xref: /openbmc/linux/fs/btrfs/block-group.c (revision fe260f5e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	/* Select the highest-redundancy RAID level. */
99 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 		allowed = BTRFS_BLOCK_GROUP_RAID6;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 		allowed = BTRFS_BLOCK_GROUP_RAID5;
107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 		allowed = BTRFS_BLOCK_GROUP_RAID10;
109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 		allowed = BTRFS_BLOCK_GROUP_RAID1;
111 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 		allowed = BTRFS_BLOCK_GROUP_DUP;
113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118 	return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 	unsigned seq;
124 	u64 flags;
125 
126 	do {
127 		flags = orig_flags;
128 		seq = read_seqbegin(&fs_info->profiles_lock);
129 
130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
131 			flags |= fs_info->avail_data_alloc_bits;
132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 			flags |= fs_info->avail_system_alloc_bits;
134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 			flags |= fs_info->avail_metadata_alloc_bits;
136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138 	return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 	refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 	if (refcount_dec_and_test(&cache->refs)) {
149 		WARN_ON(cache->pinned > 0);
150 		/*
151 		 * If there was a failure to cleanup a log tree, very likely due
152 		 * to an IO failure on a writeback attempt of one or more of its
153 		 * extent buffers, we could not do proper (and cheap) unaccounting
154 		 * of their reserved space, so don't warn on reserved > 0 in that
155 		 * case.
156 		 */
157 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 			WARN_ON(cache->reserved > 0);
160 
161 		/*
162 		 * A block_group shouldn't be on the discard_list anymore.
163 		 * Remove the block_group from the discard_list to prevent us
164 		 * from causing a panic due to NULL pointer dereference.
165 		 */
166 		if (WARN_ON(!list_empty(&cache->discard_list)))
167 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 						  cache);
169 
170 		kfree(cache->free_space_ctl);
171 		kfree(cache->physical_map);
172 		kfree(cache);
173 	}
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 				       struct btrfs_block_group *block_group)
181 {
182 	struct rb_node **p;
183 	struct rb_node *parent = NULL;
184 	struct btrfs_block_group *cache;
185 	bool leftmost = true;
186 
187 	ASSERT(block_group->length != 0);
188 
189 	write_lock(&info->block_group_cache_lock);
190 	p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192 	while (*p) {
193 		parent = *p;
194 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 		if (block_group->start < cache->start) {
196 			p = &(*p)->rb_left;
197 		} else if (block_group->start > cache->start) {
198 			p = &(*p)->rb_right;
199 			leftmost = false;
200 		} else {
201 			write_unlock(&info->block_group_cache_lock);
202 			return -EEXIST;
203 		}
204 	}
205 
206 	rb_link_node(&block_group->cache_node, parent, p);
207 	rb_insert_color_cached(&block_group->cache_node,
208 			       &info->block_group_cache_tree, leftmost);
209 
210 	write_unlock(&info->block_group_cache_lock);
211 
212 	return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 		struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 	struct btrfs_block_group *cache, *ret = NULL;
223 	struct rb_node *n;
224 	u64 end, start;
225 
226 	read_lock(&info->block_group_cache_lock);
227 	n = info->block_group_cache_tree.rb_root.rb_node;
228 
229 	while (n) {
230 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 		end = cache->start + cache->length - 1;
232 		start = cache->start;
233 
234 		if (bytenr < start) {
235 			if (!contains && (!ret || start < ret->start))
236 				ret = cache;
237 			n = n->rb_left;
238 		} else if (bytenr > start) {
239 			if (contains && bytenr <= end) {
240 				ret = cache;
241 				break;
242 			}
243 			n = n->rb_right;
244 		} else {
245 			ret = cache;
246 			break;
247 		}
248 	}
249 	if (ret)
250 		btrfs_get_block_group(ret);
251 	read_unlock(&info->block_group_cache_lock);
252 
253 	return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 		struct btrfs_fs_info *info, u64 bytenr)
261 {
262 	return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 		struct btrfs_fs_info *info, u64 bytenr)
270 {
271 	return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275 		struct btrfs_block_group *cache)
276 {
277 	struct btrfs_fs_info *fs_info = cache->fs_info;
278 	struct rb_node *node;
279 
280 	read_lock(&fs_info->block_group_cache_lock);
281 
282 	/* If our block group was removed, we need a full search. */
283 	if (RB_EMPTY_NODE(&cache->cache_node)) {
284 		const u64 next_bytenr = cache->start + cache->length;
285 
286 		read_unlock(&fs_info->block_group_cache_lock);
287 		btrfs_put_block_group(cache);
288 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 	}
290 	node = rb_next(&cache->cache_node);
291 	btrfs_put_block_group(cache);
292 	if (node) {
293 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 		btrfs_get_block_group(cache);
295 	} else
296 		cache = NULL;
297 	read_unlock(&fs_info->block_group_cache_lock);
298 	return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 						  u64 bytenr)
318 {
319 	struct btrfs_block_group *bg;
320 	bool can_nocow = true;
321 
322 	bg = btrfs_lookup_block_group(fs_info, bytenr);
323 	if (!bg)
324 		return NULL;
325 
326 	spin_lock(&bg->lock);
327 	if (bg->ro)
328 		can_nocow = false;
329 	else
330 		atomic_inc(&bg->nocow_writers);
331 	spin_unlock(&bg->lock);
332 
333 	if (!can_nocow) {
334 		btrfs_put_block_group(bg);
335 		return NULL;
336 	}
337 
338 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339 	return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 	if (atomic_dec_and_test(&bg->nocow_writers))
356 		wake_up_var(&bg->nocow_writers);
357 
358 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 	btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 					const u64 start)
369 {
370 	struct btrfs_block_group *bg;
371 
372 	bg = btrfs_lookup_block_group(fs_info, start);
373 	ASSERT(bg);
374 	if (atomic_dec_and_test(&bg->reservations))
375 		wake_up_var(&bg->reservations);
376 	btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 	struct btrfs_space_info *space_info = bg->space_info;
382 
383 	ASSERT(bg->ro);
384 
385 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return;
387 
388 	/*
389 	 * Our block group is read only but before we set it to read only,
390 	 * some task might have had allocated an extent from it already, but it
391 	 * has not yet created a respective ordered extent (and added it to a
392 	 * root's list of ordered extents).
393 	 * Therefore wait for any task currently allocating extents, since the
394 	 * block group's reservations counter is incremented while a read lock
395 	 * on the groups' semaphore is held and decremented after releasing
396 	 * the read access on that semaphore and creating the ordered extent.
397 	 */
398 	down_write(&space_info->groups_sem);
399 	up_write(&space_info->groups_sem);
400 
401 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 		struct btrfs_block_group *cache)
406 {
407 	struct btrfs_caching_control *ctl;
408 
409 	spin_lock(&cache->lock);
410 	if (!cache->caching_ctl) {
411 		spin_unlock(&cache->lock);
412 		return NULL;
413 	}
414 
415 	ctl = cache->caching_ctl;
416 	refcount_inc(&ctl->count);
417 	spin_unlock(&cache->lock);
418 	return ctl;
419 }
420 
421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 	if (refcount_dec_and_test(&ctl->count))
424 		kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 					   u64 num_bytes)
442 {
443 	struct btrfs_caching_control *caching_ctl;
444 
445 	caching_ctl = btrfs_get_caching_control(cache);
446 	if (!caching_ctl)
447 		return;
448 
449 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
450 		   (cache->free_space_ctl->free_space >= num_bytes));
451 
452 	btrfs_put_caching_control(caching_ctl);
453 }
454 
455 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
456 				       struct btrfs_caching_control *caching_ctl)
457 {
458 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
459 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
460 }
461 
462 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
463 {
464 	struct btrfs_caching_control *caching_ctl;
465 	int ret;
466 
467 	caching_ctl = btrfs_get_caching_control(cache);
468 	if (!caching_ctl)
469 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
470 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
471 	btrfs_put_caching_control(caching_ctl);
472 	return ret;
473 }
474 
475 #ifdef CONFIG_BTRFS_DEBUG
476 static void fragment_free_space(struct btrfs_block_group *block_group)
477 {
478 	struct btrfs_fs_info *fs_info = block_group->fs_info;
479 	u64 start = block_group->start;
480 	u64 len = block_group->length;
481 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
482 		fs_info->nodesize : fs_info->sectorsize;
483 	u64 step = chunk << 1;
484 
485 	while (len > chunk) {
486 		btrfs_remove_free_space(block_group, start, chunk);
487 		start += step;
488 		if (len < step)
489 			len = 0;
490 		else
491 			len -= step;
492 	}
493 }
494 #endif
495 
496 /*
497  * This is only called by btrfs_cache_block_group, since we could have freed
498  * extents we need to check the pinned_extents for any extents that can't be
499  * used yet since their free space will be released as soon as the transaction
500  * commits.
501  */
502 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
503 {
504 	struct btrfs_fs_info *info = block_group->fs_info;
505 	u64 extent_start, extent_end, size, total_added = 0;
506 	int ret;
507 
508 	while (start < end) {
509 		ret = find_first_extent_bit(&info->excluded_extents, start,
510 					    &extent_start, &extent_end,
511 					    EXTENT_DIRTY | EXTENT_UPTODATE,
512 					    NULL);
513 		if (ret)
514 			break;
515 
516 		if (extent_start <= start) {
517 			start = extent_end + 1;
518 		} else if (extent_start > start && extent_start < end) {
519 			size = extent_start - start;
520 			total_added += size;
521 			ret = btrfs_add_free_space_async_trimmed(block_group,
522 								 start, size);
523 			BUG_ON(ret); /* -ENOMEM or logic error */
524 			start = extent_end + 1;
525 		} else {
526 			break;
527 		}
528 	}
529 
530 	if (start < end) {
531 		size = end - start;
532 		total_added += size;
533 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
534 							 size);
535 		BUG_ON(ret); /* -ENOMEM or logic error */
536 	}
537 
538 	return total_added;
539 }
540 
541 /*
542  * Get an arbitrary extent item index / max_index through the block group
543  *
544  * @block_group   the block group to sample from
545  * @index:        the integral step through the block group to grab from
546  * @max_index:    the granularity of the sampling
547  * @key:          return value parameter for the item we find
548  *
549  * Pre-conditions on indices:
550  * 0 <= index <= max_index
551  * 0 < max_index
552  *
553  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
554  * error code on error.
555  */
556 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
557 					  struct btrfs_block_group *block_group,
558 					  int index, int max_index,
559 					  struct btrfs_key *found_key)
560 {
561 	struct btrfs_fs_info *fs_info = block_group->fs_info;
562 	struct btrfs_root *extent_root;
563 	u64 search_offset;
564 	u64 search_end = block_group->start + block_group->length;
565 	struct btrfs_path *path;
566 	struct btrfs_key search_key;
567 	int ret = 0;
568 
569 	ASSERT(index >= 0);
570 	ASSERT(index <= max_index);
571 	ASSERT(max_index > 0);
572 	lockdep_assert_held(&caching_ctl->mutex);
573 	lockdep_assert_held_read(&fs_info->commit_root_sem);
574 
575 	path = btrfs_alloc_path();
576 	if (!path)
577 		return -ENOMEM;
578 
579 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
580 						       BTRFS_SUPER_INFO_OFFSET));
581 
582 	path->skip_locking = 1;
583 	path->search_commit_root = 1;
584 	path->reada = READA_FORWARD;
585 
586 	search_offset = index * div_u64(block_group->length, max_index);
587 	search_key.objectid = block_group->start + search_offset;
588 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
589 	search_key.offset = 0;
590 
591 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
592 		/* Success; sampled an extent item in the block group */
593 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
594 		    found_key->objectid >= block_group->start &&
595 		    found_key->objectid + found_key->offset <= search_end)
596 			break;
597 
598 		/* We can't possibly find a valid extent item anymore */
599 		if (found_key->objectid >= search_end) {
600 			ret = 1;
601 			break;
602 		}
603 	}
604 
605 	lockdep_assert_held(&caching_ctl->mutex);
606 	lockdep_assert_held_read(&fs_info->commit_root_sem);
607 	btrfs_free_path(path);
608 	return ret;
609 }
610 
611 /*
612  * Best effort attempt to compute a block group's size class while caching it.
613  *
614  * @block_group: the block group we are caching
615  *
616  * We cannot infer the size class while adding free space extents, because that
617  * logic doesn't care about contiguous file extents (it doesn't differentiate
618  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
619  * file extent items. Reading all of them is quite wasteful, because usually
620  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
621  * them at even steps through the block group and pick the smallest size class
622  * we see. Since size class is best effort, and not guaranteed in general,
623  * inaccuracy is acceptable.
624  *
625  * To be more explicit about why this algorithm makes sense:
626  *
627  * If we are caching in a block group from disk, then there are three major cases
628  * to consider:
629  * 1. the block group is well behaved and all extents in it are the same size
630  *    class.
631  * 2. the block group is mostly one size class with rare exceptions for last
632  *    ditch allocations
633  * 3. the block group was populated before size classes and can have a totally
634  *    arbitrary mix of size classes.
635  *
636  * In case 1, looking at any extent in the block group will yield the correct
637  * result. For the mixed cases, taking the minimum size class seems like a good
638  * approximation, since gaps from frees will be usable to the size class. For
639  * 2., a small handful of file extents is likely to yield the right answer. For
640  * 3, we can either read every file extent, or admit that this is best effort
641  * anyway and try to stay fast.
642  *
643  * Returns: 0 on success, negative error code on error.
644  */
645 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
646 				       struct btrfs_block_group *block_group)
647 {
648 	struct btrfs_fs_info *fs_info = block_group->fs_info;
649 	struct btrfs_key key;
650 	int i;
651 	u64 min_size = block_group->length;
652 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
653 	int ret;
654 
655 	if (!btrfs_block_group_should_use_size_class(block_group))
656 		return 0;
657 
658 	lockdep_assert_held(&caching_ctl->mutex);
659 	lockdep_assert_held_read(&fs_info->commit_root_sem);
660 	for (i = 0; i < 5; ++i) {
661 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
662 		if (ret < 0)
663 			goto out;
664 		if (ret > 0)
665 			continue;
666 		min_size = min_t(u64, min_size, key.offset);
667 		size_class = btrfs_calc_block_group_size_class(min_size);
668 	}
669 	if (size_class != BTRFS_BG_SZ_NONE) {
670 		spin_lock(&block_group->lock);
671 		block_group->size_class = size_class;
672 		spin_unlock(&block_group->lock);
673 	}
674 out:
675 	return ret;
676 }
677 
678 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
679 {
680 	struct btrfs_block_group *block_group = caching_ctl->block_group;
681 	struct btrfs_fs_info *fs_info = block_group->fs_info;
682 	struct btrfs_root *extent_root;
683 	struct btrfs_path *path;
684 	struct extent_buffer *leaf;
685 	struct btrfs_key key;
686 	u64 total_found = 0;
687 	u64 last = 0;
688 	u32 nritems;
689 	int ret;
690 	bool wakeup = true;
691 
692 	path = btrfs_alloc_path();
693 	if (!path)
694 		return -ENOMEM;
695 
696 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
697 	extent_root = btrfs_extent_root(fs_info, last);
698 
699 #ifdef CONFIG_BTRFS_DEBUG
700 	/*
701 	 * If we're fragmenting we don't want to make anybody think we can
702 	 * allocate from this block group until we've had a chance to fragment
703 	 * the free space.
704 	 */
705 	if (btrfs_should_fragment_free_space(block_group))
706 		wakeup = false;
707 #endif
708 	/*
709 	 * We don't want to deadlock with somebody trying to allocate a new
710 	 * extent for the extent root while also trying to search the extent
711 	 * root to add free space.  So we skip locking and search the commit
712 	 * root, since its read-only
713 	 */
714 	path->skip_locking = 1;
715 	path->search_commit_root = 1;
716 	path->reada = READA_FORWARD;
717 
718 	key.objectid = last;
719 	key.offset = 0;
720 	key.type = BTRFS_EXTENT_ITEM_KEY;
721 
722 next:
723 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
724 	if (ret < 0)
725 		goto out;
726 
727 	leaf = path->nodes[0];
728 	nritems = btrfs_header_nritems(leaf);
729 
730 	while (1) {
731 		if (btrfs_fs_closing(fs_info) > 1) {
732 			last = (u64)-1;
733 			break;
734 		}
735 
736 		if (path->slots[0] < nritems) {
737 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
738 		} else {
739 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
740 			if (ret)
741 				break;
742 
743 			if (need_resched() ||
744 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
745 				btrfs_release_path(path);
746 				up_read(&fs_info->commit_root_sem);
747 				mutex_unlock(&caching_ctl->mutex);
748 				cond_resched();
749 				mutex_lock(&caching_ctl->mutex);
750 				down_read(&fs_info->commit_root_sem);
751 				goto next;
752 			}
753 
754 			ret = btrfs_next_leaf(extent_root, path);
755 			if (ret < 0)
756 				goto out;
757 			if (ret)
758 				break;
759 			leaf = path->nodes[0];
760 			nritems = btrfs_header_nritems(leaf);
761 			continue;
762 		}
763 
764 		if (key.objectid < last) {
765 			key.objectid = last;
766 			key.offset = 0;
767 			key.type = BTRFS_EXTENT_ITEM_KEY;
768 			btrfs_release_path(path);
769 			goto next;
770 		}
771 
772 		if (key.objectid < block_group->start) {
773 			path->slots[0]++;
774 			continue;
775 		}
776 
777 		if (key.objectid >= block_group->start + block_group->length)
778 			break;
779 
780 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
781 		    key.type == BTRFS_METADATA_ITEM_KEY) {
782 			total_found += add_new_free_space(block_group, last,
783 							  key.objectid);
784 			if (key.type == BTRFS_METADATA_ITEM_KEY)
785 				last = key.objectid +
786 					fs_info->nodesize;
787 			else
788 				last = key.objectid + key.offset;
789 
790 			if (total_found > CACHING_CTL_WAKE_UP) {
791 				total_found = 0;
792 				if (wakeup)
793 					wake_up(&caching_ctl->wait);
794 			}
795 		}
796 		path->slots[0]++;
797 	}
798 	ret = 0;
799 
800 	total_found += add_new_free_space(block_group, last,
801 				block_group->start + block_group->length);
802 
803 out:
804 	btrfs_free_path(path);
805 	return ret;
806 }
807 
808 static noinline void caching_thread(struct btrfs_work *work)
809 {
810 	struct btrfs_block_group *block_group;
811 	struct btrfs_fs_info *fs_info;
812 	struct btrfs_caching_control *caching_ctl;
813 	int ret;
814 
815 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
816 	block_group = caching_ctl->block_group;
817 	fs_info = block_group->fs_info;
818 
819 	mutex_lock(&caching_ctl->mutex);
820 	down_read(&fs_info->commit_root_sem);
821 
822 	load_block_group_size_class(caching_ctl, block_group);
823 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
824 		ret = load_free_space_cache(block_group);
825 		if (ret == 1) {
826 			ret = 0;
827 			goto done;
828 		}
829 
830 		/*
831 		 * We failed to load the space cache, set ourselves to
832 		 * CACHE_STARTED and carry on.
833 		 */
834 		spin_lock(&block_group->lock);
835 		block_group->cached = BTRFS_CACHE_STARTED;
836 		spin_unlock(&block_group->lock);
837 		wake_up(&caching_ctl->wait);
838 	}
839 
840 	/*
841 	 * If we are in the transaction that populated the free space tree we
842 	 * can't actually cache from the free space tree as our commit root and
843 	 * real root are the same, so we could change the contents of the blocks
844 	 * while caching.  Instead do the slow caching in this case, and after
845 	 * the transaction has committed we will be safe.
846 	 */
847 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
848 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
849 		ret = load_free_space_tree(caching_ctl);
850 	else
851 		ret = load_extent_tree_free(caching_ctl);
852 done:
853 	spin_lock(&block_group->lock);
854 	block_group->caching_ctl = NULL;
855 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
856 	spin_unlock(&block_group->lock);
857 
858 #ifdef CONFIG_BTRFS_DEBUG
859 	if (btrfs_should_fragment_free_space(block_group)) {
860 		u64 bytes_used;
861 
862 		spin_lock(&block_group->space_info->lock);
863 		spin_lock(&block_group->lock);
864 		bytes_used = block_group->length - block_group->used;
865 		block_group->space_info->bytes_used += bytes_used >> 1;
866 		spin_unlock(&block_group->lock);
867 		spin_unlock(&block_group->space_info->lock);
868 		fragment_free_space(block_group);
869 	}
870 #endif
871 
872 	up_read(&fs_info->commit_root_sem);
873 	btrfs_free_excluded_extents(block_group);
874 	mutex_unlock(&caching_ctl->mutex);
875 
876 	wake_up(&caching_ctl->wait);
877 
878 	btrfs_put_caching_control(caching_ctl);
879 	btrfs_put_block_group(block_group);
880 }
881 
882 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
883 {
884 	struct btrfs_fs_info *fs_info = cache->fs_info;
885 	struct btrfs_caching_control *caching_ctl = NULL;
886 	int ret = 0;
887 
888 	/* Allocator for zoned filesystems does not use the cache at all */
889 	if (btrfs_is_zoned(fs_info))
890 		return 0;
891 
892 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
893 	if (!caching_ctl)
894 		return -ENOMEM;
895 
896 	INIT_LIST_HEAD(&caching_ctl->list);
897 	mutex_init(&caching_ctl->mutex);
898 	init_waitqueue_head(&caching_ctl->wait);
899 	caching_ctl->block_group = cache;
900 	refcount_set(&caching_ctl->count, 2);
901 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
902 
903 	spin_lock(&cache->lock);
904 	if (cache->cached != BTRFS_CACHE_NO) {
905 		kfree(caching_ctl);
906 
907 		caching_ctl = cache->caching_ctl;
908 		if (caching_ctl)
909 			refcount_inc(&caching_ctl->count);
910 		spin_unlock(&cache->lock);
911 		goto out;
912 	}
913 	WARN_ON(cache->caching_ctl);
914 	cache->caching_ctl = caching_ctl;
915 	cache->cached = BTRFS_CACHE_STARTED;
916 	spin_unlock(&cache->lock);
917 
918 	write_lock(&fs_info->block_group_cache_lock);
919 	refcount_inc(&caching_ctl->count);
920 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
921 	write_unlock(&fs_info->block_group_cache_lock);
922 
923 	btrfs_get_block_group(cache);
924 
925 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
926 out:
927 	if (wait && caching_ctl)
928 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
929 	if (caching_ctl)
930 		btrfs_put_caching_control(caching_ctl);
931 
932 	return ret;
933 }
934 
935 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
936 {
937 	u64 extra_flags = chunk_to_extended(flags) &
938 				BTRFS_EXTENDED_PROFILE_MASK;
939 
940 	write_seqlock(&fs_info->profiles_lock);
941 	if (flags & BTRFS_BLOCK_GROUP_DATA)
942 		fs_info->avail_data_alloc_bits &= ~extra_flags;
943 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
944 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
945 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
946 		fs_info->avail_system_alloc_bits &= ~extra_flags;
947 	write_sequnlock(&fs_info->profiles_lock);
948 }
949 
950 /*
951  * Clear incompat bits for the following feature(s):
952  *
953  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
954  *            in the whole filesystem
955  *
956  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
957  */
958 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
959 {
960 	bool found_raid56 = false;
961 	bool found_raid1c34 = false;
962 
963 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
964 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
965 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
966 		struct list_head *head = &fs_info->space_info;
967 		struct btrfs_space_info *sinfo;
968 
969 		list_for_each_entry_rcu(sinfo, head, list) {
970 			down_read(&sinfo->groups_sem);
971 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
972 				found_raid56 = true;
973 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
974 				found_raid56 = true;
975 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
976 				found_raid1c34 = true;
977 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
978 				found_raid1c34 = true;
979 			up_read(&sinfo->groups_sem);
980 		}
981 		if (!found_raid56)
982 			btrfs_clear_fs_incompat(fs_info, RAID56);
983 		if (!found_raid1c34)
984 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
985 	}
986 }
987 
988 static int remove_block_group_item(struct btrfs_trans_handle *trans,
989 				   struct btrfs_path *path,
990 				   struct btrfs_block_group *block_group)
991 {
992 	struct btrfs_fs_info *fs_info = trans->fs_info;
993 	struct btrfs_root *root;
994 	struct btrfs_key key;
995 	int ret;
996 
997 	root = btrfs_block_group_root(fs_info);
998 	key.objectid = block_group->start;
999 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1000 	key.offset = block_group->length;
1001 
1002 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1003 	if (ret > 0)
1004 		ret = -ENOENT;
1005 	if (ret < 0)
1006 		return ret;
1007 
1008 	ret = btrfs_del_item(trans, root, path);
1009 	return ret;
1010 }
1011 
1012 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1013 			     u64 group_start, struct extent_map *em)
1014 {
1015 	struct btrfs_fs_info *fs_info = trans->fs_info;
1016 	struct btrfs_path *path;
1017 	struct btrfs_block_group *block_group;
1018 	struct btrfs_free_cluster *cluster;
1019 	struct inode *inode;
1020 	struct kobject *kobj = NULL;
1021 	int ret;
1022 	int index;
1023 	int factor;
1024 	struct btrfs_caching_control *caching_ctl = NULL;
1025 	bool remove_em;
1026 	bool remove_rsv = false;
1027 
1028 	block_group = btrfs_lookup_block_group(fs_info, group_start);
1029 	BUG_ON(!block_group);
1030 	BUG_ON(!block_group->ro);
1031 
1032 	trace_btrfs_remove_block_group(block_group);
1033 	/*
1034 	 * Free the reserved super bytes from this block group before
1035 	 * remove it.
1036 	 */
1037 	btrfs_free_excluded_extents(block_group);
1038 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1039 				  block_group->length);
1040 
1041 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1042 	factor = btrfs_bg_type_to_factor(block_group->flags);
1043 
1044 	/* make sure this block group isn't part of an allocation cluster */
1045 	cluster = &fs_info->data_alloc_cluster;
1046 	spin_lock(&cluster->refill_lock);
1047 	btrfs_return_cluster_to_free_space(block_group, cluster);
1048 	spin_unlock(&cluster->refill_lock);
1049 
1050 	/*
1051 	 * make sure this block group isn't part of a metadata
1052 	 * allocation cluster
1053 	 */
1054 	cluster = &fs_info->meta_alloc_cluster;
1055 	spin_lock(&cluster->refill_lock);
1056 	btrfs_return_cluster_to_free_space(block_group, cluster);
1057 	spin_unlock(&cluster->refill_lock);
1058 
1059 	btrfs_clear_treelog_bg(block_group);
1060 	btrfs_clear_data_reloc_bg(block_group);
1061 
1062 	path = btrfs_alloc_path();
1063 	if (!path) {
1064 		ret = -ENOMEM;
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * get the inode first so any iput calls done for the io_list
1070 	 * aren't the final iput (no unlinks allowed now)
1071 	 */
1072 	inode = lookup_free_space_inode(block_group, path);
1073 
1074 	mutex_lock(&trans->transaction->cache_write_mutex);
1075 	/*
1076 	 * Make sure our free space cache IO is done before removing the
1077 	 * free space inode
1078 	 */
1079 	spin_lock(&trans->transaction->dirty_bgs_lock);
1080 	if (!list_empty(&block_group->io_list)) {
1081 		list_del_init(&block_group->io_list);
1082 
1083 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1084 
1085 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1086 		btrfs_wait_cache_io(trans, block_group, path);
1087 		btrfs_put_block_group(block_group);
1088 		spin_lock(&trans->transaction->dirty_bgs_lock);
1089 	}
1090 
1091 	if (!list_empty(&block_group->dirty_list)) {
1092 		list_del_init(&block_group->dirty_list);
1093 		remove_rsv = true;
1094 		btrfs_put_block_group(block_group);
1095 	}
1096 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1097 	mutex_unlock(&trans->transaction->cache_write_mutex);
1098 
1099 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1100 	if (ret)
1101 		goto out;
1102 
1103 	write_lock(&fs_info->block_group_cache_lock);
1104 	rb_erase_cached(&block_group->cache_node,
1105 			&fs_info->block_group_cache_tree);
1106 	RB_CLEAR_NODE(&block_group->cache_node);
1107 
1108 	/* Once for the block groups rbtree */
1109 	btrfs_put_block_group(block_group);
1110 
1111 	write_unlock(&fs_info->block_group_cache_lock);
1112 
1113 	down_write(&block_group->space_info->groups_sem);
1114 	/*
1115 	 * we must use list_del_init so people can check to see if they
1116 	 * are still on the list after taking the semaphore
1117 	 */
1118 	list_del_init(&block_group->list);
1119 	if (list_empty(&block_group->space_info->block_groups[index])) {
1120 		kobj = block_group->space_info->block_group_kobjs[index];
1121 		block_group->space_info->block_group_kobjs[index] = NULL;
1122 		clear_avail_alloc_bits(fs_info, block_group->flags);
1123 	}
1124 	up_write(&block_group->space_info->groups_sem);
1125 	clear_incompat_bg_bits(fs_info, block_group->flags);
1126 	if (kobj) {
1127 		kobject_del(kobj);
1128 		kobject_put(kobj);
1129 	}
1130 
1131 	if (block_group->cached == BTRFS_CACHE_STARTED)
1132 		btrfs_wait_block_group_cache_done(block_group);
1133 
1134 	write_lock(&fs_info->block_group_cache_lock);
1135 	caching_ctl = btrfs_get_caching_control(block_group);
1136 	if (!caching_ctl) {
1137 		struct btrfs_caching_control *ctl;
1138 
1139 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1140 			if (ctl->block_group == block_group) {
1141 				caching_ctl = ctl;
1142 				refcount_inc(&caching_ctl->count);
1143 				break;
1144 			}
1145 		}
1146 	}
1147 	if (caching_ctl)
1148 		list_del_init(&caching_ctl->list);
1149 	write_unlock(&fs_info->block_group_cache_lock);
1150 
1151 	if (caching_ctl) {
1152 		/* Once for the caching bgs list and once for us. */
1153 		btrfs_put_caching_control(caching_ctl);
1154 		btrfs_put_caching_control(caching_ctl);
1155 	}
1156 
1157 	spin_lock(&trans->transaction->dirty_bgs_lock);
1158 	WARN_ON(!list_empty(&block_group->dirty_list));
1159 	WARN_ON(!list_empty(&block_group->io_list));
1160 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1161 
1162 	btrfs_remove_free_space_cache(block_group);
1163 
1164 	spin_lock(&block_group->space_info->lock);
1165 	list_del_init(&block_group->ro_list);
1166 
1167 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1168 		WARN_ON(block_group->space_info->total_bytes
1169 			< block_group->length);
1170 		WARN_ON(block_group->space_info->bytes_readonly
1171 			< block_group->length - block_group->zone_unusable);
1172 		WARN_ON(block_group->space_info->bytes_zone_unusable
1173 			< block_group->zone_unusable);
1174 		WARN_ON(block_group->space_info->disk_total
1175 			< block_group->length * factor);
1176 	}
1177 	block_group->space_info->total_bytes -= block_group->length;
1178 	block_group->space_info->bytes_readonly -=
1179 		(block_group->length - block_group->zone_unusable);
1180 	block_group->space_info->bytes_zone_unusable -=
1181 		block_group->zone_unusable;
1182 	block_group->space_info->disk_total -= block_group->length * factor;
1183 
1184 	spin_unlock(&block_group->space_info->lock);
1185 
1186 	/*
1187 	 * Remove the free space for the block group from the free space tree
1188 	 * and the block group's item from the extent tree before marking the
1189 	 * block group as removed. This is to prevent races with tasks that
1190 	 * freeze and unfreeze a block group, this task and another task
1191 	 * allocating a new block group - the unfreeze task ends up removing
1192 	 * the block group's extent map before the task calling this function
1193 	 * deletes the block group item from the extent tree, allowing for
1194 	 * another task to attempt to create another block group with the same
1195 	 * item key (and failing with -EEXIST and a transaction abort).
1196 	 */
1197 	ret = remove_block_group_free_space(trans, block_group);
1198 	if (ret)
1199 		goto out;
1200 
1201 	ret = remove_block_group_item(trans, path, block_group);
1202 	if (ret < 0)
1203 		goto out;
1204 
1205 	spin_lock(&block_group->lock);
1206 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1207 
1208 	/*
1209 	 * At this point trimming or scrub can't start on this block group,
1210 	 * because we removed the block group from the rbtree
1211 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1212 	 * even if someone already got this block group before we removed it
1213 	 * from the rbtree, they have already incremented block_group->frozen -
1214 	 * if they didn't, for the trimming case they won't find any free space
1215 	 * entries because we already removed them all when we called
1216 	 * btrfs_remove_free_space_cache().
1217 	 *
1218 	 * And we must not remove the extent map from the fs_info->mapping_tree
1219 	 * to prevent the same logical address range and physical device space
1220 	 * ranges from being reused for a new block group. This is needed to
1221 	 * avoid races with trimming and scrub.
1222 	 *
1223 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1224 	 * completely transactionless, so while it is trimming a range the
1225 	 * currently running transaction might finish and a new one start,
1226 	 * allowing for new block groups to be created that can reuse the same
1227 	 * physical device locations unless we take this special care.
1228 	 *
1229 	 * There may also be an implicit trim operation if the file system
1230 	 * is mounted with -odiscard. The same protections must remain
1231 	 * in place until the extents have been discarded completely when
1232 	 * the transaction commit has completed.
1233 	 */
1234 	remove_em = (atomic_read(&block_group->frozen) == 0);
1235 	spin_unlock(&block_group->lock);
1236 
1237 	if (remove_em) {
1238 		struct extent_map_tree *em_tree;
1239 
1240 		em_tree = &fs_info->mapping_tree;
1241 		write_lock(&em_tree->lock);
1242 		remove_extent_mapping(em_tree, em);
1243 		write_unlock(&em_tree->lock);
1244 		/* once for the tree */
1245 		free_extent_map(em);
1246 	}
1247 
1248 out:
1249 	/* Once for the lookup reference */
1250 	btrfs_put_block_group(block_group);
1251 	if (remove_rsv)
1252 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1253 	btrfs_free_path(path);
1254 	return ret;
1255 }
1256 
1257 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1258 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1259 {
1260 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1261 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1262 	struct extent_map *em;
1263 	struct map_lookup *map;
1264 	unsigned int num_items;
1265 
1266 	read_lock(&em_tree->lock);
1267 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1268 	read_unlock(&em_tree->lock);
1269 	ASSERT(em && em->start == chunk_offset);
1270 
1271 	/*
1272 	 * We need to reserve 3 + N units from the metadata space info in order
1273 	 * to remove a block group (done at btrfs_remove_chunk() and at
1274 	 * btrfs_remove_block_group()), which are used for:
1275 	 *
1276 	 * 1 unit for adding the free space inode's orphan (located in the tree
1277 	 * of tree roots).
1278 	 * 1 unit for deleting the block group item (located in the extent
1279 	 * tree).
1280 	 * 1 unit for deleting the free space item (located in tree of tree
1281 	 * roots).
1282 	 * N units for deleting N device extent items corresponding to each
1283 	 * stripe (located in the device tree).
1284 	 *
1285 	 * In order to remove a block group we also need to reserve units in the
1286 	 * system space info in order to update the chunk tree (update one or
1287 	 * more device items and remove one chunk item), but this is done at
1288 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1289 	 */
1290 	map = em->map_lookup;
1291 	num_items = 3 + map->num_stripes;
1292 	free_extent_map(em);
1293 
1294 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1295 }
1296 
1297 /*
1298  * Mark block group @cache read-only, so later write won't happen to block
1299  * group @cache.
1300  *
1301  * If @force is not set, this function will only mark the block group readonly
1302  * if we have enough free space (1M) in other metadata/system block groups.
1303  * If @force is not set, this function will mark the block group readonly
1304  * without checking free space.
1305  *
1306  * NOTE: This function doesn't care if other block groups can contain all the
1307  * data in this block group. That check should be done by relocation routine,
1308  * not this function.
1309  */
1310 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1311 {
1312 	struct btrfs_space_info *sinfo = cache->space_info;
1313 	u64 num_bytes;
1314 	int ret = -ENOSPC;
1315 
1316 	spin_lock(&sinfo->lock);
1317 	spin_lock(&cache->lock);
1318 
1319 	if (cache->swap_extents) {
1320 		ret = -ETXTBSY;
1321 		goto out;
1322 	}
1323 
1324 	if (cache->ro) {
1325 		cache->ro++;
1326 		ret = 0;
1327 		goto out;
1328 	}
1329 
1330 	num_bytes = cache->length - cache->reserved - cache->pinned -
1331 		    cache->bytes_super - cache->zone_unusable - cache->used;
1332 
1333 	/*
1334 	 * Data never overcommits, even in mixed mode, so do just the straight
1335 	 * check of left over space in how much we have allocated.
1336 	 */
1337 	if (force) {
1338 		ret = 0;
1339 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1340 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1341 
1342 		/*
1343 		 * Here we make sure if we mark this bg RO, we still have enough
1344 		 * free space as buffer.
1345 		 */
1346 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1347 			ret = 0;
1348 	} else {
1349 		/*
1350 		 * We overcommit metadata, so we need to do the
1351 		 * btrfs_can_overcommit check here, and we need to pass in
1352 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1353 		 * leeway to allow us to mark this block group as read only.
1354 		 */
1355 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1356 					 BTRFS_RESERVE_NO_FLUSH))
1357 			ret = 0;
1358 	}
1359 
1360 	if (!ret) {
1361 		sinfo->bytes_readonly += num_bytes;
1362 		if (btrfs_is_zoned(cache->fs_info)) {
1363 			/* Migrate zone_unusable bytes to readonly */
1364 			sinfo->bytes_readonly += cache->zone_unusable;
1365 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1366 			cache->zone_unusable = 0;
1367 		}
1368 		cache->ro++;
1369 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1370 	}
1371 out:
1372 	spin_unlock(&cache->lock);
1373 	spin_unlock(&sinfo->lock);
1374 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1375 		btrfs_info(cache->fs_info,
1376 			"unable to make block group %llu ro", cache->start);
1377 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1378 	}
1379 	return ret;
1380 }
1381 
1382 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1383 				 struct btrfs_block_group *bg)
1384 {
1385 	struct btrfs_fs_info *fs_info = bg->fs_info;
1386 	struct btrfs_transaction *prev_trans = NULL;
1387 	const u64 start = bg->start;
1388 	const u64 end = start + bg->length - 1;
1389 	int ret;
1390 
1391 	spin_lock(&fs_info->trans_lock);
1392 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1393 		prev_trans = list_last_entry(&trans->transaction->list,
1394 					     struct btrfs_transaction, list);
1395 		refcount_inc(&prev_trans->use_count);
1396 	}
1397 	spin_unlock(&fs_info->trans_lock);
1398 
1399 	/*
1400 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1401 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1402 	 * task might be running finish_extent_commit() for the previous
1403 	 * transaction N - 1, and have seen a range belonging to the block
1404 	 * group in pinned_extents before we were able to clear the whole block
1405 	 * group range from pinned_extents. This means that task can lookup for
1406 	 * the block group after we unpinned it from pinned_extents and removed
1407 	 * it, leading to a BUG_ON() at unpin_extent_range().
1408 	 */
1409 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1410 	if (prev_trans) {
1411 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1412 					EXTENT_DIRTY);
1413 		if (ret)
1414 			goto out;
1415 	}
1416 
1417 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1418 				EXTENT_DIRTY);
1419 out:
1420 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1421 	if (prev_trans)
1422 		btrfs_put_transaction(prev_trans);
1423 
1424 	return ret == 0;
1425 }
1426 
1427 /*
1428  * Process the unused_bgs list and remove any that don't have any allocated
1429  * space inside of them.
1430  */
1431 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1432 {
1433 	struct btrfs_block_group *block_group;
1434 	struct btrfs_space_info *space_info;
1435 	struct btrfs_trans_handle *trans;
1436 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1437 	int ret = 0;
1438 
1439 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1440 		return;
1441 
1442 	if (btrfs_fs_closing(fs_info))
1443 		return;
1444 
1445 	/*
1446 	 * Long running balances can keep us blocked here for eternity, so
1447 	 * simply skip deletion if we're unable to get the mutex.
1448 	 */
1449 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1450 		return;
1451 
1452 	spin_lock(&fs_info->unused_bgs_lock);
1453 	while (!list_empty(&fs_info->unused_bgs)) {
1454 		int trimming;
1455 
1456 		block_group = list_first_entry(&fs_info->unused_bgs,
1457 					       struct btrfs_block_group,
1458 					       bg_list);
1459 		list_del_init(&block_group->bg_list);
1460 
1461 		space_info = block_group->space_info;
1462 
1463 		if (ret || btrfs_mixed_space_info(space_info)) {
1464 			btrfs_put_block_group(block_group);
1465 			continue;
1466 		}
1467 		spin_unlock(&fs_info->unused_bgs_lock);
1468 
1469 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1470 
1471 		/* Don't want to race with allocators so take the groups_sem */
1472 		down_write(&space_info->groups_sem);
1473 
1474 		/*
1475 		 * Async discard moves the final block group discard to be prior
1476 		 * to the unused_bgs code path.  Therefore, if it's not fully
1477 		 * trimmed, punt it back to the async discard lists.
1478 		 */
1479 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1480 		    !btrfs_is_free_space_trimmed(block_group)) {
1481 			trace_btrfs_skip_unused_block_group(block_group);
1482 			up_write(&space_info->groups_sem);
1483 			/* Requeue if we failed because of async discard */
1484 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1485 						 block_group);
1486 			goto next;
1487 		}
1488 
1489 		spin_lock(&block_group->lock);
1490 		if (block_group->reserved || block_group->pinned ||
1491 		    block_group->used || block_group->ro ||
1492 		    list_is_singular(&block_group->list)) {
1493 			/*
1494 			 * We want to bail if we made new allocations or have
1495 			 * outstanding allocations in this block group.  We do
1496 			 * the ro check in case balance is currently acting on
1497 			 * this block group.
1498 			 */
1499 			trace_btrfs_skip_unused_block_group(block_group);
1500 			spin_unlock(&block_group->lock);
1501 			up_write(&space_info->groups_sem);
1502 			goto next;
1503 		}
1504 		spin_unlock(&block_group->lock);
1505 
1506 		/* We don't want to force the issue, only flip if it's ok. */
1507 		ret = inc_block_group_ro(block_group, 0);
1508 		up_write(&space_info->groups_sem);
1509 		if (ret < 0) {
1510 			ret = 0;
1511 			goto next;
1512 		}
1513 
1514 		ret = btrfs_zone_finish(block_group);
1515 		if (ret < 0) {
1516 			btrfs_dec_block_group_ro(block_group);
1517 			if (ret == -EAGAIN)
1518 				ret = 0;
1519 			goto next;
1520 		}
1521 
1522 		/*
1523 		 * Want to do this before we do anything else so we can recover
1524 		 * properly if we fail to join the transaction.
1525 		 */
1526 		trans = btrfs_start_trans_remove_block_group(fs_info,
1527 						     block_group->start);
1528 		if (IS_ERR(trans)) {
1529 			btrfs_dec_block_group_ro(block_group);
1530 			ret = PTR_ERR(trans);
1531 			goto next;
1532 		}
1533 
1534 		/*
1535 		 * We could have pending pinned extents for this block group,
1536 		 * just delete them, we don't care about them anymore.
1537 		 */
1538 		if (!clean_pinned_extents(trans, block_group)) {
1539 			btrfs_dec_block_group_ro(block_group);
1540 			goto end_trans;
1541 		}
1542 
1543 		/*
1544 		 * At this point, the block_group is read only and should fail
1545 		 * new allocations.  However, btrfs_finish_extent_commit() can
1546 		 * cause this block_group to be placed back on the discard
1547 		 * lists because now the block_group isn't fully discarded.
1548 		 * Bail here and try again later after discarding everything.
1549 		 */
1550 		spin_lock(&fs_info->discard_ctl.lock);
1551 		if (!list_empty(&block_group->discard_list)) {
1552 			spin_unlock(&fs_info->discard_ctl.lock);
1553 			btrfs_dec_block_group_ro(block_group);
1554 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1555 						 block_group);
1556 			goto end_trans;
1557 		}
1558 		spin_unlock(&fs_info->discard_ctl.lock);
1559 
1560 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1561 		spin_lock(&space_info->lock);
1562 		spin_lock(&block_group->lock);
1563 
1564 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1565 						     -block_group->pinned);
1566 		space_info->bytes_readonly += block_group->pinned;
1567 		block_group->pinned = 0;
1568 
1569 		spin_unlock(&block_group->lock);
1570 		spin_unlock(&space_info->lock);
1571 
1572 		/*
1573 		 * The normal path here is an unused block group is passed here,
1574 		 * then trimming is handled in the transaction commit path.
1575 		 * Async discard interposes before this to do the trimming
1576 		 * before coming down the unused block group path as trimming
1577 		 * will no longer be done later in the transaction commit path.
1578 		 */
1579 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1580 			goto flip_async;
1581 
1582 		/*
1583 		 * DISCARD can flip during remount. On zoned filesystems, we
1584 		 * need to reset sequential-required zones.
1585 		 */
1586 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1587 				btrfs_is_zoned(fs_info);
1588 
1589 		/* Implicit trim during transaction commit. */
1590 		if (trimming)
1591 			btrfs_freeze_block_group(block_group);
1592 
1593 		/*
1594 		 * Btrfs_remove_chunk will abort the transaction if things go
1595 		 * horribly wrong.
1596 		 */
1597 		ret = btrfs_remove_chunk(trans, block_group->start);
1598 
1599 		if (ret) {
1600 			if (trimming)
1601 				btrfs_unfreeze_block_group(block_group);
1602 			goto end_trans;
1603 		}
1604 
1605 		/*
1606 		 * If we're not mounted with -odiscard, we can just forget
1607 		 * about this block group. Otherwise we'll need to wait
1608 		 * until transaction commit to do the actual discard.
1609 		 */
1610 		if (trimming) {
1611 			spin_lock(&fs_info->unused_bgs_lock);
1612 			/*
1613 			 * A concurrent scrub might have added us to the list
1614 			 * fs_info->unused_bgs, so use a list_move operation
1615 			 * to add the block group to the deleted_bgs list.
1616 			 */
1617 			list_move(&block_group->bg_list,
1618 				  &trans->transaction->deleted_bgs);
1619 			spin_unlock(&fs_info->unused_bgs_lock);
1620 			btrfs_get_block_group(block_group);
1621 		}
1622 end_trans:
1623 		btrfs_end_transaction(trans);
1624 next:
1625 		btrfs_put_block_group(block_group);
1626 		spin_lock(&fs_info->unused_bgs_lock);
1627 	}
1628 	spin_unlock(&fs_info->unused_bgs_lock);
1629 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1630 	return;
1631 
1632 flip_async:
1633 	btrfs_end_transaction(trans);
1634 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1635 	btrfs_put_block_group(block_group);
1636 	btrfs_discard_punt_unused_bgs_list(fs_info);
1637 }
1638 
1639 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1640 {
1641 	struct btrfs_fs_info *fs_info = bg->fs_info;
1642 
1643 	trace_btrfs_add_unused_block_group(bg);
1644 	spin_lock(&fs_info->unused_bgs_lock);
1645 	if (list_empty(&bg->bg_list)) {
1646 		btrfs_get_block_group(bg);
1647 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1648 	} else {
1649 		/* Pull out the block group from the reclaim_bgs list. */
1650 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1651 	}
1652 	spin_unlock(&fs_info->unused_bgs_lock);
1653 }
1654 
1655 /*
1656  * We want block groups with a low number of used bytes to be in the beginning
1657  * of the list, so they will get reclaimed first.
1658  */
1659 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1660 			   const struct list_head *b)
1661 {
1662 	const struct btrfs_block_group *bg1, *bg2;
1663 
1664 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1665 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1666 
1667 	return bg1->used > bg2->used;
1668 }
1669 
1670 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1671 {
1672 	if (btrfs_is_zoned(fs_info))
1673 		return btrfs_zoned_should_reclaim(fs_info);
1674 	return true;
1675 }
1676 
1677 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1678 {
1679 	const struct btrfs_space_info *space_info = bg->space_info;
1680 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1681 	const u64 new_val = bg->used;
1682 	const u64 old_val = new_val + bytes_freed;
1683 	u64 thresh;
1684 
1685 	if (reclaim_thresh == 0)
1686 		return false;
1687 
1688 	thresh = mult_perc(bg->length, reclaim_thresh);
1689 
1690 	/*
1691 	 * If we were below the threshold before don't reclaim, we are likely a
1692 	 * brand new block group and we don't want to relocate new block groups.
1693 	 */
1694 	if (old_val < thresh)
1695 		return false;
1696 	if (new_val >= thresh)
1697 		return false;
1698 	return true;
1699 }
1700 
1701 void btrfs_reclaim_bgs_work(struct work_struct *work)
1702 {
1703 	struct btrfs_fs_info *fs_info =
1704 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1705 	struct btrfs_block_group *bg;
1706 	struct btrfs_space_info *space_info;
1707 
1708 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1709 		return;
1710 
1711 	if (btrfs_fs_closing(fs_info))
1712 		return;
1713 
1714 	if (!btrfs_should_reclaim(fs_info))
1715 		return;
1716 
1717 	sb_start_write(fs_info->sb);
1718 
1719 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1720 		sb_end_write(fs_info->sb);
1721 		return;
1722 	}
1723 
1724 	/*
1725 	 * Long running balances can keep us blocked here for eternity, so
1726 	 * simply skip reclaim if we're unable to get the mutex.
1727 	 */
1728 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1729 		btrfs_exclop_finish(fs_info);
1730 		sb_end_write(fs_info->sb);
1731 		return;
1732 	}
1733 
1734 	spin_lock(&fs_info->unused_bgs_lock);
1735 	/*
1736 	 * Sort happens under lock because we can't simply splice it and sort.
1737 	 * The block groups might still be in use and reachable via bg_list,
1738 	 * and their presence in the reclaim_bgs list must be preserved.
1739 	 */
1740 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1741 	while (!list_empty(&fs_info->reclaim_bgs)) {
1742 		u64 zone_unusable;
1743 		int ret = 0;
1744 
1745 		bg = list_first_entry(&fs_info->reclaim_bgs,
1746 				      struct btrfs_block_group,
1747 				      bg_list);
1748 		list_del_init(&bg->bg_list);
1749 
1750 		space_info = bg->space_info;
1751 		spin_unlock(&fs_info->unused_bgs_lock);
1752 
1753 		/* Don't race with allocators so take the groups_sem */
1754 		down_write(&space_info->groups_sem);
1755 
1756 		spin_lock(&bg->lock);
1757 		if (bg->reserved || bg->pinned || bg->ro) {
1758 			/*
1759 			 * We want to bail if we made new allocations or have
1760 			 * outstanding allocations in this block group.  We do
1761 			 * the ro check in case balance is currently acting on
1762 			 * this block group.
1763 			 */
1764 			spin_unlock(&bg->lock);
1765 			up_write(&space_info->groups_sem);
1766 			goto next;
1767 		}
1768 		if (bg->used == 0) {
1769 			/*
1770 			 * It is possible that we trigger relocation on a block
1771 			 * group as its extents are deleted and it first goes
1772 			 * below the threshold, then shortly after goes empty.
1773 			 *
1774 			 * In this case, relocating it does delete it, but has
1775 			 * some overhead in relocation specific metadata, looking
1776 			 * for the non-existent extents and running some extra
1777 			 * transactions, which we can avoid by using one of the
1778 			 * other mechanisms for dealing with empty block groups.
1779 			 */
1780 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1781 				btrfs_mark_bg_unused(bg);
1782 			spin_unlock(&bg->lock);
1783 			up_write(&space_info->groups_sem);
1784 			goto next;
1785 
1786 		}
1787 		/*
1788 		 * The block group might no longer meet the reclaim condition by
1789 		 * the time we get around to reclaiming it, so to avoid
1790 		 * reclaiming overly full block_groups, skip reclaiming them.
1791 		 *
1792 		 * Since the decision making process also depends on the amount
1793 		 * being freed, pass in a fake giant value to skip that extra
1794 		 * check, which is more meaningful when adding to the list in
1795 		 * the first place.
1796 		 */
1797 		if (!should_reclaim_block_group(bg, bg->length)) {
1798 			spin_unlock(&bg->lock);
1799 			up_write(&space_info->groups_sem);
1800 			goto next;
1801 		}
1802 		spin_unlock(&bg->lock);
1803 
1804 		/*
1805 		 * Get out fast, in case we're read-only or unmounting the
1806 		 * filesystem. It is OK to drop block groups from the list even
1807 		 * for the read-only case. As we did sb_start_write(),
1808 		 * "mount -o remount,ro" won't happen and read-only filesystem
1809 		 * means it is forced read-only due to a fatal error. So, it
1810 		 * never gets back to read-write to let us reclaim again.
1811 		 */
1812 		if (btrfs_need_cleaner_sleep(fs_info)) {
1813 			up_write(&space_info->groups_sem);
1814 			goto next;
1815 		}
1816 
1817 		/*
1818 		 * Cache the zone_unusable value before turning the block group
1819 		 * to read only. As soon as the blog group is read only it's
1820 		 * zone_unusable value gets moved to the block group's read-only
1821 		 * bytes and isn't available for calculations anymore.
1822 		 */
1823 		zone_unusable = bg->zone_unusable;
1824 		ret = inc_block_group_ro(bg, 0);
1825 		up_write(&space_info->groups_sem);
1826 		if (ret < 0)
1827 			goto next;
1828 
1829 		btrfs_info(fs_info,
1830 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1831 				bg->start,
1832 				div64_u64(bg->used * 100, bg->length),
1833 				div64_u64(zone_unusable * 100, bg->length));
1834 		trace_btrfs_reclaim_block_group(bg);
1835 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1836 		if (ret) {
1837 			btrfs_dec_block_group_ro(bg);
1838 			btrfs_err(fs_info, "error relocating chunk %llu",
1839 				  bg->start);
1840 		}
1841 
1842 next:
1843 		if (ret)
1844 			btrfs_mark_bg_to_reclaim(bg);
1845 		btrfs_put_block_group(bg);
1846 
1847 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1848 		/*
1849 		 * Reclaiming all the block groups in the list can take really
1850 		 * long.  Prioritize cleaning up unused block groups.
1851 		 */
1852 		btrfs_delete_unused_bgs(fs_info);
1853 		/*
1854 		 * If we are interrupted by a balance, we can just bail out. The
1855 		 * cleaner thread restart again if necessary.
1856 		 */
1857 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1858 			goto end;
1859 		spin_lock(&fs_info->unused_bgs_lock);
1860 	}
1861 	spin_unlock(&fs_info->unused_bgs_lock);
1862 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1863 end:
1864 	btrfs_exclop_finish(fs_info);
1865 	sb_end_write(fs_info->sb);
1866 }
1867 
1868 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1869 {
1870 	spin_lock(&fs_info->unused_bgs_lock);
1871 	if (!list_empty(&fs_info->reclaim_bgs))
1872 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1873 	spin_unlock(&fs_info->unused_bgs_lock);
1874 }
1875 
1876 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1877 {
1878 	struct btrfs_fs_info *fs_info = bg->fs_info;
1879 
1880 	spin_lock(&fs_info->unused_bgs_lock);
1881 	if (list_empty(&bg->bg_list)) {
1882 		btrfs_get_block_group(bg);
1883 		trace_btrfs_add_reclaim_block_group(bg);
1884 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1885 	}
1886 	spin_unlock(&fs_info->unused_bgs_lock);
1887 }
1888 
1889 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1890 			   struct btrfs_path *path)
1891 {
1892 	struct extent_map_tree *em_tree;
1893 	struct extent_map *em;
1894 	struct btrfs_block_group_item bg;
1895 	struct extent_buffer *leaf;
1896 	int slot;
1897 	u64 flags;
1898 	int ret = 0;
1899 
1900 	slot = path->slots[0];
1901 	leaf = path->nodes[0];
1902 
1903 	em_tree = &fs_info->mapping_tree;
1904 	read_lock(&em_tree->lock);
1905 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1906 	read_unlock(&em_tree->lock);
1907 	if (!em) {
1908 		btrfs_err(fs_info,
1909 			  "logical %llu len %llu found bg but no related chunk",
1910 			  key->objectid, key->offset);
1911 		return -ENOENT;
1912 	}
1913 
1914 	if (em->start != key->objectid || em->len != key->offset) {
1915 		btrfs_err(fs_info,
1916 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1917 			key->objectid, key->offset, em->start, em->len);
1918 		ret = -EUCLEAN;
1919 		goto out_free_em;
1920 	}
1921 
1922 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1923 			   sizeof(bg));
1924 	flags = btrfs_stack_block_group_flags(&bg) &
1925 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1926 
1927 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1928 		btrfs_err(fs_info,
1929 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1930 			  key->objectid, key->offset, flags,
1931 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1932 		ret = -EUCLEAN;
1933 	}
1934 
1935 out_free_em:
1936 	free_extent_map(em);
1937 	return ret;
1938 }
1939 
1940 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1941 				  struct btrfs_path *path,
1942 				  struct btrfs_key *key)
1943 {
1944 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1945 	int ret;
1946 	struct btrfs_key found_key;
1947 
1948 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1949 		if (found_key.objectid >= key->objectid &&
1950 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1951 			return read_bg_from_eb(fs_info, &found_key, path);
1952 		}
1953 	}
1954 	return ret;
1955 }
1956 
1957 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1958 {
1959 	u64 extra_flags = chunk_to_extended(flags) &
1960 				BTRFS_EXTENDED_PROFILE_MASK;
1961 
1962 	write_seqlock(&fs_info->profiles_lock);
1963 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1964 		fs_info->avail_data_alloc_bits |= extra_flags;
1965 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1966 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1967 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1968 		fs_info->avail_system_alloc_bits |= extra_flags;
1969 	write_sequnlock(&fs_info->profiles_lock);
1970 }
1971 
1972 /*
1973  * Map a physical disk address to a list of logical addresses.
1974  *
1975  * @fs_info:       the filesystem
1976  * @chunk_start:   logical address of block group
1977  * @physical:	   physical address to map to logical addresses
1978  * @logical:	   return array of logical addresses which map to @physical
1979  * @naddrs:	   length of @logical
1980  * @stripe_len:    size of IO stripe for the given block group
1981  *
1982  * Maps a particular @physical disk address to a list of @logical addresses.
1983  * Used primarily to exclude those portions of a block group that contain super
1984  * block copies.
1985  */
1986 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1987 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1988 {
1989 	struct extent_map *em;
1990 	struct map_lookup *map;
1991 	u64 *buf;
1992 	u64 bytenr;
1993 	u64 data_stripe_length;
1994 	u64 io_stripe_size;
1995 	int i, nr = 0;
1996 	int ret = 0;
1997 
1998 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1999 	if (IS_ERR(em))
2000 		return -EIO;
2001 
2002 	map = em->map_lookup;
2003 	data_stripe_length = em->orig_block_len;
2004 	io_stripe_size = BTRFS_STRIPE_LEN;
2005 	chunk_start = em->start;
2006 
2007 	/* For RAID5/6 adjust to a full IO stripe length */
2008 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2009 		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2010 
2011 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2012 	if (!buf) {
2013 		ret = -ENOMEM;
2014 		goto out;
2015 	}
2016 
2017 	for (i = 0; i < map->num_stripes; i++) {
2018 		bool already_inserted = false;
2019 		u32 stripe_nr;
2020 		u32 offset;
2021 		int j;
2022 
2023 		if (!in_range(physical, map->stripes[i].physical,
2024 			      data_stripe_length))
2025 			continue;
2026 
2027 		stripe_nr = (physical - map->stripes[i].physical) >>
2028 			    BTRFS_STRIPE_LEN_SHIFT;
2029 		offset = (physical - map->stripes[i].physical) &
2030 			 BTRFS_STRIPE_LEN_MASK;
2031 
2032 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2033 				 BTRFS_BLOCK_GROUP_RAID10))
2034 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2035 					    map->sub_stripes);
2036 		/*
2037 		 * The remaining case would be for RAID56, multiply by
2038 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2039 		 * instead of map->stripe_len
2040 		 */
2041 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2042 
2043 		/* Ensure we don't add duplicate addresses */
2044 		for (j = 0; j < nr; j++) {
2045 			if (buf[j] == bytenr) {
2046 				already_inserted = true;
2047 				break;
2048 			}
2049 		}
2050 
2051 		if (!already_inserted)
2052 			buf[nr++] = bytenr;
2053 	}
2054 
2055 	*logical = buf;
2056 	*naddrs = nr;
2057 	*stripe_len = io_stripe_size;
2058 out:
2059 	free_extent_map(em);
2060 	return ret;
2061 }
2062 
2063 static int exclude_super_stripes(struct btrfs_block_group *cache)
2064 {
2065 	struct btrfs_fs_info *fs_info = cache->fs_info;
2066 	const bool zoned = btrfs_is_zoned(fs_info);
2067 	u64 bytenr;
2068 	u64 *logical;
2069 	int stripe_len;
2070 	int i, nr, ret;
2071 
2072 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2073 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2074 		cache->bytes_super += stripe_len;
2075 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
2076 						stripe_len);
2077 		if (ret)
2078 			return ret;
2079 	}
2080 
2081 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2082 		bytenr = btrfs_sb_offset(i);
2083 		ret = btrfs_rmap_block(fs_info, cache->start,
2084 				       bytenr, &logical, &nr, &stripe_len);
2085 		if (ret)
2086 			return ret;
2087 
2088 		/* Shouldn't have super stripes in sequential zones */
2089 		if (zoned && nr) {
2090 			btrfs_err(fs_info,
2091 			"zoned: block group %llu must not contain super block",
2092 				  cache->start);
2093 			return -EUCLEAN;
2094 		}
2095 
2096 		while (nr--) {
2097 			u64 len = min_t(u64, stripe_len,
2098 				cache->start + cache->length - logical[nr]);
2099 
2100 			cache->bytes_super += len;
2101 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2102 							len);
2103 			if (ret) {
2104 				kfree(logical);
2105 				return ret;
2106 			}
2107 		}
2108 
2109 		kfree(logical);
2110 	}
2111 	return 0;
2112 }
2113 
2114 static struct btrfs_block_group *btrfs_create_block_group_cache(
2115 		struct btrfs_fs_info *fs_info, u64 start)
2116 {
2117 	struct btrfs_block_group *cache;
2118 
2119 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2120 	if (!cache)
2121 		return NULL;
2122 
2123 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2124 					GFP_NOFS);
2125 	if (!cache->free_space_ctl) {
2126 		kfree(cache);
2127 		return NULL;
2128 	}
2129 
2130 	cache->start = start;
2131 
2132 	cache->fs_info = fs_info;
2133 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2134 
2135 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2136 
2137 	refcount_set(&cache->refs, 1);
2138 	spin_lock_init(&cache->lock);
2139 	init_rwsem(&cache->data_rwsem);
2140 	INIT_LIST_HEAD(&cache->list);
2141 	INIT_LIST_HEAD(&cache->cluster_list);
2142 	INIT_LIST_HEAD(&cache->bg_list);
2143 	INIT_LIST_HEAD(&cache->ro_list);
2144 	INIT_LIST_HEAD(&cache->discard_list);
2145 	INIT_LIST_HEAD(&cache->dirty_list);
2146 	INIT_LIST_HEAD(&cache->io_list);
2147 	INIT_LIST_HEAD(&cache->active_bg_list);
2148 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2149 	atomic_set(&cache->frozen, 0);
2150 	mutex_init(&cache->free_space_lock);
2151 
2152 	return cache;
2153 }
2154 
2155 /*
2156  * Iterate all chunks and verify that each of them has the corresponding block
2157  * group
2158  */
2159 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2160 {
2161 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2162 	struct extent_map *em;
2163 	struct btrfs_block_group *bg;
2164 	u64 start = 0;
2165 	int ret = 0;
2166 
2167 	while (1) {
2168 		read_lock(&map_tree->lock);
2169 		/*
2170 		 * lookup_extent_mapping will return the first extent map
2171 		 * intersecting the range, so setting @len to 1 is enough to
2172 		 * get the first chunk.
2173 		 */
2174 		em = lookup_extent_mapping(map_tree, start, 1);
2175 		read_unlock(&map_tree->lock);
2176 		if (!em)
2177 			break;
2178 
2179 		bg = btrfs_lookup_block_group(fs_info, em->start);
2180 		if (!bg) {
2181 			btrfs_err(fs_info,
2182 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2183 				     em->start, em->len);
2184 			ret = -EUCLEAN;
2185 			free_extent_map(em);
2186 			break;
2187 		}
2188 		if (bg->start != em->start || bg->length != em->len ||
2189 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2190 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2191 			btrfs_err(fs_info,
2192 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2193 				em->start, em->len,
2194 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2195 				bg->start, bg->length,
2196 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2197 			ret = -EUCLEAN;
2198 			free_extent_map(em);
2199 			btrfs_put_block_group(bg);
2200 			break;
2201 		}
2202 		start = em->start + em->len;
2203 		free_extent_map(em);
2204 		btrfs_put_block_group(bg);
2205 	}
2206 	return ret;
2207 }
2208 
2209 static int read_one_block_group(struct btrfs_fs_info *info,
2210 				struct btrfs_block_group_item *bgi,
2211 				const struct btrfs_key *key,
2212 				int need_clear)
2213 {
2214 	struct btrfs_block_group *cache;
2215 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2216 	int ret;
2217 
2218 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2219 
2220 	cache = btrfs_create_block_group_cache(info, key->objectid);
2221 	if (!cache)
2222 		return -ENOMEM;
2223 
2224 	cache->length = key->offset;
2225 	cache->used = btrfs_stack_block_group_used(bgi);
2226 	cache->commit_used = cache->used;
2227 	cache->flags = btrfs_stack_block_group_flags(bgi);
2228 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2229 
2230 	set_free_space_tree_thresholds(cache);
2231 
2232 	if (need_clear) {
2233 		/*
2234 		 * When we mount with old space cache, we need to
2235 		 * set BTRFS_DC_CLEAR and set dirty flag.
2236 		 *
2237 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2238 		 *    truncate the old free space cache inode and
2239 		 *    setup a new one.
2240 		 * b) Setting 'dirty flag' makes sure that we flush
2241 		 *    the new space cache info onto disk.
2242 		 */
2243 		if (btrfs_test_opt(info, SPACE_CACHE))
2244 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2245 	}
2246 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2247 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2248 			btrfs_err(info,
2249 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2250 				  cache->start);
2251 			ret = -EINVAL;
2252 			goto error;
2253 	}
2254 
2255 	ret = btrfs_load_block_group_zone_info(cache, false);
2256 	if (ret) {
2257 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2258 			  cache->start);
2259 		goto error;
2260 	}
2261 
2262 	/*
2263 	 * We need to exclude the super stripes now so that the space info has
2264 	 * super bytes accounted for, otherwise we'll think we have more space
2265 	 * than we actually do.
2266 	 */
2267 	ret = exclude_super_stripes(cache);
2268 	if (ret) {
2269 		/* We may have excluded something, so call this just in case. */
2270 		btrfs_free_excluded_extents(cache);
2271 		goto error;
2272 	}
2273 
2274 	/*
2275 	 * For zoned filesystem, space after the allocation offset is the only
2276 	 * free space for a block group. So, we don't need any caching work.
2277 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2278 	 * zone_unusable space.
2279 	 *
2280 	 * For regular filesystem, check for two cases, either we are full, and
2281 	 * therefore don't need to bother with the caching work since we won't
2282 	 * find any space, or we are empty, and we can just add all the space
2283 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2284 	 * in the full case.
2285 	 */
2286 	if (btrfs_is_zoned(info)) {
2287 		btrfs_calc_zone_unusable(cache);
2288 		/* Should not have any excluded extents. Just in case, though. */
2289 		btrfs_free_excluded_extents(cache);
2290 	} else if (cache->length == cache->used) {
2291 		cache->cached = BTRFS_CACHE_FINISHED;
2292 		btrfs_free_excluded_extents(cache);
2293 	} else if (cache->used == 0) {
2294 		cache->cached = BTRFS_CACHE_FINISHED;
2295 		add_new_free_space(cache, cache->start,
2296 				   cache->start + cache->length);
2297 		btrfs_free_excluded_extents(cache);
2298 	}
2299 
2300 	ret = btrfs_add_block_group_cache(info, cache);
2301 	if (ret) {
2302 		btrfs_remove_free_space_cache(cache);
2303 		goto error;
2304 	}
2305 	trace_btrfs_add_block_group(info, cache, 0);
2306 	btrfs_add_bg_to_space_info(info, cache);
2307 
2308 	set_avail_alloc_bits(info, cache->flags);
2309 	if (btrfs_chunk_writeable(info, cache->start)) {
2310 		if (cache->used == 0) {
2311 			ASSERT(list_empty(&cache->bg_list));
2312 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2313 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2314 			else
2315 				btrfs_mark_bg_unused(cache);
2316 		}
2317 	} else {
2318 		inc_block_group_ro(cache, 1);
2319 	}
2320 
2321 	return 0;
2322 error:
2323 	btrfs_put_block_group(cache);
2324 	return ret;
2325 }
2326 
2327 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2328 {
2329 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2330 	struct rb_node *node;
2331 	int ret = 0;
2332 
2333 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2334 		struct extent_map *em;
2335 		struct map_lookup *map;
2336 		struct btrfs_block_group *bg;
2337 
2338 		em = rb_entry(node, struct extent_map, rb_node);
2339 		map = em->map_lookup;
2340 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2341 		if (!bg) {
2342 			ret = -ENOMEM;
2343 			break;
2344 		}
2345 
2346 		/* Fill dummy cache as FULL */
2347 		bg->length = em->len;
2348 		bg->flags = map->type;
2349 		bg->cached = BTRFS_CACHE_FINISHED;
2350 		bg->used = em->len;
2351 		bg->flags = map->type;
2352 		ret = btrfs_add_block_group_cache(fs_info, bg);
2353 		/*
2354 		 * We may have some valid block group cache added already, in
2355 		 * that case we skip to the next one.
2356 		 */
2357 		if (ret == -EEXIST) {
2358 			ret = 0;
2359 			btrfs_put_block_group(bg);
2360 			continue;
2361 		}
2362 
2363 		if (ret) {
2364 			btrfs_remove_free_space_cache(bg);
2365 			btrfs_put_block_group(bg);
2366 			break;
2367 		}
2368 
2369 		btrfs_add_bg_to_space_info(fs_info, bg);
2370 
2371 		set_avail_alloc_bits(fs_info, bg->flags);
2372 	}
2373 	if (!ret)
2374 		btrfs_init_global_block_rsv(fs_info);
2375 	return ret;
2376 }
2377 
2378 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2379 {
2380 	struct btrfs_root *root = btrfs_block_group_root(info);
2381 	struct btrfs_path *path;
2382 	int ret;
2383 	struct btrfs_block_group *cache;
2384 	struct btrfs_space_info *space_info;
2385 	struct btrfs_key key;
2386 	int need_clear = 0;
2387 	u64 cache_gen;
2388 
2389 	/*
2390 	 * Either no extent root (with ibadroots rescue option) or we have
2391 	 * unsupported RO options. The fs can never be mounted read-write, so no
2392 	 * need to waste time searching block group items.
2393 	 *
2394 	 * This also allows new extent tree related changes to be RO compat,
2395 	 * no need for a full incompat flag.
2396 	 */
2397 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2398 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2399 		return fill_dummy_bgs(info);
2400 
2401 	key.objectid = 0;
2402 	key.offset = 0;
2403 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2404 	path = btrfs_alloc_path();
2405 	if (!path)
2406 		return -ENOMEM;
2407 
2408 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2409 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2410 	    btrfs_super_generation(info->super_copy) != cache_gen)
2411 		need_clear = 1;
2412 	if (btrfs_test_opt(info, CLEAR_CACHE))
2413 		need_clear = 1;
2414 
2415 	while (1) {
2416 		struct btrfs_block_group_item bgi;
2417 		struct extent_buffer *leaf;
2418 		int slot;
2419 
2420 		ret = find_first_block_group(info, path, &key);
2421 		if (ret > 0)
2422 			break;
2423 		if (ret != 0)
2424 			goto error;
2425 
2426 		leaf = path->nodes[0];
2427 		slot = path->slots[0];
2428 
2429 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2430 				   sizeof(bgi));
2431 
2432 		btrfs_item_key_to_cpu(leaf, &key, slot);
2433 		btrfs_release_path(path);
2434 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2435 		if (ret < 0)
2436 			goto error;
2437 		key.objectid += key.offset;
2438 		key.offset = 0;
2439 	}
2440 	btrfs_release_path(path);
2441 
2442 	list_for_each_entry(space_info, &info->space_info, list) {
2443 		int i;
2444 
2445 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2446 			if (list_empty(&space_info->block_groups[i]))
2447 				continue;
2448 			cache = list_first_entry(&space_info->block_groups[i],
2449 						 struct btrfs_block_group,
2450 						 list);
2451 			btrfs_sysfs_add_block_group_type(cache);
2452 		}
2453 
2454 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2455 		      (BTRFS_BLOCK_GROUP_RAID10 |
2456 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2457 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2458 		       BTRFS_BLOCK_GROUP_DUP)))
2459 			continue;
2460 		/*
2461 		 * Avoid allocating from un-mirrored block group if there are
2462 		 * mirrored block groups.
2463 		 */
2464 		list_for_each_entry(cache,
2465 				&space_info->block_groups[BTRFS_RAID_RAID0],
2466 				list)
2467 			inc_block_group_ro(cache, 1);
2468 		list_for_each_entry(cache,
2469 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2470 				list)
2471 			inc_block_group_ro(cache, 1);
2472 	}
2473 
2474 	btrfs_init_global_block_rsv(info);
2475 	ret = check_chunk_block_group_mappings(info);
2476 error:
2477 	btrfs_free_path(path);
2478 	/*
2479 	 * We've hit some error while reading the extent tree, and have
2480 	 * rescue=ibadroots mount option.
2481 	 * Try to fill the tree using dummy block groups so that the user can
2482 	 * continue to mount and grab their data.
2483 	 */
2484 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2485 		ret = fill_dummy_bgs(info);
2486 	return ret;
2487 }
2488 
2489 /*
2490  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2491  * allocation.
2492  *
2493  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2494  * phases.
2495  */
2496 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2497 				   struct btrfs_block_group *block_group)
2498 {
2499 	struct btrfs_fs_info *fs_info = trans->fs_info;
2500 	struct btrfs_block_group_item bgi;
2501 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2502 	struct btrfs_key key;
2503 	u64 old_commit_used;
2504 	int ret;
2505 
2506 	spin_lock(&block_group->lock);
2507 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2508 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2509 						   block_group->global_root_id);
2510 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2511 	old_commit_used = block_group->commit_used;
2512 	block_group->commit_used = block_group->used;
2513 	key.objectid = block_group->start;
2514 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2515 	key.offset = block_group->length;
2516 	spin_unlock(&block_group->lock);
2517 
2518 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2519 	if (ret < 0) {
2520 		spin_lock(&block_group->lock);
2521 		block_group->commit_used = old_commit_used;
2522 		spin_unlock(&block_group->lock);
2523 	}
2524 
2525 	return ret;
2526 }
2527 
2528 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2529 			    struct btrfs_device *device, u64 chunk_offset,
2530 			    u64 start, u64 num_bytes)
2531 {
2532 	struct btrfs_fs_info *fs_info = device->fs_info;
2533 	struct btrfs_root *root = fs_info->dev_root;
2534 	struct btrfs_path *path;
2535 	struct btrfs_dev_extent *extent;
2536 	struct extent_buffer *leaf;
2537 	struct btrfs_key key;
2538 	int ret;
2539 
2540 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2541 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2542 	path = btrfs_alloc_path();
2543 	if (!path)
2544 		return -ENOMEM;
2545 
2546 	key.objectid = device->devid;
2547 	key.type = BTRFS_DEV_EXTENT_KEY;
2548 	key.offset = start;
2549 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2550 	if (ret)
2551 		goto out;
2552 
2553 	leaf = path->nodes[0];
2554 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2555 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2556 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2557 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2558 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2559 
2560 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2561 	btrfs_mark_buffer_dirty(leaf);
2562 out:
2563 	btrfs_free_path(path);
2564 	return ret;
2565 }
2566 
2567 /*
2568  * This function belongs to phase 2.
2569  *
2570  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2571  * phases.
2572  */
2573 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2574 				   u64 chunk_offset, u64 chunk_size)
2575 {
2576 	struct btrfs_fs_info *fs_info = trans->fs_info;
2577 	struct btrfs_device *device;
2578 	struct extent_map *em;
2579 	struct map_lookup *map;
2580 	u64 dev_offset;
2581 	u64 stripe_size;
2582 	int i;
2583 	int ret = 0;
2584 
2585 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2586 	if (IS_ERR(em))
2587 		return PTR_ERR(em);
2588 
2589 	map = em->map_lookup;
2590 	stripe_size = em->orig_block_len;
2591 
2592 	/*
2593 	 * Take the device list mutex to prevent races with the final phase of
2594 	 * a device replace operation that replaces the device object associated
2595 	 * with the map's stripes, because the device object's id can change
2596 	 * at any time during that final phase of the device replace operation
2597 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2598 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2599 	 * resulting in persisting a device extent item with such ID.
2600 	 */
2601 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2602 	for (i = 0; i < map->num_stripes; i++) {
2603 		device = map->stripes[i].dev;
2604 		dev_offset = map->stripes[i].physical;
2605 
2606 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2607 				       stripe_size);
2608 		if (ret)
2609 			break;
2610 	}
2611 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2612 
2613 	free_extent_map(em);
2614 	return ret;
2615 }
2616 
2617 /*
2618  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2619  * chunk allocation.
2620  *
2621  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2622  * phases.
2623  */
2624 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2625 {
2626 	struct btrfs_fs_info *fs_info = trans->fs_info;
2627 	struct btrfs_block_group *block_group;
2628 	int ret = 0;
2629 
2630 	while (!list_empty(&trans->new_bgs)) {
2631 		int index;
2632 
2633 		block_group = list_first_entry(&trans->new_bgs,
2634 					       struct btrfs_block_group,
2635 					       bg_list);
2636 		if (ret)
2637 			goto next;
2638 
2639 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2640 
2641 		ret = insert_block_group_item(trans, block_group);
2642 		if (ret)
2643 			btrfs_abort_transaction(trans, ret);
2644 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2645 			      &block_group->runtime_flags)) {
2646 			mutex_lock(&fs_info->chunk_mutex);
2647 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2648 			mutex_unlock(&fs_info->chunk_mutex);
2649 			if (ret)
2650 				btrfs_abort_transaction(trans, ret);
2651 		}
2652 		ret = insert_dev_extents(trans, block_group->start,
2653 					 block_group->length);
2654 		if (ret)
2655 			btrfs_abort_transaction(trans, ret);
2656 		add_block_group_free_space(trans, block_group);
2657 
2658 		/*
2659 		 * If we restriped during balance, we may have added a new raid
2660 		 * type, so now add the sysfs entries when it is safe to do so.
2661 		 * We don't have to worry about locking here as it's handled in
2662 		 * btrfs_sysfs_add_block_group_type.
2663 		 */
2664 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2665 			btrfs_sysfs_add_block_group_type(block_group);
2666 
2667 		/* Already aborted the transaction if it failed. */
2668 next:
2669 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2670 		list_del_init(&block_group->bg_list);
2671 	}
2672 	btrfs_trans_release_chunk_metadata(trans);
2673 }
2674 
2675 /*
2676  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2677  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2678  */
2679 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2680 {
2681 	u64 div = SZ_1G;
2682 	u64 index;
2683 
2684 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2685 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2686 
2687 	/* If we have a smaller fs index based on 128MiB. */
2688 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2689 		div = SZ_128M;
2690 
2691 	offset = div64_u64(offset, div);
2692 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2693 	return index;
2694 }
2695 
2696 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2697 						 u64 type,
2698 						 u64 chunk_offset, u64 size)
2699 {
2700 	struct btrfs_fs_info *fs_info = trans->fs_info;
2701 	struct btrfs_block_group *cache;
2702 	int ret;
2703 
2704 	btrfs_set_log_full_commit(trans);
2705 
2706 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2707 	if (!cache)
2708 		return ERR_PTR(-ENOMEM);
2709 
2710 	cache->length = size;
2711 	set_free_space_tree_thresholds(cache);
2712 	cache->flags = type;
2713 	cache->cached = BTRFS_CACHE_FINISHED;
2714 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2715 
2716 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2717 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2718 
2719 	ret = btrfs_load_block_group_zone_info(cache, true);
2720 	if (ret) {
2721 		btrfs_put_block_group(cache);
2722 		return ERR_PTR(ret);
2723 	}
2724 
2725 	ret = exclude_super_stripes(cache);
2726 	if (ret) {
2727 		/* We may have excluded something, so call this just in case */
2728 		btrfs_free_excluded_extents(cache);
2729 		btrfs_put_block_group(cache);
2730 		return ERR_PTR(ret);
2731 	}
2732 
2733 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2734 
2735 	btrfs_free_excluded_extents(cache);
2736 
2737 	/*
2738 	 * Ensure the corresponding space_info object is created and
2739 	 * assigned to our block group. We want our bg to be added to the rbtree
2740 	 * with its ->space_info set.
2741 	 */
2742 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2743 	ASSERT(cache->space_info);
2744 
2745 	ret = btrfs_add_block_group_cache(fs_info, cache);
2746 	if (ret) {
2747 		btrfs_remove_free_space_cache(cache);
2748 		btrfs_put_block_group(cache);
2749 		return ERR_PTR(ret);
2750 	}
2751 
2752 	/*
2753 	 * Now that our block group has its ->space_info set and is inserted in
2754 	 * the rbtree, update the space info's counters.
2755 	 */
2756 	trace_btrfs_add_block_group(fs_info, cache, 1);
2757 	btrfs_add_bg_to_space_info(fs_info, cache);
2758 	btrfs_update_global_block_rsv(fs_info);
2759 
2760 #ifdef CONFIG_BTRFS_DEBUG
2761 	if (btrfs_should_fragment_free_space(cache)) {
2762 		cache->space_info->bytes_used += size >> 1;
2763 		fragment_free_space(cache);
2764 	}
2765 #endif
2766 
2767 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2768 	trans->delayed_ref_updates++;
2769 	btrfs_update_delayed_refs_rsv(trans);
2770 
2771 	set_avail_alloc_bits(fs_info, type);
2772 	return cache;
2773 }
2774 
2775 /*
2776  * Mark one block group RO, can be called several times for the same block
2777  * group.
2778  *
2779  * @cache:		the destination block group
2780  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2781  * 			ensure we still have some free space after marking this
2782  * 			block group RO.
2783  */
2784 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2785 			     bool do_chunk_alloc)
2786 {
2787 	struct btrfs_fs_info *fs_info = cache->fs_info;
2788 	struct btrfs_trans_handle *trans;
2789 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2790 	u64 alloc_flags;
2791 	int ret;
2792 	bool dirty_bg_running;
2793 
2794 	/*
2795 	 * This can only happen when we are doing read-only scrub on read-only
2796 	 * mount.
2797 	 * In that case we should not start a new transaction on read-only fs.
2798 	 * Thus here we skip all chunk allocations.
2799 	 */
2800 	if (sb_rdonly(fs_info->sb)) {
2801 		mutex_lock(&fs_info->ro_block_group_mutex);
2802 		ret = inc_block_group_ro(cache, 0);
2803 		mutex_unlock(&fs_info->ro_block_group_mutex);
2804 		return ret;
2805 	}
2806 
2807 	do {
2808 		trans = btrfs_join_transaction(root);
2809 		if (IS_ERR(trans))
2810 			return PTR_ERR(trans);
2811 
2812 		dirty_bg_running = false;
2813 
2814 		/*
2815 		 * We're not allowed to set block groups readonly after the dirty
2816 		 * block group cache has started writing.  If it already started,
2817 		 * back off and let this transaction commit.
2818 		 */
2819 		mutex_lock(&fs_info->ro_block_group_mutex);
2820 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2821 			u64 transid = trans->transid;
2822 
2823 			mutex_unlock(&fs_info->ro_block_group_mutex);
2824 			btrfs_end_transaction(trans);
2825 
2826 			ret = btrfs_wait_for_commit(fs_info, transid);
2827 			if (ret)
2828 				return ret;
2829 			dirty_bg_running = true;
2830 		}
2831 	} while (dirty_bg_running);
2832 
2833 	if (do_chunk_alloc) {
2834 		/*
2835 		 * If we are changing raid levels, try to allocate a
2836 		 * corresponding block group with the new raid level.
2837 		 */
2838 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2839 		if (alloc_flags != cache->flags) {
2840 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2841 						CHUNK_ALLOC_FORCE);
2842 			/*
2843 			 * ENOSPC is allowed here, we may have enough space
2844 			 * already allocated at the new raid level to carry on
2845 			 */
2846 			if (ret == -ENOSPC)
2847 				ret = 0;
2848 			if (ret < 0)
2849 				goto out;
2850 		}
2851 	}
2852 
2853 	ret = inc_block_group_ro(cache, 0);
2854 	if (!ret)
2855 		goto out;
2856 	if (ret == -ETXTBSY)
2857 		goto unlock_out;
2858 
2859 	/*
2860 	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2861 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2862 	 * we still want to try our best to mark the block group read-only.
2863 	 */
2864 	if (!do_chunk_alloc && ret == -ENOSPC &&
2865 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2866 		goto unlock_out;
2867 
2868 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2869 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2870 	if (ret < 0)
2871 		goto out;
2872 	/*
2873 	 * We have allocated a new chunk. We also need to activate that chunk to
2874 	 * grant metadata tickets for zoned filesystem.
2875 	 */
2876 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2877 	if (ret < 0)
2878 		goto out;
2879 
2880 	ret = inc_block_group_ro(cache, 0);
2881 	if (ret == -ETXTBSY)
2882 		goto unlock_out;
2883 out:
2884 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2885 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2886 		mutex_lock(&fs_info->chunk_mutex);
2887 		check_system_chunk(trans, alloc_flags);
2888 		mutex_unlock(&fs_info->chunk_mutex);
2889 	}
2890 unlock_out:
2891 	mutex_unlock(&fs_info->ro_block_group_mutex);
2892 
2893 	btrfs_end_transaction(trans);
2894 	return ret;
2895 }
2896 
2897 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2898 {
2899 	struct btrfs_space_info *sinfo = cache->space_info;
2900 	u64 num_bytes;
2901 
2902 	BUG_ON(!cache->ro);
2903 
2904 	spin_lock(&sinfo->lock);
2905 	spin_lock(&cache->lock);
2906 	if (!--cache->ro) {
2907 		if (btrfs_is_zoned(cache->fs_info)) {
2908 			/* Migrate zone_unusable bytes back */
2909 			cache->zone_unusable =
2910 				(cache->alloc_offset - cache->used) +
2911 				(cache->length - cache->zone_capacity);
2912 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2913 			sinfo->bytes_readonly -= cache->zone_unusable;
2914 		}
2915 		num_bytes = cache->length - cache->reserved -
2916 			    cache->pinned - cache->bytes_super -
2917 			    cache->zone_unusable - cache->used;
2918 		sinfo->bytes_readonly -= num_bytes;
2919 		list_del_init(&cache->ro_list);
2920 	}
2921 	spin_unlock(&cache->lock);
2922 	spin_unlock(&sinfo->lock);
2923 }
2924 
2925 static int update_block_group_item(struct btrfs_trans_handle *trans,
2926 				   struct btrfs_path *path,
2927 				   struct btrfs_block_group *cache)
2928 {
2929 	struct btrfs_fs_info *fs_info = trans->fs_info;
2930 	int ret;
2931 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2932 	unsigned long bi;
2933 	struct extent_buffer *leaf;
2934 	struct btrfs_block_group_item bgi;
2935 	struct btrfs_key key;
2936 	u64 old_commit_used;
2937 	u64 used;
2938 
2939 	/*
2940 	 * Block group items update can be triggered out of commit transaction
2941 	 * critical section, thus we need a consistent view of used bytes.
2942 	 * We cannot use cache->used directly outside of the spin lock, as it
2943 	 * may be changed.
2944 	 */
2945 	spin_lock(&cache->lock);
2946 	old_commit_used = cache->commit_used;
2947 	used = cache->used;
2948 	/* No change in used bytes, can safely skip it. */
2949 	if (cache->commit_used == used) {
2950 		spin_unlock(&cache->lock);
2951 		return 0;
2952 	}
2953 	cache->commit_used = used;
2954 	spin_unlock(&cache->lock);
2955 
2956 	key.objectid = cache->start;
2957 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2958 	key.offset = cache->length;
2959 
2960 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2961 	if (ret) {
2962 		if (ret > 0)
2963 			ret = -ENOENT;
2964 		goto fail;
2965 	}
2966 
2967 	leaf = path->nodes[0];
2968 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2969 	btrfs_set_stack_block_group_used(&bgi, used);
2970 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2971 						   cache->global_root_id);
2972 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2973 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2974 	btrfs_mark_buffer_dirty(leaf);
2975 fail:
2976 	btrfs_release_path(path);
2977 	/* We didn't update the block group item, need to revert @commit_used. */
2978 	if (ret < 0) {
2979 		spin_lock(&cache->lock);
2980 		cache->commit_used = old_commit_used;
2981 		spin_unlock(&cache->lock);
2982 	}
2983 	return ret;
2984 
2985 }
2986 
2987 static int cache_save_setup(struct btrfs_block_group *block_group,
2988 			    struct btrfs_trans_handle *trans,
2989 			    struct btrfs_path *path)
2990 {
2991 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2992 	struct btrfs_root *root = fs_info->tree_root;
2993 	struct inode *inode = NULL;
2994 	struct extent_changeset *data_reserved = NULL;
2995 	u64 alloc_hint = 0;
2996 	int dcs = BTRFS_DC_ERROR;
2997 	u64 cache_size = 0;
2998 	int retries = 0;
2999 	int ret = 0;
3000 
3001 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3002 		return 0;
3003 
3004 	/*
3005 	 * If this block group is smaller than 100 megs don't bother caching the
3006 	 * block group.
3007 	 */
3008 	if (block_group->length < (100 * SZ_1M)) {
3009 		spin_lock(&block_group->lock);
3010 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3011 		spin_unlock(&block_group->lock);
3012 		return 0;
3013 	}
3014 
3015 	if (TRANS_ABORTED(trans))
3016 		return 0;
3017 again:
3018 	inode = lookup_free_space_inode(block_group, path);
3019 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3020 		ret = PTR_ERR(inode);
3021 		btrfs_release_path(path);
3022 		goto out;
3023 	}
3024 
3025 	if (IS_ERR(inode)) {
3026 		BUG_ON(retries);
3027 		retries++;
3028 
3029 		if (block_group->ro)
3030 			goto out_free;
3031 
3032 		ret = create_free_space_inode(trans, block_group, path);
3033 		if (ret)
3034 			goto out_free;
3035 		goto again;
3036 	}
3037 
3038 	/*
3039 	 * We want to set the generation to 0, that way if anything goes wrong
3040 	 * from here on out we know not to trust this cache when we load up next
3041 	 * time.
3042 	 */
3043 	BTRFS_I(inode)->generation = 0;
3044 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3045 	if (ret) {
3046 		/*
3047 		 * So theoretically we could recover from this, simply set the
3048 		 * super cache generation to 0 so we know to invalidate the
3049 		 * cache, but then we'd have to keep track of the block groups
3050 		 * that fail this way so we know we _have_ to reset this cache
3051 		 * before the next commit or risk reading stale cache.  So to
3052 		 * limit our exposure to horrible edge cases lets just abort the
3053 		 * transaction, this only happens in really bad situations
3054 		 * anyway.
3055 		 */
3056 		btrfs_abort_transaction(trans, ret);
3057 		goto out_put;
3058 	}
3059 	WARN_ON(ret);
3060 
3061 	/* We've already setup this transaction, go ahead and exit */
3062 	if (block_group->cache_generation == trans->transid &&
3063 	    i_size_read(inode)) {
3064 		dcs = BTRFS_DC_SETUP;
3065 		goto out_put;
3066 	}
3067 
3068 	if (i_size_read(inode) > 0) {
3069 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3070 					&fs_info->global_block_rsv);
3071 		if (ret)
3072 			goto out_put;
3073 
3074 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3075 		if (ret)
3076 			goto out_put;
3077 	}
3078 
3079 	spin_lock(&block_group->lock);
3080 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3081 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3082 		/*
3083 		 * don't bother trying to write stuff out _if_
3084 		 * a) we're not cached,
3085 		 * b) we're with nospace_cache mount option,
3086 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3087 		 */
3088 		dcs = BTRFS_DC_WRITTEN;
3089 		spin_unlock(&block_group->lock);
3090 		goto out_put;
3091 	}
3092 	spin_unlock(&block_group->lock);
3093 
3094 	/*
3095 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3096 	 * skip doing the setup, we've already cleared the cache so we're safe.
3097 	 */
3098 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3099 		ret = -ENOSPC;
3100 		goto out_put;
3101 	}
3102 
3103 	/*
3104 	 * Try to preallocate enough space based on how big the block group is.
3105 	 * Keep in mind this has to include any pinned space which could end up
3106 	 * taking up quite a bit since it's not folded into the other space
3107 	 * cache.
3108 	 */
3109 	cache_size = div_u64(block_group->length, SZ_256M);
3110 	if (!cache_size)
3111 		cache_size = 1;
3112 
3113 	cache_size *= 16;
3114 	cache_size *= fs_info->sectorsize;
3115 
3116 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3117 					  cache_size, false);
3118 	if (ret)
3119 		goto out_put;
3120 
3121 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3122 					      cache_size, cache_size,
3123 					      &alloc_hint);
3124 	/*
3125 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3126 	 * of metadata or split extents when writing the cache out, which means
3127 	 * we can enospc if we are heavily fragmented in addition to just normal
3128 	 * out of space conditions.  So if we hit this just skip setting up any
3129 	 * other block groups for this transaction, maybe we'll unpin enough
3130 	 * space the next time around.
3131 	 */
3132 	if (!ret)
3133 		dcs = BTRFS_DC_SETUP;
3134 	else if (ret == -ENOSPC)
3135 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3136 
3137 out_put:
3138 	iput(inode);
3139 out_free:
3140 	btrfs_release_path(path);
3141 out:
3142 	spin_lock(&block_group->lock);
3143 	if (!ret && dcs == BTRFS_DC_SETUP)
3144 		block_group->cache_generation = trans->transid;
3145 	block_group->disk_cache_state = dcs;
3146 	spin_unlock(&block_group->lock);
3147 
3148 	extent_changeset_free(data_reserved);
3149 	return ret;
3150 }
3151 
3152 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3153 {
3154 	struct btrfs_fs_info *fs_info = trans->fs_info;
3155 	struct btrfs_block_group *cache, *tmp;
3156 	struct btrfs_transaction *cur_trans = trans->transaction;
3157 	struct btrfs_path *path;
3158 
3159 	if (list_empty(&cur_trans->dirty_bgs) ||
3160 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3161 		return 0;
3162 
3163 	path = btrfs_alloc_path();
3164 	if (!path)
3165 		return -ENOMEM;
3166 
3167 	/* Could add new block groups, use _safe just in case */
3168 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3169 				 dirty_list) {
3170 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3171 			cache_save_setup(cache, trans, path);
3172 	}
3173 
3174 	btrfs_free_path(path);
3175 	return 0;
3176 }
3177 
3178 /*
3179  * Transaction commit does final block group cache writeback during a critical
3180  * section where nothing is allowed to change the FS.  This is required in
3181  * order for the cache to actually match the block group, but can introduce a
3182  * lot of latency into the commit.
3183  *
3184  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3185  * There's a chance we'll have to redo some of it if the block group changes
3186  * again during the commit, but it greatly reduces the commit latency by
3187  * getting rid of the easy block groups while we're still allowing others to
3188  * join the commit.
3189  */
3190 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3191 {
3192 	struct btrfs_fs_info *fs_info = trans->fs_info;
3193 	struct btrfs_block_group *cache;
3194 	struct btrfs_transaction *cur_trans = trans->transaction;
3195 	int ret = 0;
3196 	int should_put;
3197 	struct btrfs_path *path = NULL;
3198 	LIST_HEAD(dirty);
3199 	struct list_head *io = &cur_trans->io_bgs;
3200 	int loops = 0;
3201 
3202 	spin_lock(&cur_trans->dirty_bgs_lock);
3203 	if (list_empty(&cur_trans->dirty_bgs)) {
3204 		spin_unlock(&cur_trans->dirty_bgs_lock);
3205 		return 0;
3206 	}
3207 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3208 	spin_unlock(&cur_trans->dirty_bgs_lock);
3209 
3210 again:
3211 	/* Make sure all the block groups on our dirty list actually exist */
3212 	btrfs_create_pending_block_groups(trans);
3213 
3214 	if (!path) {
3215 		path = btrfs_alloc_path();
3216 		if (!path) {
3217 			ret = -ENOMEM;
3218 			goto out;
3219 		}
3220 	}
3221 
3222 	/*
3223 	 * cache_write_mutex is here only to save us from balance or automatic
3224 	 * removal of empty block groups deleting this block group while we are
3225 	 * writing out the cache
3226 	 */
3227 	mutex_lock(&trans->transaction->cache_write_mutex);
3228 	while (!list_empty(&dirty)) {
3229 		bool drop_reserve = true;
3230 
3231 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3232 					 dirty_list);
3233 		/*
3234 		 * This can happen if something re-dirties a block group that
3235 		 * is already under IO.  Just wait for it to finish and then do
3236 		 * it all again
3237 		 */
3238 		if (!list_empty(&cache->io_list)) {
3239 			list_del_init(&cache->io_list);
3240 			btrfs_wait_cache_io(trans, cache, path);
3241 			btrfs_put_block_group(cache);
3242 		}
3243 
3244 
3245 		/*
3246 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3247 		 * it should update the cache_state.  Don't delete until after
3248 		 * we wait.
3249 		 *
3250 		 * Since we're not running in the commit critical section
3251 		 * we need the dirty_bgs_lock to protect from update_block_group
3252 		 */
3253 		spin_lock(&cur_trans->dirty_bgs_lock);
3254 		list_del_init(&cache->dirty_list);
3255 		spin_unlock(&cur_trans->dirty_bgs_lock);
3256 
3257 		should_put = 1;
3258 
3259 		cache_save_setup(cache, trans, path);
3260 
3261 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3262 			cache->io_ctl.inode = NULL;
3263 			ret = btrfs_write_out_cache(trans, cache, path);
3264 			if (ret == 0 && cache->io_ctl.inode) {
3265 				should_put = 0;
3266 
3267 				/*
3268 				 * The cache_write_mutex is protecting the
3269 				 * io_list, also refer to the definition of
3270 				 * btrfs_transaction::io_bgs for more details
3271 				 */
3272 				list_add_tail(&cache->io_list, io);
3273 			} else {
3274 				/*
3275 				 * If we failed to write the cache, the
3276 				 * generation will be bad and life goes on
3277 				 */
3278 				ret = 0;
3279 			}
3280 		}
3281 		if (!ret) {
3282 			ret = update_block_group_item(trans, path, cache);
3283 			/*
3284 			 * Our block group might still be attached to the list
3285 			 * of new block groups in the transaction handle of some
3286 			 * other task (struct btrfs_trans_handle->new_bgs). This
3287 			 * means its block group item isn't yet in the extent
3288 			 * tree. If this happens ignore the error, as we will
3289 			 * try again later in the critical section of the
3290 			 * transaction commit.
3291 			 */
3292 			if (ret == -ENOENT) {
3293 				ret = 0;
3294 				spin_lock(&cur_trans->dirty_bgs_lock);
3295 				if (list_empty(&cache->dirty_list)) {
3296 					list_add_tail(&cache->dirty_list,
3297 						      &cur_trans->dirty_bgs);
3298 					btrfs_get_block_group(cache);
3299 					drop_reserve = false;
3300 				}
3301 				spin_unlock(&cur_trans->dirty_bgs_lock);
3302 			} else if (ret) {
3303 				btrfs_abort_transaction(trans, ret);
3304 			}
3305 		}
3306 
3307 		/* If it's not on the io list, we need to put the block group */
3308 		if (should_put)
3309 			btrfs_put_block_group(cache);
3310 		if (drop_reserve)
3311 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3312 		/*
3313 		 * Avoid blocking other tasks for too long. It might even save
3314 		 * us from writing caches for block groups that are going to be
3315 		 * removed.
3316 		 */
3317 		mutex_unlock(&trans->transaction->cache_write_mutex);
3318 		if (ret)
3319 			goto out;
3320 		mutex_lock(&trans->transaction->cache_write_mutex);
3321 	}
3322 	mutex_unlock(&trans->transaction->cache_write_mutex);
3323 
3324 	/*
3325 	 * Go through delayed refs for all the stuff we've just kicked off
3326 	 * and then loop back (just once)
3327 	 */
3328 	if (!ret)
3329 		ret = btrfs_run_delayed_refs(trans, 0);
3330 	if (!ret && loops == 0) {
3331 		loops++;
3332 		spin_lock(&cur_trans->dirty_bgs_lock);
3333 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3334 		/*
3335 		 * dirty_bgs_lock protects us from concurrent block group
3336 		 * deletes too (not just cache_write_mutex).
3337 		 */
3338 		if (!list_empty(&dirty)) {
3339 			spin_unlock(&cur_trans->dirty_bgs_lock);
3340 			goto again;
3341 		}
3342 		spin_unlock(&cur_trans->dirty_bgs_lock);
3343 	}
3344 out:
3345 	if (ret < 0) {
3346 		spin_lock(&cur_trans->dirty_bgs_lock);
3347 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3348 		spin_unlock(&cur_trans->dirty_bgs_lock);
3349 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3350 	}
3351 
3352 	btrfs_free_path(path);
3353 	return ret;
3354 }
3355 
3356 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3357 {
3358 	struct btrfs_fs_info *fs_info = trans->fs_info;
3359 	struct btrfs_block_group *cache;
3360 	struct btrfs_transaction *cur_trans = trans->transaction;
3361 	int ret = 0;
3362 	int should_put;
3363 	struct btrfs_path *path;
3364 	struct list_head *io = &cur_trans->io_bgs;
3365 
3366 	path = btrfs_alloc_path();
3367 	if (!path)
3368 		return -ENOMEM;
3369 
3370 	/*
3371 	 * Even though we are in the critical section of the transaction commit,
3372 	 * we can still have concurrent tasks adding elements to this
3373 	 * transaction's list of dirty block groups. These tasks correspond to
3374 	 * endio free space workers started when writeback finishes for a
3375 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3376 	 * allocate new block groups as a result of COWing nodes of the root
3377 	 * tree when updating the free space inode. The writeback for the space
3378 	 * caches is triggered by an earlier call to
3379 	 * btrfs_start_dirty_block_groups() and iterations of the following
3380 	 * loop.
3381 	 * Also we want to do the cache_save_setup first and then run the
3382 	 * delayed refs to make sure we have the best chance at doing this all
3383 	 * in one shot.
3384 	 */
3385 	spin_lock(&cur_trans->dirty_bgs_lock);
3386 	while (!list_empty(&cur_trans->dirty_bgs)) {
3387 		cache = list_first_entry(&cur_trans->dirty_bgs,
3388 					 struct btrfs_block_group,
3389 					 dirty_list);
3390 
3391 		/*
3392 		 * This can happen if cache_save_setup re-dirties a block group
3393 		 * that is already under IO.  Just wait for it to finish and
3394 		 * then do it all again
3395 		 */
3396 		if (!list_empty(&cache->io_list)) {
3397 			spin_unlock(&cur_trans->dirty_bgs_lock);
3398 			list_del_init(&cache->io_list);
3399 			btrfs_wait_cache_io(trans, cache, path);
3400 			btrfs_put_block_group(cache);
3401 			spin_lock(&cur_trans->dirty_bgs_lock);
3402 		}
3403 
3404 		/*
3405 		 * Don't remove from the dirty list until after we've waited on
3406 		 * any pending IO
3407 		 */
3408 		list_del_init(&cache->dirty_list);
3409 		spin_unlock(&cur_trans->dirty_bgs_lock);
3410 		should_put = 1;
3411 
3412 		cache_save_setup(cache, trans, path);
3413 
3414 		if (!ret)
3415 			ret = btrfs_run_delayed_refs(trans,
3416 						     (unsigned long) -1);
3417 
3418 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3419 			cache->io_ctl.inode = NULL;
3420 			ret = btrfs_write_out_cache(trans, cache, path);
3421 			if (ret == 0 && cache->io_ctl.inode) {
3422 				should_put = 0;
3423 				list_add_tail(&cache->io_list, io);
3424 			} else {
3425 				/*
3426 				 * If we failed to write the cache, the
3427 				 * generation will be bad and life goes on
3428 				 */
3429 				ret = 0;
3430 			}
3431 		}
3432 		if (!ret) {
3433 			ret = update_block_group_item(trans, path, cache);
3434 			/*
3435 			 * One of the free space endio workers might have
3436 			 * created a new block group while updating a free space
3437 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3438 			 * and hasn't released its transaction handle yet, in
3439 			 * which case the new block group is still attached to
3440 			 * its transaction handle and its creation has not
3441 			 * finished yet (no block group item in the extent tree
3442 			 * yet, etc). If this is the case, wait for all free
3443 			 * space endio workers to finish and retry. This is a
3444 			 * very rare case so no need for a more efficient and
3445 			 * complex approach.
3446 			 */
3447 			if (ret == -ENOENT) {
3448 				wait_event(cur_trans->writer_wait,
3449 				   atomic_read(&cur_trans->num_writers) == 1);
3450 				ret = update_block_group_item(trans, path, cache);
3451 			}
3452 			if (ret)
3453 				btrfs_abort_transaction(trans, ret);
3454 		}
3455 
3456 		/* If its not on the io list, we need to put the block group */
3457 		if (should_put)
3458 			btrfs_put_block_group(cache);
3459 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3460 		spin_lock(&cur_trans->dirty_bgs_lock);
3461 	}
3462 	spin_unlock(&cur_trans->dirty_bgs_lock);
3463 
3464 	/*
3465 	 * Refer to the definition of io_bgs member for details why it's safe
3466 	 * to use it without any locking
3467 	 */
3468 	while (!list_empty(io)) {
3469 		cache = list_first_entry(io, struct btrfs_block_group,
3470 					 io_list);
3471 		list_del_init(&cache->io_list);
3472 		btrfs_wait_cache_io(trans, cache, path);
3473 		btrfs_put_block_group(cache);
3474 	}
3475 
3476 	btrfs_free_path(path);
3477 	return ret;
3478 }
3479 
3480 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3481 			     u64 bytenr, u64 num_bytes, bool alloc)
3482 {
3483 	struct btrfs_fs_info *info = trans->fs_info;
3484 	struct btrfs_block_group *cache = NULL;
3485 	u64 total = num_bytes;
3486 	u64 old_val;
3487 	u64 byte_in_group;
3488 	int factor;
3489 	int ret = 0;
3490 
3491 	/* Block accounting for super block */
3492 	spin_lock(&info->delalloc_root_lock);
3493 	old_val = btrfs_super_bytes_used(info->super_copy);
3494 	if (alloc)
3495 		old_val += num_bytes;
3496 	else
3497 		old_val -= num_bytes;
3498 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3499 	spin_unlock(&info->delalloc_root_lock);
3500 
3501 	while (total) {
3502 		struct btrfs_space_info *space_info;
3503 		bool reclaim = false;
3504 
3505 		cache = btrfs_lookup_block_group(info, bytenr);
3506 		if (!cache) {
3507 			ret = -ENOENT;
3508 			break;
3509 		}
3510 		space_info = cache->space_info;
3511 		factor = btrfs_bg_type_to_factor(cache->flags);
3512 
3513 		/*
3514 		 * If this block group has free space cache written out, we
3515 		 * need to make sure to load it if we are removing space.  This
3516 		 * is because we need the unpinning stage to actually add the
3517 		 * space back to the block group, otherwise we will leak space.
3518 		 */
3519 		if (!alloc && !btrfs_block_group_done(cache))
3520 			btrfs_cache_block_group(cache, true);
3521 
3522 		byte_in_group = bytenr - cache->start;
3523 		WARN_ON(byte_in_group > cache->length);
3524 
3525 		spin_lock(&space_info->lock);
3526 		spin_lock(&cache->lock);
3527 
3528 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3529 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3530 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3531 
3532 		old_val = cache->used;
3533 		num_bytes = min(total, cache->length - byte_in_group);
3534 		if (alloc) {
3535 			old_val += num_bytes;
3536 			cache->used = old_val;
3537 			cache->reserved -= num_bytes;
3538 			space_info->bytes_reserved -= num_bytes;
3539 			space_info->bytes_used += num_bytes;
3540 			space_info->disk_used += num_bytes * factor;
3541 			spin_unlock(&cache->lock);
3542 			spin_unlock(&space_info->lock);
3543 		} else {
3544 			old_val -= num_bytes;
3545 			cache->used = old_val;
3546 			cache->pinned += num_bytes;
3547 			btrfs_space_info_update_bytes_pinned(info, space_info,
3548 							     num_bytes);
3549 			space_info->bytes_used -= num_bytes;
3550 			space_info->disk_used -= num_bytes * factor;
3551 
3552 			reclaim = should_reclaim_block_group(cache, num_bytes);
3553 
3554 			spin_unlock(&cache->lock);
3555 			spin_unlock(&space_info->lock);
3556 
3557 			set_extent_bit(&trans->transaction->pinned_extents,
3558 				       bytenr, bytenr + num_bytes - 1,
3559 				       EXTENT_DIRTY, NULL);
3560 		}
3561 
3562 		spin_lock(&trans->transaction->dirty_bgs_lock);
3563 		if (list_empty(&cache->dirty_list)) {
3564 			list_add_tail(&cache->dirty_list,
3565 				      &trans->transaction->dirty_bgs);
3566 			trans->delayed_ref_updates++;
3567 			btrfs_get_block_group(cache);
3568 		}
3569 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3570 
3571 		/*
3572 		 * No longer have used bytes in this block group, queue it for
3573 		 * deletion. We do this after adding the block group to the
3574 		 * dirty list to avoid races between cleaner kthread and space
3575 		 * cache writeout.
3576 		 */
3577 		if (!alloc && old_val == 0) {
3578 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3579 				btrfs_mark_bg_unused(cache);
3580 		} else if (!alloc && reclaim) {
3581 			btrfs_mark_bg_to_reclaim(cache);
3582 		}
3583 
3584 		btrfs_put_block_group(cache);
3585 		total -= num_bytes;
3586 		bytenr += num_bytes;
3587 	}
3588 
3589 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3590 	btrfs_update_delayed_refs_rsv(trans);
3591 	return ret;
3592 }
3593 
3594 /*
3595  * Update the block_group and space info counters.
3596  *
3597  * @cache:	The cache we are manipulating
3598  * @ram_bytes:  The number of bytes of file content, and will be same to
3599  *              @num_bytes except for the compress path.
3600  * @num_bytes:	The number of bytes in question
3601  * @delalloc:   The blocks are allocated for the delalloc write
3602  *
3603  * This is called by the allocator when it reserves space. If this is a
3604  * reservation and the block group has become read only we cannot make the
3605  * reservation and return -EAGAIN, otherwise this function always succeeds.
3606  */
3607 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3608 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3609 			     bool force_wrong_size_class)
3610 {
3611 	struct btrfs_space_info *space_info = cache->space_info;
3612 	enum btrfs_block_group_size_class size_class;
3613 	int ret = 0;
3614 
3615 	spin_lock(&space_info->lock);
3616 	spin_lock(&cache->lock);
3617 	if (cache->ro) {
3618 		ret = -EAGAIN;
3619 		goto out;
3620 	}
3621 
3622 	if (btrfs_block_group_should_use_size_class(cache)) {
3623 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3624 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3625 		if (ret)
3626 			goto out;
3627 	}
3628 	cache->reserved += num_bytes;
3629 	space_info->bytes_reserved += num_bytes;
3630 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3631 				      space_info->flags, num_bytes, 1);
3632 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3633 					      space_info, -ram_bytes);
3634 	if (delalloc)
3635 		cache->delalloc_bytes += num_bytes;
3636 
3637 	/*
3638 	 * Compression can use less space than we reserved, so wake tickets if
3639 	 * that happens.
3640 	 */
3641 	if (num_bytes < ram_bytes)
3642 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3643 out:
3644 	spin_unlock(&cache->lock);
3645 	spin_unlock(&space_info->lock);
3646 	return ret;
3647 }
3648 
3649 /*
3650  * Update the block_group and space info counters.
3651  *
3652  * @cache:      The cache we are manipulating
3653  * @num_bytes:  The number of bytes in question
3654  * @delalloc:   The blocks are allocated for the delalloc write
3655  *
3656  * This is called by somebody who is freeing space that was never actually used
3657  * on disk.  For example if you reserve some space for a new leaf in transaction
3658  * A and before transaction A commits you free that leaf, you call this with
3659  * reserve set to 0 in order to clear the reservation.
3660  */
3661 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3662 			       u64 num_bytes, int delalloc)
3663 {
3664 	struct btrfs_space_info *space_info = cache->space_info;
3665 
3666 	spin_lock(&space_info->lock);
3667 	spin_lock(&cache->lock);
3668 	if (cache->ro)
3669 		space_info->bytes_readonly += num_bytes;
3670 	cache->reserved -= num_bytes;
3671 	space_info->bytes_reserved -= num_bytes;
3672 	space_info->max_extent_size = 0;
3673 
3674 	if (delalloc)
3675 		cache->delalloc_bytes -= num_bytes;
3676 	spin_unlock(&cache->lock);
3677 
3678 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3679 	spin_unlock(&space_info->lock);
3680 }
3681 
3682 static void force_metadata_allocation(struct btrfs_fs_info *info)
3683 {
3684 	struct list_head *head = &info->space_info;
3685 	struct btrfs_space_info *found;
3686 
3687 	list_for_each_entry(found, head, list) {
3688 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3689 			found->force_alloc = CHUNK_ALLOC_FORCE;
3690 	}
3691 }
3692 
3693 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3694 			      struct btrfs_space_info *sinfo, int force)
3695 {
3696 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3697 	u64 thresh;
3698 
3699 	if (force == CHUNK_ALLOC_FORCE)
3700 		return 1;
3701 
3702 	/*
3703 	 * in limited mode, we want to have some free space up to
3704 	 * about 1% of the FS size.
3705 	 */
3706 	if (force == CHUNK_ALLOC_LIMITED) {
3707 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3708 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3709 
3710 		if (sinfo->total_bytes - bytes_used < thresh)
3711 			return 1;
3712 	}
3713 
3714 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3715 		return 0;
3716 	return 1;
3717 }
3718 
3719 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3720 {
3721 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3722 
3723 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3724 }
3725 
3726 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3727 {
3728 	struct btrfs_block_group *bg;
3729 	int ret;
3730 
3731 	/*
3732 	 * Check if we have enough space in the system space info because we
3733 	 * will need to update device items in the chunk btree and insert a new
3734 	 * chunk item in the chunk btree as well. This will allocate a new
3735 	 * system block group if needed.
3736 	 */
3737 	check_system_chunk(trans, flags);
3738 
3739 	bg = btrfs_create_chunk(trans, flags);
3740 	if (IS_ERR(bg)) {
3741 		ret = PTR_ERR(bg);
3742 		goto out;
3743 	}
3744 
3745 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3746 	/*
3747 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3748 	 * previously reserved space in the system space_info and allocated one
3749 	 * new system chunk if necessary. However there are three exceptions:
3750 	 *
3751 	 * 1) We may have enough free space in the system space_info but all the
3752 	 *    existing system block groups have a profile which can not be used
3753 	 *    for extent allocation.
3754 	 *
3755 	 *    This happens when mounting in degraded mode. For example we have a
3756 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3757 	 *    using the other device in degraded mode. If we then allocate a chunk,
3758 	 *    we may have enough free space in the existing system space_info, but
3759 	 *    none of the block groups can be used for extent allocation since they
3760 	 *    have a RAID1 profile, and because we are in degraded mode with a
3761 	 *    single device, we are forced to allocate a new system chunk with a
3762 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3763 	 *    block groups and check if they have a usable profile and enough space
3764 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3765 	 *    try again after forcing allocation of a new system chunk. Like this
3766 	 *    we avoid paying the cost of that search in normal circumstances, when
3767 	 *    we were not mounted in degraded mode;
3768 	 *
3769 	 * 2) We had enough free space info the system space_info, and one suitable
3770 	 *    block group to allocate from when we called check_system_chunk()
3771 	 *    above. However right after we called it, the only system block group
3772 	 *    with enough free space got turned into RO mode by a running scrub,
3773 	 *    and in this case we have to allocate a new one and retry. We only
3774 	 *    need do this allocate and retry once, since we have a transaction
3775 	 *    handle and scrub uses the commit root to search for block groups;
3776 	 *
3777 	 * 3) We had one system block group with enough free space when we called
3778 	 *    check_system_chunk(), but after that, right before we tried to
3779 	 *    allocate the last extent buffer we needed, a discard operation came
3780 	 *    in and it temporarily removed the last free space entry from the
3781 	 *    block group (discard removes a free space entry, discards it, and
3782 	 *    then adds back the entry to the block group cache).
3783 	 */
3784 	if (ret == -ENOSPC) {
3785 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3786 		struct btrfs_block_group *sys_bg;
3787 
3788 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3789 		if (IS_ERR(sys_bg)) {
3790 			ret = PTR_ERR(sys_bg);
3791 			btrfs_abort_transaction(trans, ret);
3792 			goto out;
3793 		}
3794 
3795 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3796 		if (ret) {
3797 			btrfs_abort_transaction(trans, ret);
3798 			goto out;
3799 		}
3800 
3801 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3802 		if (ret) {
3803 			btrfs_abort_transaction(trans, ret);
3804 			goto out;
3805 		}
3806 	} else if (ret) {
3807 		btrfs_abort_transaction(trans, ret);
3808 		goto out;
3809 	}
3810 out:
3811 	btrfs_trans_release_chunk_metadata(trans);
3812 
3813 	if (ret)
3814 		return ERR_PTR(ret);
3815 
3816 	btrfs_get_block_group(bg);
3817 	return bg;
3818 }
3819 
3820 /*
3821  * Chunk allocation is done in 2 phases:
3822  *
3823  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3824  *    the chunk, the chunk mapping, create its block group and add the items
3825  *    that belong in the chunk btree to it - more specifically, we need to
3826  *    update device items in the chunk btree and add a new chunk item to it.
3827  *
3828  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3829  *    group item to the extent btree and the device extent items to the devices
3830  *    btree.
3831  *
3832  * This is done to prevent deadlocks. For example when COWing a node from the
3833  * extent btree we are holding a write lock on the node's parent and if we
3834  * trigger chunk allocation and attempted to insert the new block group item
3835  * in the extent btree right way, we could deadlock because the path for the
3836  * insertion can include that parent node. At first glance it seems impossible
3837  * to trigger chunk allocation after starting a transaction since tasks should
3838  * reserve enough transaction units (metadata space), however while that is true
3839  * most of the time, chunk allocation may still be triggered for several reasons:
3840  *
3841  * 1) When reserving metadata, we check if there is enough free space in the
3842  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3843  *    However later when the task actually tries to COW an extent buffer from
3844  *    the extent btree or from the device btree for example, it is forced to
3845  *    allocate a new block group (chunk) because the only one that had enough
3846  *    free space was just turned to RO mode by a running scrub for example (or
3847  *    device replace, block group reclaim thread, etc), so we can not use it
3848  *    for allocating an extent and end up being forced to allocate a new one;
3849  *
3850  * 2) Because we only check that the metadata space_info has enough free bytes,
3851  *    we end up not allocating a new metadata chunk in that case. However if
3852  *    the filesystem was mounted in degraded mode, none of the existing block
3853  *    groups might be suitable for extent allocation due to their incompatible
3854  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3855  *    use a RAID1 profile, in degraded mode using a single device). In this case
3856  *    when the task attempts to COW some extent buffer of the extent btree for
3857  *    example, it will trigger allocation of a new metadata block group with a
3858  *    suitable profile (SINGLE profile in the example of the degraded mount of
3859  *    the RAID1 filesystem);
3860  *
3861  * 3) The task has reserved enough transaction units / metadata space, but when
3862  *    it attempts to COW an extent buffer from the extent or device btree for
3863  *    example, it does not find any free extent in any metadata block group,
3864  *    therefore forced to try to allocate a new metadata block group.
3865  *    This is because some other task allocated all available extents in the
3866  *    meanwhile - this typically happens with tasks that don't reserve space
3867  *    properly, either intentionally or as a bug. One example where this is
3868  *    done intentionally is fsync, as it does not reserve any transaction units
3869  *    and ends up allocating a variable number of metadata extents for log
3870  *    tree extent buffers;
3871  *
3872  * 4) The task has reserved enough transaction units / metadata space, but right
3873  *    before it tries to allocate the last extent buffer it needs, a discard
3874  *    operation comes in and, temporarily, removes the last free space entry from
3875  *    the only metadata block group that had free space (discard starts by
3876  *    removing a free space entry from a block group, then does the discard
3877  *    operation and, once it's done, it adds back the free space entry to the
3878  *    block group).
3879  *
3880  * We also need this 2 phases setup when adding a device to a filesystem with
3881  * a seed device - we must create new metadata and system chunks without adding
3882  * any of the block group items to the chunk, extent and device btrees. If we
3883  * did not do it this way, we would get ENOSPC when attempting to update those
3884  * btrees, since all the chunks from the seed device are read-only.
3885  *
3886  * Phase 1 does the updates and insertions to the chunk btree because if we had
3887  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3888  * parallel, we risk having too many system chunks allocated by many tasks if
3889  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3890  * extreme case this leads to exhaustion of the system chunk array in the
3891  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3892  * and with RAID filesystems (so we have more device items in the chunk btree).
3893  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3894  * the system chunk array due to concurrent allocations") provides more details.
3895  *
3896  * Allocation of system chunks does not happen through this function. A task that
3897  * needs to update the chunk btree (the only btree that uses system chunks), must
3898  * preallocate chunk space by calling either check_system_chunk() or
3899  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3900  * metadata chunk or when removing a chunk, while the later is used before doing
3901  * a modification to the chunk btree - use cases for the later are adding,
3902  * removing and resizing a device as well as relocation of a system chunk.
3903  * See the comment below for more details.
3904  *
3905  * The reservation of system space, done through check_system_chunk(), as well
3906  * as all the updates and insertions into the chunk btree must be done while
3907  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3908  * an extent buffer from the chunks btree we never trigger allocation of a new
3909  * system chunk, which would result in a deadlock (trying to lock twice an
3910  * extent buffer of the chunk btree, first time before triggering the chunk
3911  * allocation and the second time during chunk allocation while attempting to
3912  * update the chunks btree). The system chunk array is also updated while holding
3913  * that mutex. The same logic applies to removing chunks - we must reserve system
3914  * space, update the chunk btree and the system chunk array in the superblock
3915  * while holding fs_info->chunk_mutex.
3916  *
3917  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3918  *
3919  * If @force is CHUNK_ALLOC_FORCE:
3920  *    - return 1 if it successfully allocates a chunk,
3921  *    - return errors including -ENOSPC otherwise.
3922  * If @force is NOT CHUNK_ALLOC_FORCE:
3923  *    - return 0 if it doesn't need to allocate a new chunk,
3924  *    - return 1 if it successfully allocates a chunk,
3925  *    - return errors including -ENOSPC otherwise.
3926  */
3927 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3928 		      enum btrfs_chunk_alloc_enum force)
3929 {
3930 	struct btrfs_fs_info *fs_info = trans->fs_info;
3931 	struct btrfs_space_info *space_info;
3932 	struct btrfs_block_group *ret_bg;
3933 	bool wait_for_alloc = false;
3934 	bool should_alloc = false;
3935 	bool from_extent_allocation = false;
3936 	int ret = 0;
3937 
3938 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3939 		from_extent_allocation = true;
3940 		force = CHUNK_ALLOC_FORCE;
3941 	}
3942 
3943 	/* Don't re-enter if we're already allocating a chunk */
3944 	if (trans->allocating_chunk)
3945 		return -ENOSPC;
3946 	/*
3947 	 * Allocation of system chunks can not happen through this path, as we
3948 	 * could end up in a deadlock if we are allocating a data or metadata
3949 	 * chunk and there is another task modifying the chunk btree.
3950 	 *
3951 	 * This is because while we are holding the chunk mutex, we will attempt
3952 	 * to add the new chunk item to the chunk btree or update an existing
3953 	 * device item in the chunk btree, while the other task that is modifying
3954 	 * the chunk btree is attempting to COW an extent buffer while holding a
3955 	 * lock on it and on its parent - if the COW operation triggers a system
3956 	 * chunk allocation, then we can deadlock because we are holding the
3957 	 * chunk mutex and we may need to access that extent buffer or its parent
3958 	 * in order to add the chunk item or update a device item.
3959 	 *
3960 	 * Tasks that want to modify the chunk tree should reserve system space
3961 	 * before updating the chunk btree, by calling either
3962 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3963 	 * It's possible that after a task reserves the space, it still ends up
3964 	 * here - this happens in the cases described above at do_chunk_alloc().
3965 	 * The task will have to either retry or fail.
3966 	 */
3967 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3968 		return -ENOSPC;
3969 
3970 	space_info = btrfs_find_space_info(fs_info, flags);
3971 	ASSERT(space_info);
3972 
3973 	do {
3974 		spin_lock(&space_info->lock);
3975 		if (force < space_info->force_alloc)
3976 			force = space_info->force_alloc;
3977 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3978 		if (space_info->full) {
3979 			/* No more free physical space */
3980 			if (should_alloc)
3981 				ret = -ENOSPC;
3982 			else
3983 				ret = 0;
3984 			spin_unlock(&space_info->lock);
3985 			return ret;
3986 		} else if (!should_alloc) {
3987 			spin_unlock(&space_info->lock);
3988 			return 0;
3989 		} else if (space_info->chunk_alloc) {
3990 			/*
3991 			 * Someone is already allocating, so we need to block
3992 			 * until this someone is finished and then loop to
3993 			 * recheck if we should continue with our allocation
3994 			 * attempt.
3995 			 */
3996 			wait_for_alloc = true;
3997 			force = CHUNK_ALLOC_NO_FORCE;
3998 			spin_unlock(&space_info->lock);
3999 			mutex_lock(&fs_info->chunk_mutex);
4000 			mutex_unlock(&fs_info->chunk_mutex);
4001 		} else {
4002 			/* Proceed with allocation */
4003 			space_info->chunk_alloc = 1;
4004 			wait_for_alloc = false;
4005 			spin_unlock(&space_info->lock);
4006 		}
4007 
4008 		cond_resched();
4009 	} while (wait_for_alloc);
4010 
4011 	mutex_lock(&fs_info->chunk_mutex);
4012 	trans->allocating_chunk = true;
4013 
4014 	/*
4015 	 * If we have mixed data/metadata chunks we want to make sure we keep
4016 	 * allocating mixed chunks instead of individual chunks.
4017 	 */
4018 	if (btrfs_mixed_space_info(space_info))
4019 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4020 
4021 	/*
4022 	 * if we're doing a data chunk, go ahead and make sure that
4023 	 * we keep a reasonable number of metadata chunks allocated in the
4024 	 * FS as well.
4025 	 */
4026 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4027 		fs_info->data_chunk_allocations++;
4028 		if (!(fs_info->data_chunk_allocations %
4029 		      fs_info->metadata_ratio))
4030 			force_metadata_allocation(fs_info);
4031 	}
4032 
4033 	ret_bg = do_chunk_alloc(trans, flags);
4034 	trans->allocating_chunk = false;
4035 
4036 	if (IS_ERR(ret_bg)) {
4037 		ret = PTR_ERR(ret_bg);
4038 	} else if (from_extent_allocation) {
4039 		/*
4040 		 * New block group is likely to be used soon. Try to activate
4041 		 * it now. Failure is OK for now.
4042 		 */
4043 		btrfs_zone_activate(ret_bg);
4044 	}
4045 
4046 	if (!ret)
4047 		btrfs_put_block_group(ret_bg);
4048 
4049 	spin_lock(&space_info->lock);
4050 	if (ret < 0) {
4051 		if (ret == -ENOSPC)
4052 			space_info->full = 1;
4053 		else
4054 			goto out;
4055 	} else {
4056 		ret = 1;
4057 		space_info->max_extent_size = 0;
4058 	}
4059 
4060 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4061 out:
4062 	space_info->chunk_alloc = 0;
4063 	spin_unlock(&space_info->lock);
4064 	mutex_unlock(&fs_info->chunk_mutex);
4065 
4066 	return ret;
4067 }
4068 
4069 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4070 {
4071 	u64 num_dev;
4072 
4073 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4074 	if (!num_dev)
4075 		num_dev = fs_info->fs_devices->rw_devices;
4076 
4077 	return num_dev;
4078 }
4079 
4080 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4081 				u64 bytes,
4082 				u64 type)
4083 {
4084 	struct btrfs_fs_info *fs_info = trans->fs_info;
4085 	struct btrfs_space_info *info;
4086 	u64 left;
4087 	int ret = 0;
4088 
4089 	/*
4090 	 * Needed because we can end up allocating a system chunk and for an
4091 	 * atomic and race free space reservation in the chunk block reserve.
4092 	 */
4093 	lockdep_assert_held(&fs_info->chunk_mutex);
4094 
4095 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4096 	spin_lock(&info->lock);
4097 	left = info->total_bytes - btrfs_space_info_used(info, true);
4098 	spin_unlock(&info->lock);
4099 
4100 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4101 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4102 			   left, bytes, type);
4103 		btrfs_dump_space_info(fs_info, info, 0, 0);
4104 	}
4105 
4106 	if (left < bytes) {
4107 		u64 flags = btrfs_system_alloc_profile(fs_info);
4108 		struct btrfs_block_group *bg;
4109 
4110 		/*
4111 		 * Ignore failure to create system chunk. We might end up not
4112 		 * needing it, as we might not need to COW all nodes/leafs from
4113 		 * the paths we visit in the chunk tree (they were already COWed
4114 		 * or created in the current transaction for example).
4115 		 */
4116 		bg = btrfs_create_chunk(trans, flags);
4117 		if (IS_ERR(bg)) {
4118 			ret = PTR_ERR(bg);
4119 		} else {
4120 			/*
4121 			 * We have a new chunk. We also need to activate it for
4122 			 * zoned filesystem.
4123 			 */
4124 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4125 			if (ret < 0)
4126 				return;
4127 
4128 			/*
4129 			 * If we fail to add the chunk item here, we end up
4130 			 * trying again at phase 2 of chunk allocation, at
4131 			 * btrfs_create_pending_block_groups(). So ignore
4132 			 * any error here. An ENOSPC here could happen, due to
4133 			 * the cases described at do_chunk_alloc() - the system
4134 			 * block group we just created was just turned into RO
4135 			 * mode by a scrub for example, or a running discard
4136 			 * temporarily removed its free space entries, etc.
4137 			 */
4138 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4139 		}
4140 	}
4141 
4142 	if (!ret) {
4143 		ret = btrfs_block_rsv_add(fs_info,
4144 					  &fs_info->chunk_block_rsv,
4145 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4146 		if (!ret)
4147 			trans->chunk_bytes_reserved += bytes;
4148 	}
4149 }
4150 
4151 /*
4152  * Reserve space in the system space for allocating or removing a chunk.
4153  * The caller must be holding fs_info->chunk_mutex.
4154  */
4155 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4156 {
4157 	struct btrfs_fs_info *fs_info = trans->fs_info;
4158 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4159 	u64 bytes;
4160 
4161 	/* num_devs device items to update and 1 chunk item to add or remove. */
4162 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4163 		btrfs_calc_insert_metadata_size(fs_info, 1);
4164 
4165 	reserve_chunk_space(trans, bytes, type);
4166 }
4167 
4168 /*
4169  * Reserve space in the system space, if needed, for doing a modification to the
4170  * chunk btree.
4171  *
4172  * @trans:		A transaction handle.
4173  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4174  *			in the chunk btree or if it's for the deletion or update
4175  *			of an existing item.
4176  *
4177  * This is used in a context where we need to update the chunk btree outside
4178  * block group allocation and removal, to avoid a deadlock with a concurrent
4179  * task that is allocating a metadata or data block group and therefore needs to
4180  * update the chunk btree while holding the chunk mutex. After the update to the
4181  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4182  *
4183  */
4184 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4185 				  bool is_item_insertion)
4186 {
4187 	struct btrfs_fs_info *fs_info = trans->fs_info;
4188 	u64 bytes;
4189 
4190 	if (is_item_insertion)
4191 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4192 	else
4193 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4194 
4195 	mutex_lock(&fs_info->chunk_mutex);
4196 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4197 	mutex_unlock(&fs_info->chunk_mutex);
4198 }
4199 
4200 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4201 {
4202 	struct btrfs_block_group *block_group;
4203 
4204 	block_group = btrfs_lookup_first_block_group(info, 0);
4205 	while (block_group) {
4206 		btrfs_wait_block_group_cache_done(block_group);
4207 		spin_lock(&block_group->lock);
4208 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4209 				       &block_group->runtime_flags)) {
4210 			struct inode *inode = block_group->inode;
4211 
4212 			block_group->inode = NULL;
4213 			spin_unlock(&block_group->lock);
4214 
4215 			ASSERT(block_group->io_ctl.inode == NULL);
4216 			iput(inode);
4217 		} else {
4218 			spin_unlock(&block_group->lock);
4219 		}
4220 		block_group = btrfs_next_block_group(block_group);
4221 	}
4222 }
4223 
4224 /*
4225  * Must be called only after stopping all workers, since we could have block
4226  * group caching kthreads running, and therefore they could race with us if we
4227  * freed the block groups before stopping them.
4228  */
4229 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4230 {
4231 	struct btrfs_block_group *block_group;
4232 	struct btrfs_space_info *space_info;
4233 	struct btrfs_caching_control *caching_ctl;
4234 	struct rb_node *n;
4235 
4236 	write_lock(&info->block_group_cache_lock);
4237 	while (!list_empty(&info->caching_block_groups)) {
4238 		caching_ctl = list_entry(info->caching_block_groups.next,
4239 					 struct btrfs_caching_control, list);
4240 		list_del(&caching_ctl->list);
4241 		btrfs_put_caching_control(caching_ctl);
4242 	}
4243 	write_unlock(&info->block_group_cache_lock);
4244 
4245 	spin_lock(&info->unused_bgs_lock);
4246 	while (!list_empty(&info->unused_bgs)) {
4247 		block_group = list_first_entry(&info->unused_bgs,
4248 					       struct btrfs_block_group,
4249 					       bg_list);
4250 		list_del_init(&block_group->bg_list);
4251 		btrfs_put_block_group(block_group);
4252 	}
4253 
4254 	while (!list_empty(&info->reclaim_bgs)) {
4255 		block_group = list_first_entry(&info->reclaim_bgs,
4256 					       struct btrfs_block_group,
4257 					       bg_list);
4258 		list_del_init(&block_group->bg_list);
4259 		btrfs_put_block_group(block_group);
4260 	}
4261 	spin_unlock(&info->unused_bgs_lock);
4262 
4263 	spin_lock(&info->zone_active_bgs_lock);
4264 	while (!list_empty(&info->zone_active_bgs)) {
4265 		block_group = list_first_entry(&info->zone_active_bgs,
4266 					       struct btrfs_block_group,
4267 					       active_bg_list);
4268 		list_del_init(&block_group->active_bg_list);
4269 		btrfs_put_block_group(block_group);
4270 	}
4271 	spin_unlock(&info->zone_active_bgs_lock);
4272 
4273 	write_lock(&info->block_group_cache_lock);
4274 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4275 		block_group = rb_entry(n, struct btrfs_block_group,
4276 				       cache_node);
4277 		rb_erase_cached(&block_group->cache_node,
4278 				&info->block_group_cache_tree);
4279 		RB_CLEAR_NODE(&block_group->cache_node);
4280 		write_unlock(&info->block_group_cache_lock);
4281 
4282 		down_write(&block_group->space_info->groups_sem);
4283 		list_del(&block_group->list);
4284 		up_write(&block_group->space_info->groups_sem);
4285 
4286 		/*
4287 		 * We haven't cached this block group, which means we could
4288 		 * possibly have excluded extents on this block group.
4289 		 */
4290 		if (block_group->cached == BTRFS_CACHE_NO ||
4291 		    block_group->cached == BTRFS_CACHE_ERROR)
4292 			btrfs_free_excluded_extents(block_group);
4293 
4294 		btrfs_remove_free_space_cache(block_group);
4295 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4296 		ASSERT(list_empty(&block_group->dirty_list));
4297 		ASSERT(list_empty(&block_group->io_list));
4298 		ASSERT(list_empty(&block_group->bg_list));
4299 		ASSERT(refcount_read(&block_group->refs) == 1);
4300 		ASSERT(block_group->swap_extents == 0);
4301 		btrfs_put_block_group(block_group);
4302 
4303 		write_lock(&info->block_group_cache_lock);
4304 	}
4305 	write_unlock(&info->block_group_cache_lock);
4306 
4307 	btrfs_release_global_block_rsv(info);
4308 
4309 	while (!list_empty(&info->space_info)) {
4310 		space_info = list_entry(info->space_info.next,
4311 					struct btrfs_space_info,
4312 					list);
4313 
4314 		/*
4315 		 * Do not hide this behind enospc_debug, this is actually
4316 		 * important and indicates a real bug if this happens.
4317 		 */
4318 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4319 			    space_info->bytes_may_use > 0))
4320 			btrfs_dump_space_info(info, space_info, 0, 0);
4321 
4322 		/*
4323 		 * If there was a failure to cleanup a log tree, very likely due
4324 		 * to an IO failure on a writeback attempt of one or more of its
4325 		 * extent buffers, we could not do proper (and cheap) unaccounting
4326 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4327 		 * that case.
4328 		 */
4329 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4330 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4331 			if (WARN_ON(space_info->bytes_reserved > 0))
4332 				btrfs_dump_space_info(info, space_info, 0, 0);
4333 		}
4334 
4335 		WARN_ON(space_info->reclaim_size > 0);
4336 		list_del(&space_info->list);
4337 		btrfs_sysfs_remove_space_info(space_info);
4338 	}
4339 	return 0;
4340 }
4341 
4342 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4343 {
4344 	atomic_inc(&cache->frozen);
4345 }
4346 
4347 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4348 {
4349 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4350 	struct extent_map_tree *em_tree;
4351 	struct extent_map *em;
4352 	bool cleanup;
4353 
4354 	spin_lock(&block_group->lock);
4355 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4356 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4357 	spin_unlock(&block_group->lock);
4358 
4359 	if (cleanup) {
4360 		em_tree = &fs_info->mapping_tree;
4361 		write_lock(&em_tree->lock);
4362 		em = lookup_extent_mapping(em_tree, block_group->start,
4363 					   1);
4364 		BUG_ON(!em); /* logic error, can't happen */
4365 		remove_extent_mapping(em_tree, em);
4366 		write_unlock(&em_tree->lock);
4367 
4368 		/* once for us and once for the tree */
4369 		free_extent_map(em);
4370 		free_extent_map(em);
4371 
4372 		/*
4373 		 * We may have left one free space entry and other possible
4374 		 * tasks trimming this block group have left 1 entry each one.
4375 		 * Free them if any.
4376 		 */
4377 		btrfs_remove_free_space_cache(block_group);
4378 	}
4379 }
4380 
4381 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4382 {
4383 	bool ret = true;
4384 
4385 	spin_lock(&bg->lock);
4386 	if (bg->ro)
4387 		ret = false;
4388 	else
4389 		bg->swap_extents++;
4390 	spin_unlock(&bg->lock);
4391 
4392 	return ret;
4393 }
4394 
4395 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4396 {
4397 	spin_lock(&bg->lock);
4398 	ASSERT(!bg->ro);
4399 	ASSERT(bg->swap_extents >= amount);
4400 	bg->swap_extents -= amount;
4401 	spin_unlock(&bg->lock);
4402 }
4403 
4404 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4405 {
4406 	if (size <= SZ_128K)
4407 		return BTRFS_BG_SZ_SMALL;
4408 	if (size <= SZ_8M)
4409 		return BTRFS_BG_SZ_MEDIUM;
4410 	return BTRFS_BG_SZ_LARGE;
4411 }
4412 
4413 /*
4414  * Handle a block group allocating an extent in a size class
4415  *
4416  * @bg:				The block group we allocated in.
4417  * @size_class:			The size class of the allocation.
4418  * @force_wrong_size_class:	Whether we are desperate enough to allow
4419  *				mismatched size classes.
4420  *
4421  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4422  * case of a race that leads to the wrong size class without
4423  * force_wrong_size_class set.
4424  *
4425  * find_free_extent will skip block groups with a mismatched size class until
4426  * it really needs to avoid ENOSPC. In that case it will set
4427  * force_wrong_size_class. However, if a block group is newly allocated and
4428  * doesn't yet have a size class, then it is possible for two allocations of
4429  * different sizes to race and both try to use it. The loser is caught here and
4430  * has to retry.
4431  */
4432 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4433 				     enum btrfs_block_group_size_class size_class,
4434 				     bool force_wrong_size_class)
4435 {
4436 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4437 
4438 	/* The new allocation is in the right size class, do nothing */
4439 	if (bg->size_class == size_class)
4440 		return 0;
4441 	/*
4442 	 * The new allocation is in a mismatched size class.
4443 	 * This means one of two things:
4444 	 *
4445 	 * 1. Two tasks in find_free_extent for different size_classes raced
4446 	 *    and hit the same empty block_group. Make the loser try again.
4447 	 * 2. A call to find_free_extent got desperate enough to set
4448 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4449 	 *    allocation.
4450 	 */
4451 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4452 		if (force_wrong_size_class)
4453 			return 0;
4454 		return -EAGAIN;
4455 	}
4456 	/*
4457 	 * The happy new block group case: the new allocation is the first
4458 	 * one in the block_group so we set size_class.
4459 	 */
4460 	bg->size_class = size_class;
4461 
4462 	return 0;
4463 }
4464 
4465 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4466 {
4467 	if (btrfs_is_zoned(bg->fs_info))
4468 		return false;
4469 	if (!btrfs_is_block_group_data_only(bg))
4470 		return false;
4471 	return true;
4472 }
4473