1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include <linux/refcount.h> 11 #include "extent_map.h" 12 #include "extent_io.h" 13 #include "ordered-data.h" 14 #include "delayed-inode.h" 15 16 /* 17 * Since we search a directory based on f_pos (struct dir_context::pos) we have 18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so 19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). 20 */ 21 #define BTRFS_DIR_START_INDEX 2 22 23 /* 24 * ordered_data_close is set by truncate when a file that used 25 * to have good data has been truncated to zero. When it is set 26 * the btrfs file release call will add this inode to the 27 * ordered operations list so that we make sure to flush out any 28 * new data the application may have written before commit. 29 */ 30 enum { 31 BTRFS_INODE_FLUSH_ON_CLOSE, 32 BTRFS_INODE_DUMMY, 33 BTRFS_INODE_IN_DEFRAG, 34 BTRFS_INODE_HAS_ASYNC_EXTENT, 35 /* 36 * Always set under the VFS' inode lock, otherwise it can cause races 37 * during fsync (we start as a fast fsync and then end up in a full 38 * fsync racing with ordered extent completion). 39 */ 40 BTRFS_INODE_NEEDS_FULL_SYNC, 41 BTRFS_INODE_COPY_EVERYTHING, 42 BTRFS_INODE_IN_DELALLOC_LIST, 43 BTRFS_INODE_HAS_PROPS, 44 BTRFS_INODE_SNAPSHOT_FLUSH, 45 /* 46 * Set and used when logging an inode and it serves to signal that an 47 * inode does not have xattrs, so subsequent fsyncs can avoid searching 48 * for xattrs to log. This bit must be cleared whenever a xattr is added 49 * to an inode. 50 */ 51 BTRFS_INODE_NO_XATTRS, 52 /* 53 * Set when we are in a context where we need to start a transaction and 54 * have dirty pages with the respective file range locked. This is to 55 * ensure that when reserving space for the transaction, if we are low 56 * on available space and need to flush delalloc, we will not flush 57 * delalloc for this inode, because that could result in a deadlock (on 58 * the file range, inode's io_tree). 59 */ 60 BTRFS_INODE_NO_DELALLOC_FLUSH, 61 /* 62 * Set when we are working on enabling verity for a file. Computing and 63 * writing the whole Merkle tree can take a while so we want to prevent 64 * races where two separate tasks attempt to simultaneously start verity 65 * on the same file. 66 */ 67 BTRFS_INODE_VERITY_IN_PROGRESS, 68 }; 69 70 /* in memory btrfs inode */ 71 struct btrfs_inode { 72 /* which subvolume this inode belongs to */ 73 struct btrfs_root *root; 74 75 /* key used to find this inode on disk. This is used by the code 76 * to read in roots of subvolumes 77 */ 78 struct btrfs_key location; 79 80 /* 81 * Lock for counters and all fields used to determine if the inode is in 82 * the log or not (last_trans, last_sub_trans, last_log_commit, 83 * logged_trans), to access/update new_delalloc_bytes and to update the 84 * VFS' inode number of bytes used. 85 */ 86 spinlock_t lock; 87 88 /* the extent_tree has caches of all the extent mappings to disk */ 89 struct extent_map_tree extent_tree; 90 91 /* the io_tree does range state (DIRTY, LOCKED etc) */ 92 struct extent_io_tree io_tree; 93 94 /* special utility tree used to record which mirrors have already been 95 * tried when checksums fail for a given block 96 */ 97 struct extent_io_tree io_failure_tree; 98 99 /* 100 * Keep track of where the inode has extent items mapped in order to 101 * make sure the i_size adjustments are accurate 102 */ 103 struct extent_io_tree file_extent_tree; 104 105 /* held while logging the inode in tree-log.c */ 106 struct mutex log_mutex; 107 108 /* used to order data wrt metadata */ 109 struct btrfs_ordered_inode_tree ordered_tree; 110 111 /* list of all the delalloc inodes in the FS. There are times we need 112 * to write all the delalloc pages to disk, and this list is used 113 * to walk them all. 114 */ 115 struct list_head delalloc_inodes; 116 117 /* node for the red-black tree that links inodes in subvolume root */ 118 struct rb_node rb_node; 119 120 unsigned long runtime_flags; 121 122 /* Keep track of who's O_SYNC/fsyncing currently */ 123 atomic_t sync_writers; 124 125 /* full 64 bit generation number, struct vfs_inode doesn't have a big 126 * enough field for this. 127 */ 128 u64 generation; 129 130 /* 131 * transid of the trans_handle that last modified this inode 132 */ 133 u64 last_trans; 134 135 /* 136 * transid that last logged this inode 137 */ 138 u64 logged_trans; 139 140 /* 141 * log transid when this inode was last modified 142 */ 143 int last_sub_trans; 144 145 /* a local copy of root's last_log_commit */ 146 int last_log_commit; 147 148 /* 149 * Total number of bytes pending delalloc, used by stat to calculate the 150 * real block usage of the file. This is used only for files. 151 */ 152 u64 delalloc_bytes; 153 154 union { 155 /* 156 * Total number of bytes pending delalloc that fall within a file 157 * range that is either a hole or beyond EOF (and no prealloc extent 158 * exists in the range). This is always <= delalloc_bytes and this 159 * is used only for files. 160 */ 161 u64 new_delalloc_bytes; 162 /* 163 * The offset of the last dir index key that was logged. 164 * This is used only for directories. 165 */ 166 u64 last_dir_index_offset; 167 }; 168 169 /* 170 * total number of bytes pending defrag, used by stat to check whether 171 * it needs COW. 172 */ 173 u64 defrag_bytes; 174 175 /* 176 * the size of the file stored in the metadata on disk. data=ordered 177 * means the in-memory i_size might be larger than the size on disk 178 * because not all the blocks are written yet. 179 */ 180 u64 disk_i_size; 181 182 /* 183 * If this is a directory then index_cnt is the counter for the index 184 * number for new files that are created. For an empty directory, this 185 * must be initialized to BTRFS_DIR_START_INDEX. 186 */ 187 u64 index_cnt; 188 189 /* Cache the directory index number to speed the dir/file remove */ 190 u64 dir_index; 191 192 /* the fsync log has some corner cases that mean we have to check 193 * directories to see if any unlinks have been done before 194 * the directory was logged. See tree-log.c for all the 195 * details 196 */ 197 u64 last_unlink_trans; 198 199 /* 200 * The id/generation of the last transaction where this inode was 201 * either the source or the destination of a clone/dedupe operation. 202 * Used when logging an inode to know if there are shared extents that 203 * need special care when logging checksum items, to avoid duplicate 204 * checksum items in a log (which can lead to a corruption where we end 205 * up with missing checksum ranges after log replay). 206 * Protected by the vfs inode lock. 207 */ 208 u64 last_reflink_trans; 209 210 /* 211 * Number of bytes outstanding that are going to need csums. This is 212 * used in ENOSPC accounting. 213 */ 214 u64 csum_bytes; 215 216 /* Backwards incompatible flags, lower half of inode_item::flags */ 217 u32 flags; 218 /* Read-only compatibility flags, upper half of inode_item::flags */ 219 u32 ro_flags; 220 221 /* 222 * Counters to keep track of the number of extent item's we may use due 223 * to delalloc and such. outstanding_extents is the number of extent 224 * items we think we'll end up using, and reserved_extents is the number 225 * of extent items we've reserved metadata for. 226 */ 227 unsigned outstanding_extents; 228 229 struct btrfs_block_rsv block_rsv; 230 231 /* 232 * Cached values of inode properties 233 */ 234 unsigned prop_compress; /* per-file compression algorithm */ 235 /* 236 * Force compression on the file using the defrag ioctl, could be 237 * different from prop_compress and takes precedence if set 238 */ 239 unsigned defrag_compress; 240 241 struct btrfs_delayed_node *delayed_node; 242 243 /* File creation time. */ 244 struct timespec64 i_otime; 245 246 /* Hook into fs_info->delayed_iputs */ 247 struct list_head delayed_iput; 248 249 struct rw_semaphore i_mmap_lock; 250 struct inode vfs_inode; 251 }; 252 253 static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode) 254 { 255 return inode->root->fs_info->sectorsize; 256 } 257 258 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 259 { 260 return container_of(inode, struct btrfs_inode, vfs_inode); 261 } 262 263 static inline unsigned long btrfs_inode_hash(u64 objectid, 264 const struct btrfs_root *root) 265 { 266 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 267 268 #if BITS_PER_LONG == 32 269 h = (h >> 32) ^ (h & 0xffffffff); 270 #endif 271 272 return (unsigned long)h; 273 } 274 275 static inline void btrfs_insert_inode_hash(struct inode *inode) 276 { 277 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); 278 279 __insert_inode_hash(inode, h); 280 } 281 282 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 283 { 284 u64 ino = inode->location.objectid; 285 286 /* 287 * !ino: btree_inode 288 * type == BTRFS_ROOT_ITEM_KEY: subvol dir 289 */ 290 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY) 291 ino = inode->vfs_inode.i_ino; 292 return ino; 293 } 294 295 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 296 { 297 i_size_write(&inode->vfs_inode, size); 298 inode->disk_i_size = size; 299 } 300 301 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 302 { 303 struct btrfs_root *root = inode->root; 304 305 if (root == root->fs_info->tree_root && 306 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) 307 return true; 308 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID) 309 return true; 310 return false; 311 } 312 313 static inline bool is_data_inode(struct inode *inode) 314 { 315 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 316 } 317 318 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 319 int mod) 320 { 321 lockdep_assert_held(&inode->lock); 322 inode->outstanding_extents += mod; 323 if (btrfs_is_free_space_inode(inode)) 324 return; 325 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 326 mod); 327 } 328 329 /* 330 * Called every time after doing a buffered, direct IO or memory mapped write. 331 * 332 * This is to ensure that if we write to a file that was previously fsynced in 333 * the current transaction, then try to fsync it again in the same transaction, 334 * we will know that there were changes in the file and that it needs to be 335 * logged. 336 */ 337 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) 338 { 339 spin_lock(&inode->lock); 340 inode->last_sub_trans = inode->root->log_transid; 341 spin_unlock(&inode->lock); 342 } 343 344 /* 345 * Should be called while holding the inode's VFS lock in exclusive mode or in a 346 * context where no one else can access the inode concurrently (during inode 347 * creation or when loading an inode from disk). 348 */ 349 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) 350 { 351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 352 /* 353 * The inode may have been part of a reflink operation in the last 354 * transaction that modified it, and then a fsync has reset the 355 * last_reflink_trans to avoid subsequent fsyncs in the same 356 * transaction to do unnecessary work. So update last_reflink_trans 357 * to the last_trans value (we have to be pessimistic and assume a 358 * reflink happened). 359 * 360 * The ->last_trans is protected by the inode's spinlock and we can 361 * have a concurrent ordered extent completion update it. Also set 362 * last_reflink_trans to ->last_trans only if the former is less than 363 * the later, because we can be called in a context where 364 * last_reflink_trans was set to the current transaction generation 365 * while ->last_trans was not yet updated in the current transaction, 366 * and therefore has a lower value. 367 */ 368 spin_lock(&inode->lock); 369 if (inode->last_reflink_trans < inode->last_trans) 370 inode->last_reflink_trans = inode->last_trans; 371 spin_unlock(&inode->lock); 372 } 373 374 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 375 { 376 bool ret = false; 377 378 spin_lock(&inode->lock); 379 if (inode->logged_trans == generation && 380 inode->last_sub_trans <= inode->last_log_commit && 381 inode->last_sub_trans <= inode->root->last_log_commit) 382 ret = true; 383 spin_unlock(&inode->lock); 384 return ret; 385 } 386 387 /* 388 * Check if the inode has flags compatible with compression 389 */ 390 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) 391 { 392 if (inode->flags & BTRFS_INODE_NODATACOW || 393 inode->flags & BTRFS_INODE_NODATASUM) 394 return false; 395 return true; 396 } 397 398 /* 399 * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two 400 * separate u32s. These two functions convert between the two representations. 401 */ 402 static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags) 403 { 404 return (flags | ((u64)ro_flags << 32)); 405 } 406 407 static inline void btrfs_inode_split_flags(u64 inode_item_flags, 408 u32 *flags, u32 *ro_flags) 409 { 410 *flags = (u32)inode_item_flags; 411 *ro_flags = (u32)(inode_item_flags >> 32); 412 } 413 414 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 415 #define CSUM_FMT "0x%*phN" 416 #define CSUM_FMT_VALUE(size, bytes) size, bytes 417 418 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode, 419 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 420 { 421 struct btrfs_root *root = inode->root; 422 const u32 csum_size = root->fs_info->csum_size; 423 424 /* Output minus objectid, which is more meaningful */ 425 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) 426 btrfs_warn_rl(root->fs_info, 427 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 428 root->root_key.objectid, btrfs_ino(inode), 429 logical_start, 430 CSUM_FMT_VALUE(csum_size, csum), 431 CSUM_FMT_VALUE(csum_size, csum_expected), 432 mirror_num); 433 else 434 btrfs_warn_rl(root->fs_info, 435 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 436 root->root_key.objectid, btrfs_ino(inode), 437 logical_start, 438 CSUM_FMT_VALUE(csum_size, csum), 439 CSUM_FMT_VALUE(csum_size, csum_expected), 440 mirror_num); 441 } 442 443 #endif 444