1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef BTRFS_BLOCK_GROUP_H 4 #define BTRFS_BLOCK_GROUP_H 5 6 #include "free-space-cache.h" 7 8 enum btrfs_disk_cache_state { 9 BTRFS_DC_WRITTEN, 10 BTRFS_DC_ERROR, 11 BTRFS_DC_CLEAR, 12 BTRFS_DC_SETUP, 13 }; 14 15 enum btrfs_block_group_size_class { 16 /* Unset */ 17 BTRFS_BG_SZ_NONE, 18 /* 0 < size <= 128K */ 19 BTRFS_BG_SZ_SMALL, 20 /* 128K < size <= 8M */ 21 BTRFS_BG_SZ_MEDIUM, 22 /* 8M < size < BG_LENGTH */ 23 BTRFS_BG_SZ_LARGE, 24 }; 25 26 /* 27 * This describes the state of the block_group for async discard. This is due 28 * to the two pass nature of it where extent discarding is prioritized over 29 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting 30 * between lists to prevent contention for discard state variables 31 * (eg. discard_cursor). 32 */ 33 enum btrfs_discard_state { 34 BTRFS_DISCARD_EXTENTS, 35 BTRFS_DISCARD_BITMAPS, 36 BTRFS_DISCARD_RESET_CURSOR, 37 }; 38 39 /* 40 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to 41 * only allocate a chunk if we really need one. 42 * 43 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few 44 * chunks already allocated. This is used as part of the clustering code to 45 * help make sure we have a good pool of storage to cluster in, without filling 46 * the FS with empty chunks 47 * 48 * CHUNK_ALLOC_FORCE means it must try to allocate one 49 * 50 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from 51 * find_free_extent() that also activaes the zone 52 */ 53 enum btrfs_chunk_alloc_enum { 54 CHUNK_ALLOC_NO_FORCE, 55 CHUNK_ALLOC_LIMITED, 56 CHUNK_ALLOC_FORCE, 57 CHUNK_ALLOC_FORCE_FOR_EXTENT, 58 }; 59 60 /* Block group flags set at runtime */ 61 enum btrfs_block_group_flags { 62 BLOCK_GROUP_FLAG_IREF, 63 BLOCK_GROUP_FLAG_REMOVED, 64 BLOCK_GROUP_FLAG_TO_COPY, 65 BLOCK_GROUP_FLAG_RELOCATING_REPAIR, 66 BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 67 BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 68 BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 69 /* Does the block group need to be added to the free space tree? */ 70 BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, 71 /* Indicate that the block group is placed on a sequential zone */ 72 BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, 73 /* 74 * Indicate that block group is in the list of new block groups of a 75 * transaction. 76 */ 77 BLOCK_GROUP_FLAG_NEW, 78 }; 79 80 enum btrfs_caching_type { 81 BTRFS_CACHE_NO, 82 BTRFS_CACHE_STARTED, 83 BTRFS_CACHE_FINISHED, 84 BTRFS_CACHE_ERROR, 85 }; 86 87 struct btrfs_caching_control { 88 struct list_head list; 89 struct mutex mutex; 90 wait_queue_head_t wait; 91 struct btrfs_work work; 92 struct btrfs_block_group *block_group; 93 /* Track progress of caching during allocation. */ 94 atomic_t progress; 95 refcount_t count; 96 }; 97 98 /* Once caching_thread() finds this much free space, it will wake up waiters. */ 99 #define CACHING_CTL_WAKE_UP SZ_2M 100 101 struct btrfs_block_group { 102 struct btrfs_fs_info *fs_info; 103 struct inode *inode; 104 spinlock_t lock; 105 u64 start; 106 u64 length; 107 u64 pinned; 108 u64 reserved; 109 u64 used; 110 u64 delalloc_bytes; 111 u64 bytes_super; 112 u64 flags; 113 u64 cache_generation; 114 u64 global_root_id; 115 116 /* 117 * The last committed used bytes of this block group, if the above @used 118 * is still the same as @commit_used, we don't need to update block 119 * group item of this block group. 120 */ 121 u64 commit_used; 122 /* 123 * If the free space extent count exceeds this number, convert the block 124 * group to bitmaps. 125 */ 126 u32 bitmap_high_thresh; 127 128 /* 129 * If the free space extent count drops below this number, convert the 130 * block group back to extents. 131 */ 132 u32 bitmap_low_thresh; 133 134 /* 135 * It is just used for the delayed data space allocation because 136 * only the data space allocation and the relative metadata update 137 * can be done cross the transaction. 138 */ 139 struct rw_semaphore data_rwsem; 140 141 /* For raid56, this is a full stripe, without parity */ 142 unsigned long full_stripe_len; 143 unsigned long runtime_flags; 144 145 unsigned int ro; 146 147 int disk_cache_state; 148 149 /* Cache tracking stuff */ 150 int cached; 151 struct btrfs_caching_control *caching_ctl; 152 153 struct btrfs_space_info *space_info; 154 155 /* Free space cache stuff */ 156 struct btrfs_free_space_ctl *free_space_ctl; 157 158 /* Block group cache stuff */ 159 struct rb_node cache_node; 160 161 /* For block groups in the same raid type */ 162 struct list_head list; 163 164 refcount_t refs; 165 166 /* 167 * List of struct btrfs_free_clusters for this block group. 168 * Today it will only have one thing on it, but that may change 169 */ 170 struct list_head cluster_list; 171 172 /* 173 * Used for several lists: 174 * 175 * 1) struct btrfs_fs_info::unused_bgs 176 * 2) struct btrfs_fs_info::reclaim_bgs 177 * 3) struct btrfs_transaction::deleted_bgs 178 * 4) struct btrfs_trans_handle::new_bgs 179 */ 180 struct list_head bg_list; 181 182 /* For read-only block groups */ 183 struct list_head ro_list; 184 185 /* 186 * When non-zero it means the block group's logical address and its 187 * device extents can not be reused for future block group allocations 188 * until the counter goes down to 0. This is to prevent them from being 189 * reused while some task is still using the block group after it was 190 * deleted - we want to make sure they can only be reused for new block 191 * groups after that task is done with the deleted block group. 192 */ 193 atomic_t frozen; 194 195 /* For discard operations */ 196 struct list_head discard_list; 197 int discard_index; 198 u64 discard_eligible_time; 199 u64 discard_cursor; 200 enum btrfs_discard_state discard_state; 201 202 /* For dirty block groups */ 203 struct list_head dirty_list; 204 struct list_head io_list; 205 206 struct btrfs_io_ctl io_ctl; 207 208 /* 209 * Incremented when doing extent allocations and holding a read lock 210 * on the space_info's groups_sem semaphore. 211 * Decremented when an ordered extent that represents an IO against this 212 * block group's range is created (after it's added to its inode's 213 * root's list of ordered extents) or immediately after the allocation 214 * if it's a metadata extent or fallocate extent (for these cases we 215 * don't create ordered extents). 216 */ 217 atomic_t reservations; 218 219 /* 220 * Incremented while holding the spinlock *lock* by a task checking if 221 * it can perform a nocow write (incremented if the value for the *ro* 222 * field is 0). Decremented by such tasks once they create an ordered 223 * extent or before that if some error happens before reaching that step. 224 * This is to prevent races between block group relocation and nocow 225 * writes through direct IO. 226 */ 227 atomic_t nocow_writers; 228 229 /* Lock for free space tree operations. */ 230 struct mutex free_space_lock; 231 232 /* 233 * Number of extents in this block group used for swap files. 234 * All accesses protected by the spinlock 'lock'. 235 */ 236 int swap_extents; 237 238 /* 239 * Allocation offset for the block group to implement sequential 240 * allocation. This is used only on a zoned filesystem. 241 */ 242 u64 alloc_offset; 243 u64 zone_unusable; 244 u64 zone_capacity; 245 u64 meta_write_pointer; 246 struct map_lookup *physical_map; 247 struct list_head active_bg_list; 248 struct work_struct zone_finish_work; 249 struct extent_buffer *last_eb; 250 enum btrfs_block_group_size_class size_class; 251 }; 252 253 static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group) 254 { 255 return (block_group->start + block_group->length); 256 } 257 258 static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg) 259 { 260 lockdep_assert_held(&bg->lock); 261 262 return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0); 263 } 264 265 static inline bool btrfs_is_block_group_data_only( 266 struct btrfs_block_group *block_group) 267 { 268 /* 269 * In mixed mode the fragmentation is expected to be high, lowering the 270 * efficiency, so only proper data block groups are considered. 271 */ 272 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 273 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA); 274 } 275 276 #ifdef CONFIG_BTRFS_DEBUG 277 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group); 278 #endif 279 280 struct btrfs_block_group *btrfs_lookup_first_block_group( 281 struct btrfs_fs_info *info, u64 bytenr); 282 struct btrfs_block_group *btrfs_lookup_block_group( 283 struct btrfs_fs_info *info, u64 bytenr); 284 struct btrfs_block_group *btrfs_next_block_group( 285 struct btrfs_block_group *cache); 286 void btrfs_get_block_group(struct btrfs_block_group *cache); 287 void btrfs_put_block_group(struct btrfs_block_group *cache); 288 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 289 const u64 start); 290 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg); 291 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 292 u64 bytenr); 293 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg); 294 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg); 295 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 296 u64 num_bytes); 297 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait); 298 void btrfs_put_caching_control(struct btrfs_caching_control *ctl); 299 struct btrfs_caching_control *btrfs_get_caching_control( 300 struct btrfs_block_group *cache); 301 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, 302 u64 start, u64 end, u64 *total_added_ret); 303 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 304 struct btrfs_fs_info *fs_info, 305 const u64 chunk_offset); 306 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 307 u64 group_start, struct extent_map *em); 308 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); 309 void btrfs_mark_bg_unused(struct btrfs_block_group *bg); 310 void btrfs_reclaim_bgs_work(struct work_struct *work); 311 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info); 312 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg); 313 int btrfs_read_block_groups(struct btrfs_fs_info *info); 314 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 315 u64 type, 316 u64 chunk_offset, u64 size); 317 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans); 318 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 319 bool do_chunk_alloc); 320 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache); 321 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans); 322 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); 323 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans); 324 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 325 u64 bytenr, u64 num_bytes, bool alloc); 326 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 327 u64 ram_bytes, u64 num_bytes, int delalloc, 328 bool force_wrong_size_class); 329 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 330 u64 num_bytes, int delalloc); 331 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 332 enum btrfs_chunk_alloc_enum force); 333 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type); 334 void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type); 335 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 336 bool is_item_insertion); 337 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags); 338 void btrfs_put_block_group_cache(struct btrfs_fs_info *info); 339 int btrfs_free_block_groups(struct btrfs_fs_info *info); 340 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 341 u64 physical, u64 **logical, int *naddrs, int *stripe_len); 342 343 static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 344 { 345 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 346 } 347 348 static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 349 { 350 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 351 } 352 353 static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 354 { 355 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 356 } 357 358 static inline int btrfs_block_group_done(struct btrfs_block_group *cache) 359 { 360 smp_mb(); 361 return cache->cached == BTRFS_CACHE_FINISHED || 362 cache->cached == BTRFS_CACHE_ERROR; 363 } 364 365 void btrfs_freeze_block_group(struct btrfs_block_group *cache); 366 void btrfs_unfreeze_block_group(struct btrfs_block_group *cache); 367 368 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg); 369 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount); 370 371 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size); 372 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 373 enum btrfs_block_group_size_class size_class, 374 bool force_wrong_size_class); 375 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg); 376 377 #endif /* BTRFS_BLOCK_GROUP_H */ 378