xref: /openbmc/linux/fs/btrfs/btrfs_inode.h (revision 06f2548f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include "extent_map.h"
11 #include "extent_io.h"
12 #include "ordered-data.h"
13 #include "delayed-inode.h"
14 
15 /*
16  * ordered_data_close is set by truncate when a file that used
17  * to have good data has been truncated to zero.  When it is set
18  * the btrfs file release call will add this inode to the
19  * ordered operations list so that we make sure to flush out any
20  * new data the application may have written before commit.
21  */
22 enum {
23 	BTRFS_INODE_ORDERED_DATA_CLOSE = 0,
24 	BTRFS_INODE_DUMMY,
25 	BTRFS_INODE_IN_DEFRAG,
26 	BTRFS_INODE_HAS_ASYNC_EXTENT,
27 	BTRFS_INODE_NEEDS_FULL_SYNC,
28 	BTRFS_INODE_COPY_EVERYTHING,
29 	BTRFS_INODE_IN_DELALLOC_LIST,
30 	BTRFS_INODE_READDIO_NEED_LOCK,
31 	BTRFS_INODE_HAS_PROPS,
32 };
33 
34 /* in memory btrfs inode */
35 struct btrfs_inode {
36 	/* which subvolume this inode belongs to */
37 	struct btrfs_root *root;
38 
39 	/* key used to find this inode on disk.  This is used by the code
40 	 * to read in roots of subvolumes
41 	 */
42 	struct btrfs_key location;
43 
44 	/*
45 	 * Lock for counters and all fields used to determine if the inode is in
46 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
47 	 * logged_trans).
48 	 */
49 	spinlock_t lock;
50 
51 	/* the extent_tree has caches of all the extent mappings to disk */
52 	struct extent_map_tree extent_tree;
53 
54 	/* the io_tree does range state (DIRTY, LOCKED etc) */
55 	struct extent_io_tree io_tree;
56 
57 	/* special utility tree used to record which mirrors have already been
58 	 * tried when checksums fail for a given block
59 	 */
60 	struct extent_io_tree io_failure_tree;
61 
62 	/* held while logging the inode in tree-log.c */
63 	struct mutex log_mutex;
64 
65 	/* held while doing delalloc reservations */
66 	struct mutex delalloc_mutex;
67 
68 	/* used to order data wrt metadata */
69 	struct btrfs_ordered_inode_tree ordered_tree;
70 
71 	/* list of all the delalloc inodes in the FS.  There are times we need
72 	 * to write all the delalloc pages to disk, and this list is used
73 	 * to walk them all.
74 	 */
75 	struct list_head delalloc_inodes;
76 
77 	/* node for the red-black tree that links inodes in subvolume root */
78 	struct rb_node rb_node;
79 
80 	unsigned long runtime_flags;
81 
82 	/* Keep track of who's O_SYNC/fsyncing currently */
83 	atomic_t sync_writers;
84 
85 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
86 	 * enough field for this.
87 	 */
88 	u64 generation;
89 
90 	/*
91 	 * transid of the trans_handle that last modified this inode
92 	 */
93 	u64 last_trans;
94 
95 	/*
96 	 * transid that last logged this inode
97 	 */
98 	u64 logged_trans;
99 
100 	/*
101 	 * log transid when this inode was last modified
102 	 */
103 	int last_sub_trans;
104 
105 	/* a local copy of root's last_log_commit */
106 	int last_log_commit;
107 
108 	/* total number of bytes pending delalloc, used by stat to calc the
109 	 * real block usage of the file
110 	 */
111 	u64 delalloc_bytes;
112 
113 	/*
114 	 * Total number of bytes pending delalloc that fall within a file
115 	 * range that is either a hole or beyond EOF (and no prealloc extent
116 	 * exists in the range). This is always <= delalloc_bytes.
117 	 */
118 	u64 new_delalloc_bytes;
119 
120 	/*
121 	 * total number of bytes pending defrag, used by stat to check whether
122 	 * it needs COW.
123 	 */
124 	u64 defrag_bytes;
125 
126 	/*
127 	 * the size of the file stored in the metadata on disk.  data=ordered
128 	 * means the in-memory i_size might be larger than the size on disk
129 	 * because not all the blocks are written yet.
130 	 */
131 	u64 disk_i_size;
132 
133 	/*
134 	 * if this is a directory then index_cnt is the counter for the index
135 	 * number for new files that are created
136 	 */
137 	u64 index_cnt;
138 
139 	/* Cache the directory index number to speed the dir/file remove */
140 	u64 dir_index;
141 
142 	/* the fsync log has some corner cases that mean we have to check
143 	 * directories to see if any unlinks have been done before
144 	 * the directory was logged.  See tree-log.c for all the
145 	 * details
146 	 */
147 	u64 last_unlink_trans;
148 
149 	/*
150 	 * Number of bytes outstanding that are going to need csums.  This is
151 	 * used in ENOSPC accounting.
152 	 */
153 	u64 csum_bytes;
154 
155 	/* flags field from the on disk inode */
156 	u32 flags;
157 
158 	/*
159 	 * Counters to keep track of the number of extent item's we may use due
160 	 * to delalloc and such.  outstanding_extents is the number of extent
161 	 * items we think we'll end up using, and reserved_extents is the number
162 	 * of extent items we've reserved metadata for.
163 	 */
164 	unsigned outstanding_extents;
165 
166 	struct btrfs_block_rsv block_rsv;
167 
168 	/*
169 	 * Cached values of inode properties
170 	 */
171 	unsigned prop_compress;		/* per-file compression algorithm */
172 	/*
173 	 * Force compression on the file using the defrag ioctl, could be
174 	 * different from prop_compress and takes precedence if set
175 	 */
176 	unsigned defrag_compress;
177 
178 	struct btrfs_delayed_node *delayed_node;
179 
180 	/* File creation time. */
181 	struct timespec64 i_otime;
182 
183 	/* Hook into fs_info->delayed_iputs */
184 	struct list_head delayed_iput;
185 
186 	/*
187 	 * To avoid races between lockless (i_mutex not held) direct IO writes
188 	 * and concurrent fsync requests. Direct IO writes must acquire read
189 	 * access on this semaphore for creating an extent map and its
190 	 * corresponding ordered extent. The fast fsync path must acquire write
191 	 * access on this semaphore before it collects ordered extents and
192 	 * extent maps.
193 	 */
194 	struct rw_semaphore dio_sem;
195 
196 	struct inode vfs_inode;
197 };
198 
199 extern unsigned char btrfs_filetype_table[];
200 
201 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
202 {
203 	return container_of(inode, struct btrfs_inode, vfs_inode);
204 }
205 
206 static inline unsigned long btrfs_inode_hash(u64 objectid,
207 					     const struct btrfs_root *root)
208 {
209 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
210 
211 #if BITS_PER_LONG == 32
212 	h = (h >> 32) ^ (h & 0xffffffff);
213 #endif
214 
215 	return (unsigned long)h;
216 }
217 
218 static inline void btrfs_insert_inode_hash(struct inode *inode)
219 {
220 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
221 
222 	__insert_inode_hash(inode, h);
223 }
224 
225 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
226 {
227 	u64 ino = inode->location.objectid;
228 
229 	/*
230 	 * !ino: btree_inode
231 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
232 	 */
233 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
234 		ino = inode->vfs_inode.i_ino;
235 	return ino;
236 }
237 
238 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
239 {
240 	i_size_write(&inode->vfs_inode, size);
241 	inode->disk_i_size = size;
242 }
243 
244 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
245 {
246 	struct btrfs_root *root = inode->root;
247 
248 	if (root == root->fs_info->tree_root &&
249 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
250 		return true;
251 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
252 		return true;
253 	return false;
254 }
255 
256 static inline bool is_data_inode(struct inode *inode)
257 {
258 	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
259 }
260 
261 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
262 						 int mod)
263 {
264 	lockdep_assert_held(&inode->lock);
265 	inode->outstanding_extents += mod;
266 	if (btrfs_is_free_space_inode(inode))
267 		return;
268 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
269 						  mod);
270 }
271 
272 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
273 {
274 	int ret = 0;
275 
276 	spin_lock(&inode->lock);
277 	if (inode->logged_trans == generation &&
278 	    inode->last_sub_trans <= inode->last_log_commit &&
279 	    inode->last_sub_trans <= inode->root->last_log_commit) {
280 		/*
281 		 * After a ranged fsync we might have left some extent maps
282 		 * (that fall outside the fsync's range). So return false
283 		 * here if the list isn't empty, to make sure btrfs_log_inode()
284 		 * will be called and process those extent maps.
285 		 */
286 		smp_mb();
287 		if (list_empty(&inode->extent_tree.modified_extents))
288 			ret = 1;
289 	}
290 	spin_unlock(&inode->lock);
291 	return ret;
292 }
293 
294 #define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
295 
296 struct btrfs_dio_private {
297 	struct inode *inode;
298 	unsigned long flags;
299 	u64 logical_offset;
300 	u64 disk_bytenr;
301 	u64 bytes;
302 	void *private;
303 
304 	/* number of bios pending for this dio */
305 	atomic_t pending_bios;
306 
307 	/* IO errors */
308 	int errors;
309 
310 	/* orig_bio is our btrfs_io_bio */
311 	struct bio *orig_bio;
312 
313 	/* dio_bio came from fs/direct-io.c */
314 	struct bio *dio_bio;
315 
316 	/*
317 	 * The original bio may be split to several sub-bios, this is
318 	 * done during endio of sub-bios
319 	 */
320 	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
321 			blk_status_t);
322 };
323 
324 /*
325  * Disable DIO read nolock optimization, so new dio readers will be forced
326  * to grab i_mutex. It is used to avoid the endless truncate due to
327  * nonlocked dio read.
328  */
329 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
330 {
331 	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
332 	smp_mb();
333 }
334 
335 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
336 {
337 	smp_mb__before_atomic();
338 	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
339 }
340 
341 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
342 		u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
343 {
344 	struct btrfs_root *root = inode->root;
345 
346 	/* Output minus objectid, which is more meaningful */
347 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
348 		btrfs_warn_rl(root->fs_info,
349 	"csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
350 			root->root_key.objectid, btrfs_ino(inode),
351 			logical_start, csum, csum_expected, mirror_num);
352 	else
353 		btrfs_warn_rl(root->fs_info,
354 	"csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
355 			root->root_key.objectid, btrfs_ino(inode),
356 			logical_start, csum, csum_expected, mirror_num);
357 }
358 
359 #endif
360