1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef BTRFS_BLOCK_GROUP_H 4 #define BTRFS_BLOCK_GROUP_H 5 6 #include "free-space-cache.h" 7 8 enum btrfs_disk_cache_state { 9 BTRFS_DC_WRITTEN, 10 BTRFS_DC_ERROR, 11 BTRFS_DC_CLEAR, 12 BTRFS_DC_SETUP, 13 }; 14 15 /* 16 * This describes the state of the block_group for async discard. This is due 17 * to the two pass nature of it where extent discarding is prioritized over 18 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting 19 * between lists to prevent contention for discard state variables 20 * (eg. discard_cursor). 21 */ 22 enum btrfs_discard_state { 23 BTRFS_DISCARD_EXTENTS, 24 BTRFS_DISCARD_BITMAPS, 25 BTRFS_DISCARD_RESET_CURSOR, 26 }; 27 28 /* 29 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to 30 * only allocate a chunk if we really need one. 31 * 32 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few 33 * chunks already allocated. This is used as part of the clustering code to 34 * help make sure we have a good pool of storage to cluster in, without filling 35 * the FS with empty chunks 36 * 37 * CHUNK_ALLOC_FORCE means it must try to allocate one 38 */ 39 enum btrfs_chunk_alloc_enum { 40 CHUNK_ALLOC_NO_FORCE, 41 CHUNK_ALLOC_LIMITED, 42 CHUNK_ALLOC_FORCE, 43 }; 44 45 struct btrfs_caching_control { 46 struct list_head list; 47 struct mutex mutex; 48 wait_queue_head_t wait; 49 struct btrfs_work work; 50 struct btrfs_block_group *block_group; 51 u64 progress; 52 refcount_t count; 53 }; 54 55 /* Once caching_thread() finds this much free space, it will wake up waiters. */ 56 #define CACHING_CTL_WAKE_UP SZ_2M 57 58 struct btrfs_block_group { 59 struct btrfs_fs_info *fs_info; 60 struct inode *inode; 61 spinlock_t lock; 62 u64 start; 63 u64 length; 64 u64 pinned; 65 u64 reserved; 66 u64 used; 67 u64 delalloc_bytes; 68 u64 bytes_super; 69 u64 flags; 70 u64 cache_generation; 71 72 /* 73 * If the free space extent count exceeds this number, convert the block 74 * group to bitmaps. 75 */ 76 u32 bitmap_high_thresh; 77 78 /* 79 * If the free space extent count drops below this number, convert the 80 * block group back to extents. 81 */ 82 u32 bitmap_low_thresh; 83 84 /* 85 * It is just used for the delayed data space allocation because 86 * only the data space allocation and the relative metadata update 87 * can be done cross the transaction. 88 */ 89 struct rw_semaphore data_rwsem; 90 91 /* For raid56, this is a full stripe, without parity */ 92 unsigned long full_stripe_len; 93 94 unsigned int ro; 95 unsigned int iref:1; 96 unsigned int has_caching_ctl:1; 97 unsigned int removed:1; 98 99 int disk_cache_state; 100 101 /* Cache tracking stuff */ 102 int cached; 103 struct btrfs_caching_control *caching_ctl; 104 u64 last_byte_to_unpin; 105 106 struct btrfs_space_info *space_info; 107 108 /* Free space cache stuff */ 109 struct btrfs_free_space_ctl *free_space_ctl; 110 111 /* Block group cache stuff */ 112 struct rb_node cache_node; 113 114 /* For block groups in the same raid type */ 115 struct list_head list; 116 117 /* Usage count */ 118 atomic_t count; 119 120 /* 121 * List of struct btrfs_free_clusters for this block group. 122 * Today it will only have one thing on it, but that may change 123 */ 124 struct list_head cluster_list; 125 126 /* For delayed block group creation or deletion of empty block groups */ 127 struct list_head bg_list; 128 129 /* For read-only block groups */ 130 struct list_head ro_list; 131 132 /* For discard operations */ 133 atomic_t trimming; 134 struct list_head discard_list; 135 int discard_index; 136 u64 discard_eligible_time; 137 u64 discard_cursor; 138 enum btrfs_discard_state discard_state; 139 140 /* For dirty block groups */ 141 struct list_head dirty_list; 142 struct list_head io_list; 143 144 struct btrfs_io_ctl io_ctl; 145 146 /* 147 * Incremented when doing extent allocations and holding a read lock 148 * on the space_info's groups_sem semaphore. 149 * Decremented when an ordered extent that represents an IO against this 150 * block group's range is created (after it's added to its inode's 151 * root's list of ordered extents) or immediately after the allocation 152 * if it's a metadata extent or fallocate extent (for these cases we 153 * don't create ordered extents). 154 */ 155 atomic_t reservations; 156 157 /* 158 * Incremented while holding the spinlock *lock* by a task checking if 159 * it can perform a nocow write (incremented if the value for the *ro* 160 * field is 0). Decremented by such tasks once they create an ordered 161 * extent or before that if some error happens before reaching that step. 162 * This is to prevent races between block group relocation and nocow 163 * writes through direct IO. 164 */ 165 atomic_t nocow_writers; 166 167 /* Lock for free space tree operations. */ 168 struct mutex free_space_lock; 169 170 /* 171 * Does the block group need to be added to the free space tree? 172 * Protected by free_space_lock. 173 */ 174 int needs_free_space; 175 176 /* Record locked full stripes for RAID5/6 block group */ 177 struct btrfs_full_stripe_locks_tree full_stripe_locks_root; 178 }; 179 180 static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group) 181 { 182 return (block_group->start + block_group->length); 183 } 184 185 static inline bool btrfs_is_block_group_data_only( 186 struct btrfs_block_group *block_group) 187 { 188 /* 189 * In mixed mode the fragmentation is expected to be high, lowering the 190 * efficiency, so only proper data block groups are considered. 191 */ 192 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 193 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA); 194 } 195 196 #ifdef CONFIG_BTRFS_DEBUG 197 static inline int btrfs_should_fragment_free_space( 198 struct btrfs_block_group *block_group) 199 { 200 struct btrfs_fs_info *fs_info = block_group->fs_info; 201 202 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 203 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 204 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 205 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 206 } 207 #endif 208 209 struct btrfs_block_group *btrfs_lookup_first_block_group( 210 struct btrfs_fs_info *info, u64 bytenr); 211 struct btrfs_block_group *btrfs_lookup_block_group( 212 struct btrfs_fs_info *info, u64 bytenr); 213 struct btrfs_block_group *btrfs_next_block_group( 214 struct btrfs_block_group *cache); 215 void btrfs_get_block_group(struct btrfs_block_group *cache); 216 void btrfs_put_block_group(struct btrfs_block_group *cache); 217 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 218 const u64 start); 219 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg); 220 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); 221 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); 222 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg); 223 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 224 u64 num_bytes); 225 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache); 226 int btrfs_cache_block_group(struct btrfs_block_group *cache, 227 int load_cache_only); 228 void btrfs_put_caching_control(struct btrfs_caching_control *ctl); 229 struct btrfs_caching_control *btrfs_get_caching_control( 230 struct btrfs_block_group *cache); 231 u64 add_new_free_space(struct btrfs_block_group *block_group, 232 u64 start, u64 end); 233 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 234 struct btrfs_fs_info *fs_info, 235 const u64 chunk_offset); 236 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 237 u64 group_start, struct extent_map *em); 238 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); 239 void btrfs_mark_bg_unused(struct btrfs_block_group *bg); 240 int btrfs_read_block_groups(struct btrfs_fs_info *info); 241 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 242 u64 type, u64 chunk_offset, u64 size); 243 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans); 244 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 245 bool do_chunk_alloc); 246 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache); 247 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans); 248 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); 249 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans); 250 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 251 u64 bytenr, u64 num_bytes, int alloc); 252 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 253 u64 ram_bytes, u64 num_bytes, int delalloc); 254 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 255 u64 num_bytes, int delalloc); 256 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 257 enum btrfs_chunk_alloc_enum force); 258 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type); 259 void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type); 260 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags); 261 void btrfs_put_block_group_cache(struct btrfs_fs_info *info); 262 int btrfs_free_block_groups(struct btrfs_fs_info *info); 263 264 static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 265 { 266 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 267 } 268 269 static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 270 { 271 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 272 } 273 274 static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 275 { 276 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 277 } 278 279 static inline int btrfs_block_group_done(struct btrfs_block_group *cache) 280 { 281 smp_mb(); 282 return cache->cached == BTRFS_CACHE_FINISHED || 283 cache->cached == BTRFS_CACHE_ERROR; 284 } 285 286 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 287 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 288 u64 physical, u64 **logical, int *naddrs, int *stripe_len); 289 #endif 290 291 #endif /* BTRFS_BLOCK_GROUP_H */ 292