756 		struct btrfs_device *device,
757 		int superblock_mirror_num,
758 		struct btrfsic_dev_state **selected_dev_state,
759 		struct btrfs_super_block *selected_super)
760 {
761 	struct btrfs_fs_info *fs_info = state->fs_info;
762 	struct btrfs_super_block *super_tmp;
763 	u64 dev_bytenr;
764 	struct btrfsic_block *superblock_tmp;
765 	int pass;
766 	struct block_device *const superblock_bdev = device->bdev;
767 	struct page *page;
768 	struct address_space *mapping = superblock_bdev->bd_inode->i_mapping;
769 	int ret = 0;
770 
771 	/* super block bytenr is always the unmapped device bytenr */
772 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
773 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
774 		return -1;
775 
776 	page = read_cache_page_gfp(mapping, dev_bytenr >> PAGE_SHIFT, GFP_NOFS);
777 	if (IS_ERR(page))
778 		return -1;
779 
780 	super_tmp = page_address(page);
781 
782 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
783 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
784 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
785 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
786 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
787 		ret = 0;
788 		goto out;
789 	}
790 
791 	superblock_tmp =
792 	    btrfsic_block_hashtable_lookup(superblock_bdev,
793 					   dev_bytenr,
794 					   &state->block_hashtable);
795 	if (NULL == superblock_tmp) {
796 		superblock_tmp = btrfsic_block_alloc();
797 		if (NULL == superblock_tmp) {
798 			pr_info("btrfsic: error, kmalloc failed!\n");
799 			ret = -1;
800 			goto out;
801 		}
802 		/* for superblock, only the dev_bytenr makes sense */
803 		superblock_tmp->dev_bytenr = dev_bytenr;
804 		superblock_tmp->dev_state = dev_state;
805 		superblock_tmp->logical_bytenr = dev_bytenr;
806 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
807 		superblock_tmp->is_metadata = 1;
808 		superblock_tmp->is_superblock = 1;
809 		superblock_tmp->is_iodone = 1;
810 		superblock_tmp->never_written = 0;
811 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
812 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
813 			btrfs_info_in_rcu(fs_info,
814 				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
815 				     superblock_bdev,
816 				     rcu_str_deref(device->name), dev_bytenr,
817 				     dev_state->name, dev_bytenr,
818 				     superblock_mirror_num);
819 		list_add(&superblock_tmp->all_blocks_node,
820 			 &state->all_blocks_list);
821 		btrfsic_block_hashtable_add(superblock_tmp,
822 					    &state->block_hashtable);
823 	}
824 
825 	/* select the one with the highest generation field */
826 	if (btrfs_super_generation(super_tmp) >
827 	    state->max_superblock_generation ||
828 	    0 == state->max_superblock_generation) {
829 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
830 		*selected_dev_state = dev_state;
831 		state->max_superblock_generation =
832 		    btrfs_super_generation(super_tmp);
833 		state->latest_superblock = superblock_tmp;
834 	}
835 
836 	for (pass = 0; pass < 3; pass++) {
837 		u64 next_bytenr;
838 		int num_copies;
839 		int mirror_num;
840 		const char *additional_string = NULL;
841 		struct btrfs_disk_key tmp_disk_key;
842 
843 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
844 		tmp_disk_key.offset = 0;
845 		switch (pass) {
846 		case 0:
847 			btrfs_set_disk_key_objectid(&tmp_disk_key,
848 						    BTRFS_ROOT_TREE_OBJECTID);
849 			additional_string = "initial root ";
850 			next_bytenr = btrfs_super_root(super_tmp);
851 			break;
852 		case 1:
853 			btrfs_set_disk_key_objectid(&tmp_disk_key,
854 						    BTRFS_CHUNK_TREE_OBJECTID);
855 			additional_string = "initial chunk ";
856 			next_bytenr = btrfs_super_chunk_root(super_tmp);
857 			break;
858 		case 2:
859 			btrfs_set_disk_key_objectid(&tmp_disk_key,
860 						    BTRFS_TREE_LOG_OBJECTID);
861 			additional_string = "initial log ";
862 			next_bytenr = btrfs_super_log_root(super_tmp);
863 			if (0 == next_bytenr)
864 				continue;
865 			break;
866 		}
867 
868 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
869 					      state->metablock_size);
870 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
871 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
872 			       next_bytenr, num_copies);
873 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
874 			struct btrfsic_block *next_block;
875 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
876 			struct btrfsic_block_link *l;
877 
878 			if (btrfsic_map_block(state, next_bytenr,
879 					      state->metablock_size,
880 					      &tmp_next_block_ctx,
881 					      mirror_num)) {
882 				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
883 				       next_bytenr, mirror_num);
884 				ret = -1;
885 				goto out;
886 			}
887 
888 			next_block = btrfsic_block_lookup_or_add(
889 					state, &tmp_next_block_ctx,
890 					additional_string, 1, 1, 0,
891 					mirror_num, NULL);
892 			if (NULL == next_block) {
893 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
894 				ret = -1;
895 				goto out;
896 			}
897 
898 			next_block->disk_key = tmp_disk_key;
899 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
900 			l = btrfsic_block_link_lookup_or_add(
901 					state, &tmp_next_block_ctx,
902 					next_block, superblock_tmp,
903 					BTRFSIC_GENERATION_UNKNOWN);
904 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
905 			if (NULL == l) {
906 				ret = -1;
907 				goto out;
908 			}
909 		}
910 	}
911 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
912 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
913 
914 out:
915 	put_page(page);
916 	return ret;
917 }
918 
919 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
920 {
921 	struct btrfsic_stack_frame *sf;
922 
923 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
924 	if (NULL == sf)
925 		pr_info("btrfsic: alloc memory failed!\n");
926 	else
927 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
928 	return sf;
929 }
930 
931 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
932 {
933 	BUG_ON(!(NULL == sf ||
934 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
935 	kfree(sf);
936 }
937 
938 static noinline_for_stack int btrfsic_process_metablock(
939 		struct btrfsic_state *state,
940 		struct btrfsic_block *const first_block,
941 		struct btrfsic_block_data_ctx *const first_block_ctx,
942 		int first_limit_nesting, int force_iodone_flag)
943 {
944 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
945 	struct btrfsic_stack_frame *sf;
946 	struct btrfsic_stack_frame *next_stack;
947 	struct btrfs_header *const first_hdr =
948 		(struct btrfs_header *)first_block_ctx->datav[0];
949 
950 	BUG_ON(!first_hdr);
951 	sf = &initial_stack_frame;
952 	sf->error = 0;
953 	sf->i = -1;
954 	sf->limit_nesting = first_limit_nesting;
955 	sf->block = first_block;
956 	sf->block_ctx = first_block_ctx;
957 	sf->next_block = NULL;
958 	sf->hdr = first_hdr;
959 	sf->prev = NULL;
960 
961 continue_with_new_stack_frame:
962 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
963 	if (0 == sf->hdr->level) {
964 		struct btrfs_leaf *const leafhdr =
965 		    (struct btrfs_leaf *)sf->hdr;
966 
967 		if (-1 == sf->i) {
968 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
969 
970 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
971 				pr_info("leaf %llu items %d generation %llu owner %llu\n",
972 				       sf->block_ctx->start, sf->nr,
973 				       btrfs_stack_header_generation(
974 					       &leafhdr->header),
975 				       btrfs_stack_header_owner(
976 					       &leafhdr->header));
977 		}
978 
979 continue_with_current_leaf_stack_frame:
980 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
981 			sf->i++;
982 			sf->num_copies = 0;
983 		}
984 
985 		if (sf->i < sf->nr) {
986 			struct btrfs_item disk_item;
987 			u32 disk_item_offset =
988 				(uintptr_t)(leafhdr->items + sf->i) -
989 				(uintptr_t)leafhdr;
990 			struct btrfs_disk_key *disk_key;
991 			u8 type;
992 			u32 item_offset;
993 			u32 item_size;
994 
995 			if (disk_item_offset + sizeof(struct btrfs_item) >
996 			    sf->block_ctx->len) {
997 leaf_item_out_of_bounce_error:
998 				pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
999 				       sf->block_ctx->start,
1000 				       sf->block_ctx->dev->name);
1001 				goto one_stack_frame_backwards;
1002 			}
1003 			btrfsic_read_from_block_data(sf->block_ctx,
1004 						     &disk_item,
1005 						     disk_item_offset,
1006 						     sizeof(struct btrfs_item));
1007 			item_offset = btrfs_stack_item_offset(&disk_item);
1008 			item_size = btrfs_stack_item_size(&disk_item);
1009 			disk_key = &disk_item.key;
1010 			type = btrfs_disk_key_type(disk_key);
1011 
1012 			if (BTRFS_ROOT_ITEM_KEY == type) {
1013 				struct btrfs_root_item root_item;
1014 				u32 root_item_offset;
1015 				u64 next_bytenr;
1016 
1017 				root_item_offset = item_offset +
1018 					offsetof(struct btrfs_leaf, items);
1019 				if (root_item_offset + item_size >
1020 				    sf->block_ctx->len)
1021 					goto leaf_item_out_of_bounce_error;
1022 				btrfsic_read_from_block_data(
1023 					sf->block_ctx, &root_item,
1024 					root_item_offset,
1025 					item_size);
1026 				next_bytenr = btrfs_root_bytenr(&root_item);
1027 
1028 				sf->error =
1029 				    btrfsic_create_link_to_next_block(
1030 						state,
1031 						sf->block,
1032 						sf->block_ctx,
1033 						next_bytenr,
1034 						sf->limit_nesting,
1035 						&sf->next_block_ctx,
1036 						&sf->next_block,
1037 						force_iodone_flag,
1038 						&sf->num_copies,
1039 						&sf->mirror_num,
1040 						disk_key,
1041 						btrfs_root_generation(
1042 						&root_item));
1043 				if (sf->error)
1044 					goto one_stack_frame_backwards;
1045 
1046 				if (NULL != sf->next_block) {
1047 					struct btrfs_header *const next_hdr =
1048 					    (struct btrfs_header *)
1049 					    sf->next_block_ctx.datav[0];
1050 
1051 					next_stack =
1052 					    btrfsic_stack_frame_alloc();
1053 					if (NULL == next_stack) {
1054 						sf->error = -1;
1055 						btrfsic_release_block_ctx(
1056 								&sf->
1057 								next_block_ctx);
1058 						goto one_stack_frame_backwards;
1059 					}
1060 
1061 					next_stack->i = -1;
1062 					next_stack->block = sf->next_block;
1063 					next_stack->block_ctx =
1064 					    &sf->next_block_ctx;
1065 					next_stack->next_block = NULL;
1066 					next_stack->hdr = next_hdr;
1067 					next_stack->limit_nesting =
1068 					    sf->limit_nesting - 1;
1069 					next_stack->prev = sf;
1070 					sf = next_stack;
1071 					goto continue_with_new_stack_frame;
1072 				}
1073 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1074 				   state->include_extent_data) {
1075 				sf->error = btrfsic_handle_extent_data(
1076 						state,
1077 						sf->block,
1078 						sf->block_ctx,
1079 						item_offset,
1080 						force_iodone_flag);
1081 				if (sf->error)
1082 					goto one_stack_frame_backwards;
1083 			}
1084 
1085 			goto continue_with_current_leaf_stack_frame;
1086 		}
1087 	} else {
1088 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1089 
1090 		if (-1 == sf->i) {
1091 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1092 
1093 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1094 				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1095 				       sf->block_ctx->start,
1096 				       nodehdr->header.level, sf->nr,
1097 				       btrfs_stack_header_generation(
1098 				       &nodehdr->header),
1099 				       btrfs_stack_header_owner(
1100 				       &nodehdr->header));
1101 		}
1102 
1103 continue_with_current_node_stack_frame:
1104 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1105 			sf->i++;
1106 			sf->num_copies = 0;
1107 		}
1108 
1109 		if (sf->i < sf->nr) {
1110 			struct btrfs_key_ptr key_ptr;
1111 			u32 key_ptr_offset;
1112 			u64 next_bytenr;
1113 
1114 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1115 					  (uintptr_t)nodehdr;
1116 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1117 			    sf->block_ctx->len) {
1118 				pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1119 				       sf->block_ctx->start,
1120 				       sf->block_ctx->dev->name);
1121 				goto one_stack_frame_backwards;
1122 			}
1123 			btrfsic_read_from_block_data(
1124 				sf->block_ctx, &key_ptr, key_ptr_offset,
1125 				sizeof(struct btrfs_key_ptr));
1126 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1127 
1128 			sf->error = btrfsic_create_link_to_next_block(
1129 					state,
1130 					sf->block,
1131 					sf->block_ctx,
1132 					next_bytenr,
1133 					sf->limit_nesting,
1134 					&sf->next_block_ctx,
1135 					&sf->next_block,
1136 					force_iodone_flag,
1137 					&sf->num_copies,
1138 					&sf->mirror_num,
1139 					&key_ptr.key,
1140 					btrfs_stack_key_generation(&key_ptr));
1141 			if (sf->error)
1142 				goto one_stack_frame_backwards;
1143 
1144 			if (NULL != sf->next_block) {
1145 				struct btrfs_header *const next_hdr =
1146 				    (struct btrfs_header *)
1147 				    sf->next_block_ctx.datav[0];
1148 
1149 				next_stack = btrfsic_stack_frame_alloc();
1150 				if (NULL == next_stack) {
1151 					sf->error = -1;
1152 					goto one_stack_frame_backwards;
1153 				}
1154 
1155 				next_stack->i = -1;
1156 				next_stack->block = sf->next_block;
1157 				next_stack->block_ctx = &sf->next_block_ctx;
1158 				next_stack->next_block = NULL;
1159 				next_stack->hdr = next_hdr;
1160 				next_stack->limit_nesting =
1161 				    sf->limit_nesting - 1;
1162 				next_stack->prev = sf;
1163 				sf = next_stack;
1164 				goto continue_with_new_stack_frame;
1165 			}
1166 
1167 			goto continue_with_current_node_stack_frame;
1168 		}
1169 	}
1170 
1171 one_stack_frame_backwards:
1172 	if (NULL != sf->prev) {
1173 		struct btrfsic_stack_frame *const prev = sf->prev;
1174 
1175 		/* the one for the initial block is freed in the caller */
1176 		btrfsic_release_block_ctx(sf->block_ctx);
1177 
1178 		if (sf->error) {
1179 			prev->error = sf->error;
1180 			btrfsic_stack_frame_free(sf);
1181 			sf = prev;
1182 			goto one_stack_frame_backwards;
1183 		}
1184 
1185 		btrfsic_stack_frame_free(sf);
1186 		sf = prev;
1187 		goto continue_with_new_stack_frame;
1188 	} else {
1189 		BUG_ON(&initial_stack_frame != sf);
1190 	}
1191 
1192 	return sf->error;
1193 }
1194 
1195 static void btrfsic_read_from_block_data(
1196 	struct btrfsic_block_data_ctx *block_ctx,
1197 	void *dstv, u32 offset, size_t len)
1198 {
1199 	size_t cur;
1200 	size_t pgoff;
1201 	char *kaddr;
1202 	char *dst = (char *)dstv;
1203 	size_t start_offset = offset_in_page(block_ctx->start);
1204 	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1205 
1206 	WARN_ON(offset + len > block_ctx->len);
1207 	pgoff = offset_in_page(start_offset + offset);
1208 
1209 	while (len > 0) {
1210 		cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1211 		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1212 		kaddr = block_ctx->datav[i];
1213 		memcpy(dst, kaddr + pgoff, cur);
1214 
1215 		dst += cur;
1216 		len -= cur;
1217 		pgoff = 0;
1218 		i++;
1219 	}
1220 }
1221 
1222 static int btrfsic_create_link_to_next_block(
1223 		struct btrfsic_state *state,
1224 		struct btrfsic_block *block,
1225 		struct btrfsic_block_data_ctx *block_ctx,
1226 		u64 next_bytenr,
1227 		int limit_nesting,
1228 		struct btrfsic_block_data_ctx *next_block_ctx,
1229 		struct btrfsic_block **next_blockp,
1230 		int force_iodone_flag,
1231 		int *num_copiesp, int *mirror_nump,
1232 		struct btrfs_disk_key *disk_key,
1233 		u64 parent_generation)
1234 {
1235 	struct btrfs_fs_info *fs_info = state->fs_info;
1236 	struct btrfsic_block *next_block = NULL;
1237 	int ret;
1238 	struct btrfsic_block_link *l;
1239 	int did_alloc_block_link;
1240 	int block_was_created;
1241 
1242 	*next_blockp = NULL;
1243 	if (0 == *num_copiesp) {
1244 		*num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1245 						state->metablock_size);
1246 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1247 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1248 			       next_bytenr, *num_copiesp);
1249 		*mirror_nump = 1;
1250 	}
1251 
1252 	if (*mirror_nump > *num_copiesp)
1253 		return 0;
1254 
1255 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1256 		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1257 		       *mirror_nump);
1258 	ret = btrfsic_map_block(state, next_bytenr,
1259 				state->metablock_size,
1260 				next_block_ctx, *mirror_nump);
1261 	if (ret) {
1262 		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1263 		       next_bytenr, *mirror_nump);
1264 		btrfsic_release_block_ctx(next_block_ctx);
1265 		*next_blockp = NULL;
1266 		return -1;
1267 	}
1268 
1269 	next_block = btrfsic_block_lookup_or_add(state,
1270 						 next_block_ctx, "referenced ",
1271 						 1, force_iodone_flag,
1272 						 !force_iodone_flag,
1273 						 *mirror_nump,
1274 						 &block_was_created);
1275 	if (NULL == next_block) {
1276 		btrfsic_release_block_ctx(next_block_ctx);
1277 		*next_blockp = NULL;
1278 		return -1;
1279 	}
1280 	if (block_was_created) {
1281 		l = NULL;
1282 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1283 	} else {
1284 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1285 			if (next_block->logical_bytenr != next_bytenr &&
1286 			    !(!next_block->is_metadata &&
1287 			      0 == next_block->logical_bytenr))
1288 				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1289 				       next_bytenr, next_block_ctx->dev->name,
1290 				       next_block_ctx->dev_bytenr, *mirror_nump,
1291 				       btrfsic_get_block_type(state,
1292 							      next_block),
1293 				       next_block->logical_bytenr);
1294 			else
1295 				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1296 				       next_bytenr, next_block_ctx->dev->name,
1297 				       next_block_ctx->dev_bytenr, *mirror_nump,
1298 				       btrfsic_get_block_type(state,
1299 							      next_block));
1300 		}
1301 		next_block->logical_bytenr = next_bytenr;
1302 
1303 		next_block->mirror_num = *mirror_nump;
1304 		l = btrfsic_block_link_hashtable_lookup(
1305 				next_block_ctx->dev->bdev,
1306 				next_block_ctx->dev_bytenr,
1307 				block_ctx->dev->bdev,
1308 				block_ctx->dev_bytenr,
1309 				&state->block_link_hashtable);
1310 	}
1311 
1312 	next_block->disk_key = *disk_key;
1313 	if (NULL == l) {
1314 		l = btrfsic_block_link_alloc();
1315 		if (NULL == l) {
1316 			pr_info("btrfsic: error, kmalloc failed!\n");
1317 			btrfsic_release_block_ctx(next_block_ctx);
1318 			*next_blockp = NULL;
1319 			return -1;
1320 		}
1321 
1322 		did_alloc_block_link = 1;
1323 		l->block_ref_to = next_block;
1324 		l->block_ref_from = block;
1325 		l->ref_cnt = 1;
1326 		l->parent_generation = parent_generation;
1327 
1328 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1329 			btrfsic_print_add_link(state, l);
1330 
1331 		list_add(&l->node_ref_to, &block->ref_to_list);
1332 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1333 
1334 		btrfsic_block_link_hashtable_add(l,
1335 						 &state->block_link_hashtable);
1336 	} else {
1337 		did_alloc_block_link = 0;
1338 		if (0 == limit_nesting) {
1339 			l->ref_cnt++;
1340 			l->parent_generation = parent_generation;
1341 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1342 				btrfsic_print_add_link(state, l);
1343 		}
1344 	}
1345 
1346 	if (limit_nesting > 0 && did_alloc_block_link) {
1347 		ret = btrfsic_read_block(state, next_block_ctx);
1348 		if (ret < (int)next_block_ctx->len) {
1349 			pr_info("btrfsic: read block @logical %llu failed!\n",
1350 			       next_bytenr);
1351 			btrfsic_release_block_ctx(next_block_ctx);
1352 			*next_blockp = NULL;
1353 			return -1;
1354 		}
1355 
1356 		*next_blockp = next_block;
1357 	} else {
1358 		*next_blockp = NULL;
1359 	}
1360 	(*mirror_nump)++;
1361 
1362 	return 0;
1363 }
1364 
1365 static int btrfsic_handle_extent_data(
1366 		struct btrfsic_state *state,
1367 		struct btrfsic_block *block,
1368 		struct btrfsic_block_data_ctx *block_ctx,
1369 		u32 item_offset, int force_iodone_flag)
1370 {
1371 	struct btrfs_fs_info *fs_info = state->fs_info;
1372 	struct btrfs_file_extent_item file_extent_item;
1373 	u64 file_extent_item_offset;
1374 	u64 next_bytenr;
1375 	u64 num_bytes;
1376 	u64 generation;
1377 	struct btrfsic_block_link *l;
1378 	int ret;
1379 
1380 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1381 				  item_offset;
1382 	if (file_extent_item_offset +
1383 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1384 	    block_ctx->len) {
1385 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1386 		       block_ctx->start, block_ctx->dev->name);
1387 		return -1;
1388 	}
1389 
1390 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1391 		file_extent_item_offset,
1392 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1393 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1394 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1395 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1396 			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1397 			       file_extent_item.type,
1398 			       btrfs_stack_file_extent_disk_bytenr(
1399 			       &file_extent_item));
1400 		return 0;
1401 	}
1402 
1403 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1404 	    block_ctx->len) {
1405 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1406 		       block_ctx->start, block_ctx->dev->name);
1407 		return -1;
1408 	}
1409 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1410 				     file_extent_item_offset,
1411 				     sizeof(struct btrfs_file_extent_item));
1412 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1413 	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1414 	    BTRFS_COMPRESS_NONE) {
1415 		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1416 		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1417 	} else {
1418 		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1419 	}
1420 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1421 
1422 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1423 		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1424 		       file_extent_item.type,
1425 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1426 		       btrfs_stack_file_extent_offset(&file_extent_item),
1427 		       num_bytes);
1428 	while (num_bytes > 0) {
1429 		u32 chunk_len;
1430 		int num_copies;
1431 		int mirror_num;
1432 
1433 		if (num_bytes > state->datablock_size)
1434 			chunk_len = state->datablock_size;
1435 		else
1436 			chunk_len = num_bytes;
1437 
1438 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
1439 					      state->datablock_size);
1440 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1441 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1442 			       next_bytenr, num_copies);
1443 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1444 			struct btrfsic_block_data_ctx next_block_ctx;
1445 			struct btrfsic_block *next_block;
1446 			int block_was_created;
1447 
1448 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1449 				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1450 					mirror_num);
1451 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1452 				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1453 				       next_bytenr, chunk_len);
1454 			ret = btrfsic_map_block(state, next_bytenr,
1455 						chunk_len, &next_block_ctx,
1456 						mirror_num);
1457 			if (ret) {
1458 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1459 				       next_bytenr, mirror_num);
1460 				return -1;
1461 			}
1462 
1463 			next_block = btrfsic_block_lookup_or_add(
1464 					state,
1465 					&next_block_ctx,
1466 					"referenced ",
1467 					0,
1468 					force_iodone_flag,
1469 					!force_iodone_flag,
1470 					mirror_num,
1471 					&block_was_created);
1472 			if (NULL == next_block) {
1473 				pr_info("btrfsic: error, kmalloc failed!\n");
1474 				btrfsic_release_block_ctx(&next_block_ctx);
1475 				return -1;
1476 			}
1477 			if (!block_was_created) {
1478 				if ((state->print_mask &
1479 				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1480 				    next_block->logical_bytenr != next_bytenr &&
1481 				    !(!next_block->is_metadata &&
1482 				      0 == next_block->logical_bytenr)) {
1483 					pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1484 					       next_bytenr,
1485 					       next_block_ctx.dev->name,
1486 					       next_block_ctx.dev_bytenr,
1487 					       mirror_num,
1488 					       next_block->logical_bytenr);
1489 				}
1490 				next_block->logical_bytenr = next_bytenr;
1491 				next_block->mirror_num = mirror_num;
1492 			}
1493 
1494 			l = btrfsic_block_link_lookup_or_add(state,
1495 							     &next_block_ctx,
1496 							     next_block, block,
1497 							     generation);
1498 			btrfsic_release_block_ctx(&next_block_ctx);
1499 			if (NULL == l)
1500 				return -1;
1501 		}
1502 
1503 		next_bytenr += chunk_len;
1504 		num_bytes -= chunk_len;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1511 			     struct btrfsic_block_data_ctx *block_ctx_out,
1512 			     int mirror_num)
1513 {
1514 	struct btrfs_fs_info *fs_info = state->fs_info;
1515 	int ret;
1516 	u64 length;
1517 	struct btrfs_bio *multi = NULL;
1518 	struct btrfs_device *device;
1519 
1520 	length = len;
1521 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1522 			      bytenr, &length, &multi, mirror_num);
1523 
1524 	if (ret) {
1525 		block_ctx_out->start = 0;
1526 		block_ctx_out->dev_bytenr = 0;
1527 		block_ctx_out->len = 0;
1528 		block_ctx_out->dev = NULL;
1529 		block_ctx_out->datav = NULL;
1530 		block_ctx_out->pagev = NULL;
1531 		block_ctx_out->mem_to_free = NULL;
1532 
1533 		return ret;
1534 	}
1535 
1536 	device = multi->stripes[0].dev;
1537 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1538 	    !device->bdev || !device->name)
1539 		block_ctx_out->dev = NULL;
1540 	else
1541 		block_ctx_out->dev = btrfsic_dev_state_lookup(
1542 							device->bdev->bd_dev);
1543 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1544 	block_ctx_out->start = bytenr;
1545 	block_ctx_out->len = len;
1546 	block_ctx_out->datav = NULL;
1547 	block_ctx_out->pagev = NULL;
1548 	block_ctx_out->mem_to_free = NULL;
1549 
1550 	kfree(multi);
1551 	if (NULL == block_ctx_out->dev) {
1552 		ret = -ENXIO;
1553 		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1554 	}
1555 
1556 	return ret;
1557 }
1558 
1559 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1560 {
1561 	if (block_ctx->mem_to_free) {
1562 		unsigned int num_pages;
1563 
1564 		BUG_ON(!block_ctx->datav);
1565 		BUG_ON(!block_ctx->pagev);
1566 		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1567 			    PAGE_SHIFT;
1568 		while (num_pages > 0) {
1569 			num_pages--;
1570 			if (block_ctx->datav[num_pages]) {
1571 				kunmap(block_ctx->pagev[num_pages]);
1572 				block_ctx->datav[num_pages] = NULL;
1573 			}
1574 			if (block_ctx->pagev[num_pages]) {
1575 				__free_page(block_ctx->pagev[num_pages]);
1576 				block_ctx->pagev[num_pages] = NULL;
1577 			}
1578 		}
1579 
1580 		kfree(block_ctx->mem_to_free);
1581 		block_ctx->mem_to_free = NULL;
1582 		block_ctx->pagev = NULL;
1583 		block_ctx->datav = NULL;
1584 	}
1585 }
1586 
1587 static int btrfsic_read_block(struct btrfsic_state *state,
1588 			      struct btrfsic_block_data_ctx *block_ctx)
1589 {
1590 	unsigned int num_pages;
1591 	unsigned int i;
1592 	size_t size;
1593 	u64 dev_bytenr;
1594 	int ret;
1595 
1596 	BUG_ON(block_ctx->datav);
1597 	BUG_ON(block_ctx->pagev);
1598 	BUG_ON(block_ctx->mem_to_free);
1599 	if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1600 		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1601 		       block_ctx->dev_bytenr);
1602 		return -1;
1603 	}
1604 
1605 	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1606 		    PAGE_SHIFT;
1607 	size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1608 	block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
1609 	if (!block_ctx->mem_to_free)
1610 		return -ENOMEM;
1611 	block_ctx->datav = block_ctx->mem_to_free;
1612 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1613 	for (i = 0; i < num_pages; i++) {
1614 		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1615 		if (!block_ctx->pagev[i])
1616 			return -1;
1617 	}
1618 
1619 	dev_bytenr = block_ctx->dev_bytenr;
1620 	for (i = 0; i < num_pages;) {
1621 		struct bio *bio;
1622 		unsigned int j;
1623 
1624 		bio = btrfs_io_bio_alloc(num_pages - i);
1625 		bio_set_dev(bio, block_ctx->dev->bdev);
1626 		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1627 		bio->bi_opf = REQ_OP_READ;
1628 
1629 		for (j = i; j < num_pages; j++) {
1630 			ret = bio_add_page(bio, block_ctx->pagev[j],
1631 					   PAGE_SIZE, 0);
1632 			if (PAGE_SIZE != ret)
1633 				break;
1634 		}
1635 		if (j == i) {
1636 			pr_info("btrfsic: error, failed to add a single page!\n");
1637 			return -1;
1638 		}
1639 		if (submit_bio_wait(bio)) {
1640 			pr_info("btrfsic: read error at logical %llu dev %s!\n",
1641 			       block_ctx->start, block_ctx->dev->name);
1642 			bio_put(bio);
1643 			return -1;
1644 		}
1645 		bio_put(bio);
1646 		dev_bytenr += (j - i) * PAGE_SIZE;
1647 		i = j;
1648 	}
1649 	for (i = 0; i < num_pages; i++)
1650 		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1651 
1652 	return block_ctx->len;
1653 }
1654 
1655 static void btrfsic_dump_database(struct btrfsic_state *state)
1656 {
1657 	const struct btrfsic_block *b_all;
1658 
1659 	BUG_ON(NULL == state);
1660 
1661 	pr_info("all_blocks_list:\n");
1662 	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1663 		const struct btrfsic_block_link *l;
1664 
1665 		pr_info("%c-block @%llu (%s/%llu/%d)\n",
1666 		       btrfsic_get_block_type(state, b_all),
1667 		       b_all->logical_bytenr, b_all->dev_state->name,
1668 		       b_all->dev_bytenr, b_all->mirror_num);
1669 
1670 		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1671 			pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1672 			       btrfsic_get_block_type(state, b_all),
1673 			       b_all->logical_bytenr, b_all->dev_state->name,
1674 			       b_all->dev_bytenr, b_all->mirror_num,
1675 			       l->ref_cnt,
1676 			       btrfsic_get_block_type(state, l->block_ref_to),
1677 			       l->block_ref_to->logical_bytenr,
1678 			       l->block_ref_to->dev_state->name,
1679 			       l->block_ref_to->dev_bytenr,
1680 			       l->block_ref_to->mirror_num);
1681 		}
1682 
1683 		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1684 			pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1685 			       btrfsic_get_block_type(state, b_all),
1686 			       b_all->logical_bytenr, b_all->dev_state->name,
1687 			       b_all->dev_bytenr, b_all->mirror_num,
1688 			       l->ref_cnt,
1689 			       btrfsic_get_block_type(state, l->block_ref_from),
1690 			       l->block_ref_from->logical_bytenr,
1691 			       l->block_ref_from->dev_state->name,
1692 			       l->block_ref_from->dev_bytenr,
1693 			       l->block_ref_from->mirror_num);
1694 		}
1695 
1696 		pr_info("\n");
1697 	}
1698 }
1699 
1700 /*
1701  * Test whether the disk block contains a tree block (leaf or node)
1702  * (note that this test fails for the super block)
1703  */
1704 static noinline_for_stack int btrfsic_test_for_metadata(
1705 		struct btrfsic_state *state,
1706 		char **datav, unsigned int num_pages)
1707 {
1708 	struct btrfs_fs_info *fs_info = state->fs_info;
1709 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1710 	struct btrfs_header *h;
1711 	u8 csum[BTRFS_CSUM_SIZE];
1712 	unsigned int i;
1713 
1714 	if (num_pages * PAGE_SIZE < state->metablock_size)
1715 		return 1; /* not metadata */
1716 	num_pages = state->metablock_size >> PAGE_SHIFT;
1717 	h = (struct btrfs_header *)datav[0];
1718 
1719 	if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1720 		return 1;
1721 
1722 	shash->tfm = fs_info->csum_shash;
1723 	crypto_shash_init(shash);
1724 
1725 	for (i = 0; i < num_pages; i++) {
1726 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1727 		size_t sublen = i ? PAGE_SIZE :
1728 				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1729 
1730 		crypto_shash_update(shash, data, sublen);
1731 	}
1732 	crypto_shash_final(shash, csum);
1733 	if (memcmp(csum, h->csum, state->csum_size))
1734 		return 1;
1735 
1736 	return 0; /* is metadata */
1737 }
1738 
1739 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1740 					  u64 dev_bytenr, char **mapped_datav,
1741 					  unsigned int num_pages,
1742 					  struct bio *bio, int *bio_is_patched,
1743 					  int submit_bio_bh_rw)
1744 {
1745 	int is_metadata;
1746 	struct btrfsic_block *block;
1747 	struct btrfsic_block_data_ctx block_ctx;
1748 	int ret;
1749 	struct btrfsic_state *state = dev_state->state;
1750 	struct block_device *bdev = dev_state->bdev;
1751 	unsigned int processed_len;
1752 
1753 	if (NULL != bio_is_patched)
1754 		*bio_is_patched = 0;
1755 
1756 again:
1757 	if (num_pages == 0)
1758 		return;
1759 
1760 	processed_len = 0;
1761 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1762 						      num_pages));
1763 
1764 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1765 					       &state->block_hashtable);
1766 	if (NULL != block) {
1767 		u64 bytenr = 0;
1768 		struct btrfsic_block_link *l, *tmp;
1769 
1770 		if (block->is_superblock) {
1771 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1772 						    mapped_datav[0]);
1773 			if (num_pages * PAGE_SIZE <
1774 			    BTRFS_SUPER_INFO_SIZE) {
1775 				pr_info("btrfsic: cannot work with too short bios!\n");
1776 				return;
1777 			}
1778 			is_metadata = 1;
1779 			BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1780 			processed_len = BTRFS_SUPER_INFO_SIZE;
1781 			if (state->print_mask &
1782 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1783 				pr_info("[before new superblock is written]:\n");
1784 				btrfsic_dump_tree_sub(state, block, 0);
1785 			}
1786 		}
1787 		if (is_metadata) {
1788 			if (!block->is_superblock) {
1789 				if (num_pages * PAGE_SIZE <
1790 				    state->metablock_size) {
1791 					pr_info("btrfsic: cannot work with too short bios!\n");
1792 					return;
1793 				}
1794 				processed_len = state->metablock_size;
1795 				bytenr = btrfs_stack_header_bytenr(
1796 						(struct btrfs_header *)
1797 						mapped_datav[0]);
1798 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1799 							       dev_state,
1800 							       dev_bytenr);
1801 			}
1802 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1803 				if (block->logical_bytenr != bytenr &&
1804 				    !(!block->is_metadata &&
1805 				      block->logical_bytenr == 0))
1806 					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1807 					       bytenr, dev_state->name,
1808 					       dev_bytenr,
1809 					       block->mirror_num,
1810 					       btrfsic_get_block_type(state,
1811 								      block),
1812 					       block->logical_bytenr);
1813 				else
1814 					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1815 					       bytenr, dev_state->name,
1816 					       dev_bytenr, block->mirror_num,
1817 					       btrfsic_get_block_type(state,
1818 								      block));
1819 			}
1820 			block->logical_bytenr = bytenr;
1821 		} else {
1822 			if (num_pages * PAGE_SIZE <
1823 			    state->datablock_size) {
1824 				pr_info("btrfsic: cannot work with too short bios!\n");
1825 				return;
1826 			}
1827 			processed_len = state->datablock_size;
1828 			bytenr = block->logical_bytenr;
1829 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1830 				pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1831 				       bytenr, dev_state->name, dev_bytenr,
1832 				       block->mirror_num,
1833 				       btrfsic_get_block_type(state, block));
1834 		}
1835 
1836 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1837 			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1838 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1839 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1840 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1841 			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1842 			       btrfsic_get_block_type(state, block), bytenr,
1843 			       dev_state->name, dev_bytenr, block->mirror_num,
1844 			       block->generation,
1845 			       btrfs_disk_key_objectid(&block->disk_key),
1846 			       block->disk_key.type,
1847 			       btrfs_disk_key_offset(&block->disk_key),
1848 			       btrfs_stack_header_generation(
1849 				       (struct btrfs_header *) mapped_datav[0]),
1850 			       state->max_superblock_generation);
1851 			btrfsic_dump_tree(state);
1852 		}
1853 
1854 		if (!block->is_iodone && !block->never_written) {
1855 			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1856 			       btrfsic_get_block_type(state, block), bytenr,
1857 			       dev_state->name, dev_bytenr, block->mirror_num,
1858 			       block->generation,
1859 			       btrfs_stack_header_generation(
1860 				       (struct btrfs_header *)
1861 				       mapped_datav[0]));
1862 			/* it would not be safe to go on */
1863 			btrfsic_dump_tree(state);
1864 			goto continue_loop;
1865 		}
1866 
1867 		/*
1868 		 * Clear all references of this block. Do not free
1869 		 * the block itself even if is not referenced anymore
1870 		 * because it still carries valuable information
1871 		 * like whether it was ever written and IO completed.
1872 		 */
1873 		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1874 					 node_ref_to) {
1875 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1876 				btrfsic_print_rem_link(state, l);
1877 			l->ref_cnt--;
1878 			if (0 == l->ref_cnt) {
1879 				list_del(&l->node_ref_to);
1880 				list_del(&l->node_ref_from);
1881 				btrfsic_block_link_hashtable_remove(l);
1882 				btrfsic_block_link_free(l);
1883 			}
1884 		}
1885 
1886 		block_ctx.dev = dev_state;
1887 		block_ctx.dev_bytenr = dev_bytenr;
1888 		block_ctx.start = bytenr;
1889 		block_ctx.len = processed_len;
1890 		block_ctx.pagev = NULL;
1891 		block_ctx.mem_to_free = NULL;
1892 		block_ctx.datav = mapped_datav;
1893 
1894 		if (is_metadata || state->include_extent_data) {
1895 			block->never_written = 0;
1896 			block->iodone_w_error = 0;
1897 			if (NULL != bio) {
1898 				block->is_iodone = 0;
1899 				BUG_ON(NULL == bio_is_patched);
1900 				if (!*bio_is_patched) {
1901 					block->orig_bio_private =
1902 					    bio->bi_private;
1903 					block->orig_bio_end_io =
1904 					    bio->bi_end_io;
1905 					block->next_in_same_bio = NULL;
1906 					bio->bi_private = block;
1907 					bio->bi_end_io = btrfsic_bio_end_io;
1908 					*bio_is_patched = 1;
1909 				} else {
1910 					struct btrfsic_block *chained_block =
1911 					    (struct btrfsic_block *)
1912 					    bio->bi_private;
1913 
1914 					BUG_ON(NULL == chained_block);
1915 					block->orig_bio_private =
1916 					    chained_block->orig_bio_private;
1917 					block->orig_bio_end_io =
1918 					    chained_block->orig_bio_end_io;
1919 					block->next_in_same_bio = chained_block;
1920 					bio->bi_private = block;
1921 				}
1922 			} else {
1923 				block->is_iodone = 1;
1924 				block->orig_bio_private = NULL;
1925 				block->orig_bio_end_io = NULL;
1926 				block->next_in_same_bio = NULL;
1927 			}
1928 		}
1929 
1930 		block->flush_gen = dev_state->last_flush_gen + 1;
1931 		block->submit_bio_bh_rw = submit_bio_bh_rw;
1932 		if (is_metadata) {
1933 			block->logical_bytenr = bytenr;
1934 			block->is_metadata = 1;
1935 			if (block->is_superblock) {
1936 				BUG_ON(PAGE_SIZE !=
1937 				       BTRFS_SUPER_INFO_SIZE);
1938 				ret = btrfsic_process_written_superblock(
1939 						state,
1940 						block,
1941 						(struct btrfs_super_block *)
1942 						mapped_datav[0]);
1943 				if (state->print_mask &
1944 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1945 					pr_info("[after new superblock is written]:\n");
1946 					btrfsic_dump_tree_sub(state, block, 0);
1947 				}
1948 			} else {
1949 				block->mirror_num = 0;	/* unknown */
1950 				ret = btrfsic_process_metablock(
1951 						state,
1952 						block,
1953 						&block_ctx,
1954 						0, 0);
1955 			}
1956 			if (ret)
1957 				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1958 				       dev_bytenr);
1959 		} else {
1960 			block->is_metadata = 0;
1961 			block->mirror_num = 0;	/* unknown */
1962 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1963 			if (!state->include_extent_data
1964 			    && list_empty(&block->ref_from_list)) {
1965 				/*
1966 				 * disk block is overwritten with extent
1967 				 * data (not meta data) and we are configured
1968 				 * to not include extent data: take the
1969 				 * chance and free the block's memory
1970 				 */
1971 				btrfsic_block_hashtable_remove(block);
1972 				list_del(&block->all_blocks_node);
1973 				btrfsic_block_free(block);
1974 			}
1975 		}
1976 		btrfsic_release_block_ctx(&block_ctx);
1977 	} else {
1978 		/* block has not been found in hash table */
1979 		u64 bytenr;
1980 
1981 		if (!is_metadata) {
1982 			processed_len = state->datablock_size;
1983 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1984 				pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
1985 				       dev_state->name, dev_bytenr);
1986 			if (!state->include_extent_data) {
1987 				/* ignore that written D block */
1988 				goto continue_loop;
1989 			}
1990 
1991 			/* this is getting ugly for the
1992 			 * include_extent_data case... */
1993 			bytenr = 0;	/* unknown */
1994 		} else {
1995 			processed_len = state->metablock_size;
1996 			bytenr = btrfs_stack_header_bytenr(
1997 					(struct btrfs_header *)
1998 					mapped_datav[0]);
1999 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2000 						       dev_bytenr);
2001 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2002 				pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2003 				       bytenr, dev_state->name, dev_bytenr);
2004 		}
2005 
2006 		block_ctx.dev = dev_state;
2007 		block_ctx.dev_bytenr = dev_bytenr;
2008 		block_ctx.start = bytenr;
2009 		block_ctx.len = processed_len;
2010 		block_ctx.pagev = NULL;
2011 		block_ctx.mem_to_free = NULL;
2012 		block_ctx.datav = mapped_datav;
2013 
2014 		block = btrfsic_block_alloc();
2015 		if (NULL == block) {
2016 			pr_info("btrfsic: error, kmalloc failed!\n");
2017 			btrfsic_release_block_ctx(&block_ctx);
2018 			goto continue_loop;
2019 		}
2020 		block->dev_state = dev_state;
2021 		block->dev_bytenr = dev_bytenr;
2022 		block->logical_bytenr = bytenr;
2023 		block->is_metadata = is_metadata;
2024 		block->never_written = 0;
2025 		block->iodone_w_error = 0;
2026 		block->mirror_num = 0;	/* unknown */
2027 		block->flush_gen = dev_state->last_flush_gen + 1;
2028 		block->submit_bio_bh_rw = submit_bio_bh_rw;
2029 		if (NULL != bio) {
2030 			block->is_iodone = 0;
2031 			BUG_ON(NULL == bio_is_patched);
2032 			if (!*bio_is_patched) {
2033 				block->orig_bio_private = bio->bi_private;
2034 				block->orig_bio_end_io = bio->bi_end_io;
2035 				block->next_in_same_bio = NULL;
2036 				bio->bi_private = block;
2037 				bio->bi_end_io = btrfsic_bio_end_io;
2038 				*bio_is_patched = 1;
2039 			} else {
2040 				struct btrfsic_block *chained_block =
2041 				    (struct btrfsic_block *)
2042 				    bio->bi_private;
2043 
2044 				BUG_ON(NULL == chained_block);
2045 				block->orig_bio_private =
2046 				    chained_block->orig_bio_private;
2047 				block->orig_bio_end_io =
2048 				    chained_block->orig_bio_end_io;
2049 				block->next_in_same_bio = chained_block;
2050 				bio->bi_private = block;
2051 			}
2052 		} else {
2053 			block->is_iodone = 1;
2054 			block->orig_bio_private = NULL;
2055 			block->orig_bio_end_io = NULL;
2056 			block->next_in_same_bio = NULL;
2057 		}
2058 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2059 			pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2060 			       is_metadata ? 'M' : 'D',
2061 			       block->logical_bytenr, block->dev_state->name,
2062 			       block->dev_bytenr, block->mirror_num);
2063 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2064 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2065 
2066 		if (is_metadata) {
2067 			ret = btrfsic_process_metablock(state, block,
2068 							&block_ctx, 0, 0);
2069 			if (ret)
2070 				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2071 				       dev_bytenr);
2072 		}
2073 		btrfsic_release_block_ctx(&block_ctx);
2074 	}
2075 
2076 continue_loop:
2077 	BUG_ON(!processed_len);
2078 	dev_bytenr += processed_len;
2079 	mapped_datav += processed_len >> PAGE_SHIFT;
2080 	num_pages -= processed_len >> PAGE_SHIFT;
2081 	goto again;
2082 }
2083 
2084 static void btrfsic_bio_end_io(struct bio *bp)
2085 {
2086 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2087 	int iodone_w_error;
2088 
2089 	/* mutex is not held! This is not save if IO is not yet completed
2090 	 * on umount */
2091 	iodone_w_error = 0;
2092 	if (bp->bi_status)
2093 		iodone_w_error = 1;
2094 
2095 	BUG_ON(NULL == block);
2096 	bp->bi_private = block->orig_bio_private;
2097 	bp->bi_end_io = block->orig_bio_end_io;
2098 
2099 	do {
2100 		struct btrfsic_block *next_block;
2101 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2102 
2103 		if ((dev_state->state->print_mask &
2104 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2105 			pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2106 			       bp->bi_status,
2107 			       btrfsic_get_block_type(dev_state->state, block),
2108 			       block->logical_bytenr, dev_state->name,
2109 			       block->dev_bytenr, block->mirror_num);
2110 		next_block = block->next_in_same_bio;
2111 		block->iodone_w_error = iodone_w_error;
2112 		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2113 			dev_state->last_flush_gen++;
2114 			if ((dev_state->state->print_mask &
2115 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2116 				pr_info("bio_end_io() new %s flush_gen=%llu\n",
2117 				       dev_state->name,
2118 				       dev_state->last_flush_gen);
2119 		}
2120 		if (block->submit_bio_bh_rw & REQ_FUA)
2121 			block->flush_gen = 0; /* FUA completed means block is
2122 					       * on disk */
2123 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2124 		block = next_block;
2125 	} while (NULL != block);
2126 
2127 	bp->bi_end_io(bp);
2128 }
2129 
2130 static int btrfsic_process_written_superblock(
2131 		struct btrfsic_state *state,
2132 		struct btrfsic_block *const superblock,
2133 		struct btrfs_super_block *const super_hdr)
2134 {
2135 	struct btrfs_fs_info *fs_info = state->fs_info;
2136 	int pass;
2137 
2138 	superblock->generation = btrfs_super_generation(super_hdr);
2139 	if (!(superblock->generation > state->max_superblock_generation ||
2140 	      0 == state->max_superblock_generation)) {
2141 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2142 			pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2143 			       superblock->logical_bytenr,
2144 			       superblock->dev_state->name,
2145 			       superblock->dev_bytenr, superblock->mirror_num,
2146 			       btrfs_super_generation(super_hdr),
2147 			       state->max_superblock_generation);
2148 	} else {
2149 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2150 			pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2151 			       superblock->logical_bytenr,
2152 			       superblock->dev_state->name,
2153 			       superblock->dev_bytenr, superblock->mirror_num,
2154 			       btrfs_super_generation(super_hdr),
2155 			       state->max_superblock_generation);
2156 
2157 		state->max_superblock_generation =
2158 		    btrfs_super_generation(super_hdr);
2159 		state->latest_superblock = superblock;
2160 	}
2161 
2162 	for (pass = 0; pass < 3; pass++) {
2163 		int ret;
2164 		u64 next_bytenr;
2165 		struct btrfsic_block *next_block;
2166 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2167 		struct btrfsic_block_link *l;
2168 		int num_copies;
2169 		int mirror_num;
2170 		const char *additional_string = NULL;
2171 		struct btrfs_disk_key tmp_disk_key = {0};
2172 
2173 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2174 					    BTRFS_ROOT_ITEM_KEY);
2175 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2176 
2177 		switch (pass) {
2178 		case 0:
2179 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2180 						    BTRFS_ROOT_TREE_OBJECTID);
2181 			additional_string = "root ";
2182 			next_bytenr = btrfs_super_root(super_hdr);
2183 			if (state->print_mask &
2184 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2185 				pr_info("root@%llu\n", next_bytenr);
2186 			break;
2187 		case 1:
2188 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2189 						    BTRFS_CHUNK_TREE_OBJECTID);
2190 			additional_string = "chunk ";
2191 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2192 			if (state->print_mask &
2193 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2194 				pr_info("chunk@%llu\n", next_bytenr);
2195 			break;
2196 		case 2:
2197 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2198 						    BTRFS_TREE_LOG_OBJECTID);
2199 			additional_string = "log ";
2200 			next_bytenr = btrfs_super_log_root(super_hdr);
2201 			if (0 == next_bytenr)
2202 				continue;
2203 			if (state->print_mask &
2204 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2205 				pr_info("log@%llu\n", next_bytenr);
2206 			break;
2207 		}
2208 
2209 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
2210 					      BTRFS_SUPER_INFO_SIZE);
2211 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2212 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2213 			       next_bytenr, num_copies);
2214 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2215 			int was_created;
2216 
2217 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2218 				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2219 			ret = btrfsic_map_block(state, next_bytenr,
2220 						BTRFS_SUPER_INFO_SIZE,
2221 						&tmp_next_block_ctx,
2222 						mirror_num);
2223 			if (ret) {
2224 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2225 				       next_bytenr, mirror_num);
2226 				return -1;
2227 			}
2228 
2229 			next_block = btrfsic_block_lookup_or_add(
2230 					state,
2231 					&tmp_next_block_ctx,
2232 					additional_string,
2233 					1, 0, 1,
2234 					mirror_num,
2235 					&was_created);
2236 			if (NULL == next_block) {
2237 				pr_info("btrfsic: error, kmalloc failed!\n");
2238 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2239 				return -1;
2240 			}
2241 
2242 			next_block->disk_key = tmp_disk_key;
2243 			if (was_created)
2244 				next_block->generation =
2245 				    BTRFSIC_GENERATION_UNKNOWN;
2246 			l = btrfsic_block_link_lookup_or_add(
2247 					state,
2248 					&tmp_next_block_ctx,
2249 					next_block,
2250 					superblock,
2251 					BTRFSIC_GENERATION_UNKNOWN);
2252 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2253 			if (NULL == l)
2254 				return -1;
2255 		}
2256 	}
2257 
2258 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2259 		btrfsic_dump_tree(state);
2260 
2261 	return 0;
2262 }
2263 
2264 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2265 					struct btrfsic_block *const block,
2266 					int recursion_level)
2267 {
2268 	const struct btrfsic_block_link *l;
2269 	int ret = 0;
2270 
2271 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2272 		/*
2273 		 * Note that this situation can happen and does not
2274 		 * indicate an error in regular cases. It happens
2275 		 * when disk blocks are freed and later reused.
2276 		 * The check-integrity module is not aware of any
2277 		 * block free operations, it just recognizes block
2278 		 * write operations. Therefore it keeps the linkage
2279 		 * information for a block until a block is
2280 		 * rewritten. This can temporarily cause incorrect
2281 		 * and even circular linkage information. This
2282 		 * causes no harm unless such blocks are referenced
2283 		 * by the most recent super block.
2284 		 */
2285 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2286 			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2287 
2288 		return ret;
2289 	}
2290 
2291 	/*
2292 	 * This algorithm is recursive because the amount of used stack
2293 	 * space is very small and the max recursion depth is limited.
2294 	 */
2295 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2296 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2297 			pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2298 			       recursion_level,
2299 			       btrfsic_get_block_type(state, block),
2300 			       block->logical_bytenr, block->dev_state->name,
2301 			       block->dev_bytenr, block->mirror_num,
2302 			       l->ref_cnt,
2303 			       btrfsic_get_block_type(state, l->block_ref_to),
2304 			       l->block_ref_to->logical_bytenr,
2305 			       l->block_ref_to->dev_state->name,
2306 			       l->block_ref_to->dev_bytenr,
2307 			       l->block_ref_to->mirror_num);
2308 		if (l->block_ref_to->never_written) {
2309 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2310 			       btrfsic_get_block_type(state, l->block_ref_to),
2311 			       l->block_ref_to->logical_bytenr,
2312 			       l->block_ref_to->dev_state->name,
2313 			       l->block_ref_to->dev_bytenr,
2314 			       l->block_ref_to->mirror_num);
2315 			ret = -1;
2316 		} else if (!l->block_ref_to->is_iodone) {
2317 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2318 			       btrfsic_get_block_type(state, l->block_ref_to),
2319 			       l->block_ref_to->logical_bytenr,
2320 			       l->block_ref_to->dev_state->name,
2321 			       l->block_ref_to->dev_bytenr,
2322 			       l->block_ref_to->mirror_num);
2323 			ret = -1;
2324 		} else if (l->block_ref_to->iodone_w_error) {
2325 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2326 			       btrfsic_get_block_type(state, l->block_ref_to),
2327 			       l->block_ref_to->logical_bytenr,
2328 			       l->block_ref_to->dev_state->name,
2329 			       l->block_ref_to->dev_bytenr,
2330 			       l->block_ref_to->mirror_num);
2331 			ret = -1;
2332 		} else if (l->parent_generation !=
2333 			   l->block_ref_to->generation &&
2334 			   BTRFSIC_GENERATION_UNKNOWN !=
2335 			   l->parent_generation &&
2336 			   BTRFSIC_GENERATION_UNKNOWN !=
2337 			   l->block_ref_to->generation) {
2338 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2339 			       btrfsic_get_block_type(state, l->block_ref_to),
2340 			       l->block_ref_to->logical_bytenr,
2341 			       l->block_ref_to->dev_state->name,
2342 			       l->block_ref_to->dev_bytenr,
2343 			       l->block_ref_to->mirror_num,
2344 			       l->block_ref_to->generation,
2345 			       l->parent_generation);
2346 			ret = -1;
2347 		} else if (l->block_ref_to->flush_gen >
2348 			   l->block_ref_to->dev_state->last_flush_gen) {
2349 			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2350 			       btrfsic_get_block_type(state, l->block_ref_to),
2351 			       l->block_ref_to->logical_bytenr,
2352 			       l->block_ref_to->dev_state->name,
2353 			       l->block_ref_to->dev_bytenr,
2354 			       l->block_ref_to->mirror_num, block->flush_gen,
2355 			       l->block_ref_to->dev_state->last_flush_gen);
2356 			ret = -1;
2357 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2358 							      l->block_ref_to,
2359 							      recursion_level +
2360 							      1)) {
2361 			ret = -1;
2362 		}
2363 	}
2364 
2365 	return ret;
2366 }
2367 
2368 static int btrfsic_is_block_ref_by_superblock(
2369 		const struct btrfsic_state *state,
2370 		const struct btrfsic_block *block,
2371 		int recursion_level)
2372 {
2373 	const struct btrfsic_block_link *l;
2374 
2375 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2376 		/* refer to comment at "abort cyclic linkage (case 1)" */
2377 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2378 			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2379 
2380 		return 0;
2381 	}
2382 
2383 	/*
2384 	 * This algorithm is recursive because the amount of used stack space
2385 	 * is very small and the max recursion depth is limited.
2386 	 */
2387 	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2388 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2389 			pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2390 			       recursion_level,
2391 			       btrfsic_get_block_type(state, block),
2392 			       block->logical_bytenr, block->dev_state->name,
2393 			       block->dev_bytenr, block->mirror_num,
2394 			       l->ref_cnt,
2395 			       btrfsic_get_block_type(state, l->block_ref_from),
2396 			       l->block_ref_from->logical_bytenr,
2397 			       l->block_ref_from->dev_state->name,
2398 			       l->block_ref_from->dev_bytenr,
2399 			       l->block_ref_from->mirror_num);
2400 		if (l->block_ref_from->is_superblock &&
2401 		    state->latest_superblock->dev_bytenr ==
2402 		    l->block_ref_from->dev_bytenr &&
2403 		    state->latest_superblock->dev_state->bdev ==
2404 		    l->block_ref_from->dev_state->bdev)
2405 			return 1;
2406 		else if (btrfsic_is_block_ref_by_superblock(state,
2407 							    l->block_ref_from,
2408 							    recursion_level +
2409 							    1))
2410 			return 1;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2417 				   const struct btrfsic_block_link *l)
2418 {
2419 	pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2420 	       l->ref_cnt,
2421 	       btrfsic_get_block_type(state, l->block_ref_from),
2422 	       l->block_ref_from->logical_bytenr,
2423 	       l->block_ref_from->dev_state->name,
2424 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2425 	       btrfsic_get_block_type(state, l->block_ref_to),
2426 	       l->block_ref_to->logical_bytenr,
2427 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2428 	       l->block_ref_to->mirror_num);
2429 }
2430 
2431 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2432 				   const struct btrfsic_block_link *l)
2433 {
2434 	pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2435 	       l->ref_cnt,
2436 	       btrfsic_get_block_type(state, l->block_ref_from),
2437 	       l->block_ref_from->logical_bytenr,
2438 	       l->block_ref_from->dev_state->name,
2439 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2440 	       btrfsic_get_block_type(state, l->block_ref_to),
2441 	       l->block_ref_to->logical_bytenr,
2442 	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2443 	       l->block_ref_to->mirror_num);
2444 }
2445 
2446 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2447 				   const struct btrfsic_block *block)
2448 {
2449 	if (block->is_superblock &&
2450 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2451 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2452 		return 'S';
2453 	else if (block->is_superblock)
2454 		return 's';
2455 	else if (block->is_metadata)
2456 		return 'M';
2457 	else
2458 		return 'D';
2459 }
2460 
2461 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2462 {
2463 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2464 }
2465 
2466 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2467 				  const struct btrfsic_block *block,
2468 				  int indent_level)
2469 {
2470 	const struct btrfsic_block_link *l;
2471 	int indent_add;
2472 	static char buf[80];
2473 	int cursor_position;
2474 
2475 	/*
2476 	 * Should better fill an on-stack buffer with a complete line and
2477 	 * dump it at once when it is time to print a newline character.
2478 	 */
2479 
2480 	/*
2481 	 * This algorithm is recursive because the amount of used stack space
2482 	 * is very small and the max recursion depth is limited.
2483 	 */
2484 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2485 			     btrfsic_get_block_type(state, block),
2486 			     block->logical_bytenr, block->dev_state->name,
2487 			     block->dev_bytenr, block->mirror_num);
2488 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2489 		printk("[...]\n");
2490 		return;
2491 	}
2492 	printk(buf);
2493 	indent_level += indent_add;
2494 	if (list_empty(&block->ref_to_list)) {
2495 		printk("\n");
2496 		return;
2497 	}
2498 	if (block->mirror_num > 1 &&
2499 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2500 		printk(" [...]\n");
2501 		return;
2502 	}
2503 
2504 	cursor_position = indent_level;
2505 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2506 		while (cursor_position < indent_level) {
2507 			printk(" ");
2508 			cursor_position++;
2509 		}
2510 		if (l->ref_cnt > 1)
2511 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2512 		else
2513 			indent_add = sprintf(buf, " --> ");
2514 		if (indent_level + indent_add >
2515 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2516 			printk("[...]\n");
2517 			cursor_position = 0;
2518 			continue;
2519 		}
2520 
2521 		printk(buf);
2522 
2523 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2524 				      indent_level + indent_add);
2525 		cursor_position = 0;
2526 	}
2527 }
2528 
2529 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2530 		struct btrfsic_state *state,
2531 		struct btrfsic_block_data_ctx *next_block_ctx,
2532 		struct btrfsic_block *next_block,
2533 		struct btrfsic_block *from_block,
2534 		u64 parent_generation)
2535 {
2536 	struct btrfsic_block_link *l;
2537 
2538 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2539 						next_block_ctx->dev_bytenr,
2540 						from_block->dev_state->bdev,
2541 						from_block->dev_bytenr,
2542 						&state->block_link_hashtable);
2543 	if (NULL == l) {
2544 		l = btrfsic_block_link_alloc();
2545 		if (NULL == l) {
2546 			pr_info("btrfsic: error, kmalloc failed!\n");
2547 			return NULL;
2548 		}
2549 
2550 		l->block_ref_to = next_block;
2551 		l->block_ref_from = from_block;
2552 		l->ref_cnt = 1;
2553 		l->parent_generation = parent_generation;
2554 
2555 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2556 			btrfsic_print_add_link(state, l);
2557 
2558 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2559 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2560 
2561 		btrfsic_block_link_hashtable_add(l,
2562 						 &state->block_link_hashtable);
2563 	} else {
2564 		l->ref_cnt++;
2565 		l->parent_generation = parent_generation;
2566 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2567 			btrfsic_print_add_link(state, l);
2568 	}
2569 
2570 	return l;
2571 }
2572 
2573 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2574 		struct btrfsic_state *state,
2575 		struct btrfsic_block_data_ctx *block_ctx,
2576 		const char *additional_string,
2577 		int is_metadata,
2578 		int is_iodone,
2579 		int never_written,
2580 		int mirror_num,
2581 		int *was_created)
2582 {
2583 	struct btrfsic_block *block;
2584 
2585 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2586 					       block_ctx->dev_bytenr,
2587 					       &state->block_hashtable);
2588 	if (NULL == block) {
2589 		struct btrfsic_dev_state *dev_state;
2590 
2591 		block = btrfsic_block_alloc();
2592 		if (NULL == block) {
2593 			pr_info("btrfsic: error, kmalloc failed!\n");
2594 			return NULL;
2595 		}
2596 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2597 		if (NULL == dev_state) {
2598 			pr_info("btrfsic: error, lookup dev_state failed!\n");
2599 			btrfsic_block_free(block);
2600 			return NULL;
2601 		}
2602 		block->dev_state = dev_state;
2603 		block->dev_bytenr = block_ctx->dev_bytenr;
2604 		block->logical_bytenr = block_ctx->start;
2605 		block->is_metadata = is_metadata;
2606 		block->is_iodone = is_iodone;
2607 		block->never_written = never_written;
2608 		block->mirror_num = mirror_num;
2609 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2610 			pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2611 			       additional_string,
2612 			       btrfsic_get_block_type(state, block),
2613 			       block->logical_bytenr, dev_state->name,
2614 			       block->dev_bytenr, mirror_num);
2615 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2616 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2617 		if (NULL != was_created)
2618 			*was_created = 1;
2619 	} else {
2620 		if (NULL != was_created)
2621 			*was_created = 0;
2622 	}
2623 
2624 	return block;
2625 }
2626 
2627 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2628 					   u64 bytenr,
2629 					   struct btrfsic_dev_state *dev_state,
2630 					   u64 dev_bytenr)
2631 {
2632 	struct btrfs_fs_info *fs_info = state->fs_info;
2633 	struct btrfsic_block_data_ctx block_ctx;
2634 	int num_copies;
2635 	int mirror_num;
2636 	int match = 0;
2637 	int ret;
2638 
2639 	num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2640 
2641 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2642 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2643 					&block_ctx, mirror_num);
2644 		if (ret) {
2645 			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2646 			       bytenr, mirror_num);
2647 			continue;
2648 		}
2649 
2650 		if (dev_state->bdev == block_ctx.dev->bdev &&
2651 		    dev_bytenr == block_ctx.dev_bytenr) {
2652 			match++;
2653 			btrfsic_release_block_ctx(&block_ctx);
2654 			break;
2655 		}
2656 		btrfsic_release_block_ctx(&block_ctx);
2657 	}
2658 
2659 	if (WARN_ON(!match)) {
2660 		pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2661 		       bytenr, dev_state->name, dev_bytenr);
2662 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2663 			ret = btrfsic_map_block(state, bytenr,
2664 						state->metablock_size,
2665 						&block_ctx, mirror_num);
2666 			if (ret)
2667 				continue;
2668 
2669 			pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2670 			       bytenr, block_ctx.dev->name,
2671 			       block_ctx.dev_bytenr, mirror_num);
2672 		}
2673 	}
2674 }
2675 
2676 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
2677 {
2678 	return btrfsic_dev_state_hashtable_lookup(dev,
2679 						  &btrfsic_dev_state_hashtable);
2680 }
2681 
2682 static void __btrfsic_submit_bio(struct bio *bio)
2683 {
2684 	struct btrfsic_dev_state *dev_state;
2685 
2686 	if (!btrfsic_is_initialized)
2687 		return;
2688 
2689 	mutex_lock(&btrfsic_mutex);
2690 	/* since btrfsic_submit_bio() is also called before
2691 	 * btrfsic_mount(), this might return NULL */
2692 	dev_state = btrfsic_dev_state_lookup(bio_dev(bio) + bio->bi_partno);
2693 	if (NULL != dev_state &&
2694 	    (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2695 		unsigned int i = 0;
2696 		u64 dev_bytenr;
2697 		u64 cur_bytenr;
2698 		struct bio_vec bvec;
2699 		struct bvec_iter iter;
2700 		int bio_is_patched;
2701 		char **mapped_datav;
2702 		unsigned int segs = bio_segments(bio);
2703 
2704 		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2705 		bio_is_patched = 0;
2706 		if (dev_state->state->print_mask &
2707 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2708 			pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_disk=%p)\n",
2709 			       bio_op(bio), bio->bi_opf, segs,
2710 			       (unsigned long long)bio->bi_iter.bi_sector,
2711 			       dev_bytenr, bio->bi_disk);
2712 
2713 		mapped_datav = kmalloc_array(segs,
2714 					     sizeof(*mapped_datav), GFP_NOFS);
2715 		if (!mapped_datav)
2716 			goto leave;
2717 		cur_bytenr = dev_bytenr;
2718 
2719 		bio_for_each_segment(bvec, bio, iter) {
2720 			BUG_ON(bvec.bv_len != PAGE_SIZE);
2721 			mapped_datav[i] = kmap(bvec.bv_page);
2722 			i++;
2723 
2724 			if (dev_state->state->print_mask &
2725 			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2726 				pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2727 				       i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2728 			cur_bytenr += bvec.bv_len;
2729 		}
2730 		btrfsic_process_written_block(dev_state, dev_bytenr,
2731 					      mapped_datav, segs,
2732 					      bio, &bio_is_patched,
2733 					      bio->bi_opf);
2734 		bio_for_each_segment(bvec, bio, iter)
2735 			kunmap(bvec.bv_page);
2736 		kfree(mapped_datav);
2737 	} else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2738 		if (dev_state->state->print_mask &
2739 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2740 			pr_info("submit_bio(rw=%d,0x%x FLUSH, disk=%p)\n",
2741 			       bio_op(bio), bio->bi_opf, bio->bi_disk);
2742 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2743 			if ((dev_state->state->print_mask &
2744 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2745 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2746 				pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2747 				       dev_state->name);
2748 		} else {
2749 			struct btrfsic_block *const block =
2750 				&dev_state->dummy_block_for_bio_bh_flush;
2751 
2752 			block->is_iodone = 0;
2753 			block->never_written = 0;
2754 			block->iodone_w_error = 0;
2755 			block->flush_gen = dev_state->last_flush_gen + 1;
2756 			block->submit_bio_bh_rw = bio->bi_opf;
2757 			block->orig_bio_private = bio->bi_private;
2758 			block->orig_bio_end_io = bio->bi_end_io;
2759 			block->next_in_same_bio = NULL;
2760 			bio->bi_private = block;
2761 			bio->bi_end_io = btrfsic_bio_end_io;
2762 		}
2763 	}
2764 leave:
2765 	mutex_unlock(&btrfsic_mutex);
2766 }
2767 
2768 void btrfsic_submit_bio(struct bio *bio)
2769 {
2770 	__btrfsic_submit_bio(bio);
2771 	submit_bio(bio);
2772 }
2773 
2774 int btrfsic_submit_bio_wait(struct bio *bio)
2775 {
2776 	__btrfsic_submit_bio(bio);
2777 	return submit_bio_wait(bio);
2778 }
2779 
2780 int btrfsic_mount(struct btrfs_fs_info *fs_info,
2781 		  struct btrfs_fs_devices *fs_devices,
2782 		  int including_extent_data, u32 print_mask)
2783 {
2784 	int ret;
2785 	struct btrfsic_state *state;
2786 	struct list_head *dev_head = &fs_devices->devices;
2787 	struct btrfs_device *device;
2788 
2789 	if (!PAGE_ALIGNED(fs_info->nodesize)) {
2790 		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2791 		       fs_info->nodesize, PAGE_SIZE);
2792 		return -1;
2793 	}
2794 	if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2795 		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2796 		       fs_info->sectorsize, PAGE_SIZE);
2797 		return -1;
2798 	}
2799 	state = kvzalloc(sizeof(*state), GFP_KERNEL);
2800 	if (!state) {
2801 		pr_info("btrfs check-integrity: allocation failed!\n");
2802 		return -ENOMEM;
2803 	}
2804 
2805 	if (!btrfsic_is_initialized) {
2806 		mutex_init(&btrfsic_mutex);
2807 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2808 		btrfsic_is_initialized = 1;
2809 	}
2810 	mutex_lock(&btrfsic_mutex);
2811 	state->fs_info = fs_info;
2812 	state->print_mask = print_mask;
2813 	state->include_extent_data = including_extent_data;
2814 	state->csum_size = 0;
2815 	state->metablock_size = fs_info->nodesize;
2816 	state->datablock_size = fs_info->sectorsize;
2817 	INIT_LIST_HEAD(&state->all_blocks_list);
2818 	btrfsic_block_hashtable_init(&state->block_hashtable);
2819 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2820 	state->max_superblock_generation = 0;
2821 	state->latest_superblock = NULL;
2822 
2823 	list_for_each_entry(device, dev_head, dev_list) {
2824 		struct btrfsic_dev_state *ds;
2825 		const char *p;
2826 
2827 		if (!device->bdev || !device->name)
2828 			continue;
2829 
2830 		ds = btrfsic_dev_state_alloc();
2831 		if (NULL == ds) {
2832 			pr_info("btrfs check-integrity: kmalloc() failed!\n");
2833 			mutex_unlock(&btrfsic_mutex);
2834 			return -ENOMEM;
2835 		}
2836 		ds->bdev = device->bdev;
2837 		ds->state = state;
2838 		bdevname(ds->bdev, ds->name);
2839 		ds->name[BDEVNAME_SIZE - 1] = '\0';
2840 		p = kbasename(ds->name);
2841 		strlcpy(ds->name, p, sizeof(ds->name));
2842 		btrfsic_dev_state_hashtable_add(ds,
2843 						&btrfsic_dev_state_hashtable);
2844 	}
2845 
2846 	ret = btrfsic_process_superblock(state, fs_devices);
2847 	if (0 != ret) {
2848 		mutex_unlock(&btrfsic_mutex);
2849 		btrfsic_unmount(fs_devices);
2850 		return ret;
2851 	}
2852 
2853 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2854 		btrfsic_dump_database(state);
2855 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2856 		btrfsic_dump_tree(state);
2857 
2858 	mutex_unlock(&btrfsic_mutex);
2859 	return 0;
2860 }
2861 
2862 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2863 {
2864 	struct btrfsic_block *b_all, *tmp_all;
2865 	struct btrfsic_state *state;
2866 	struct list_head *dev_head = &fs_devices->devices;
2867 	struct btrfs_device *device;
2868 
2869 	if (!btrfsic_is_initialized)
2870 		return;
2871 
2872 	mutex_lock(&btrfsic_mutex);
2873 
2874 	state = NULL;
2875 	list_for_each_entry(device, dev_head, dev_list) {
2876 		struct btrfsic_dev_state *ds;
2877 
2878 		if (!device->bdev || !device->name)
2879 			continue;
2880 
2881 		ds = btrfsic_dev_state_hashtable_lookup(
2882 				device->bdev->bd_dev,
2883 				&btrfsic_dev_state_hashtable);
2884 		if (NULL != ds) {
2885 			state = ds->state;
2886 			btrfsic_dev_state_hashtable_remove(ds);
2887 			btrfsic_dev_state_free(ds);
2888 		}
2889 	}
2890 
2891 	if (NULL == state) {
2892 		pr_info("btrfsic: error, cannot find state information on umount!\n");
2893 		mutex_unlock(&btrfsic_mutex);
2894 		return;
2895 	}
2896 
2897 	/*
2898 	 * Don't care about keeping the lists' state up to date,
2899 	 * just free all memory that was allocated dynamically.
2900 	 * Free the blocks and the block_links.
2901 	 */
2902 	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
2903 				 all_blocks_node) {
2904 		struct btrfsic_block_link *l, *tmp;
2905 
2906 		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
2907 					 node_ref_to) {
2908 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2909 				btrfsic_print_rem_link(state, l);
2910 
2911 			l->ref_cnt--;
2912 			if (0 == l->ref_cnt)
2913 				btrfsic_block_link_free(l);
2914 		}
2915 
2916 		if (b_all->is_iodone || b_all->never_written)
2917 			btrfsic_block_free(b_all);
2918 		else
2919 			pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
2920 			       btrfsic_get_block_type(state, b_all),
2921 			       b_all->logical_bytenr, b_all->dev_state->name,
2922 			       b_all->dev_bytenr, b_all->mirror_num);
2923 	}
2924 
2925 	mutex_unlock(&btrfsic_mutex);
2926 
2927 	kvfree(state);
2928 }
2929