xref: /openbmc/linux/fs/btrfs/btrfs_inode.h (revision 7b40b695)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include "extent_map.h"
11 #include "extent_io.h"
12 #include "ordered-data.h"
13 #include "delayed-inode.h"
14 
15 /*
16  * ordered_data_close is set by truncate when a file that used
17  * to have good data has been truncated to zero.  When it is set
18  * the btrfs file release call will add this inode to the
19  * ordered operations list so that we make sure to flush out any
20  * new data the application may have written before commit.
21  */
22 #define BTRFS_INODE_ORDERED_DATA_CLOSE		0
23 #define BTRFS_INODE_ORPHAN_META_RESERVED	1
24 #define BTRFS_INODE_DUMMY			2
25 #define BTRFS_INODE_IN_DEFRAG			3
26 #define BTRFS_INODE_HAS_ASYNC_EXTENT		5
27 #define BTRFS_INODE_NEEDS_FULL_SYNC		6
28 #define BTRFS_INODE_COPY_EVERYTHING		7
29 #define BTRFS_INODE_IN_DELALLOC_LIST		8
30 #define BTRFS_INODE_READDIO_NEED_LOCK		9
31 #define BTRFS_INODE_HAS_PROPS		        10
32 
33 /* in memory btrfs inode */
34 struct btrfs_inode {
35 	/* which subvolume this inode belongs to */
36 	struct btrfs_root *root;
37 
38 	/* key used to find this inode on disk.  This is used by the code
39 	 * to read in roots of subvolumes
40 	 */
41 	struct btrfs_key location;
42 
43 	/*
44 	 * Lock for counters and all fields used to determine if the inode is in
45 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
46 	 * logged_trans).
47 	 */
48 	spinlock_t lock;
49 
50 	/* the extent_tree has caches of all the extent mappings to disk */
51 	struct extent_map_tree extent_tree;
52 
53 	/* the io_tree does range state (DIRTY, LOCKED etc) */
54 	struct extent_io_tree io_tree;
55 
56 	/* special utility tree used to record which mirrors have already been
57 	 * tried when checksums fail for a given block
58 	 */
59 	struct extent_io_tree io_failure_tree;
60 
61 	/* held while logging the inode in tree-log.c */
62 	struct mutex log_mutex;
63 
64 	/* held while doing delalloc reservations */
65 	struct mutex delalloc_mutex;
66 
67 	/* used to order data wrt metadata */
68 	struct btrfs_ordered_inode_tree ordered_tree;
69 
70 	/* list of all the delalloc inodes in the FS.  There are times we need
71 	 * to write all the delalloc pages to disk, and this list is used
72 	 * to walk them all.
73 	 */
74 	struct list_head delalloc_inodes;
75 
76 	/* node for the red-black tree that links inodes in subvolume root */
77 	struct rb_node rb_node;
78 
79 	unsigned long runtime_flags;
80 
81 	/* Keep track of who's O_SYNC/fsyncing currently */
82 	atomic_t sync_writers;
83 
84 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
85 	 * enough field for this.
86 	 */
87 	u64 generation;
88 
89 	/*
90 	 * transid of the trans_handle that last modified this inode
91 	 */
92 	u64 last_trans;
93 
94 	/*
95 	 * transid that last logged this inode
96 	 */
97 	u64 logged_trans;
98 
99 	/*
100 	 * log transid when this inode was last modified
101 	 */
102 	int last_sub_trans;
103 
104 	/* a local copy of root's last_log_commit */
105 	int last_log_commit;
106 
107 	/* total number of bytes pending delalloc, used by stat to calc the
108 	 * real block usage of the file
109 	 */
110 	u64 delalloc_bytes;
111 
112 	/*
113 	 * Total number of bytes pending delalloc that fall within a file
114 	 * range that is either a hole or beyond EOF (and no prealloc extent
115 	 * exists in the range). This is always <= delalloc_bytes.
116 	 */
117 	u64 new_delalloc_bytes;
118 
119 	/*
120 	 * total number of bytes pending defrag, used by stat to check whether
121 	 * it needs COW.
122 	 */
123 	u64 defrag_bytes;
124 
125 	/*
126 	 * the size of the file stored in the metadata on disk.  data=ordered
127 	 * means the in-memory i_size might be larger than the size on disk
128 	 * because not all the blocks are written yet.
129 	 */
130 	u64 disk_i_size;
131 
132 	/*
133 	 * if this is a directory then index_cnt is the counter for the index
134 	 * number for new files that are created
135 	 */
136 	u64 index_cnt;
137 
138 	/* Cache the directory index number to speed the dir/file remove */
139 	u64 dir_index;
140 
141 	/* the fsync log has some corner cases that mean we have to check
142 	 * directories to see if any unlinks have been done before
143 	 * the directory was logged.  See tree-log.c for all the
144 	 * details
145 	 */
146 	u64 last_unlink_trans;
147 
148 	/*
149 	 * Number of bytes outstanding that are going to need csums.  This is
150 	 * used in ENOSPC accounting.
151 	 */
152 	u64 csum_bytes;
153 
154 	/* flags field from the on disk inode */
155 	u32 flags;
156 
157 	/*
158 	 * Counters to keep track of the number of extent item's we may use due
159 	 * to delalloc and such.  outstanding_extents is the number of extent
160 	 * items we think we'll end up using, and reserved_extents is the number
161 	 * of extent items we've reserved metadata for.
162 	 */
163 	unsigned outstanding_extents;
164 
165 	struct btrfs_block_rsv block_rsv;
166 
167 	/*
168 	 * Cached values of inode properties
169 	 */
170 	unsigned prop_compress;		/* per-file compression algorithm */
171 	/*
172 	 * Force compression on the file using the defrag ioctl, could be
173 	 * different from prop_compress and takes precedence if set
174 	 */
175 	unsigned defrag_compress;
176 
177 	struct btrfs_delayed_node *delayed_node;
178 
179 	/* File creation time. */
180 	struct timespec i_otime;
181 
182 	/* Hook into fs_info->delayed_iputs */
183 	struct list_head delayed_iput;
184 
185 	/*
186 	 * To avoid races between lockless (i_mutex not held) direct IO writes
187 	 * and concurrent fsync requests. Direct IO writes must acquire read
188 	 * access on this semaphore for creating an extent map and its
189 	 * corresponding ordered extent. The fast fsync path must acquire write
190 	 * access on this semaphore before it collects ordered extents and
191 	 * extent maps.
192 	 */
193 	struct rw_semaphore dio_sem;
194 
195 	struct inode vfs_inode;
196 };
197 
198 extern unsigned char btrfs_filetype_table[];
199 
200 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201 {
202 	return container_of(inode, struct btrfs_inode, vfs_inode);
203 }
204 
205 static inline unsigned long btrfs_inode_hash(u64 objectid,
206 					     const struct btrfs_root *root)
207 {
208 	u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
209 
210 #if BITS_PER_LONG == 32
211 	h = (h >> 32) ^ (h & 0xffffffff);
212 #endif
213 
214 	return (unsigned long)h;
215 }
216 
217 static inline void btrfs_insert_inode_hash(struct inode *inode)
218 {
219 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220 
221 	__insert_inode_hash(inode, h);
222 }
223 
224 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225 {
226 	u64 ino = inode->location.objectid;
227 
228 	/*
229 	 * !ino: btree_inode
230 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231 	 */
232 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233 		ino = inode->vfs_inode.i_ino;
234 	return ino;
235 }
236 
237 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238 {
239 	i_size_write(&inode->vfs_inode, size);
240 	inode->disk_i_size = size;
241 }
242 
243 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244 {
245 	struct btrfs_root *root = inode->root;
246 
247 	if (root == root->fs_info->tree_root &&
248 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249 		return true;
250 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251 		return true;
252 	return false;
253 }
254 
255 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
256 						 int mod)
257 {
258 	lockdep_assert_held(&inode->lock);
259 	inode->outstanding_extents += mod;
260 	if (btrfs_is_free_space_inode(inode))
261 		return;
262 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
263 						  mod);
264 }
265 
266 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
267 {
268 	int ret = 0;
269 
270 	spin_lock(&inode->lock);
271 	if (inode->logged_trans == generation &&
272 	    inode->last_sub_trans <= inode->last_log_commit &&
273 	    inode->last_sub_trans <= inode->root->last_log_commit) {
274 		/*
275 		 * After a ranged fsync we might have left some extent maps
276 		 * (that fall outside the fsync's range). So return false
277 		 * here if the list isn't empty, to make sure btrfs_log_inode()
278 		 * will be called and process those extent maps.
279 		 */
280 		smp_mb();
281 		if (list_empty(&inode->extent_tree.modified_extents))
282 			ret = 1;
283 	}
284 	spin_unlock(&inode->lock);
285 	return ret;
286 }
287 
288 #define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
289 
290 struct btrfs_dio_private {
291 	struct inode *inode;
292 	unsigned long flags;
293 	u64 logical_offset;
294 	u64 disk_bytenr;
295 	u64 bytes;
296 	void *private;
297 
298 	/* number of bios pending for this dio */
299 	atomic_t pending_bios;
300 
301 	/* IO errors */
302 	int errors;
303 
304 	/* orig_bio is our btrfs_io_bio */
305 	struct bio *orig_bio;
306 
307 	/* dio_bio came from fs/direct-io.c */
308 	struct bio *dio_bio;
309 
310 	/*
311 	 * The original bio may be split to several sub-bios, this is
312 	 * done during endio of sub-bios
313 	 */
314 	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
315 			blk_status_t);
316 };
317 
318 /*
319  * Disable DIO read nolock optimization, so new dio readers will be forced
320  * to grab i_mutex. It is used to avoid the endless truncate due to
321  * nonlocked dio read.
322  */
323 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
324 {
325 	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
326 	smp_mb();
327 }
328 
329 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
330 {
331 	smp_mb__before_atomic();
332 	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
333 }
334 
335 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
336 		u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
337 {
338 	struct btrfs_root *root = inode->root;
339 
340 	/* Output minus objectid, which is more meaningful */
341 	if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
342 		btrfs_warn_rl(root->fs_info,
343 	"csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
344 			root->objectid, btrfs_ino(inode),
345 			logical_start, csum, csum_expected, mirror_num);
346 	else
347 		btrfs_warn_rl(root->fs_info,
348 	"csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
349 			root->objectid, btrfs_ino(inode),
350 			logical_start, csum, csum_expected, mirror_num);
351 }
352 
353 #endif
354