1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #ifndef __BTRFS_I__ 20 #define __BTRFS_I__ 21 22 #include <linux/hash.h> 23 #include "extent_map.h" 24 #include "extent_io.h" 25 #include "ordered-data.h" 26 #include "delayed-inode.h" 27 28 /* 29 * ordered_data_close is set by truncate when a file that used 30 * to have good data has been truncated to zero. When it is set 31 * the btrfs file release call will add this inode to the 32 * ordered operations list so that we make sure to flush out any 33 * new data the application may have written before commit. 34 */ 35 #define BTRFS_INODE_ORDERED_DATA_CLOSE 0 36 #define BTRFS_INODE_ORPHAN_META_RESERVED 1 37 #define BTRFS_INODE_DUMMY 2 38 #define BTRFS_INODE_IN_DEFRAG 3 39 #define BTRFS_INODE_DELALLOC_META_RESERVED 4 40 #define BTRFS_INODE_HAS_ORPHAN_ITEM 5 41 #define BTRFS_INODE_HAS_ASYNC_EXTENT 6 42 #define BTRFS_INODE_NEEDS_FULL_SYNC 7 43 #define BTRFS_INODE_COPY_EVERYTHING 8 44 #define BTRFS_INODE_IN_DELALLOC_LIST 9 45 #define BTRFS_INODE_READDIO_NEED_LOCK 10 46 #define BTRFS_INODE_HAS_PROPS 11 47 48 /* in memory btrfs inode */ 49 struct btrfs_inode { 50 /* which subvolume this inode belongs to */ 51 struct btrfs_root *root; 52 53 /* key used to find this inode on disk. This is used by the code 54 * to read in roots of subvolumes 55 */ 56 struct btrfs_key location; 57 58 /* 59 * Lock for counters and all fields used to determine if the inode is in 60 * the log or not (last_trans, last_sub_trans, last_log_commit, 61 * logged_trans). 62 */ 63 spinlock_t lock; 64 65 /* the extent_tree has caches of all the extent mappings to disk */ 66 struct extent_map_tree extent_tree; 67 68 /* the io_tree does range state (DIRTY, LOCKED etc) */ 69 struct extent_io_tree io_tree; 70 71 /* special utility tree used to record which mirrors have already been 72 * tried when checksums fail for a given block 73 */ 74 struct extent_io_tree io_failure_tree; 75 76 /* held while logging the inode in tree-log.c */ 77 struct mutex log_mutex; 78 79 /* held while doing delalloc reservations */ 80 struct mutex delalloc_mutex; 81 82 /* used to order data wrt metadata */ 83 struct btrfs_ordered_inode_tree ordered_tree; 84 85 /* list of all the delalloc inodes in the FS. There are times we need 86 * to write all the delalloc pages to disk, and this list is used 87 * to walk them all. 88 */ 89 struct list_head delalloc_inodes; 90 91 /* node for the red-black tree that links inodes in subvolume root */ 92 struct rb_node rb_node; 93 94 unsigned long runtime_flags; 95 96 /* Keep track of who's O_SYNC/fsyncing currently */ 97 atomic_t sync_writers; 98 99 /* full 64 bit generation number, struct vfs_inode doesn't have a big 100 * enough field for this. 101 */ 102 u64 generation; 103 104 /* 105 * transid of the trans_handle that last modified this inode 106 */ 107 u64 last_trans; 108 109 /* 110 * transid that last logged this inode 111 */ 112 u64 logged_trans; 113 114 /* 115 * log transid when this inode was last modified 116 */ 117 int last_sub_trans; 118 119 /* a local copy of root's last_log_commit */ 120 int last_log_commit; 121 122 /* total number of bytes pending delalloc, used by stat to calc the 123 * real block usage of the file 124 */ 125 u64 delalloc_bytes; 126 127 /* 128 * total number of bytes pending defrag, used by stat to check whether 129 * it needs COW. 130 */ 131 u64 defrag_bytes; 132 133 /* 134 * the size of the file stored in the metadata on disk. data=ordered 135 * means the in-memory i_size might be larger than the size on disk 136 * because not all the blocks are written yet. 137 */ 138 u64 disk_i_size; 139 140 /* 141 * if this is a directory then index_cnt is the counter for the index 142 * number for new files that are created 143 */ 144 u64 index_cnt; 145 146 /* Cache the directory index number to speed the dir/file remove */ 147 u64 dir_index; 148 149 /* the fsync log has some corner cases that mean we have to check 150 * directories to see if any unlinks have been done before 151 * the directory was logged. See tree-log.c for all the 152 * details 153 */ 154 u64 last_unlink_trans; 155 156 /* 157 * Number of bytes outstanding that are going to need csums. This is 158 * used in ENOSPC accounting. 159 */ 160 u64 csum_bytes; 161 162 /* flags field from the on disk inode */ 163 u32 flags; 164 165 /* 166 * Counters to keep track of the number of extent item's we may use due 167 * to delalloc and such. outstanding_extents is the number of extent 168 * items we think we'll end up using, and reserved_extents is the number 169 * of extent items we've reserved metadata for. 170 */ 171 unsigned outstanding_extents; 172 unsigned reserved_extents; 173 174 /* 175 * always compress this one file 176 */ 177 unsigned force_compress; 178 179 struct btrfs_delayed_node *delayed_node; 180 181 /* File creation time. */ 182 struct timespec i_otime; 183 184 /* Hook into fs_info->delayed_iputs */ 185 struct list_head delayed_iput; 186 long delayed_iput_count; 187 188 /* 189 * To avoid races between lockless (i_mutex not held) direct IO writes 190 * and concurrent fsync requests. Direct IO writes must acquire read 191 * access on this semaphore for creating an extent map and its 192 * corresponding ordered extent. The fast fsync path must acquire write 193 * access on this semaphore before it collects ordered extents and 194 * extent maps. 195 */ 196 struct rw_semaphore dio_sem; 197 198 struct inode vfs_inode; 199 }; 200 201 extern unsigned char btrfs_filetype_table[]; 202 203 static inline struct btrfs_inode *BTRFS_I(struct inode *inode) 204 { 205 return container_of(inode, struct btrfs_inode, vfs_inode); 206 } 207 208 static inline unsigned long btrfs_inode_hash(u64 objectid, 209 const struct btrfs_root *root) 210 { 211 u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME); 212 213 #if BITS_PER_LONG == 32 214 h = (h >> 32) ^ (h & 0xffffffff); 215 #endif 216 217 return (unsigned long)h; 218 } 219 220 static inline void btrfs_insert_inode_hash(struct inode *inode) 221 { 222 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); 223 224 __insert_inode_hash(inode, h); 225 } 226 227 static inline u64 btrfs_ino(struct inode *inode) 228 { 229 u64 ino = BTRFS_I(inode)->location.objectid; 230 231 /* 232 * !ino: btree_inode 233 * type == BTRFS_ROOT_ITEM_KEY: subvol dir 234 */ 235 if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY) 236 ino = inode->i_ino; 237 return ino; 238 } 239 240 static inline void btrfs_i_size_write(struct inode *inode, u64 size) 241 { 242 i_size_write(inode, size); 243 BTRFS_I(inode)->disk_i_size = size; 244 } 245 246 static inline bool btrfs_is_free_space_inode(struct inode *inode) 247 { 248 struct btrfs_root *root = BTRFS_I(inode)->root; 249 250 if (root == root->fs_info->tree_root && 251 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) 252 return true; 253 if (BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) 254 return true; 255 return false; 256 } 257 258 static inline int btrfs_inode_in_log(struct inode *inode, u64 generation) 259 { 260 int ret = 0; 261 262 spin_lock(&BTRFS_I(inode)->lock); 263 if (BTRFS_I(inode)->logged_trans == generation && 264 BTRFS_I(inode)->last_sub_trans <= 265 BTRFS_I(inode)->last_log_commit && 266 BTRFS_I(inode)->last_sub_trans <= 267 BTRFS_I(inode)->root->last_log_commit) { 268 /* 269 * After a ranged fsync we might have left some extent maps 270 * (that fall outside the fsync's range). So return false 271 * here if the list isn't empty, to make sure btrfs_log_inode() 272 * will be called and process those extent maps. 273 */ 274 smp_mb(); 275 if (list_empty(&BTRFS_I(inode)->extent_tree.modified_extents)) 276 ret = 1; 277 } 278 spin_unlock(&BTRFS_I(inode)->lock); 279 return ret; 280 } 281 282 #define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1 283 284 struct btrfs_dio_private { 285 struct inode *inode; 286 unsigned long flags; 287 u64 logical_offset; 288 u64 disk_bytenr; 289 u64 bytes; 290 void *private; 291 292 /* number of bios pending for this dio */ 293 atomic_t pending_bios; 294 295 /* IO errors */ 296 int errors; 297 298 /* orig_bio is our btrfs_io_bio */ 299 struct bio *orig_bio; 300 301 /* dio_bio came from fs/direct-io.c */ 302 struct bio *dio_bio; 303 304 /* 305 * The original bio may be split to several sub-bios, this is 306 * done during endio of sub-bios 307 */ 308 int (*subio_endio)(struct inode *, struct btrfs_io_bio *, int); 309 }; 310 311 /* 312 * Disable DIO read nolock optimization, so new dio readers will be forced 313 * to grab i_mutex. It is used to avoid the endless truncate due to 314 * nonlocked dio read. 315 */ 316 static inline void btrfs_inode_block_unlocked_dio(struct inode *inode) 317 { 318 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &BTRFS_I(inode)->runtime_flags); 319 smp_mb(); 320 } 321 322 static inline void btrfs_inode_resume_unlocked_dio(struct inode *inode) 323 { 324 smp_mb__before_atomic(); 325 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, 326 &BTRFS_I(inode)->runtime_flags); 327 } 328 329 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end); 330 331 #endif 332