xref: /openbmc/linux/fs/btrfs/btrfs_inode.h (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15 
16 /*
17  * ordered_data_close is set by truncate when a file that used
18  * to have good data has been truncated to zero.  When it is set
19  * the btrfs file release call will add this inode to the
20  * ordered operations list so that we make sure to flush out any
21  * new data the application may have written before commit.
22  */
23 enum {
24 	BTRFS_INODE_ORDERED_DATA_CLOSE,
25 	BTRFS_INODE_DUMMY,
26 	BTRFS_INODE_IN_DEFRAG,
27 	BTRFS_INODE_HAS_ASYNC_EXTENT,
28 	BTRFS_INODE_NEEDS_FULL_SYNC,
29 	BTRFS_INODE_COPY_EVERYTHING,
30 	BTRFS_INODE_IN_DELALLOC_LIST,
31 	BTRFS_INODE_READDIO_NEED_LOCK,
32 	BTRFS_INODE_HAS_PROPS,
33 	BTRFS_INODE_SNAPSHOT_FLUSH,
34 };
35 
36 /* in memory btrfs inode */
37 struct btrfs_inode {
38 	/* which subvolume this inode belongs to */
39 	struct btrfs_root *root;
40 
41 	/* key used to find this inode on disk.  This is used by the code
42 	 * to read in roots of subvolumes
43 	 */
44 	struct btrfs_key location;
45 
46 	/*
47 	 * Lock for counters and all fields used to determine if the inode is in
48 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
49 	 * logged_trans).
50 	 */
51 	spinlock_t lock;
52 
53 	/* the extent_tree has caches of all the extent mappings to disk */
54 	struct extent_map_tree extent_tree;
55 
56 	/* the io_tree does range state (DIRTY, LOCKED etc) */
57 	struct extent_io_tree io_tree;
58 
59 	/* special utility tree used to record which mirrors have already been
60 	 * tried when checksums fail for a given block
61 	 */
62 	struct extent_io_tree io_failure_tree;
63 
64 	/*
65 	 * Keep track of where the inode has extent items mapped in order to
66 	 * make sure the i_size adjustments are accurate
67 	 */
68 	struct extent_io_tree file_extent_tree;
69 
70 	/* held while logging the inode in tree-log.c */
71 	struct mutex log_mutex;
72 
73 	/* used to order data wrt metadata */
74 	struct btrfs_ordered_inode_tree ordered_tree;
75 
76 	/* list of all the delalloc inodes in the FS.  There are times we need
77 	 * to write all the delalloc pages to disk, and this list is used
78 	 * to walk them all.
79 	 */
80 	struct list_head delalloc_inodes;
81 
82 	/* node for the red-black tree that links inodes in subvolume root */
83 	struct rb_node rb_node;
84 
85 	unsigned long runtime_flags;
86 
87 	/* Keep track of who's O_SYNC/fsyncing currently */
88 	atomic_t sync_writers;
89 
90 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
91 	 * enough field for this.
92 	 */
93 	u64 generation;
94 
95 	/*
96 	 * transid of the trans_handle that last modified this inode
97 	 */
98 	u64 last_trans;
99 
100 	/*
101 	 * transid that last logged this inode
102 	 */
103 	u64 logged_trans;
104 
105 	/*
106 	 * log transid when this inode was last modified
107 	 */
108 	int last_sub_trans;
109 
110 	/* a local copy of root's last_log_commit */
111 	int last_log_commit;
112 
113 	/* total number of bytes pending delalloc, used by stat to calc the
114 	 * real block usage of the file
115 	 */
116 	u64 delalloc_bytes;
117 
118 	/*
119 	 * Total number of bytes pending delalloc that fall within a file
120 	 * range that is either a hole or beyond EOF (and no prealloc extent
121 	 * exists in the range). This is always <= delalloc_bytes.
122 	 */
123 	u64 new_delalloc_bytes;
124 
125 	/*
126 	 * total number of bytes pending defrag, used by stat to check whether
127 	 * it needs COW.
128 	 */
129 	u64 defrag_bytes;
130 
131 	/*
132 	 * the size of the file stored in the metadata on disk.  data=ordered
133 	 * means the in-memory i_size might be larger than the size on disk
134 	 * because not all the blocks are written yet.
135 	 */
136 	u64 disk_i_size;
137 
138 	/*
139 	 * if this is a directory then index_cnt is the counter for the index
140 	 * number for new files that are created
141 	 */
142 	u64 index_cnt;
143 
144 	/* Cache the directory index number to speed the dir/file remove */
145 	u64 dir_index;
146 
147 	/* the fsync log has some corner cases that mean we have to check
148 	 * directories to see if any unlinks have been done before
149 	 * the directory was logged.  See tree-log.c for all the
150 	 * details
151 	 */
152 	u64 last_unlink_trans;
153 
154 	/*
155 	 * The id/generation of the last transaction where this inode was
156 	 * either the source or the destination of a clone/dedupe operation.
157 	 * Used when logging an inode to know if there are shared extents that
158 	 * need special care when logging checksum items, to avoid duplicate
159 	 * checksum items in a log (which can lead to a corruption where we end
160 	 * up with missing checksum ranges after log replay).
161 	 * Protected by the vfs inode lock.
162 	 */
163 	u64 last_reflink_trans;
164 
165 	/*
166 	 * Number of bytes outstanding that are going to need csums.  This is
167 	 * used in ENOSPC accounting.
168 	 */
169 	u64 csum_bytes;
170 
171 	/* flags field from the on disk inode */
172 	u32 flags;
173 
174 	/*
175 	 * Counters to keep track of the number of extent item's we may use due
176 	 * to delalloc and such.  outstanding_extents is the number of extent
177 	 * items we think we'll end up using, and reserved_extents is the number
178 	 * of extent items we've reserved metadata for.
179 	 */
180 	unsigned outstanding_extents;
181 
182 	struct btrfs_block_rsv block_rsv;
183 
184 	/*
185 	 * Cached values of inode properties
186 	 */
187 	unsigned prop_compress;		/* per-file compression algorithm */
188 	/*
189 	 * Force compression on the file using the defrag ioctl, could be
190 	 * different from prop_compress and takes precedence if set
191 	 */
192 	unsigned defrag_compress;
193 
194 	struct btrfs_delayed_node *delayed_node;
195 
196 	/* File creation time. */
197 	struct timespec64 i_otime;
198 
199 	/* Hook into fs_info->delayed_iputs */
200 	struct list_head delayed_iput;
201 
202 	/*
203 	 * To avoid races between lockless (i_mutex not held) direct IO writes
204 	 * and concurrent fsync requests. Direct IO writes must acquire read
205 	 * access on this semaphore for creating an extent map and its
206 	 * corresponding ordered extent. The fast fsync path must acquire write
207 	 * access on this semaphore before it collects ordered extents and
208 	 * extent maps.
209 	 */
210 	struct rw_semaphore dio_sem;
211 
212 	struct inode vfs_inode;
213 };
214 
215 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
216 {
217 	return container_of(inode, struct btrfs_inode, vfs_inode);
218 }
219 
220 static inline unsigned long btrfs_inode_hash(u64 objectid,
221 					     const struct btrfs_root *root)
222 {
223 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
224 
225 #if BITS_PER_LONG == 32
226 	h = (h >> 32) ^ (h & 0xffffffff);
227 #endif
228 
229 	return (unsigned long)h;
230 }
231 
232 static inline void btrfs_insert_inode_hash(struct inode *inode)
233 {
234 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
235 
236 	__insert_inode_hash(inode, h);
237 }
238 
239 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
240 {
241 	u64 ino = inode->location.objectid;
242 
243 	/*
244 	 * !ino: btree_inode
245 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
246 	 */
247 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
248 		ino = inode->vfs_inode.i_ino;
249 	return ino;
250 }
251 
252 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
253 {
254 	i_size_write(&inode->vfs_inode, size);
255 	inode->disk_i_size = size;
256 }
257 
258 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
259 {
260 	struct btrfs_root *root = inode->root;
261 
262 	if (root == root->fs_info->tree_root &&
263 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
264 		return true;
265 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
266 		return true;
267 	return false;
268 }
269 
270 static inline bool is_data_inode(struct inode *inode)
271 {
272 	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
273 }
274 
275 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
276 						 int mod)
277 {
278 	lockdep_assert_held(&inode->lock);
279 	inode->outstanding_extents += mod;
280 	if (btrfs_is_free_space_inode(inode))
281 		return;
282 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
283 						  mod);
284 }
285 
286 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
287 {
288 	int ret = 0;
289 
290 	spin_lock(&inode->lock);
291 	if (inode->logged_trans == generation &&
292 	    inode->last_sub_trans <= inode->last_log_commit &&
293 	    inode->last_sub_trans <= inode->root->last_log_commit) {
294 		/*
295 		 * After a ranged fsync we might have left some extent maps
296 		 * (that fall outside the fsync's range). So return false
297 		 * here if the list isn't empty, to make sure btrfs_log_inode()
298 		 * will be called and process those extent maps.
299 		 */
300 		smp_mb();
301 		if (list_empty(&inode->extent_tree.modified_extents))
302 			ret = 1;
303 	}
304 	spin_unlock(&inode->lock);
305 	return ret;
306 }
307 
308 struct btrfs_dio_private {
309 	struct inode *inode;
310 	u64 logical_offset;
311 	u64 disk_bytenr;
312 	u64 bytes;
313 
314 	/*
315 	 * References to this structure. There is one reference per in-flight
316 	 * bio plus one while we're still setting up.
317 	 */
318 	refcount_t refs;
319 
320 	/* dio_bio came from fs/direct-io.c */
321 	struct bio *dio_bio;
322 
323 	/* Array of checksums */
324 	u8 csums[];
325 };
326 
327 /*
328  * Disable DIO read nolock optimization, so new dio readers will be forced
329  * to grab i_mutex. It is used to avoid the endless truncate due to
330  * nonlocked dio read.
331  */
332 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
333 {
334 	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
335 	smp_mb();
336 }
337 
338 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
339 {
340 	smp_mb__before_atomic();
341 	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
342 }
343 
344 /* Array of bytes with variable length, hexadecimal format 0x1234 */
345 #define CSUM_FMT				"0x%*phN"
346 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
347 
348 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
349 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
350 {
351 	struct btrfs_root *root = inode->root;
352 	struct btrfs_super_block *sb = root->fs_info->super_copy;
353 	const u16 csum_size = btrfs_super_csum_size(sb);
354 
355 	/* Output minus objectid, which is more meaningful */
356 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
357 		btrfs_warn_rl(root->fs_info,
358 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
359 			root->root_key.objectid, btrfs_ino(inode),
360 			logical_start,
361 			CSUM_FMT_VALUE(csum_size, csum),
362 			CSUM_FMT_VALUE(csum_size, csum_expected),
363 			mirror_num);
364 	else
365 		btrfs_warn_rl(root->fs_info,
366 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
367 			root->root_key.objectid, btrfs_ino(inode),
368 			logical_start,
369 			CSUM_FMT_VALUE(csum_size, csum),
370 			CSUM_FMT_VALUE(csum_size, csum_expected),
371 			mirror_num);
372 }
373 
374 #endif
375