1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include "extent_map.h" 11 #include "extent_io.h" 12 #include "ordered-data.h" 13 #include "delayed-inode.h" 14 15 /* 16 * ordered_data_close is set by truncate when a file that used 17 * to have good data has been truncated to zero. When it is set 18 * the btrfs file release call will add this inode to the 19 * ordered operations list so that we make sure to flush out any 20 * new data the application may have written before commit. 21 */ 22 enum { 23 BTRFS_INODE_ORDERED_DATA_CLOSE, 24 BTRFS_INODE_DUMMY, 25 BTRFS_INODE_IN_DEFRAG, 26 BTRFS_INODE_HAS_ASYNC_EXTENT, 27 BTRFS_INODE_NEEDS_FULL_SYNC, 28 BTRFS_INODE_COPY_EVERYTHING, 29 BTRFS_INODE_IN_DELALLOC_LIST, 30 BTRFS_INODE_READDIO_NEED_LOCK, 31 BTRFS_INODE_HAS_PROPS, 32 BTRFS_INODE_SNAPSHOT_FLUSH, 33 }; 34 35 /* in memory btrfs inode */ 36 struct btrfs_inode { 37 /* which subvolume this inode belongs to */ 38 struct btrfs_root *root; 39 40 /* key used to find this inode on disk. This is used by the code 41 * to read in roots of subvolumes 42 */ 43 struct btrfs_key location; 44 45 /* 46 * Lock for counters and all fields used to determine if the inode is in 47 * the log or not (last_trans, last_sub_trans, last_log_commit, 48 * logged_trans). 49 */ 50 spinlock_t lock; 51 52 /* the extent_tree has caches of all the extent mappings to disk */ 53 struct extent_map_tree extent_tree; 54 55 /* the io_tree does range state (DIRTY, LOCKED etc) */ 56 struct extent_io_tree io_tree; 57 58 /* special utility tree used to record which mirrors have already been 59 * tried when checksums fail for a given block 60 */ 61 struct extent_io_tree io_failure_tree; 62 63 /* held while logging the inode in tree-log.c */ 64 struct mutex log_mutex; 65 66 /* used to order data wrt metadata */ 67 struct btrfs_ordered_inode_tree ordered_tree; 68 69 /* list of all the delalloc inodes in the FS. There are times we need 70 * to write all the delalloc pages to disk, and this list is used 71 * to walk them all. 72 */ 73 struct list_head delalloc_inodes; 74 75 /* node for the red-black tree that links inodes in subvolume root */ 76 struct rb_node rb_node; 77 78 unsigned long runtime_flags; 79 80 /* Keep track of who's O_SYNC/fsyncing currently */ 81 atomic_t sync_writers; 82 83 /* full 64 bit generation number, struct vfs_inode doesn't have a big 84 * enough field for this. 85 */ 86 u64 generation; 87 88 /* 89 * transid of the trans_handle that last modified this inode 90 */ 91 u64 last_trans; 92 93 /* 94 * transid that last logged this inode 95 */ 96 u64 logged_trans; 97 98 /* 99 * log transid when this inode was last modified 100 */ 101 int last_sub_trans; 102 103 /* a local copy of root's last_log_commit */ 104 int last_log_commit; 105 106 /* total number of bytes pending delalloc, used by stat to calc the 107 * real block usage of the file 108 */ 109 u64 delalloc_bytes; 110 111 /* 112 * Total number of bytes pending delalloc that fall within a file 113 * range that is either a hole or beyond EOF (and no prealloc extent 114 * exists in the range). This is always <= delalloc_bytes. 115 */ 116 u64 new_delalloc_bytes; 117 118 /* 119 * total number of bytes pending defrag, used by stat to check whether 120 * it needs COW. 121 */ 122 u64 defrag_bytes; 123 124 /* 125 * the size of the file stored in the metadata on disk. data=ordered 126 * means the in-memory i_size might be larger than the size on disk 127 * because not all the blocks are written yet. 128 */ 129 u64 disk_i_size; 130 131 /* 132 * if this is a directory then index_cnt is the counter for the index 133 * number for new files that are created 134 */ 135 u64 index_cnt; 136 137 /* Cache the directory index number to speed the dir/file remove */ 138 u64 dir_index; 139 140 /* the fsync log has some corner cases that mean we have to check 141 * directories to see if any unlinks have been done before 142 * the directory was logged. See tree-log.c for all the 143 * details 144 */ 145 u64 last_unlink_trans; 146 147 /* 148 * Number of bytes outstanding that are going to need csums. This is 149 * used in ENOSPC accounting. 150 */ 151 u64 csum_bytes; 152 153 /* flags field from the on disk inode */ 154 u32 flags; 155 156 /* 157 * Counters to keep track of the number of extent item's we may use due 158 * to delalloc and such. outstanding_extents is the number of extent 159 * items we think we'll end up using, and reserved_extents is the number 160 * of extent items we've reserved metadata for. 161 */ 162 unsigned outstanding_extents; 163 164 struct btrfs_block_rsv block_rsv; 165 166 /* 167 * Cached values of inode properties 168 */ 169 unsigned prop_compress; /* per-file compression algorithm */ 170 /* 171 * Force compression on the file using the defrag ioctl, could be 172 * different from prop_compress and takes precedence if set 173 */ 174 unsigned defrag_compress; 175 176 struct btrfs_delayed_node *delayed_node; 177 178 /* File creation time. */ 179 struct timespec64 i_otime; 180 181 /* Hook into fs_info->delayed_iputs */ 182 struct list_head delayed_iput; 183 184 /* 185 * To avoid races between lockless (i_mutex not held) direct IO writes 186 * and concurrent fsync requests. Direct IO writes must acquire read 187 * access on this semaphore for creating an extent map and its 188 * corresponding ordered extent. The fast fsync path must acquire write 189 * access on this semaphore before it collects ordered extents and 190 * extent maps. 191 */ 192 struct rw_semaphore dio_sem; 193 194 struct inode vfs_inode; 195 }; 196 197 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 198 { 199 return container_of(inode, struct btrfs_inode, vfs_inode); 200 } 201 202 static inline unsigned long btrfs_inode_hash(u64 objectid, 203 const struct btrfs_root *root) 204 { 205 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 206 207 #if BITS_PER_LONG == 32 208 h = (h >> 32) ^ (h & 0xffffffff); 209 #endif 210 211 return (unsigned long)h; 212 } 213 214 static inline void btrfs_insert_inode_hash(struct inode *inode) 215 { 216 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); 217 218 __insert_inode_hash(inode, h); 219 } 220 221 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 222 { 223 u64 ino = inode->location.objectid; 224 225 /* 226 * !ino: btree_inode 227 * type == BTRFS_ROOT_ITEM_KEY: subvol dir 228 */ 229 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY) 230 ino = inode->vfs_inode.i_ino; 231 return ino; 232 } 233 234 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 235 { 236 i_size_write(&inode->vfs_inode, size); 237 inode->disk_i_size = size; 238 } 239 240 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 241 { 242 struct btrfs_root *root = inode->root; 243 244 if (root == root->fs_info->tree_root && 245 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) 246 return true; 247 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID) 248 return true; 249 return false; 250 } 251 252 static inline bool is_data_inode(struct inode *inode) 253 { 254 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 255 } 256 257 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 258 int mod) 259 { 260 lockdep_assert_held(&inode->lock); 261 inode->outstanding_extents += mod; 262 if (btrfs_is_free_space_inode(inode)) 263 return; 264 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 265 mod); 266 } 267 268 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 269 { 270 int ret = 0; 271 272 spin_lock(&inode->lock); 273 if (inode->logged_trans == generation && 274 inode->last_sub_trans <= inode->last_log_commit && 275 inode->last_sub_trans <= inode->root->last_log_commit) { 276 /* 277 * After a ranged fsync we might have left some extent maps 278 * (that fall outside the fsync's range). So return false 279 * here if the list isn't empty, to make sure btrfs_log_inode() 280 * will be called and process those extent maps. 281 */ 282 smp_mb(); 283 if (list_empty(&inode->extent_tree.modified_extents)) 284 ret = 1; 285 } 286 spin_unlock(&inode->lock); 287 return ret; 288 } 289 290 #define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1 291 292 struct btrfs_dio_private { 293 struct inode *inode; 294 unsigned long flags; 295 u64 logical_offset; 296 u64 disk_bytenr; 297 u64 bytes; 298 void *private; 299 300 /* number of bios pending for this dio */ 301 atomic_t pending_bios; 302 303 /* IO errors */ 304 int errors; 305 306 /* orig_bio is our btrfs_io_bio */ 307 struct bio *orig_bio; 308 309 /* dio_bio came from fs/direct-io.c */ 310 struct bio *dio_bio; 311 312 /* 313 * The original bio may be split to several sub-bios, this is 314 * done during endio of sub-bios 315 */ 316 blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *, 317 blk_status_t); 318 }; 319 320 /* 321 * Disable DIO read nolock optimization, so new dio readers will be forced 322 * to grab i_mutex. It is used to avoid the endless truncate due to 323 * nonlocked dio read. 324 */ 325 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode) 326 { 327 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 328 smp_mb(); 329 } 330 331 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode) 332 { 333 smp_mb__before_atomic(); 334 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 335 } 336 337 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 338 #define CSUM_FMT "0x%*phN" 339 #define CSUM_FMT_VALUE(size, bytes) size, bytes 340 341 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode, 342 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 343 { 344 struct btrfs_root *root = inode->root; 345 struct btrfs_super_block *sb = root->fs_info->super_copy; 346 const u16 csum_size = btrfs_super_csum_size(sb); 347 348 /* Output minus objectid, which is more meaningful */ 349 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) 350 btrfs_warn_rl(root->fs_info, 351 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 352 root->root_key.objectid, btrfs_ino(inode), 353 logical_start, 354 CSUM_FMT_VALUE(csum_size, csum), 355 CSUM_FMT_VALUE(csum_size, csum_expected), 356 mirror_num); 357 else 358 btrfs_warn_rl(root->fs_info, 359 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 360 root->root_key.objectid, btrfs_ino(inode), 361 logical_start, 362 CSUM_FMT_VALUE(csum_size, csum), 363 CSUM_FMT_VALUE(csum_size, csum_expected), 364 mirror_num); 365 } 366 367 #endif 368