1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef BTRFS_BLOCK_GROUP_H 4 #define BTRFS_BLOCK_GROUP_H 5 6 #include "free-space-cache.h" 7 8 enum btrfs_disk_cache_state { 9 BTRFS_DC_WRITTEN, 10 BTRFS_DC_ERROR, 11 BTRFS_DC_CLEAR, 12 BTRFS_DC_SETUP, 13 }; 14 15 /* 16 * This describes the state of the block_group for async discard. This is due 17 * to the two pass nature of it where extent discarding is prioritized over 18 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting 19 * between lists to prevent contention for discard state variables 20 * (eg. discard_cursor). 21 */ 22 enum btrfs_discard_state { 23 BTRFS_DISCARD_EXTENTS, 24 BTRFS_DISCARD_BITMAPS, 25 BTRFS_DISCARD_RESET_CURSOR, 26 }; 27 28 /* 29 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to 30 * only allocate a chunk if we really need one. 31 * 32 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few 33 * chunks already allocated. This is used as part of the clustering code to 34 * help make sure we have a good pool of storage to cluster in, without filling 35 * the FS with empty chunks 36 * 37 * CHUNK_ALLOC_FORCE means it must try to allocate one 38 * 39 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from 40 * find_free_extent() that also activaes the zone 41 */ 42 enum btrfs_chunk_alloc_enum { 43 CHUNK_ALLOC_NO_FORCE, 44 CHUNK_ALLOC_LIMITED, 45 CHUNK_ALLOC_FORCE, 46 CHUNK_ALLOC_FORCE_FOR_EXTENT, 47 }; 48 49 struct btrfs_caching_control { 50 struct list_head list; 51 struct mutex mutex; 52 wait_queue_head_t wait; 53 struct btrfs_work work; 54 struct btrfs_block_group *block_group; 55 u64 progress; 56 refcount_t count; 57 }; 58 59 /* Once caching_thread() finds this much free space, it will wake up waiters. */ 60 #define CACHING_CTL_WAKE_UP SZ_2M 61 62 struct btrfs_block_group { 63 struct btrfs_fs_info *fs_info; 64 struct inode *inode; 65 spinlock_t lock; 66 u64 start; 67 u64 length; 68 u64 pinned; 69 u64 reserved; 70 u64 used; 71 u64 delalloc_bytes; 72 u64 bytes_super; 73 u64 flags; 74 u64 cache_generation; 75 u64 global_root_id; 76 77 /* 78 * If the free space extent count exceeds this number, convert the block 79 * group to bitmaps. 80 */ 81 u32 bitmap_high_thresh; 82 83 /* 84 * If the free space extent count drops below this number, convert the 85 * block group back to extents. 86 */ 87 u32 bitmap_low_thresh; 88 89 /* 90 * It is just used for the delayed data space allocation because 91 * only the data space allocation and the relative metadata update 92 * can be done cross the transaction. 93 */ 94 struct rw_semaphore data_rwsem; 95 96 /* For raid56, this is a full stripe, without parity */ 97 unsigned long full_stripe_len; 98 99 unsigned int ro; 100 unsigned int iref:1; 101 unsigned int has_caching_ctl:1; 102 unsigned int removed:1; 103 unsigned int to_copy:1; 104 unsigned int relocating_repair:1; 105 unsigned int chunk_item_inserted:1; 106 unsigned int zone_is_active:1; 107 108 int disk_cache_state; 109 110 /* Cache tracking stuff */ 111 int cached; 112 struct btrfs_caching_control *caching_ctl; 113 u64 last_byte_to_unpin; 114 115 struct btrfs_space_info *space_info; 116 117 /* Free space cache stuff */ 118 struct btrfs_free_space_ctl *free_space_ctl; 119 120 /* Block group cache stuff */ 121 struct rb_node cache_node; 122 123 /* For block groups in the same raid type */ 124 struct list_head list; 125 126 refcount_t refs; 127 128 /* 129 * List of struct btrfs_free_clusters for this block group. 130 * Today it will only have one thing on it, but that may change 131 */ 132 struct list_head cluster_list; 133 134 /* For delayed block group creation or deletion of empty block groups */ 135 struct list_head bg_list; 136 137 /* For read-only block groups */ 138 struct list_head ro_list; 139 140 /* 141 * When non-zero it means the block group's logical address and its 142 * device extents can not be reused for future block group allocations 143 * until the counter goes down to 0. This is to prevent them from being 144 * reused while some task is still using the block group after it was 145 * deleted - we want to make sure they can only be reused for new block 146 * groups after that task is done with the deleted block group. 147 */ 148 atomic_t frozen; 149 150 /* For discard operations */ 151 struct list_head discard_list; 152 int discard_index; 153 u64 discard_eligible_time; 154 u64 discard_cursor; 155 enum btrfs_discard_state discard_state; 156 157 /* For dirty block groups */ 158 struct list_head dirty_list; 159 struct list_head io_list; 160 161 struct btrfs_io_ctl io_ctl; 162 163 /* 164 * Incremented when doing extent allocations and holding a read lock 165 * on the space_info's groups_sem semaphore. 166 * Decremented when an ordered extent that represents an IO against this 167 * block group's range is created (after it's added to its inode's 168 * root's list of ordered extents) or immediately after the allocation 169 * if it's a metadata extent or fallocate extent (for these cases we 170 * don't create ordered extents). 171 */ 172 atomic_t reservations; 173 174 /* 175 * Incremented while holding the spinlock *lock* by a task checking if 176 * it can perform a nocow write (incremented if the value for the *ro* 177 * field is 0). Decremented by such tasks once they create an ordered 178 * extent or before that if some error happens before reaching that step. 179 * This is to prevent races between block group relocation and nocow 180 * writes through direct IO. 181 */ 182 atomic_t nocow_writers; 183 184 /* Lock for free space tree operations. */ 185 struct mutex free_space_lock; 186 187 /* 188 * Does the block group need to be added to the free space tree? 189 * Protected by free_space_lock. 190 */ 191 int needs_free_space; 192 193 /* Flag indicating this block group is placed on a sequential zone */ 194 bool seq_zone; 195 196 /* 197 * Number of extents in this block group used for swap files. 198 * All accesses protected by the spinlock 'lock'. 199 */ 200 int swap_extents; 201 202 /* Record locked full stripes for RAID5/6 block group */ 203 struct btrfs_full_stripe_locks_tree full_stripe_locks_root; 204 205 /* 206 * Allocation offset for the block group to implement sequential 207 * allocation. This is used only on a zoned filesystem. 208 */ 209 u64 alloc_offset; 210 u64 zone_unusable; 211 u64 zone_capacity; 212 u64 meta_write_pointer; 213 struct map_lookup *physical_map; 214 struct list_head active_bg_list; 215 }; 216 217 static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group) 218 { 219 return (block_group->start + block_group->length); 220 } 221 222 static inline bool btrfs_is_block_group_data_only( 223 struct btrfs_block_group *block_group) 224 { 225 /* 226 * In mixed mode the fragmentation is expected to be high, lowering the 227 * efficiency, so only proper data block groups are considered. 228 */ 229 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 230 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA); 231 } 232 233 #ifdef CONFIG_BTRFS_DEBUG 234 static inline int btrfs_should_fragment_free_space( 235 struct btrfs_block_group *block_group) 236 { 237 struct btrfs_fs_info *fs_info = block_group->fs_info; 238 239 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 240 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 241 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 242 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 243 } 244 #endif 245 246 struct btrfs_block_group *btrfs_lookup_first_block_group( 247 struct btrfs_fs_info *info, u64 bytenr); 248 struct btrfs_block_group *btrfs_lookup_block_group( 249 struct btrfs_fs_info *info, u64 bytenr); 250 struct btrfs_block_group *btrfs_next_block_group( 251 struct btrfs_block_group *cache); 252 void btrfs_get_block_group(struct btrfs_block_group *cache); 253 void btrfs_put_block_group(struct btrfs_block_group *cache); 254 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 255 const u64 start); 256 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg); 257 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); 258 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); 259 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg); 260 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 261 u64 num_bytes); 262 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache); 263 int btrfs_cache_block_group(struct btrfs_block_group *cache, 264 int load_cache_only); 265 void btrfs_put_caching_control(struct btrfs_caching_control *ctl); 266 struct btrfs_caching_control *btrfs_get_caching_control( 267 struct btrfs_block_group *cache); 268 u64 add_new_free_space(struct btrfs_block_group *block_group, 269 u64 start, u64 end); 270 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 271 struct btrfs_fs_info *fs_info, 272 const u64 chunk_offset); 273 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 274 u64 group_start, struct extent_map *em); 275 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); 276 void btrfs_mark_bg_unused(struct btrfs_block_group *bg); 277 void btrfs_reclaim_bgs_work(struct work_struct *work); 278 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info); 279 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg); 280 int btrfs_read_block_groups(struct btrfs_fs_info *info); 281 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 282 u64 bytes_used, u64 type, 283 u64 chunk_offset, u64 size); 284 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans); 285 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 286 bool do_chunk_alloc); 287 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache); 288 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans); 289 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); 290 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans); 291 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 292 u64 bytenr, u64 num_bytes, bool alloc); 293 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 294 u64 ram_bytes, u64 num_bytes, int delalloc); 295 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 296 u64 num_bytes, int delalloc); 297 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 298 enum btrfs_chunk_alloc_enum force); 299 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type); 300 void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type); 301 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 302 bool is_item_insertion); 303 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags); 304 void btrfs_put_block_group_cache(struct btrfs_fs_info *info); 305 int btrfs_free_block_groups(struct btrfs_fs_info *info); 306 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 307 struct btrfs_caching_control *caching_ctl); 308 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 309 struct block_device *bdev, u64 physical, u64 **logical, 310 int *naddrs, int *stripe_len); 311 312 static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 313 { 314 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 315 } 316 317 static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 318 { 319 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 320 } 321 322 static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 323 { 324 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 325 } 326 327 static inline int btrfs_block_group_done(struct btrfs_block_group *cache) 328 { 329 smp_mb(); 330 return cache->cached == BTRFS_CACHE_FINISHED || 331 cache->cached == BTRFS_CACHE_ERROR; 332 } 333 334 void btrfs_freeze_block_group(struct btrfs_block_group *cache); 335 void btrfs_unfreeze_block_group(struct btrfs_block_group *cache); 336 337 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg); 338 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount); 339 340 #endif /* BTRFS_BLOCK_GROUP_H */ 341