1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_INODE_H 7 #define BTRFS_INODE_H 8 9 #include <linux/hash.h> 10 #include "extent_map.h" 11 #include "extent_io.h" 12 #include "ordered-data.h" 13 #include "delayed-inode.h" 14 15 /* 16 * ordered_data_close is set by truncate when a file that used 17 * to have good data has been truncated to zero. When it is set 18 * the btrfs file release call will add this inode to the 19 * ordered operations list so that we make sure to flush out any 20 * new data the application may have written before commit. 21 */ 22 enum { 23 BTRFS_INODE_ORDERED_DATA_CLOSE, 24 BTRFS_INODE_DUMMY, 25 BTRFS_INODE_IN_DEFRAG, 26 BTRFS_INODE_HAS_ASYNC_EXTENT, 27 BTRFS_INODE_NEEDS_FULL_SYNC, 28 BTRFS_INODE_COPY_EVERYTHING, 29 BTRFS_INODE_IN_DELALLOC_LIST, 30 BTRFS_INODE_READDIO_NEED_LOCK, 31 BTRFS_INODE_HAS_PROPS, 32 BTRFS_INODE_SNAPSHOT_FLUSH, 33 }; 34 35 /* in memory btrfs inode */ 36 struct btrfs_inode { 37 /* which subvolume this inode belongs to */ 38 struct btrfs_root *root; 39 40 /* key used to find this inode on disk. This is used by the code 41 * to read in roots of subvolumes 42 */ 43 struct btrfs_key location; 44 45 /* 46 * Lock for counters and all fields used to determine if the inode is in 47 * the log or not (last_trans, last_sub_trans, last_log_commit, 48 * logged_trans). 49 */ 50 spinlock_t lock; 51 52 /* the extent_tree has caches of all the extent mappings to disk */ 53 struct extent_map_tree extent_tree; 54 55 /* the io_tree does range state (DIRTY, LOCKED etc) */ 56 struct extent_io_tree io_tree; 57 58 /* special utility tree used to record which mirrors have already been 59 * tried when checksums fail for a given block 60 */ 61 struct extent_io_tree io_failure_tree; 62 63 /* held while logging the inode in tree-log.c */ 64 struct mutex log_mutex; 65 66 /* held while doing delalloc reservations */ 67 struct mutex delalloc_mutex; 68 69 /* used to order data wrt metadata */ 70 struct btrfs_ordered_inode_tree ordered_tree; 71 72 /* list of all the delalloc inodes in the FS. There are times we need 73 * to write all the delalloc pages to disk, and this list is used 74 * to walk them all. 75 */ 76 struct list_head delalloc_inodes; 77 78 /* node for the red-black tree that links inodes in subvolume root */ 79 struct rb_node rb_node; 80 81 unsigned long runtime_flags; 82 83 /* Keep track of who's O_SYNC/fsyncing currently */ 84 atomic_t sync_writers; 85 86 /* full 64 bit generation number, struct vfs_inode doesn't have a big 87 * enough field for this. 88 */ 89 u64 generation; 90 91 /* 92 * transid of the trans_handle that last modified this inode 93 */ 94 u64 last_trans; 95 96 /* 97 * transid that last logged this inode 98 */ 99 u64 logged_trans; 100 101 /* 102 * log transid when this inode was last modified 103 */ 104 int last_sub_trans; 105 106 /* a local copy of root's last_log_commit */ 107 int last_log_commit; 108 109 /* total number of bytes pending delalloc, used by stat to calc the 110 * real block usage of the file 111 */ 112 u64 delalloc_bytes; 113 114 /* 115 * Total number of bytes pending delalloc that fall within a file 116 * range that is either a hole or beyond EOF (and no prealloc extent 117 * exists in the range). This is always <= delalloc_bytes. 118 */ 119 u64 new_delalloc_bytes; 120 121 /* 122 * total number of bytes pending defrag, used by stat to check whether 123 * it needs COW. 124 */ 125 u64 defrag_bytes; 126 127 /* 128 * the size of the file stored in the metadata on disk. data=ordered 129 * means the in-memory i_size might be larger than the size on disk 130 * because not all the blocks are written yet. 131 */ 132 u64 disk_i_size; 133 134 /* 135 * if this is a directory then index_cnt is the counter for the index 136 * number for new files that are created 137 */ 138 u64 index_cnt; 139 140 /* Cache the directory index number to speed the dir/file remove */ 141 u64 dir_index; 142 143 /* the fsync log has some corner cases that mean we have to check 144 * directories to see if any unlinks have been done before 145 * the directory was logged. See tree-log.c for all the 146 * details 147 */ 148 u64 last_unlink_trans; 149 150 /* 151 * Number of bytes outstanding that are going to need csums. This is 152 * used in ENOSPC accounting. 153 */ 154 u64 csum_bytes; 155 156 /* flags field from the on disk inode */ 157 u32 flags; 158 159 /* 160 * Counters to keep track of the number of extent item's we may use due 161 * to delalloc and such. outstanding_extents is the number of extent 162 * items we think we'll end up using, and reserved_extents is the number 163 * of extent items we've reserved metadata for. 164 */ 165 unsigned outstanding_extents; 166 167 struct btrfs_block_rsv block_rsv; 168 169 /* 170 * Cached values of inode properties 171 */ 172 unsigned prop_compress; /* per-file compression algorithm */ 173 /* 174 * Force compression on the file using the defrag ioctl, could be 175 * different from prop_compress and takes precedence if set 176 */ 177 unsigned defrag_compress; 178 179 struct btrfs_delayed_node *delayed_node; 180 181 /* File creation time. */ 182 struct timespec64 i_otime; 183 184 /* Hook into fs_info->delayed_iputs */ 185 struct list_head delayed_iput; 186 187 /* 188 * To avoid races between lockless (i_mutex not held) direct IO writes 189 * and concurrent fsync requests. Direct IO writes must acquire read 190 * access on this semaphore for creating an extent map and its 191 * corresponding ordered extent. The fast fsync path must acquire write 192 * access on this semaphore before it collects ordered extents and 193 * extent maps. 194 */ 195 struct rw_semaphore dio_sem; 196 197 struct inode vfs_inode; 198 }; 199 200 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) 201 { 202 return container_of(inode, struct btrfs_inode, vfs_inode); 203 } 204 205 static inline unsigned long btrfs_inode_hash(u64 objectid, 206 const struct btrfs_root *root) 207 { 208 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); 209 210 #if BITS_PER_LONG == 32 211 h = (h >> 32) ^ (h & 0xffffffff); 212 #endif 213 214 return (unsigned long)h; 215 } 216 217 static inline void btrfs_insert_inode_hash(struct inode *inode) 218 { 219 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root); 220 221 __insert_inode_hash(inode, h); 222 } 223 224 static inline u64 btrfs_ino(const struct btrfs_inode *inode) 225 { 226 u64 ino = inode->location.objectid; 227 228 /* 229 * !ino: btree_inode 230 * type == BTRFS_ROOT_ITEM_KEY: subvol dir 231 */ 232 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY) 233 ino = inode->vfs_inode.i_ino; 234 return ino; 235 } 236 237 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) 238 { 239 i_size_write(&inode->vfs_inode, size); 240 inode->disk_i_size = size; 241 } 242 243 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) 244 { 245 struct btrfs_root *root = inode->root; 246 247 if (root == root->fs_info->tree_root && 248 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID) 249 return true; 250 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID) 251 return true; 252 return false; 253 } 254 255 static inline bool is_data_inode(struct inode *inode) 256 { 257 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; 258 } 259 260 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, 261 int mod) 262 { 263 lockdep_assert_held(&inode->lock); 264 inode->outstanding_extents += mod; 265 if (btrfs_is_free_space_inode(inode)) 266 return; 267 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), 268 mod); 269 } 270 271 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) 272 { 273 int ret = 0; 274 275 spin_lock(&inode->lock); 276 if (inode->logged_trans == generation && 277 inode->last_sub_trans <= inode->last_log_commit && 278 inode->last_sub_trans <= inode->root->last_log_commit) { 279 /* 280 * After a ranged fsync we might have left some extent maps 281 * (that fall outside the fsync's range). So return false 282 * here if the list isn't empty, to make sure btrfs_log_inode() 283 * will be called and process those extent maps. 284 */ 285 smp_mb(); 286 if (list_empty(&inode->extent_tree.modified_extents)) 287 ret = 1; 288 } 289 spin_unlock(&inode->lock); 290 return ret; 291 } 292 293 #define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1 294 295 struct btrfs_dio_private { 296 struct inode *inode; 297 unsigned long flags; 298 u64 logical_offset; 299 u64 disk_bytenr; 300 u64 bytes; 301 void *private; 302 303 /* number of bios pending for this dio */ 304 atomic_t pending_bios; 305 306 /* IO errors */ 307 int errors; 308 309 /* orig_bio is our btrfs_io_bio */ 310 struct bio *orig_bio; 311 312 /* dio_bio came from fs/direct-io.c */ 313 struct bio *dio_bio; 314 315 /* 316 * The original bio may be split to several sub-bios, this is 317 * done during endio of sub-bios 318 */ 319 blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *, 320 blk_status_t); 321 }; 322 323 /* 324 * Disable DIO read nolock optimization, so new dio readers will be forced 325 * to grab i_mutex. It is used to avoid the endless truncate due to 326 * nonlocked dio read. 327 */ 328 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode) 329 { 330 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 331 smp_mb(); 332 } 333 334 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode) 335 { 336 smp_mb__before_atomic(); 337 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags); 338 } 339 340 /* Array of bytes with variable length, hexadecimal format 0x1234 */ 341 #define CSUM_FMT "0x%*phN" 342 #define CSUM_FMT_VALUE(size, bytes) size, bytes 343 344 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode, 345 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 346 { 347 struct btrfs_root *root = inode->root; 348 struct btrfs_super_block *sb = root->fs_info->super_copy; 349 const u16 csum_size = btrfs_super_csum_size(sb); 350 351 /* Output minus objectid, which is more meaningful */ 352 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) 353 btrfs_warn_rl(root->fs_info, 354 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 355 root->root_key.objectid, btrfs_ino(inode), 356 logical_start, 357 CSUM_FMT_VALUE(csum_size, csum), 358 CSUM_FMT_VALUE(csum_size, csum_expected), 359 mirror_num); 360 else 361 btrfs_warn_rl(root->fs_info, 362 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 363 root->root_key.objectid, btrfs_ino(inode), 364 logical_start, 365 CSUM_FMT_VALUE(csum_size, csum), 366 CSUM_FMT_VALUE(csum_size, csum_expected), 367 mirror_num); 368 } 369 370 #endif 371