1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include <linux/refcount.h> 11 #include "extent_map.h" 12 #include "extent_io.h" 13 #include "ordered-data.h" 14 #include "delayed-inode.h" 15 16 /* 17 * ordered_data_close is set by truncate when a file that used 18 * to have good data has been truncated to zero. When it is set 19 * the btrfs file release call will add this inode to the 20 * ordered operations list so that we make sure to flush out any 21 * new data the application may have written before commit. 22 */ 23 enum { 24 BTRFS_INODE_ORDERED_DATA_CLOSE, 25 BTRFS_INODE_DUMMY, 26 BTRFS_INODE_IN_DEFRAG, 27 BTRFS_INODE_HAS_ASYNC_EXTENT, 28 BTRFS_INODE_NEEDS_FULL_SYNC, 29 BTRFS_INODE_COPY_EVERYTHING, 30 BTRFS_INODE_IN_DELALLOC_LIST, 31 BTRFS_INODE_READDIO_NEED_LOCK, 32 BTRFS_INODE_HAS_PROPS, 33 BTRFS_INODE_SNAPSHOT_FLUSH, 34 }; 35 36 /* in memory btrfs inode */ 37 struct btrfs_inode { 38 /* which subvolume this inode belongs to */ 39 struct btrfs_root *root; 40 41 /* key used to find this inode on disk. This is used by the code 42 * to read in roots of subvolumes 43 */ 44 struct btrfs_key location; 45 46 /* 47 * Lock for counters and all fields used to determine if the inode is in 48 * the log or not (last_trans, last_sub_trans, last_log_commit, 49 * logged_trans). 50 */ 51 spinlock_t lock; 52 53 /* the extent_tree has caches of all the extent mappings to disk */ 54 struct extent_map_tree extent_tree; 55 56 /* the io_tree does range state (DIRTY, LOCKED etc) */ 57 struct extent_io_tree io_tree; 58 59 /* special utility tree used to record which mirrors have already been 60 * tried when checksums fail for a given block 61 */ 62 struct extent_io_tree io_failure_tree; 63 64 /* 65 * Keep track of where the inode has extent items mapped in order to 66 * make sure the i_size adjustments are accurate 67 */ 68 struct extent_io_tree file_extent_tree; 69 70 /* held while logging the inode in tree-log.c */ 71 struct mutex log_mutex; 72 73 /* used to order data wrt metadata */ 74 struct btrfs_ordered_inode_tree ordered_tree; 75 76 /* list of all the delalloc inodes in the FS. There are times we need 77 * to write all the delalloc pages to disk, and this list is used 78 * to walk them all. 79 */ 80 struct list_head delalloc_inodes; 81 82 /* node for the red-black tree that links inodes in subvolume root */ 83 struct rb_node rb_node; 84 85 unsigned long runtime_flags; 86 87 /* Keep track of who's O_SYNC/fsyncing currently */ 88 atomic_t sync_writers; 89 90 /* full 64 bit generation number, struct vfs_inode doesn't have a big 91 * enough field for this. 92 */ 93 u64 generation; 94 95 /* 96 * transid of the trans_handle that last modified this inode 97 */ 98 u64 last_trans; 99 100 /* 101 * transid that last logged this inode 102 */ 103 u64 logged_trans; 104 105 /* 106 * log transid when this inode was last modified 107 */ 108 int last_sub_trans; 109 110 /* a local copy of root's last_log_commit */ 111 int last_log_commit; 112 113 /* total number of bytes pending delalloc, used by stat to calc the 114 * real block usage of the file 115 */ 116 u64 delalloc_bytes; 117 118 /* 119 * Total number of bytes pending delalloc that fall within a file 120 * range that is either a hole or beyond EOF (and no prealloc extent 121 * exists in the range). This is always <= delalloc_bytes. 122 */ 123 u64 new_delalloc_bytes; 124 125 /* 126 * total number of bytes pending defrag, used by stat to check whether 127 * it needs COW. 128 */ 129 u64 defrag_bytes; 130 131 /* 132 * the size of the file stored in the metadata on disk. data=ordered 133 * means the in-memory i_size might be larger than the size on disk 134 * because not all the blocks are written yet. 135 */ 136 u64 disk_i_size; 137 138 /* 139 * if this is a directory then index_cnt is the counter for the index 140 * number for new files that are created 141 */ 142 u64 index_cnt; 143 144 /* Cache the directory index number to speed the dir/file remove */ 145 u64 dir_index; 146 147 /* the fsync log has some corner cases that mean we have to check 148 * directories to see if any unlinks have been done before 149 * the directory was logged. See tree-log.c for all the 150 * details 151 */ 152 u64 last_unlink_trans; 153 154 /* 155 * The id/generation of the last transaction where this inode was 156 * either the source or the destination of a clone/dedupe operation. 157 * Used when logging an inode to know if there are shared extents that 158 * need special care when logging checksum items, to avoid duplicate 159 * checksum items in a log (which can lead to a corruption where we end 160 * up with missing checksum ranges after log replay). 161 * Protected by the vfs inode lock. 162 */ 163 u64 last_reflink_trans; 164 165 /* 166 * Number of bytes outstanding that are going to need csums. This is 167 * used in ENOSPC accounting. 168 */ 169 u64 csum_bytes; 170 171 /* flags field from the on disk inode */ 172 u32 flags; 173 174 /* 175 * Counters to keep track of the number of extent item's we may use due 176 * to delalloc and such. outstanding_extents is the number of extent 177 * items we think we'll end up using, and reserved_extents is the number 178 * of extent items we've reserved metadata for. 179 */ 180 unsigned outstanding_extents; 181 182 struct btrfs_block_rsv block_rsv; 183 184 /* 185 * Cached values of inode properties 186 */ 187 unsigned prop_compress; /* per-file compression algorithm */ 188 /* 189 * Force compression on the file using the defrag ioctl, could be 190 * different from prop_compress and takes precedence if set 191 */ 192 unsigned defrag_compress; 193 194 struct btrfs_delayed_node *delayed_node; 195 196 /* File creation time. */ 197 struct timespec64 i_otime; 198 199 /* Hook into fs_info->delayed_iputs */ 200 struct list_head delayed_iput; 201 202 /* 203 * To avoid races between lockless (i_mutex not held) direct IO writes 204 * and concurrent fsync requests. Direct IO writes must acquire read 205 * access on this semaphore for creating an extent map and its 206 * corresponding ordered extent. The fast fsync path must acquire write 207 * access on this semaphore before it collects ordered extents and 208 * extent maps. 209 */ 210 struct rw_semaphore dio_sem; 211 212 struct inode vfs_inode; 213 }; 214 215 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 216 { 217 return container_of(inode, struct btrfs_inode, vfs_inode); 218 } 219 220 static inline unsigned long btrfs_inode_hash(u64 objectid, 221 const struct btrfs_root *root) 222 { 223 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 224 225 #if BITS_PER_LONG == 32 226 h = (h >> 32) ^ (h & 0xffffffff); 227 #endif 228 229 return (unsigned long)h; 230 } 231 232 static inline void btrfs_insert_inode_hash(struct inode *inode) 233 { 234 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); 235 236 __insert_inode_hash(inode, h); 237 } 238 239 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 240 { 241 u64 ino = inode->location.objectid; 242 243 /* 244 * !ino: btree_inode 245 * type == BTRFS_ROOT_ITEM_KEY: subvol dir 246 */ 247 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY) 248 ino = inode->vfs_inode.i_ino; 249 return ino; 250 } 251 252 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 253 { 254 i_size_write(&inode->vfs_inode, size); 255 inode->disk_i_size = size; 256 } 257 258 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 259 { 260 struct btrfs_root *root = inode->root; 261 262 if (root == root->fs_info->tree_root && 263 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) 264 return true; 265 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID) 266 return true; 267 return false; 268 } 269 270 static inline bool is_data_inode(struct inode *inode) 271 { 272 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 273 } 274 275 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 276 int mod) 277 { 278 lockdep_assert_held(&inode->lock); 279 inode->outstanding_extents += mod; 280 if (btrfs_is_free_space_inode(inode)) 281 return; 282 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 283 mod); 284 } 285 286 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 287 { 288 int ret = 0; 289 290 spin_lock(&inode->lock); 291 if (inode->logged_trans == generation && 292 inode->last_sub_trans <= inode->last_log_commit && 293 inode->last_sub_trans <= inode->root->last_log_commit) { 294 /* 295 * After a ranged fsync we might have left some extent maps 296 * (that fall outside the fsync's range). So return false 297 * here if the list isn't empty, to make sure btrfs_log_inode() 298 * will be called and process those extent maps. 299 */ 300 smp_mb(); 301 if (list_empty(&inode->extent_tree.modified_extents)) 302 ret = 1; 303 } 304 spin_unlock(&inode->lock); 305 return ret; 306 } 307 308 struct btrfs_dio_private { 309 struct inode *inode; 310 u64 logical_offset; 311 u64 disk_bytenr; 312 u64 bytes; 313 314 /* 315 * References to this structure. There is one reference per in-flight 316 * bio plus one while we're still setting up. 317 */ 318 refcount_t refs; 319 320 /* dio_bio came from fs/direct-io.c */ 321 struct bio *dio_bio; 322 323 /* Array of checksums */ 324 u8 csums[]; 325 }; 326 327 /* 328 * Disable DIO read nolock optimization, so new dio readers will be forced 329 * to grab i_mutex. It is used to avoid the endless truncate due to 330 * nonlocked dio read. 331 */ 332 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode) 333 { 334 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 335 smp_mb(); 336 } 337 338 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode) 339 { 340 smp_mb__before_atomic(); 341 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 342 } 343 344 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 345 #define CSUM_FMT "0x%*phN" 346 #define CSUM_FMT_VALUE(size, bytes) size, bytes 347 348 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode, 349 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 350 { 351 struct btrfs_root *root = inode->root; 352 struct btrfs_super_block *sb = root->fs_info->super_copy; 353 const u16 csum_size = btrfs_super_csum_size(sb); 354 355 /* Output minus objectid, which is more meaningful */ 356 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) 357 btrfs_warn_rl(root->fs_info, 358 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 359 root->root_key.objectid, btrfs_ino(inode), 360 logical_start, 361 CSUM_FMT_VALUE(csum_size, csum), 362 CSUM_FMT_VALUE(csum_size, csum_expected), 363 mirror_num); 364 else 365 btrfs_warn_rl(root->fs_info, 366 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 367 root->root_key.objectid, btrfs_ino(inode), 368 logical_start, 369 CSUM_FMT_VALUE(csum_size, csum), 370 CSUM_FMT_VALUE(csum_size, csum_expected), 371 mirror_num); 372 } 373 374 #endif 375