xref: /openbmc/linux/fs/btrfs/btrfs_inode.h (revision 90b9e489)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15 
16 /*
17  * Since we search a directory based on f_pos (struct dir_context::pos) we have
18  * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
19  * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
20  */
21 #define BTRFS_DIR_START_INDEX 2
22 
23 /*
24  * ordered_data_close is set by truncate when a file that used
25  * to have good data has been truncated to zero.  When it is set
26  * the btrfs file release call will add this inode to the
27  * ordered operations list so that we make sure to flush out any
28  * new data the application may have written before commit.
29  */
30 enum {
31 	BTRFS_INODE_FLUSH_ON_CLOSE,
32 	BTRFS_INODE_DUMMY,
33 	BTRFS_INODE_IN_DEFRAG,
34 	BTRFS_INODE_HAS_ASYNC_EXTENT,
35 	 /*
36 	  * Always set under the VFS' inode lock, otherwise it can cause races
37 	  * during fsync (we start as a fast fsync and then end up in a full
38 	  * fsync racing with ordered extent completion).
39 	  */
40 	BTRFS_INODE_NEEDS_FULL_SYNC,
41 	BTRFS_INODE_COPY_EVERYTHING,
42 	BTRFS_INODE_IN_DELALLOC_LIST,
43 	BTRFS_INODE_HAS_PROPS,
44 	BTRFS_INODE_SNAPSHOT_FLUSH,
45 	/*
46 	 * Set and used when logging an inode and it serves to signal that an
47 	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
48 	 * for xattrs to log. This bit must be cleared whenever a xattr is added
49 	 * to an inode.
50 	 */
51 	BTRFS_INODE_NO_XATTRS,
52 	/*
53 	 * Set when we are in a context where we need to start a transaction and
54 	 * have dirty pages with the respective file range locked. This is to
55 	 * ensure that when reserving space for the transaction, if we are low
56 	 * on available space and need to flush delalloc, we will not flush
57 	 * delalloc for this inode, because that could result in a deadlock (on
58 	 * the file range, inode's io_tree).
59 	 */
60 	BTRFS_INODE_NO_DELALLOC_FLUSH,
61 	/*
62 	 * Set when we are working on enabling verity for a file. Computing and
63 	 * writing the whole Merkle tree can take a while so we want to prevent
64 	 * races where two separate tasks attempt to simultaneously start verity
65 	 * on the same file.
66 	 */
67 	BTRFS_INODE_VERITY_IN_PROGRESS,
68 };
69 
70 /* in memory btrfs inode */
71 struct btrfs_inode {
72 	/* which subvolume this inode belongs to */
73 	struct btrfs_root *root;
74 
75 	/* key used to find this inode on disk.  This is used by the code
76 	 * to read in roots of subvolumes
77 	 */
78 	struct btrfs_key location;
79 
80 	/*
81 	 * Lock for counters and all fields used to determine if the inode is in
82 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
83 	 * logged_trans), to access/update new_delalloc_bytes and to update the
84 	 * VFS' inode number of bytes used.
85 	 */
86 	spinlock_t lock;
87 
88 	/* the extent_tree has caches of all the extent mappings to disk */
89 	struct extent_map_tree extent_tree;
90 
91 	/* the io_tree does range state (DIRTY, LOCKED etc) */
92 	struct extent_io_tree io_tree;
93 
94 	/* special utility tree used to record which mirrors have already been
95 	 * tried when checksums fail for a given block
96 	 */
97 	struct extent_io_tree io_failure_tree;
98 
99 	/*
100 	 * Keep track of where the inode has extent items mapped in order to
101 	 * make sure the i_size adjustments are accurate
102 	 */
103 	struct extent_io_tree file_extent_tree;
104 
105 	/* held while logging the inode in tree-log.c */
106 	struct mutex log_mutex;
107 
108 	/* used to order data wrt metadata */
109 	struct btrfs_ordered_inode_tree ordered_tree;
110 
111 	/* list of all the delalloc inodes in the FS.  There are times we need
112 	 * to write all the delalloc pages to disk, and this list is used
113 	 * to walk them all.
114 	 */
115 	struct list_head delalloc_inodes;
116 
117 	/* node for the red-black tree that links inodes in subvolume root */
118 	struct rb_node rb_node;
119 
120 	unsigned long runtime_flags;
121 
122 	/* Keep track of who's O_SYNC/fsyncing currently */
123 	atomic_t sync_writers;
124 
125 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
126 	 * enough field for this.
127 	 */
128 	u64 generation;
129 
130 	/*
131 	 * transid of the trans_handle that last modified this inode
132 	 */
133 	u64 last_trans;
134 
135 	/*
136 	 * transid that last logged this inode
137 	 */
138 	u64 logged_trans;
139 
140 	/*
141 	 * log transid when this inode was last modified
142 	 */
143 	int last_sub_trans;
144 
145 	/* a local copy of root's last_log_commit */
146 	int last_log_commit;
147 
148 	/* total number of bytes pending delalloc, used by stat to calc the
149 	 * real block usage of the file
150 	 */
151 	u64 delalloc_bytes;
152 
153 	/*
154 	 * Total number of bytes pending delalloc that fall within a file
155 	 * range that is either a hole or beyond EOF (and no prealloc extent
156 	 * exists in the range). This is always <= delalloc_bytes.
157 	 */
158 	u64 new_delalloc_bytes;
159 
160 	/*
161 	 * total number of bytes pending defrag, used by stat to check whether
162 	 * it needs COW.
163 	 */
164 	u64 defrag_bytes;
165 
166 	/*
167 	 * the size of the file stored in the metadata on disk.  data=ordered
168 	 * means the in-memory i_size might be larger than the size on disk
169 	 * because not all the blocks are written yet.
170 	 */
171 	u64 disk_i_size;
172 
173 	/*
174 	 * If this is a directory then index_cnt is the counter for the index
175 	 * number for new files that are created. For an empty directory, this
176 	 * must be initialized to BTRFS_DIR_START_INDEX.
177 	 */
178 	u64 index_cnt;
179 
180 	/* Cache the directory index number to speed the dir/file remove */
181 	u64 dir_index;
182 
183 	/* the fsync log has some corner cases that mean we have to check
184 	 * directories to see if any unlinks have been done before
185 	 * the directory was logged.  See tree-log.c for all the
186 	 * details
187 	 */
188 	u64 last_unlink_trans;
189 
190 	/*
191 	 * The id/generation of the last transaction where this inode was
192 	 * either the source or the destination of a clone/dedupe operation.
193 	 * Used when logging an inode to know if there are shared extents that
194 	 * need special care when logging checksum items, to avoid duplicate
195 	 * checksum items in a log (which can lead to a corruption where we end
196 	 * up with missing checksum ranges after log replay).
197 	 * Protected by the vfs inode lock.
198 	 */
199 	u64 last_reflink_trans;
200 
201 	/*
202 	 * Number of bytes outstanding that are going to need csums.  This is
203 	 * used in ENOSPC accounting.
204 	 */
205 	u64 csum_bytes;
206 
207 	/* Backwards incompatible flags, lower half of inode_item::flags  */
208 	u32 flags;
209 	/* Read-only compatibility flags, upper half of inode_item::flags */
210 	u32 ro_flags;
211 
212 	/*
213 	 * Counters to keep track of the number of extent item's we may use due
214 	 * to delalloc and such.  outstanding_extents is the number of extent
215 	 * items we think we'll end up using, and reserved_extents is the number
216 	 * of extent items we've reserved metadata for.
217 	 */
218 	unsigned outstanding_extents;
219 
220 	struct btrfs_block_rsv block_rsv;
221 
222 	/*
223 	 * Cached values of inode properties
224 	 */
225 	unsigned prop_compress;		/* per-file compression algorithm */
226 	/*
227 	 * Force compression on the file using the defrag ioctl, could be
228 	 * different from prop_compress and takes precedence if set
229 	 */
230 	unsigned defrag_compress;
231 
232 	struct btrfs_delayed_node *delayed_node;
233 
234 	/* File creation time. */
235 	struct timespec64 i_otime;
236 
237 	/* Hook into fs_info->delayed_iputs */
238 	struct list_head delayed_iput;
239 
240 	struct rw_semaphore i_mmap_lock;
241 	struct inode vfs_inode;
242 };
243 
244 static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
245 {
246 	return inode->root->fs_info->sectorsize;
247 }
248 
249 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
250 {
251 	return container_of(inode, struct btrfs_inode, vfs_inode);
252 }
253 
254 static inline unsigned long btrfs_inode_hash(u64 objectid,
255 					     const struct btrfs_root *root)
256 {
257 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
258 
259 #if BITS_PER_LONG == 32
260 	h = (h >> 32) ^ (h & 0xffffffff);
261 #endif
262 
263 	return (unsigned long)h;
264 }
265 
266 static inline void btrfs_insert_inode_hash(struct inode *inode)
267 {
268 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
269 
270 	__insert_inode_hash(inode, h);
271 }
272 
273 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
274 {
275 	u64 ino = inode->location.objectid;
276 
277 	/*
278 	 * !ino: btree_inode
279 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
280 	 */
281 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
282 		ino = inode->vfs_inode.i_ino;
283 	return ino;
284 }
285 
286 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
287 {
288 	i_size_write(&inode->vfs_inode, size);
289 	inode->disk_i_size = size;
290 }
291 
292 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
293 {
294 	struct btrfs_root *root = inode->root;
295 
296 	if (root == root->fs_info->tree_root &&
297 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
298 		return true;
299 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
300 		return true;
301 	return false;
302 }
303 
304 static inline bool is_data_inode(struct inode *inode)
305 {
306 	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
307 }
308 
309 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
310 						 int mod)
311 {
312 	lockdep_assert_held(&inode->lock);
313 	inode->outstanding_extents += mod;
314 	if (btrfs_is_free_space_inode(inode))
315 		return;
316 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
317 						  mod);
318 }
319 
320 /*
321  * Called every time after doing a buffered, direct IO or memory mapped write.
322  *
323  * This is to ensure that if we write to a file that was previously fsynced in
324  * the current transaction, then try to fsync it again in the same transaction,
325  * we will know that there were changes in the file and that it needs to be
326  * logged.
327  */
328 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
329 {
330 	spin_lock(&inode->lock);
331 	inode->last_sub_trans = inode->root->log_transid;
332 	spin_unlock(&inode->lock);
333 }
334 
335 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
336 {
337 	bool ret = false;
338 
339 	spin_lock(&inode->lock);
340 	if (inode->logged_trans == generation &&
341 	    inode->last_sub_trans <= inode->last_log_commit &&
342 	    inode->last_sub_trans <= inode->root->last_log_commit)
343 		ret = true;
344 	spin_unlock(&inode->lock);
345 	return ret;
346 }
347 
348 struct btrfs_dio_private {
349 	struct inode *inode;
350 	u64 logical_offset;
351 	u64 disk_bytenr;
352 	/* Used for bio::bi_size */
353 	u32 bytes;
354 
355 	/*
356 	 * References to this structure. There is one reference per in-flight
357 	 * bio plus one while we're still setting up.
358 	 */
359 	refcount_t refs;
360 
361 	/* dio_bio came from fs/direct-io.c */
362 	struct bio *dio_bio;
363 
364 	/* Array of checksums */
365 	u8 csums[];
366 };
367 
368 /*
369  * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
370  * separate u32s. These two functions convert between the two representations.
371  */
372 static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
373 {
374 	return (flags | ((u64)ro_flags << 32));
375 }
376 
377 static inline void btrfs_inode_split_flags(u64 inode_item_flags,
378 					   u32 *flags, u32 *ro_flags)
379 {
380 	*flags = (u32)inode_item_flags;
381 	*ro_flags = (u32)(inode_item_flags >> 32);
382 }
383 
384 /* Array of bytes with variable length, hexadecimal format 0x1234 */
385 #define CSUM_FMT				"0x%*phN"
386 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
387 
388 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
389 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
390 {
391 	struct btrfs_root *root = inode->root;
392 	const u32 csum_size = root->fs_info->csum_size;
393 
394 	/* Output minus objectid, which is more meaningful */
395 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
396 		btrfs_warn_rl(root->fs_info,
397 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
398 			root->root_key.objectid, btrfs_ino(inode),
399 			logical_start,
400 			CSUM_FMT_VALUE(csum_size, csum),
401 			CSUM_FMT_VALUE(csum_size, csum_expected),
402 			mirror_num);
403 	else
404 		btrfs_warn_rl(root->fs_info,
405 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
406 			root->root_key.objectid, btrfs_ino(inode),
407 			logical_start,
408 			CSUM_FMT_VALUE(csum_size, csum),
409 			CSUM_FMT_VALUE(csum_size, csum_expected),
410 			mirror_num);
411 }
412 
413 #endif
414