1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/list_sort.h> 4 #include "misc.h" 5 #include "ctree.h" 6 #include "block-group.h" 7 #include "space-info.h" 8 #include "disk-io.h" 9 #include "free-space-cache.h" 10 #include "free-space-tree.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 #include "zoned.h" 20 #include "fs.h" 21 #include "accessors.h" 22 #include "extent-tree.h" 23 24 #ifdef CONFIG_BTRFS_DEBUG 25 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 26 { 27 struct btrfs_fs_info *fs_info = block_group->fs_info; 28 29 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 30 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 31 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 32 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 33 } 34 #endif 35 36 /* 37 * Return target flags in extended format or 0 if restripe for this chunk_type 38 * is not in progress 39 * 40 * Should be called with balance_lock held 41 */ 42 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 43 { 44 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 45 u64 target = 0; 46 47 if (!bctl) 48 return 0; 49 50 if (flags & BTRFS_BLOCK_GROUP_DATA && 51 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 52 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 53 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 54 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 55 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 56 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 57 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 58 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 59 } 60 61 return target; 62 } 63 64 /* 65 * @flags: available profiles in extended format (see ctree.h) 66 * 67 * Return reduced profile in chunk format. If profile changing is in progress 68 * (either running or paused) picks the target profile (if it's already 69 * available), otherwise falls back to plain reducing. 70 */ 71 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 72 { 73 u64 num_devices = fs_info->fs_devices->rw_devices; 74 u64 target; 75 u64 raid_type; 76 u64 allowed = 0; 77 78 /* 79 * See if restripe for this chunk_type is in progress, if so try to 80 * reduce to the target profile 81 */ 82 spin_lock(&fs_info->balance_lock); 83 target = get_restripe_target(fs_info, flags); 84 if (target) { 85 spin_unlock(&fs_info->balance_lock); 86 return extended_to_chunk(target); 87 } 88 spin_unlock(&fs_info->balance_lock); 89 90 /* First, mask out the RAID levels which aren't possible */ 91 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 92 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 93 allowed |= btrfs_raid_array[raid_type].bg_flag; 94 } 95 allowed &= flags; 96 97 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 98 allowed = BTRFS_BLOCK_GROUP_RAID6; 99 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 100 allowed = BTRFS_BLOCK_GROUP_RAID5; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 102 allowed = BTRFS_BLOCK_GROUP_RAID10; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 104 allowed = BTRFS_BLOCK_GROUP_RAID1; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 106 allowed = BTRFS_BLOCK_GROUP_RAID0; 107 108 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 109 110 return extended_to_chunk(flags | allowed); 111 } 112 113 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 114 { 115 unsigned seq; 116 u64 flags; 117 118 do { 119 flags = orig_flags; 120 seq = read_seqbegin(&fs_info->profiles_lock); 121 122 if (flags & BTRFS_BLOCK_GROUP_DATA) 123 flags |= fs_info->avail_data_alloc_bits; 124 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 125 flags |= fs_info->avail_system_alloc_bits; 126 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 127 flags |= fs_info->avail_metadata_alloc_bits; 128 } while (read_seqretry(&fs_info->profiles_lock, seq)); 129 130 return btrfs_reduce_alloc_profile(fs_info, flags); 131 } 132 133 void btrfs_get_block_group(struct btrfs_block_group *cache) 134 { 135 refcount_inc(&cache->refs); 136 } 137 138 void btrfs_put_block_group(struct btrfs_block_group *cache) 139 { 140 if (refcount_dec_and_test(&cache->refs)) { 141 WARN_ON(cache->pinned > 0); 142 /* 143 * If there was a failure to cleanup a log tree, very likely due 144 * to an IO failure on a writeback attempt of one or more of its 145 * extent buffers, we could not do proper (and cheap) unaccounting 146 * of their reserved space, so don't warn on reserved > 0 in that 147 * case. 148 */ 149 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 150 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 151 WARN_ON(cache->reserved > 0); 152 153 /* 154 * A block_group shouldn't be on the discard_list anymore. 155 * Remove the block_group from the discard_list to prevent us 156 * from causing a panic due to NULL pointer dereference. 157 */ 158 if (WARN_ON(!list_empty(&cache->discard_list))) 159 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 160 cache); 161 162 /* 163 * If not empty, someone is still holding mutex of 164 * full_stripe_lock, which can only be released by caller. 165 * And it will definitely cause use-after-free when caller 166 * tries to release full stripe lock. 167 * 168 * No better way to resolve, but only to warn. 169 */ 170 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 171 kfree(cache->free_space_ctl); 172 kfree(cache->physical_map); 173 kfree(cache); 174 } 175 } 176 177 /* 178 * This adds the block group to the fs_info rb tree for the block group cache 179 */ 180 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 181 struct btrfs_block_group *block_group) 182 { 183 struct rb_node **p; 184 struct rb_node *parent = NULL; 185 struct btrfs_block_group *cache; 186 bool leftmost = true; 187 188 ASSERT(block_group->length != 0); 189 190 write_lock(&info->block_group_cache_lock); 191 p = &info->block_group_cache_tree.rb_root.rb_node; 192 193 while (*p) { 194 parent = *p; 195 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 196 if (block_group->start < cache->start) { 197 p = &(*p)->rb_left; 198 } else if (block_group->start > cache->start) { 199 p = &(*p)->rb_right; 200 leftmost = false; 201 } else { 202 write_unlock(&info->block_group_cache_lock); 203 return -EEXIST; 204 } 205 } 206 207 rb_link_node(&block_group->cache_node, parent, p); 208 rb_insert_color_cached(&block_group->cache_node, 209 &info->block_group_cache_tree, leftmost); 210 211 write_unlock(&info->block_group_cache_lock); 212 213 return 0; 214 } 215 216 /* 217 * This will return the block group at or after bytenr if contains is 0, else 218 * it will return the block group that contains the bytenr 219 */ 220 static struct btrfs_block_group *block_group_cache_tree_search( 221 struct btrfs_fs_info *info, u64 bytenr, int contains) 222 { 223 struct btrfs_block_group *cache, *ret = NULL; 224 struct rb_node *n; 225 u64 end, start; 226 227 read_lock(&info->block_group_cache_lock); 228 n = info->block_group_cache_tree.rb_root.rb_node; 229 230 while (n) { 231 cache = rb_entry(n, struct btrfs_block_group, cache_node); 232 end = cache->start + cache->length - 1; 233 start = cache->start; 234 235 if (bytenr < start) { 236 if (!contains && (!ret || start < ret->start)) 237 ret = cache; 238 n = n->rb_left; 239 } else if (bytenr > start) { 240 if (contains && bytenr <= end) { 241 ret = cache; 242 break; 243 } 244 n = n->rb_right; 245 } else { 246 ret = cache; 247 break; 248 } 249 } 250 if (ret) 251 btrfs_get_block_group(ret); 252 read_unlock(&info->block_group_cache_lock); 253 254 return ret; 255 } 256 257 /* 258 * Return the block group that starts at or after bytenr 259 */ 260 struct btrfs_block_group *btrfs_lookup_first_block_group( 261 struct btrfs_fs_info *info, u64 bytenr) 262 { 263 return block_group_cache_tree_search(info, bytenr, 0); 264 } 265 266 /* 267 * Return the block group that contains the given bytenr 268 */ 269 struct btrfs_block_group *btrfs_lookup_block_group( 270 struct btrfs_fs_info *info, u64 bytenr) 271 { 272 return block_group_cache_tree_search(info, bytenr, 1); 273 } 274 275 struct btrfs_block_group *btrfs_next_block_group( 276 struct btrfs_block_group *cache) 277 { 278 struct btrfs_fs_info *fs_info = cache->fs_info; 279 struct rb_node *node; 280 281 read_lock(&fs_info->block_group_cache_lock); 282 283 /* If our block group was removed, we need a full search. */ 284 if (RB_EMPTY_NODE(&cache->cache_node)) { 285 const u64 next_bytenr = cache->start + cache->length; 286 287 read_unlock(&fs_info->block_group_cache_lock); 288 btrfs_put_block_group(cache); 289 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 290 } 291 node = rb_next(&cache->cache_node); 292 btrfs_put_block_group(cache); 293 if (node) { 294 cache = rb_entry(node, struct btrfs_block_group, cache_node); 295 btrfs_get_block_group(cache); 296 } else 297 cache = NULL; 298 read_unlock(&fs_info->block_group_cache_lock); 299 return cache; 300 } 301 302 /* 303 * Check if we can do a NOCOW write for a given extent. 304 * 305 * @fs_info: The filesystem information object. 306 * @bytenr: Logical start address of the extent. 307 * 308 * Check if we can do a NOCOW write for the given extent, and increments the 309 * number of NOCOW writers in the block group that contains the extent, as long 310 * as the block group exists and it's currently not in read-only mode. 311 * 312 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 313 * is responsible for calling btrfs_dec_nocow_writers() later. 314 * 315 * Or NULL if we can not do a NOCOW write 316 */ 317 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 318 u64 bytenr) 319 { 320 struct btrfs_block_group *bg; 321 bool can_nocow = true; 322 323 bg = btrfs_lookup_block_group(fs_info, bytenr); 324 if (!bg) 325 return NULL; 326 327 spin_lock(&bg->lock); 328 if (bg->ro) 329 can_nocow = false; 330 else 331 atomic_inc(&bg->nocow_writers); 332 spin_unlock(&bg->lock); 333 334 if (!can_nocow) { 335 btrfs_put_block_group(bg); 336 return NULL; 337 } 338 339 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 340 return bg; 341 } 342 343 /* 344 * Decrement the number of NOCOW writers in a block group. 345 * 346 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 347 * and on the block group returned by that call. Typically this is called after 348 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 349 * relocation. 350 * 351 * After this call, the caller should not use the block group anymore. It it wants 352 * to use it, then it should get a reference on it before calling this function. 353 */ 354 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 355 { 356 if (atomic_dec_and_test(&bg->nocow_writers)) 357 wake_up_var(&bg->nocow_writers); 358 359 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 360 btrfs_put_block_group(bg); 361 } 362 363 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 364 { 365 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 366 } 367 368 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 369 const u64 start) 370 { 371 struct btrfs_block_group *bg; 372 373 bg = btrfs_lookup_block_group(fs_info, start); 374 ASSERT(bg); 375 if (atomic_dec_and_test(&bg->reservations)) 376 wake_up_var(&bg->reservations); 377 btrfs_put_block_group(bg); 378 } 379 380 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 381 { 382 struct btrfs_space_info *space_info = bg->space_info; 383 384 ASSERT(bg->ro); 385 386 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 387 return; 388 389 /* 390 * Our block group is read only but before we set it to read only, 391 * some task might have had allocated an extent from it already, but it 392 * has not yet created a respective ordered extent (and added it to a 393 * root's list of ordered extents). 394 * Therefore wait for any task currently allocating extents, since the 395 * block group's reservations counter is incremented while a read lock 396 * on the groups' semaphore is held and decremented after releasing 397 * the read access on that semaphore and creating the ordered extent. 398 */ 399 down_write(&space_info->groups_sem); 400 up_write(&space_info->groups_sem); 401 402 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 403 } 404 405 struct btrfs_caching_control *btrfs_get_caching_control( 406 struct btrfs_block_group *cache) 407 { 408 struct btrfs_caching_control *ctl; 409 410 spin_lock(&cache->lock); 411 if (!cache->caching_ctl) { 412 spin_unlock(&cache->lock); 413 return NULL; 414 } 415 416 ctl = cache->caching_ctl; 417 refcount_inc(&ctl->count); 418 spin_unlock(&cache->lock); 419 return ctl; 420 } 421 422 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 423 { 424 if (refcount_dec_and_test(&ctl->count)) 425 kfree(ctl); 426 } 427 428 /* 429 * When we wait for progress in the block group caching, its because our 430 * allocation attempt failed at least once. So, we must sleep and let some 431 * progress happen before we try again. 432 * 433 * This function will sleep at least once waiting for new free space to show 434 * up, and then it will check the block group free space numbers for our min 435 * num_bytes. Another option is to have it go ahead and look in the rbtree for 436 * a free extent of a given size, but this is a good start. 437 * 438 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 439 * any of the information in this block group. 440 */ 441 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 442 u64 num_bytes) 443 { 444 struct btrfs_caching_control *caching_ctl; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 451 (cache->free_space_ctl->free_space >= num_bytes)); 452 453 btrfs_put_caching_control(caching_ctl); 454 } 455 456 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 457 struct btrfs_caching_control *caching_ctl) 458 { 459 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 460 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 461 } 462 463 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 464 { 465 struct btrfs_caching_control *caching_ctl; 466 int ret; 467 468 caching_ctl = btrfs_get_caching_control(cache); 469 if (!caching_ctl) 470 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 471 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 472 btrfs_put_caching_control(caching_ctl); 473 return ret; 474 } 475 476 #ifdef CONFIG_BTRFS_DEBUG 477 static void fragment_free_space(struct btrfs_block_group *block_group) 478 { 479 struct btrfs_fs_info *fs_info = block_group->fs_info; 480 u64 start = block_group->start; 481 u64 len = block_group->length; 482 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 483 fs_info->nodesize : fs_info->sectorsize; 484 u64 step = chunk << 1; 485 486 while (len > chunk) { 487 btrfs_remove_free_space(block_group, start, chunk); 488 start += step; 489 if (len < step) 490 len = 0; 491 else 492 len -= step; 493 } 494 } 495 #endif 496 497 /* 498 * This is only called by btrfs_cache_block_group, since we could have freed 499 * extents we need to check the pinned_extents for any extents that can't be 500 * used yet since their free space will be released as soon as the transaction 501 * commits. 502 */ 503 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 504 { 505 struct btrfs_fs_info *info = block_group->fs_info; 506 u64 extent_start, extent_end, size, total_added = 0; 507 int ret; 508 509 while (start < end) { 510 ret = find_first_extent_bit(&info->excluded_extents, start, 511 &extent_start, &extent_end, 512 EXTENT_DIRTY | EXTENT_UPTODATE, 513 NULL); 514 if (ret) 515 break; 516 517 if (extent_start <= start) { 518 start = extent_end + 1; 519 } else if (extent_start > start && extent_start < end) { 520 size = extent_start - start; 521 total_added += size; 522 ret = btrfs_add_free_space_async_trimmed(block_group, 523 start, size); 524 BUG_ON(ret); /* -ENOMEM or logic error */ 525 start = extent_end + 1; 526 } else { 527 break; 528 } 529 } 530 531 if (start < end) { 532 size = end - start; 533 total_added += size; 534 ret = btrfs_add_free_space_async_trimmed(block_group, start, 535 size); 536 BUG_ON(ret); /* -ENOMEM or logic error */ 537 } 538 539 return total_added; 540 } 541 542 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 543 { 544 struct btrfs_block_group *block_group = caching_ctl->block_group; 545 struct btrfs_fs_info *fs_info = block_group->fs_info; 546 struct btrfs_root *extent_root; 547 struct btrfs_path *path; 548 struct extent_buffer *leaf; 549 struct btrfs_key key; 550 u64 total_found = 0; 551 u64 last = 0; 552 u32 nritems; 553 int ret; 554 bool wakeup = true; 555 556 path = btrfs_alloc_path(); 557 if (!path) 558 return -ENOMEM; 559 560 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 561 extent_root = btrfs_extent_root(fs_info, last); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 /* 565 * If we're fragmenting we don't want to make anybody think we can 566 * allocate from this block group until we've had a chance to fragment 567 * the free space. 568 */ 569 if (btrfs_should_fragment_free_space(block_group)) 570 wakeup = false; 571 #endif 572 /* 573 * We don't want to deadlock with somebody trying to allocate a new 574 * extent for the extent root while also trying to search the extent 575 * root to add free space. So we skip locking and search the commit 576 * root, since its read-only 577 */ 578 path->skip_locking = 1; 579 path->search_commit_root = 1; 580 path->reada = READA_FORWARD; 581 582 key.objectid = last; 583 key.offset = 0; 584 key.type = BTRFS_EXTENT_ITEM_KEY; 585 586 next: 587 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 588 if (ret < 0) 589 goto out; 590 591 leaf = path->nodes[0]; 592 nritems = btrfs_header_nritems(leaf); 593 594 while (1) { 595 if (btrfs_fs_closing(fs_info) > 1) { 596 last = (u64)-1; 597 break; 598 } 599 600 if (path->slots[0] < nritems) { 601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 602 } else { 603 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 604 if (ret) 605 break; 606 607 if (need_resched() || 608 rwsem_is_contended(&fs_info->commit_root_sem)) { 609 btrfs_release_path(path); 610 up_read(&fs_info->commit_root_sem); 611 mutex_unlock(&caching_ctl->mutex); 612 cond_resched(); 613 mutex_lock(&caching_ctl->mutex); 614 down_read(&fs_info->commit_root_sem); 615 goto next; 616 } 617 618 ret = btrfs_next_leaf(extent_root, path); 619 if (ret < 0) 620 goto out; 621 if (ret) 622 break; 623 leaf = path->nodes[0]; 624 nritems = btrfs_header_nritems(leaf); 625 continue; 626 } 627 628 if (key.objectid < last) { 629 key.objectid = last; 630 key.offset = 0; 631 key.type = BTRFS_EXTENT_ITEM_KEY; 632 btrfs_release_path(path); 633 goto next; 634 } 635 636 if (key.objectid < block_group->start) { 637 path->slots[0]++; 638 continue; 639 } 640 641 if (key.objectid >= block_group->start + block_group->length) 642 break; 643 644 if (key.type == BTRFS_EXTENT_ITEM_KEY || 645 key.type == BTRFS_METADATA_ITEM_KEY) { 646 total_found += add_new_free_space(block_group, last, 647 key.objectid); 648 if (key.type == BTRFS_METADATA_ITEM_KEY) 649 last = key.objectid + 650 fs_info->nodesize; 651 else 652 last = key.objectid + key.offset; 653 654 if (total_found > CACHING_CTL_WAKE_UP) { 655 total_found = 0; 656 if (wakeup) 657 wake_up(&caching_ctl->wait); 658 } 659 } 660 path->slots[0]++; 661 } 662 ret = 0; 663 664 total_found += add_new_free_space(block_group, last, 665 block_group->start + block_group->length); 666 667 out: 668 btrfs_free_path(path); 669 return ret; 670 } 671 672 static noinline void caching_thread(struct btrfs_work *work) 673 { 674 struct btrfs_block_group *block_group; 675 struct btrfs_fs_info *fs_info; 676 struct btrfs_caching_control *caching_ctl; 677 int ret; 678 679 caching_ctl = container_of(work, struct btrfs_caching_control, work); 680 block_group = caching_ctl->block_group; 681 fs_info = block_group->fs_info; 682 683 mutex_lock(&caching_ctl->mutex); 684 down_read(&fs_info->commit_root_sem); 685 686 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 687 ret = load_free_space_cache(block_group); 688 if (ret == 1) { 689 ret = 0; 690 goto done; 691 } 692 693 /* 694 * We failed to load the space cache, set ourselves to 695 * CACHE_STARTED and carry on. 696 */ 697 spin_lock(&block_group->lock); 698 block_group->cached = BTRFS_CACHE_STARTED; 699 spin_unlock(&block_group->lock); 700 wake_up(&caching_ctl->wait); 701 } 702 703 /* 704 * If we are in the transaction that populated the free space tree we 705 * can't actually cache from the free space tree as our commit root and 706 * real root are the same, so we could change the contents of the blocks 707 * while caching. Instead do the slow caching in this case, and after 708 * the transaction has committed we will be safe. 709 */ 710 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 711 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 712 ret = load_free_space_tree(caching_ctl); 713 else 714 ret = load_extent_tree_free(caching_ctl); 715 done: 716 spin_lock(&block_group->lock); 717 block_group->caching_ctl = NULL; 718 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 719 spin_unlock(&block_group->lock); 720 721 #ifdef CONFIG_BTRFS_DEBUG 722 if (btrfs_should_fragment_free_space(block_group)) { 723 u64 bytes_used; 724 725 spin_lock(&block_group->space_info->lock); 726 spin_lock(&block_group->lock); 727 bytes_used = block_group->length - block_group->used; 728 block_group->space_info->bytes_used += bytes_used >> 1; 729 spin_unlock(&block_group->lock); 730 spin_unlock(&block_group->space_info->lock); 731 fragment_free_space(block_group); 732 } 733 #endif 734 735 up_read(&fs_info->commit_root_sem); 736 btrfs_free_excluded_extents(block_group); 737 mutex_unlock(&caching_ctl->mutex); 738 739 wake_up(&caching_ctl->wait); 740 741 btrfs_put_caching_control(caching_ctl); 742 btrfs_put_block_group(block_group); 743 } 744 745 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 746 { 747 struct btrfs_fs_info *fs_info = cache->fs_info; 748 struct btrfs_caching_control *caching_ctl = NULL; 749 int ret = 0; 750 751 /* Allocator for zoned filesystems does not use the cache at all */ 752 if (btrfs_is_zoned(fs_info)) 753 return 0; 754 755 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 756 if (!caching_ctl) 757 return -ENOMEM; 758 759 INIT_LIST_HEAD(&caching_ctl->list); 760 mutex_init(&caching_ctl->mutex); 761 init_waitqueue_head(&caching_ctl->wait); 762 caching_ctl->block_group = cache; 763 refcount_set(&caching_ctl->count, 2); 764 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 765 766 spin_lock(&cache->lock); 767 if (cache->cached != BTRFS_CACHE_NO) { 768 kfree(caching_ctl); 769 770 caching_ctl = cache->caching_ctl; 771 if (caching_ctl) 772 refcount_inc(&caching_ctl->count); 773 spin_unlock(&cache->lock); 774 goto out; 775 } 776 WARN_ON(cache->caching_ctl); 777 cache->caching_ctl = caching_ctl; 778 cache->cached = BTRFS_CACHE_STARTED; 779 spin_unlock(&cache->lock); 780 781 write_lock(&fs_info->block_group_cache_lock); 782 refcount_inc(&caching_ctl->count); 783 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 784 write_unlock(&fs_info->block_group_cache_lock); 785 786 btrfs_get_block_group(cache); 787 788 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 789 out: 790 if (wait && caching_ctl) 791 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 792 if (caching_ctl) 793 btrfs_put_caching_control(caching_ctl); 794 795 return ret; 796 } 797 798 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 799 { 800 u64 extra_flags = chunk_to_extended(flags) & 801 BTRFS_EXTENDED_PROFILE_MASK; 802 803 write_seqlock(&fs_info->profiles_lock); 804 if (flags & BTRFS_BLOCK_GROUP_DATA) 805 fs_info->avail_data_alloc_bits &= ~extra_flags; 806 if (flags & BTRFS_BLOCK_GROUP_METADATA) 807 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 808 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 809 fs_info->avail_system_alloc_bits &= ~extra_flags; 810 write_sequnlock(&fs_info->profiles_lock); 811 } 812 813 /* 814 * Clear incompat bits for the following feature(s): 815 * 816 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 817 * in the whole filesystem 818 * 819 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 820 */ 821 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 822 { 823 bool found_raid56 = false; 824 bool found_raid1c34 = false; 825 826 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 827 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 828 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 829 struct list_head *head = &fs_info->space_info; 830 struct btrfs_space_info *sinfo; 831 832 list_for_each_entry_rcu(sinfo, head, list) { 833 down_read(&sinfo->groups_sem); 834 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 835 found_raid56 = true; 836 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 837 found_raid56 = true; 838 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 839 found_raid1c34 = true; 840 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 841 found_raid1c34 = true; 842 up_read(&sinfo->groups_sem); 843 } 844 if (!found_raid56) 845 btrfs_clear_fs_incompat(fs_info, RAID56); 846 if (!found_raid1c34) 847 btrfs_clear_fs_incompat(fs_info, RAID1C34); 848 } 849 } 850 851 static int remove_block_group_item(struct btrfs_trans_handle *trans, 852 struct btrfs_path *path, 853 struct btrfs_block_group *block_group) 854 { 855 struct btrfs_fs_info *fs_info = trans->fs_info; 856 struct btrfs_root *root; 857 struct btrfs_key key; 858 int ret; 859 860 root = btrfs_block_group_root(fs_info); 861 key.objectid = block_group->start; 862 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 863 key.offset = block_group->length; 864 865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 866 if (ret > 0) 867 ret = -ENOENT; 868 if (ret < 0) 869 return ret; 870 871 ret = btrfs_del_item(trans, root, path); 872 return ret; 873 } 874 875 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 876 u64 group_start, struct extent_map *em) 877 { 878 struct btrfs_fs_info *fs_info = trans->fs_info; 879 struct btrfs_path *path; 880 struct btrfs_block_group *block_group; 881 struct btrfs_free_cluster *cluster; 882 struct inode *inode; 883 struct kobject *kobj = NULL; 884 int ret; 885 int index; 886 int factor; 887 struct btrfs_caching_control *caching_ctl = NULL; 888 bool remove_em; 889 bool remove_rsv = false; 890 891 block_group = btrfs_lookup_block_group(fs_info, group_start); 892 BUG_ON(!block_group); 893 BUG_ON(!block_group->ro); 894 895 trace_btrfs_remove_block_group(block_group); 896 /* 897 * Free the reserved super bytes from this block group before 898 * remove it. 899 */ 900 btrfs_free_excluded_extents(block_group); 901 btrfs_free_ref_tree_range(fs_info, block_group->start, 902 block_group->length); 903 904 index = btrfs_bg_flags_to_raid_index(block_group->flags); 905 factor = btrfs_bg_type_to_factor(block_group->flags); 906 907 /* make sure this block group isn't part of an allocation cluster */ 908 cluster = &fs_info->data_alloc_cluster; 909 spin_lock(&cluster->refill_lock); 910 btrfs_return_cluster_to_free_space(block_group, cluster); 911 spin_unlock(&cluster->refill_lock); 912 913 /* 914 * make sure this block group isn't part of a metadata 915 * allocation cluster 916 */ 917 cluster = &fs_info->meta_alloc_cluster; 918 spin_lock(&cluster->refill_lock); 919 btrfs_return_cluster_to_free_space(block_group, cluster); 920 spin_unlock(&cluster->refill_lock); 921 922 btrfs_clear_treelog_bg(block_group); 923 btrfs_clear_data_reloc_bg(block_group); 924 925 path = btrfs_alloc_path(); 926 if (!path) { 927 ret = -ENOMEM; 928 goto out; 929 } 930 931 /* 932 * get the inode first so any iput calls done for the io_list 933 * aren't the final iput (no unlinks allowed now) 934 */ 935 inode = lookup_free_space_inode(block_group, path); 936 937 mutex_lock(&trans->transaction->cache_write_mutex); 938 /* 939 * Make sure our free space cache IO is done before removing the 940 * free space inode 941 */ 942 spin_lock(&trans->transaction->dirty_bgs_lock); 943 if (!list_empty(&block_group->io_list)) { 944 list_del_init(&block_group->io_list); 945 946 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 947 948 spin_unlock(&trans->transaction->dirty_bgs_lock); 949 btrfs_wait_cache_io(trans, block_group, path); 950 btrfs_put_block_group(block_group); 951 spin_lock(&trans->transaction->dirty_bgs_lock); 952 } 953 954 if (!list_empty(&block_group->dirty_list)) { 955 list_del_init(&block_group->dirty_list); 956 remove_rsv = true; 957 btrfs_put_block_group(block_group); 958 } 959 spin_unlock(&trans->transaction->dirty_bgs_lock); 960 mutex_unlock(&trans->transaction->cache_write_mutex); 961 962 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 963 if (ret) 964 goto out; 965 966 write_lock(&fs_info->block_group_cache_lock); 967 rb_erase_cached(&block_group->cache_node, 968 &fs_info->block_group_cache_tree); 969 RB_CLEAR_NODE(&block_group->cache_node); 970 971 /* Once for the block groups rbtree */ 972 btrfs_put_block_group(block_group); 973 974 write_unlock(&fs_info->block_group_cache_lock); 975 976 down_write(&block_group->space_info->groups_sem); 977 /* 978 * we must use list_del_init so people can check to see if they 979 * are still on the list after taking the semaphore 980 */ 981 list_del_init(&block_group->list); 982 if (list_empty(&block_group->space_info->block_groups[index])) { 983 kobj = block_group->space_info->block_group_kobjs[index]; 984 block_group->space_info->block_group_kobjs[index] = NULL; 985 clear_avail_alloc_bits(fs_info, block_group->flags); 986 } 987 up_write(&block_group->space_info->groups_sem); 988 clear_incompat_bg_bits(fs_info, block_group->flags); 989 if (kobj) { 990 kobject_del(kobj); 991 kobject_put(kobj); 992 } 993 994 if (block_group->cached == BTRFS_CACHE_STARTED) 995 btrfs_wait_block_group_cache_done(block_group); 996 997 write_lock(&fs_info->block_group_cache_lock); 998 caching_ctl = btrfs_get_caching_control(block_group); 999 if (!caching_ctl) { 1000 struct btrfs_caching_control *ctl; 1001 1002 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1003 if (ctl->block_group == block_group) { 1004 caching_ctl = ctl; 1005 refcount_inc(&caching_ctl->count); 1006 break; 1007 } 1008 } 1009 } 1010 if (caching_ctl) 1011 list_del_init(&caching_ctl->list); 1012 write_unlock(&fs_info->block_group_cache_lock); 1013 1014 if (caching_ctl) { 1015 /* Once for the caching bgs list and once for us. */ 1016 btrfs_put_caching_control(caching_ctl); 1017 btrfs_put_caching_control(caching_ctl); 1018 } 1019 1020 spin_lock(&trans->transaction->dirty_bgs_lock); 1021 WARN_ON(!list_empty(&block_group->dirty_list)); 1022 WARN_ON(!list_empty(&block_group->io_list)); 1023 spin_unlock(&trans->transaction->dirty_bgs_lock); 1024 1025 btrfs_remove_free_space_cache(block_group); 1026 1027 spin_lock(&block_group->space_info->lock); 1028 list_del_init(&block_group->ro_list); 1029 1030 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1031 WARN_ON(block_group->space_info->total_bytes 1032 < block_group->length); 1033 WARN_ON(block_group->space_info->bytes_readonly 1034 < block_group->length - block_group->zone_unusable); 1035 WARN_ON(block_group->space_info->bytes_zone_unusable 1036 < block_group->zone_unusable); 1037 WARN_ON(block_group->space_info->disk_total 1038 < block_group->length * factor); 1039 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1040 &block_group->runtime_flags) && 1041 block_group->space_info->active_total_bytes 1042 < block_group->length); 1043 } 1044 block_group->space_info->total_bytes -= block_group->length; 1045 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1046 block_group->space_info->active_total_bytes -= block_group->length; 1047 block_group->space_info->bytes_readonly -= 1048 (block_group->length - block_group->zone_unusable); 1049 block_group->space_info->bytes_zone_unusable -= 1050 block_group->zone_unusable; 1051 block_group->space_info->disk_total -= block_group->length * factor; 1052 1053 spin_unlock(&block_group->space_info->lock); 1054 1055 /* 1056 * Remove the free space for the block group from the free space tree 1057 * and the block group's item from the extent tree before marking the 1058 * block group as removed. This is to prevent races with tasks that 1059 * freeze and unfreeze a block group, this task and another task 1060 * allocating a new block group - the unfreeze task ends up removing 1061 * the block group's extent map before the task calling this function 1062 * deletes the block group item from the extent tree, allowing for 1063 * another task to attempt to create another block group with the same 1064 * item key (and failing with -EEXIST and a transaction abort). 1065 */ 1066 ret = remove_block_group_free_space(trans, block_group); 1067 if (ret) 1068 goto out; 1069 1070 ret = remove_block_group_item(trans, path, block_group); 1071 if (ret < 0) 1072 goto out; 1073 1074 spin_lock(&block_group->lock); 1075 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1076 1077 /* 1078 * At this point trimming or scrub can't start on this block group, 1079 * because we removed the block group from the rbtree 1080 * fs_info->block_group_cache_tree so no one can't find it anymore and 1081 * even if someone already got this block group before we removed it 1082 * from the rbtree, they have already incremented block_group->frozen - 1083 * if they didn't, for the trimming case they won't find any free space 1084 * entries because we already removed them all when we called 1085 * btrfs_remove_free_space_cache(). 1086 * 1087 * And we must not remove the extent map from the fs_info->mapping_tree 1088 * to prevent the same logical address range and physical device space 1089 * ranges from being reused for a new block group. This is needed to 1090 * avoid races with trimming and scrub. 1091 * 1092 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1093 * completely transactionless, so while it is trimming a range the 1094 * currently running transaction might finish and a new one start, 1095 * allowing for new block groups to be created that can reuse the same 1096 * physical device locations unless we take this special care. 1097 * 1098 * There may also be an implicit trim operation if the file system 1099 * is mounted with -odiscard. The same protections must remain 1100 * in place until the extents have been discarded completely when 1101 * the transaction commit has completed. 1102 */ 1103 remove_em = (atomic_read(&block_group->frozen) == 0); 1104 spin_unlock(&block_group->lock); 1105 1106 if (remove_em) { 1107 struct extent_map_tree *em_tree; 1108 1109 em_tree = &fs_info->mapping_tree; 1110 write_lock(&em_tree->lock); 1111 remove_extent_mapping(em_tree, em); 1112 write_unlock(&em_tree->lock); 1113 /* once for the tree */ 1114 free_extent_map(em); 1115 } 1116 1117 out: 1118 /* Once for the lookup reference */ 1119 btrfs_put_block_group(block_group); 1120 if (remove_rsv) 1121 btrfs_delayed_refs_rsv_release(fs_info, 1); 1122 btrfs_free_path(path); 1123 return ret; 1124 } 1125 1126 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1127 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1128 { 1129 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1130 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1131 struct extent_map *em; 1132 struct map_lookup *map; 1133 unsigned int num_items; 1134 1135 read_lock(&em_tree->lock); 1136 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1137 read_unlock(&em_tree->lock); 1138 ASSERT(em && em->start == chunk_offset); 1139 1140 /* 1141 * We need to reserve 3 + N units from the metadata space info in order 1142 * to remove a block group (done at btrfs_remove_chunk() and at 1143 * btrfs_remove_block_group()), which are used for: 1144 * 1145 * 1 unit for adding the free space inode's orphan (located in the tree 1146 * of tree roots). 1147 * 1 unit for deleting the block group item (located in the extent 1148 * tree). 1149 * 1 unit for deleting the free space item (located in tree of tree 1150 * roots). 1151 * N units for deleting N device extent items corresponding to each 1152 * stripe (located in the device tree). 1153 * 1154 * In order to remove a block group we also need to reserve units in the 1155 * system space info in order to update the chunk tree (update one or 1156 * more device items and remove one chunk item), but this is done at 1157 * btrfs_remove_chunk() through a call to check_system_chunk(). 1158 */ 1159 map = em->map_lookup; 1160 num_items = 3 + map->num_stripes; 1161 free_extent_map(em); 1162 1163 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1164 } 1165 1166 /* 1167 * Mark block group @cache read-only, so later write won't happen to block 1168 * group @cache. 1169 * 1170 * If @force is not set, this function will only mark the block group readonly 1171 * if we have enough free space (1M) in other metadata/system block groups. 1172 * If @force is not set, this function will mark the block group readonly 1173 * without checking free space. 1174 * 1175 * NOTE: This function doesn't care if other block groups can contain all the 1176 * data in this block group. That check should be done by relocation routine, 1177 * not this function. 1178 */ 1179 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1180 { 1181 struct btrfs_space_info *sinfo = cache->space_info; 1182 u64 num_bytes; 1183 int ret = -ENOSPC; 1184 1185 spin_lock(&sinfo->lock); 1186 spin_lock(&cache->lock); 1187 1188 if (cache->swap_extents) { 1189 ret = -ETXTBSY; 1190 goto out; 1191 } 1192 1193 if (cache->ro) { 1194 cache->ro++; 1195 ret = 0; 1196 goto out; 1197 } 1198 1199 num_bytes = cache->length - cache->reserved - cache->pinned - 1200 cache->bytes_super - cache->zone_unusable - cache->used; 1201 1202 /* 1203 * Data never overcommits, even in mixed mode, so do just the straight 1204 * check of left over space in how much we have allocated. 1205 */ 1206 if (force) { 1207 ret = 0; 1208 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1209 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1210 1211 /* 1212 * Here we make sure if we mark this bg RO, we still have enough 1213 * free space as buffer. 1214 */ 1215 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1216 ret = 0; 1217 } else { 1218 /* 1219 * We overcommit metadata, so we need to do the 1220 * btrfs_can_overcommit check here, and we need to pass in 1221 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1222 * leeway to allow us to mark this block group as read only. 1223 */ 1224 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1225 BTRFS_RESERVE_NO_FLUSH)) 1226 ret = 0; 1227 } 1228 1229 if (!ret) { 1230 sinfo->bytes_readonly += num_bytes; 1231 if (btrfs_is_zoned(cache->fs_info)) { 1232 /* Migrate zone_unusable bytes to readonly */ 1233 sinfo->bytes_readonly += cache->zone_unusable; 1234 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1235 cache->zone_unusable = 0; 1236 } 1237 cache->ro++; 1238 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1239 } 1240 out: 1241 spin_unlock(&cache->lock); 1242 spin_unlock(&sinfo->lock); 1243 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1244 btrfs_info(cache->fs_info, 1245 "unable to make block group %llu ro", cache->start); 1246 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1247 } 1248 return ret; 1249 } 1250 1251 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1252 struct btrfs_block_group *bg) 1253 { 1254 struct btrfs_fs_info *fs_info = bg->fs_info; 1255 struct btrfs_transaction *prev_trans = NULL; 1256 const u64 start = bg->start; 1257 const u64 end = start + bg->length - 1; 1258 int ret; 1259 1260 spin_lock(&fs_info->trans_lock); 1261 if (trans->transaction->list.prev != &fs_info->trans_list) { 1262 prev_trans = list_last_entry(&trans->transaction->list, 1263 struct btrfs_transaction, list); 1264 refcount_inc(&prev_trans->use_count); 1265 } 1266 spin_unlock(&fs_info->trans_lock); 1267 1268 /* 1269 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1270 * btrfs_finish_extent_commit(). If we are at transaction N, another 1271 * task might be running finish_extent_commit() for the previous 1272 * transaction N - 1, and have seen a range belonging to the block 1273 * group in pinned_extents before we were able to clear the whole block 1274 * group range from pinned_extents. This means that task can lookup for 1275 * the block group after we unpinned it from pinned_extents and removed 1276 * it, leading to a BUG_ON() at unpin_extent_range(). 1277 */ 1278 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1279 if (prev_trans) { 1280 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1281 EXTENT_DIRTY); 1282 if (ret) 1283 goto out; 1284 } 1285 1286 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1287 EXTENT_DIRTY); 1288 out: 1289 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1290 if (prev_trans) 1291 btrfs_put_transaction(prev_trans); 1292 1293 return ret == 0; 1294 } 1295 1296 /* 1297 * Process the unused_bgs list and remove any that don't have any allocated 1298 * space inside of them. 1299 */ 1300 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1301 { 1302 struct btrfs_block_group *block_group; 1303 struct btrfs_space_info *space_info; 1304 struct btrfs_trans_handle *trans; 1305 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1306 int ret = 0; 1307 1308 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1309 return; 1310 1311 if (btrfs_fs_closing(fs_info)) 1312 return; 1313 1314 /* 1315 * Long running balances can keep us blocked here for eternity, so 1316 * simply skip deletion if we're unable to get the mutex. 1317 */ 1318 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1319 return; 1320 1321 spin_lock(&fs_info->unused_bgs_lock); 1322 while (!list_empty(&fs_info->unused_bgs)) { 1323 int trimming; 1324 1325 block_group = list_first_entry(&fs_info->unused_bgs, 1326 struct btrfs_block_group, 1327 bg_list); 1328 list_del_init(&block_group->bg_list); 1329 1330 space_info = block_group->space_info; 1331 1332 if (ret || btrfs_mixed_space_info(space_info)) { 1333 btrfs_put_block_group(block_group); 1334 continue; 1335 } 1336 spin_unlock(&fs_info->unused_bgs_lock); 1337 1338 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1339 1340 /* Don't want to race with allocators so take the groups_sem */ 1341 down_write(&space_info->groups_sem); 1342 1343 /* 1344 * Async discard moves the final block group discard to be prior 1345 * to the unused_bgs code path. Therefore, if it's not fully 1346 * trimmed, punt it back to the async discard lists. 1347 */ 1348 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1349 !btrfs_is_free_space_trimmed(block_group)) { 1350 trace_btrfs_skip_unused_block_group(block_group); 1351 up_write(&space_info->groups_sem); 1352 /* Requeue if we failed because of async discard */ 1353 btrfs_discard_queue_work(&fs_info->discard_ctl, 1354 block_group); 1355 goto next; 1356 } 1357 1358 spin_lock(&block_group->lock); 1359 if (block_group->reserved || block_group->pinned || 1360 block_group->used || block_group->ro || 1361 list_is_singular(&block_group->list)) { 1362 /* 1363 * We want to bail if we made new allocations or have 1364 * outstanding allocations in this block group. We do 1365 * the ro check in case balance is currently acting on 1366 * this block group. 1367 */ 1368 trace_btrfs_skip_unused_block_group(block_group); 1369 spin_unlock(&block_group->lock); 1370 up_write(&space_info->groups_sem); 1371 goto next; 1372 } 1373 spin_unlock(&block_group->lock); 1374 1375 /* We don't want to force the issue, only flip if it's ok. */ 1376 ret = inc_block_group_ro(block_group, 0); 1377 up_write(&space_info->groups_sem); 1378 if (ret < 0) { 1379 ret = 0; 1380 goto next; 1381 } 1382 1383 ret = btrfs_zone_finish(block_group); 1384 if (ret < 0) { 1385 btrfs_dec_block_group_ro(block_group); 1386 if (ret == -EAGAIN) 1387 ret = 0; 1388 goto next; 1389 } 1390 1391 /* 1392 * Want to do this before we do anything else so we can recover 1393 * properly if we fail to join the transaction. 1394 */ 1395 trans = btrfs_start_trans_remove_block_group(fs_info, 1396 block_group->start); 1397 if (IS_ERR(trans)) { 1398 btrfs_dec_block_group_ro(block_group); 1399 ret = PTR_ERR(trans); 1400 goto next; 1401 } 1402 1403 /* 1404 * We could have pending pinned extents for this block group, 1405 * just delete them, we don't care about them anymore. 1406 */ 1407 if (!clean_pinned_extents(trans, block_group)) { 1408 btrfs_dec_block_group_ro(block_group); 1409 goto end_trans; 1410 } 1411 1412 /* 1413 * At this point, the block_group is read only and should fail 1414 * new allocations. However, btrfs_finish_extent_commit() can 1415 * cause this block_group to be placed back on the discard 1416 * lists because now the block_group isn't fully discarded. 1417 * Bail here and try again later after discarding everything. 1418 */ 1419 spin_lock(&fs_info->discard_ctl.lock); 1420 if (!list_empty(&block_group->discard_list)) { 1421 spin_unlock(&fs_info->discard_ctl.lock); 1422 btrfs_dec_block_group_ro(block_group); 1423 btrfs_discard_queue_work(&fs_info->discard_ctl, 1424 block_group); 1425 goto end_trans; 1426 } 1427 spin_unlock(&fs_info->discard_ctl.lock); 1428 1429 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1430 spin_lock(&space_info->lock); 1431 spin_lock(&block_group->lock); 1432 1433 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1434 -block_group->pinned); 1435 space_info->bytes_readonly += block_group->pinned; 1436 block_group->pinned = 0; 1437 1438 spin_unlock(&block_group->lock); 1439 spin_unlock(&space_info->lock); 1440 1441 /* 1442 * The normal path here is an unused block group is passed here, 1443 * then trimming is handled in the transaction commit path. 1444 * Async discard interposes before this to do the trimming 1445 * before coming down the unused block group path as trimming 1446 * will no longer be done later in the transaction commit path. 1447 */ 1448 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1449 goto flip_async; 1450 1451 /* 1452 * DISCARD can flip during remount. On zoned filesystems, we 1453 * need to reset sequential-required zones. 1454 */ 1455 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1456 btrfs_is_zoned(fs_info); 1457 1458 /* Implicit trim during transaction commit. */ 1459 if (trimming) 1460 btrfs_freeze_block_group(block_group); 1461 1462 /* 1463 * Btrfs_remove_chunk will abort the transaction if things go 1464 * horribly wrong. 1465 */ 1466 ret = btrfs_remove_chunk(trans, block_group->start); 1467 1468 if (ret) { 1469 if (trimming) 1470 btrfs_unfreeze_block_group(block_group); 1471 goto end_trans; 1472 } 1473 1474 /* 1475 * If we're not mounted with -odiscard, we can just forget 1476 * about this block group. Otherwise we'll need to wait 1477 * until transaction commit to do the actual discard. 1478 */ 1479 if (trimming) { 1480 spin_lock(&fs_info->unused_bgs_lock); 1481 /* 1482 * A concurrent scrub might have added us to the list 1483 * fs_info->unused_bgs, so use a list_move operation 1484 * to add the block group to the deleted_bgs list. 1485 */ 1486 list_move(&block_group->bg_list, 1487 &trans->transaction->deleted_bgs); 1488 spin_unlock(&fs_info->unused_bgs_lock); 1489 btrfs_get_block_group(block_group); 1490 } 1491 end_trans: 1492 btrfs_end_transaction(trans); 1493 next: 1494 btrfs_put_block_group(block_group); 1495 spin_lock(&fs_info->unused_bgs_lock); 1496 } 1497 spin_unlock(&fs_info->unused_bgs_lock); 1498 mutex_unlock(&fs_info->reclaim_bgs_lock); 1499 return; 1500 1501 flip_async: 1502 btrfs_end_transaction(trans); 1503 mutex_unlock(&fs_info->reclaim_bgs_lock); 1504 btrfs_put_block_group(block_group); 1505 btrfs_discard_punt_unused_bgs_list(fs_info); 1506 } 1507 1508 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1509 { 1510 struct btrfs_fs_info *fs_info = bg->fs_info; 1511 1512 spin_lock(&fs_info->unused_bgs_lock); 1513 if (list_empty(&bg->bg_list)) { 1514 btrfs_get_block_group(bg); 1515 trace_btrfs_add_unused_block_group(bg); 1516 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1517 } 1518 spin_unlock(&fs_info->unused_bgs_lock); 1519 } 1520 1521 /* 1522 * We want block groups with a low number of used bytes to be in the beginning 1523 * of the list, so they will get reclaimed first. 1524 */ 1525 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1526 const struct list_head *b) 1527 { 1528 const struct btrfs_block_group *bg1, *bg2; 1529 1530 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1531 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1532 1533 return bg1->used > bg2->used; 1534 } 1535 1536 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1537 { 1538 if (btrfs_is_zoned(fs_info)) 1539 return btrfs_zoned_should_reclaim(fs_info); 1540 return true; 1541 } 1542 1543 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1544 { 1545 const struct btrfs_space_info *space_info = bg->space_info; 1546 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1547 const u64 new_val = bg->used; 1548 const u64 old_val = new_val + bytes_freed; 1549 u64 thresh; 1550 1551 if (reclaim_thresh == 0) 1552 return false; 1553 1554 thresh = mult_perc(bg->length, reclaim_thresh); 1555 1556 /* 1557 * If we were below the threshold before don't reclaim, we are likely a 1558 * brand new block group and we don't want to relocate new block groups. 1559 */ 1560 if (old_val < thresh) 1561 return false; 1562 if (new_val >= thresh) 1563 return false; 1564 return true; 1565 } 1566 1567 void btrfs_reclaim_bgs_work(struct work_struct *work) 1568 { 1569 struct btrfs_fs_info *fs_info = 1570 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1571 struct btrfs_block_group *bg; 1572 struct btrfs_space_info *space_info; 1573 1574 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1575 return; 1576 1577 if (btrfs_fs_closing(fs_info)) 1578 return; 1579 1580 if (!btrfs_should_reclaim(fs_info)) 1581 return; 1582 1583 sb_start_write(fs_info->sb); 1584 1585 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1586 sb_end_write(fs_info->sb); 1587 return; 1588 } 1589 1590 /* 1591 * Long running balances can keep us blocked here for eternity, so 1592 * simply skip reclaim if we're unable to get the mutex. 1593 */ 1594 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1595 btrfs_exclop_finish(fs_info); 1596 sb_end_write(fs_info->sb); 1597 return; 1598 } 1599 1600 spin_lock(&fs_info->unused_bgs_lock); 1601 /* 1602 * Sort happens under lock because we can't simply splice it and sort. 1603 * The block groups might still be in use and reachable via bg_list, 1604 * and their presence in the reclaim_bgs list must be preserved. 1605 */ 1606 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1607 while (!list_empty(&fs_info->reclaim_bgs)) { 1608 u64 zone_unusable; 1609 int ret = 0; 1610 1611 bg = list_first_entry(&fs_info->reclaim_bgs, 1612 struct btrfs_block_group, 1613 bg_list); 1614 list_del_init(&bg->bg_list); 1615 1616 space_info = bg->space_info; 1617 spin_unlock(&fs_info->unused_bgs_lock); 1618 1619 /* Don't race with allocators so take the groups_sem */ 1620 down_write(&space_info->groups_sem); 1621 1622 spin_lock(&bg->lock); 1623 if (bg->reserved || bg->pinned || bg->ro) { 1624 /* 1625 * We want to bail if we made new allocations or have 1626 * outstanding allocations in this block group. We do 1627 * the ro check in case balance is currently acting on 1628 * this block group. 1629 */ 1630 spin_unlock(&bg->lock); 1631 up_write(&space_info->groups_sem); 1632 goto next; 1633 } 1634 if (bg->used == 0) { 1635 /* 1636 * It is possible that we trigger relocation on a block 1637 * group as its extents are deleted and it first goes 1638 * below the threshold, then shortly after goes empty. 1639 * 1640 * In this case, relocating it does delete it, but has 1641 * some overhead in relocation specific metadata, looking 1642 * for the non-existent extents and running some extra 1643 * transactions, which we can avoid by using one of the 1644 * other mechanisms for dealing with empty block groups. 1645 */ 1646 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1647 btrfs_mark_bg_unused(bg); 1648 spin_unlock(&bg->lock); 1649 up_write(&space_info->groups_sem); 1650 goto next; 1651 1652 } 1653 /* 1654 * The block group might no longer meet the reclaim condition by 1655 * the time we get around to reclaiming it, so to avoid 1656 * reclaiming overly full block_groups, skip reclaiming them. 1657 * 1658 * Since the decision making process also depends on the amount 1659 * being freed, pass in a fake giant value to skip that extra 1660 * check, which is more meaningful when adding to the list in 1661 * the first place. 1662 */ 1663 if (!should_reclaim_block_group(bg, bg->length)) { 1664 spin_unlock(&bg->lock); 1665 up_write(&space_info->groups_sem); 1666 goto next; 1667 } 1668 spin_unlock(&bg->lock); 1669 1670 /* Get out fast, in case we're unmounting the filesystem */ 1671 if (btrfs_fs_closing(fs_info)) { 1672 up_write(&space_info->groups_sem); 1673 goto next; 1674 } 1675 1676 /* 1677 * Cache the zone_unusable value before turning the block group 1678 * to read only. As soon as the blog group is read only it's 1679 * zone_unusable value gets moved to the block group's read-only 1680 * bytes and isn't available for calculations anymore. 1681 */ 1682 zone_unusable = bg->zone_unusable; 1683 ret = inc_block_group_ro(bg, 0); 1684 up_write(&space_info->groups_sem); 1685 if (ret < 0) 1686 goto next; 1687 1688 btrfs_info(fs_info, 1689 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1690 bg->start, div_u64(bg->used * 100, bg->length), 1691 div64_u64(zone_unusable * 100, bg->length)); 1692 trace_btrfs_reclaim_block_group(bg); 1693 ret = btrfs_relocate_chunk(fs_info, bg->start); 1694 if (ret) { 1695 btrfs_dec_block_group_ro(bg); 1696 btrfs_err(fs_info, "error relocating chunk %llu", 1697 bg->start); 1698 } 1699 1700 next: 1701 btrfs_put_block_group(bg); 1702 spin_lock(&fs_info->unused_bgs_lock); 1703 } 1704 spin_unlock(&fs_info->unused_bgs_lock); 1705 mutex_unlock(&fs_info->reclaim_bgs_lock); 1706 btrfs_exclop_finish(fs_info); 1707 sb_end_write(fs_info->sb); 1708 } 1709 1710 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1711 { 1712 spin_lock(&fs_info->unused_bgs_lock); 1713 if (!list_empty(&fs_info->reclaim_bgs)) 1714 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1715 spin_unlock(&fs_info->unused_bgs_lock); 1716 } 1717 1718 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1719 { 1720 struct btrfs_fs_info *fs_info = bg->fs_info; 1721 1722 spin_lock(&fs_info->unused_bgs_lock); 1723 if (list_empty(&bg->bg_list)) { 1724 btrfs_get_block_group(bg); 1725 trace_btrfs_add_reclaim_block_group(bg); 1726 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1727 } 1728 spin_unlock(&fs_info->unused_bgs_lock); 1729 } 1730 1731 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1732 struct btrfs_path *path) 1733 { 1734 struct extent_map_tree *em_tree; 1735 struct extent_map *em; 1736 struct btrfs_block_group_item bg; 1737 struct extent_buffer *leaf; 1738 int slot; 1739 u64 flags; 1740 int ret = 0; 1741 1742 slot = path->slots[0]; 1743 leaf = path->nodes[0]; 1744 1745 em_tree = &fs_info->mapping_tree; 1746 read_lock(&em_tree->lock); 1747 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1748 read_unlock(&em_tree->lock); 1749 if (!em) { 1750 btrfs_err(fs_info, 1751 "logical %llu len %llu found bg but no related chunk", 1752 key->objectid, key->offset); 1753 return -ENOENT; 1754 } 1755 1756 if (em->start != key->objectid || em->len != key->offset) { 1757 btrfs_err(fs_info, 1758 "block group %llu len %llu mismatch with chunk %llu len %llu", 1759 key->objectid, key->offset, em->start, em->len); 1760 ret = -EUCLEAN; 1761 goto out_free_em; 1762 } 1763 1764 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1765 sizeof(bg)); 1766 flags = btrfs_stack_block_group_flags(&bg) & 1767 BTRFS_BLOCK_GROUP_TYPE_MASK; 1768 1769 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1770 btrfs_err(fs_info, 1771 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1772 key->objectid, key->offset, flags, 1773 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1774 ret = -EUCLEAN; 1775 } 1776 1777 out_free_em: 1778 free_extent_map(em); 1779 return ret; 1780 } 1781 1782 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1783 struct btrfs_path *path, 1784 struct btrfs_key *key) 1785 { 1786 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1787 int ret; 1788 struct btrfs_key found_key; 1789 1790 btrfs_for_each_slot(root, key, &found_key, path, ret) { 1791 if (found_key.objectid >= key->objectid && 1792 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1793 return read_bg_from_eb(fs_info, &found_key, path); 1794 } 1795 } 1796 return ret; 1797 } 1798 1799 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1800 { 1801 u64 extra_flags = chunk_to_extended(flags) & 1802 BTRFS_EXTENDED_PROFILE_MASK; 1803 1804 write_seqlock(&fs_info->profiles_lock); 1805 if (flags & BTRFS_BLOCK_GROUP_DATA) 1806 fs_info->avail_data_alloc_bits |= extra_flags; 1807 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1808 fs_info->avail_metadata_alloc_bits |= extra_flags; 1809 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1810 fs_info->avail_system_alloc_bits |= extra_flags; 1811 write_sequnlock(&fs_info->profiles_lock); 1812 } 1813 1814 /* 1815 * Map a physical disk address to a list of logical addresses. 1816 * 1817 * @fs_info: the filesystem 1818 * @chunk_start: logical address of block group 1819 * @bdev: physical device to resolve, can be NULL to indicate any device 1820 * @physical: physical address to map to logical addresses 1821 * @logical: return array of logical addresses which map to @physical 1822 * @naddrs: length of @logical 1823 * @stripe_len: size of IO stripe for the given block group 1824 * 1825 * Maps a particular @physical disk address to a list of @logical addresses. 1826 * Used primarily to exclude those portions of a block group that contain super 1827 * block copies. 1828 */ 1829 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1830 struct block_device *bdev, u64 physical, u64 **logical, 1831 int *naddrs, int *stripe_len) 1832 { 1833 struct extent_map *em; 1834 struct map_lookup *map; 1835 u64 *buf; 1836 u64 bytenr; 1837 u64 data_stripe_length; 1838 u64 io_stripe_size; 1839 int i, nr = 0; 1840 int ret = 0; 1841 1842 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1843 if (IS_ERR(em)) 1844 return -EIO; 1845 1846 map = em->map_lookup; 1847 data_stripe_length = em->orig_block_len; 1848 io_stripe_size = map->stripe_len; 1849 chunk_start = em->start; 1850 1851 /* For RAID5/6 adjust to a full IO stripe length */ 1852 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1853 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1854 1855 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1856 if (!buf) { 1857 ret = -ENOMEM; 1858 goto out; 1859 } 1860 1861 for (i = 0; i < map->num_stripes; i++) { 1862 bool already_inserted = false; 1863 u64 stripe_nr; 1864 u64 offset; 1865 int j; 1866 1867 if (!in_range(physical, map->stripes[i].physical, 1868 data_stripe_length)) 1869 continue; 1870 1871 if (bdev && map->stripes[i].dev->bdev != bdev) 1872 continue; 1873 1874 stripe_nr = physical - map->stripes[i].physical; 1875 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1876 1877 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 1878 BTRFS_BLOCK_GROUP_RAID10)) { 1879 stripe_nr = stripe_nr * map->num_stripes + i; 1880 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1881 } 1882 /* 1883 * The remaining case would be for RAID56, multiply by 1884 * nr_data_stripes(). Alternatively, just use rmap_len below 1885 * instead of map->stripe_len 1886 */ 1887 1888 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1889 1890 /* Ensure we don't add duplicate addresses */ 1891 for (j = 0; j < nr; j++) { 1892 if (buf[j] == bytenr) { 1893 already_inserted = true; 1894 break; 1895 } 1896 } 1897 1898 if (!already_inserted) 1899 buf[nr++] = bytenr; 1900 } 1901 1902 *logical = buf; 1903 *naddrs = nr; 1904 *stripe_len = io_stripe_size; 1905 out: 1906 free_extent_map(em); 1907 return ret; 1908 } 1909 1910 static int exclude_super_stripes(struct btrfs_block_group *cache) 1911 { 1912 struct btrfs_fs_info *fs_info = cache->fs_info; 1913 const bool zoned = btrfs_is_zoned(fs_info); 1914 u64 bytenr; 1915 u64 *logical; 1916 int stripe_len; 1917 int i, nr, ret; 1918 1919 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1920 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1921 cache->bytes_super += stripe_len; 1922 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1923 stripe_len); 1924 if (ret) 1925 return ret; 1926 } 1927 1928 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1929 bytenr = btrfs_sb_offset(i); 1930 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1931 bytenr, &logical, &nr, &stripe_len); 1932 if (ret) 1933 return ret; 1934 1935 /* Shouldn't have super stripes in sequential zones */ 1936 if (zoned && nr) { 1937 btrfs_err(fs_info, 1938 "zoned: block group %llu must not contain super block", 1939 cache->start); 1940 return -EUCLEAN; 1941 } 1942 1943 while (nr--) { 1944 u64 len = min_t(u64, stripe_len, 1945 cache->start + cache->length - logical[nr]); 1946 1947 cache->bytes_super += len; 1948 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1949 len); 1950 if (ret) { 1951 kfree(logical); 1952 return ret; 1953 } 1954 } 1955 1956 kfree(logical); 1957 } 1958 return 0; 1959 } 1960 1961 static struct btrfs_block_group *btrfs_create_block_group_cache( 1962 struct btrfs_fs_info *fs_info, u64 start) 1963 { 1964 struct btrfs_block_group *cache; 1965 1966 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1967 if (!cache) 1968 return NULL; 1969 1970 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1971 GFP_NOFS); 1972 if (!cache->free_space_ctl) { 1973 kfree(cache); 1974 return NULL; 1975 } 1976 1977 cache->start = start; 1978 1979 cache->fs_info = fs_info; 1980 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1981 1982 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1983 1984 refcount_set(&cache->refs, 1); 1985 spin_lock_init(&cache->lock); 1986 init_rwsem(&cache->data_rwsem); 1987 INIT_LIST_HEAD(&cache->list); 1988 INIT_LIST_HEAD(&cache->cluster_list); 1989 INIT_LIST_HEAD(&cache->bg_list); 1990 INIT_LIST_HEAD(&cache->ro_list); 1991 INIT_LIST_HEAD(&cache->discard_list); 1992 INIT_LIST_HEAD(&cache->dirty_list); 1993 INIT_LIST_HEAD(&cache->io_list); 1994 INIT_LIST_HEAD(&cache->active_bg_list); 1995 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1996 atomic_set(&cache->frozen, 0); 1997 mutex_init(&cache->free_space_lock); 1998 cache->full_stripe_locks_root.root = RB_ROOT; 1999 mutex_init(&cache->full_stripe_locks_root.lock); 2000 2001 return cache; 2002 } 2003 2004 /* 2005 * Iterate all chunks and verify that each of them has the corresponding block 2006 * group 2007 */ 2008 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2009 { 2010 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2011 struct extent_map *em; 2012 struct btrfs_block_group *bg; 2013 u64 start = 0; 2014 int ret = 0; 2015 2016 while (1) { 2017 read_lock(&map_tree->lock); 2018 /* 2019 * lookup_extent_mapping will return the first extent map 2020 * intersecting the range, so setting @len to 1 is enough to 2021 * get the first chunk. 2022 */ 2023 em = lookup_extent_mapping(map_tree, start, 1); 2024 read_unlock(&map_tree->lock); 2025 if (!em) 2026 break; 2027 2028 bg = btrfs_lookup_block_group(fs_info, em->start); 2029 if (!bg) { 2030 btrfs_err(fs_info, 2031 "chunk start=%llu len=%llu doesn't have corresponding block group", 2032 em->start, em->len); 2033 ret = -EUCLEAN; 2034 free_extent_map(em); 2035 break; 2036 } 2037 if (bg->start != em->start || bg->length != em->len || 2038 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2039 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2040 btrfs_err(fs_info, 2041 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2042 em->start, em->len, 2043 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2044 bg->start, bg->length, 2045 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2046 ret = -EUCLEAN; 2047 free_extent_map(em); 2048 btrfs_put_block_group(bg); 2049 break; 2050 } 2051 start = em->start + em->len; 2052 free_extent_map(em); 2053 btrfs_put_block_group(bg); 2054 } 2055 return ret; 2056 } 2057 2058 static int read_one_block_group(struct btrfs_fs_info *info, 2059 struct btrfs_block_group_item *bgi, 2060 const struct btrfs_key *key, 2061 int need_clear) 2062 { 2063 struct btrfs_block_group *cache; 2064 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2065 int ret; 2066 2067 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2068 2069 cache = btrfs_create_block_group_cache(info, key->objectid); 2070 if (!cache) 2071 return -ENOMEM; 2072 2073 cache->length = key->offset; 2074 cache->used = btrfs_stack_block_group_used(bgi); 2075 cache->commit_used = cache->used; 2076 cache->flags = btrfs_stack_block_group_flags(bgi); 2077 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2078 2079 set_free_space_tree_thresholds(cache); 2080 2081 if (need_clear) { 2082 /* 2083 * When we mount with old space cache, we need to 2084 * set BTRFS_DC_CLEAR and set dirty flag. 2085 * 2086 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2087 * truncate the old free space cache inode and 2088 * setup a new one. 2089 * b) Setting 'dirty flag' makes sure that we flush 2090 * the new space cache info onto disk. 2091 */ 2092 if (btrfs_test_opt(info, SPACE_CACHE)) 2093 cache->disk_cache_state = BTRFS_DC_CLEAR; 2094 } 2095 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2096 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2097 btrfs_err(info, 2098 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2099 cache->start); 2100 ret = -EINVAL; 2101 goto error; 2102 } 2103 2104 ret = btrfs_load_block_group_zone_info(cache, false); 2105 if (ret) { 2106 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2107 cache->start); 2108 goto error; 2109 } 2110 2111 /* 2112 * We need to exclude the super stripes now so that the space info has 2113 * super bytes accounted for, otherwise we'll think we have more space 2114 * than we actually do. 2115 */ 2116 ret = exclude_super_stripes(cache); 2117 if (ret) { 2118 /* We may have excluded something, so call this just in case. */ 2119 btrfs_free_excluded_extents(cache); 2120 goto error; 2121 } 2122 2123 /* 2124 * For zoned filesystem, space after the allocation offset is the only 2125 * free space for a block group. So, we don't need any caching work. 2126 * btrfs_calc_zone_unusable() will set the amount of free space and 2127 * zone_unusable space. 2128 * 2129 * For regular filesystem, check for two cases, either we are full, and 2130 * therefore don't need to bother with the caching work since we won't 2131 * find any space, or we are empty, and we can just add all the space 2132 * in and be done with it. This saves us _a_lot_ of time, particularly 2133 * in the full case. 2134 */ 2135 if (btrfs_is_zoned(info)) { 2136 btrfs_calc_zone_unusable(cache); 2137 /* Should not have any excluded extents. Just in case, though. */ 2138 btrfs_free_excluded_extents(cache); 2139 } else if (cache->length == cache->used) { 2140 cache->cached = BTRFS_CACHE_FINISHED; 2141 btrfs_free_excluded_extents(cache); 2142 } else if (cache->used == 0) { 2143 cache->cached = BTRFS_CACHE_FINISHED; 2144 add_new_free_space(cache, cache->start, 2145 cache->start + cache->length); 2146 btrfs_free_excluded_extents(cache); 2147 } 2148 2149 ret = btrfs_add_block_group_cache(info, cache); 2150 if (ret) { 2151 btrfs_remove_free_space_cache(cache); 2152 goto error; 2153 } 2154 trace_btrfs_add_block_group(info, cache, 0); 2155 btrfs_add_bg_to_space_info(info, cache); 2156 2157 set_avail_alloc_bits(info, cache->flags); 2158 if (btrfs_chunk_writeable(info, cache->start)) { 2159 if (cache->used == 0) { 2160 ASSERT(list_empty(&cache->bg_list)); 2161 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2162 btrfs_discard_queue_work(&info->discard_ctl, cache); 2163 else 2164 btrfs_mark_bg_unused(cache); 2165 } 2166 } else { 2167 inc_block_group_ro(cache, 1); 2168 } 2169 2170 return 0; 2171 error: 2172 btrfs_put_block_group(cache); 2173 return ret; 2174 } 2175 2176 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2177 { 2178 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2179 struct rb_node *node; 2180 int ret = 0; 2181 2182 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2183 struct extent_map *em; 2184 struct map_lookup *map; 2185 struct btrfs_block_group *bg; 2186 2187 em = rb_entry(node, struct extent_map, rb_node); 2188 map = em->map_lookup; 2189 bg = btrfs_create_block_group_cache(fs_info, em->start); 2190 if (!bg) { 2191 ret = -ENOMEM; 2192 break; 2193 } 2194 2195 /* Fill dummy cache as FULL */ 2196 bg->length = em->len; 2197 bg->flags = map->type; 2198 bg->cached = BTRFS_CACHE_FINISHED; 2199 bg->used = em->len; 2200 bg->flags = map->type; 2201 ret = btrfs_add_block_group_cache(fs_info, bg); 2202 /* 2203 * We may have some valid block group cache added already, in 2204 * that case we skip to the next one. 2205 */ 2206 if (ret == -EEXIST) { 2207 ret = 0; 2208 btrfs_put_block_group(bg); 2209 continue; 2210 } 2211 2212 if (ret) { 2213 btrfs_remove_free_space_cache(bg); 2214 btrfs_put_block_group(bg); 2215 break; 2216 } 2217 2218 btrfs_add_bg_to_space_info(fs_info, bg); 2219 2220 set_avail_alloc_bits(fs_info, bg->flags); 2221 } 2222 if (!ret) 2223 btrfs_init_global_block_rsv(fs_info); 2224 return ret; 2225 } 2226 2227 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2228 { 2229 struct btrfs_root *root = btrfs_block_group_root(info); 2230 struct btrfs_path *path; 2231 int ret; 2232 struct btrfs_block_group *cache; 2233 struct btrfs_space_info *space_info; 2234 struct btrfs_key key; 2235 int need_clear = 0; 2236 u64 cache_gen; 2237 2238 /* 2239 * Either no extent root (with ibadroots rescue option) or we have 2240 * unsupported RO options. The fs can never be mounted read-write, so no 2241 * need to waste time searching block group items. 2242 * 2243 * This also allows new extent tree related changes to be RO compat, 2244 * no need for a full incompat flag. 2245 */ 2246 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2247 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2248 return fill_dummy_bgs(info); 2249 2250 key.objectid = 0; 2251 key.offset = 0; 2252 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2253 path = btrfs_alloc_path(); 2254 if (!path) 2255 return -ENOMEM; 2256 2257 cache_gen = btrfs_super_cache_generation(info->super_copy); 2258 if (btrfs_test_opt(info, SPACE_CACHE) && 2259 btrfs_super_generation(info->super_copy) != cache_gen) 2260 need_clear = 1; 2261 if (btrfs_test_opt(info, CLEAR_CACHE)) 2262 need_clear = 1; 2263 2264 while (1) { 2265 struct btrfs_block_group_item bgi; 2266 struct extent_buffer *leaf; 2267 int slot; 2268 2269 ret = find_first_block_group(info, path, &key); 2270 if (ret > 0) 2271 break; 2272 if (ret != 0) 2273 goto error; 2274 2275 leaf = path->nodes[0]; 2276 slot = path->slots[0]; 2277 2278 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2279 sizeof(bgi)); 2280 2281 btrfs_item_key_to_cpu(leaf, &key, slot); 2282 btrfs_release_path(path); 2283 ret = read_one_block_group(info, &bgi, &key, need_clear); 2284 if (ret < 0) 2285 goto error; 2286 key.objectid += key.offset; 2287 key.offset = 0; 2288 } 2289 btrfs_release_path(path); 2290 2291 list_for_each_entry(space_info, &info->space_info, list) { 2292 int i; 2293 2294 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2295 if (list_empty(&space_info->block_groups[i])) 2296 continue; 2297 cache = list_first_entry(&space_info->block_groups[i], 2298 struct btrfs_block_group, 2299 list); 2300 btrfs_sysfs_add_block_group_type(cache); 2301 } 2302 2303 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2304 (BTRFS_BLOCK_GROUP_RAID10 | 2305 BTRFS_BLOCK_GROUP_RAID1_MASK | 2306 BTRFS_BLOCK_GROUP_RAID56_MASK | 2307 BTRFS_BLOCK_GROUP_DUP))) 2308 continue; 2309 /* 2310 * Avoid allocating from un-mirrored block group if there are 2311 * mirrored block groups. 2312 */ 2313 list_for_each_entry(cache, 2314 &space_info->block_groups[BTRFS_RAID_RAID0], 2315 list) 2316 inc_block_group_ro(cache, 1); 2317 list_for_each_entry(cache, 2318 &space_info->block_groups[BTRFS_RAID_SINGLE], 2319 list) 2320 inc_block_group_ro(cache, 1); 2321 } 2322 2323 btrfs_init_global_block_rsv(info); 2324 ret = check_chunk_block_group_mappings(info); 2325 error: 2326 btrfs_free_path(path); 2327 /* 2328 * We've hit some error while reading the extent tree, and have 2329 * rescue=ibadroots mount option. 2330 * Try to fill the tree using dummy block groups so that the user can 2331 * continue to mount and grab their data. 2332 */ 2333 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2334 ret = fill_dummy_bgs(info); 2335 return ret; 2336 } 2337 2338 /* 2339 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2340 * allocation. 2341 * 2342 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2343 * phases. 2344 */ 2345 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2346 struct btrfs_block_group *block_group) 2347 { 2348 struct btrfs_fs_info *fs_info = trans->fs_info; 2349 struct btrfs_block_group_item bgi; 2350 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2351 struct btrfs_key key; 2352 2353 spin_lock(&block_group->lock); 2354 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2355 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2356 block_group->global_root_id); 2357 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2358 key.objectid = block_group->start; 2359 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2360 key.offset = block_group->length; 2361 spin_unlock(&block_group->lock); 2362 2363 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2364 } 2365 2366 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2367 struct btrfs_device *device, u64 chunk_offset, 2368 u64 start, u64 num_bytes) 2369 { 2370 struct btrfs_fs_info *fs_info = device->fs_info; 2371 struct btrfs_root *root = fs_info->dev_root; 2372 struct btrfs_path *path; 2373 struct btrfs_dev_extent *extent; 2374 struct extent_buffer *leaf; 2375 struct btrfs_key key; 2376 int ret; 2377 2378 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2379 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2380 path = btrfs_alloc_path(); 2381 if (!path) 2382 return -ENOMEM; 2383 2384 key.objectid = device->devid; 2385 key.type = BTRFS_DEV_EXTENT_KEY; 2386 key.offset = start; 2387 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2388 if (ret) 2389 goto out; 2390 2391 leaf = path->nodes[0]; 2392 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2393 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2394 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2395 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2396 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2397 2398 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2399 btrfs_mark_buffer_dirty(leaf); 2400 out: 2401 btrfs_free_path(path); 2402 return ret; 2403 } 2404 2405 /* 2406 * This function belongs to phase 2. 2407 * 2408 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2409 * phases. 2410 */ 2411 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2412 u64 chunk_offset, u64 chunk_size) 2413 { 2414 struct btrfs_fs_info *fs_info = trans->fs_info; 2415 struct btrfs_device *device; 2416 struct extent_map *em; 2417 struct map_lookup *map; 2418 u64 dev_offset; 2419 u64 stripe_size; 2420 int i; 2421 int ret = 0; 2422 2423 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2424 if (IS_ERR(em)) 2425 return PTR_ERR(em); 2426 2427 map = em->map_lookup; 2428 stripe_size = em->orig_block_len; 2429 2430 /* 2431 * Take the device list mutex to prevent races with the final phase of 2432 * a device replace operation that replaces the device object associated 2433 * with the map's stripes, because the device object's id can change 2434 * at any time during that final phase of the device replace operation 2435 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2436 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2437 * resulting in persisting a device extent item with such ID. 2438 */ 2439 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2440 for (i = 0; i < map->num_stripes; i++) { 2441 device = map->stripes[i].dev; 2442 dev_offset = map->stripes[i].physical; 2443 2444 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2445 stripe_size); 2446 if (ret) 2447 break; 2448 } 2449 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2450 2451 free_extent_map(em); 2452 return ret; 2453 } 2454 2455 /* 2456 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2457 * chunk allocation. 2458 * 2459 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2460 * phases. 2461 */ 2462 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2463 { 2464 struct btrfs_fs_info *fs_info = trans->fs_info; 2465 struct btrfs_block_group *block_group; 2466 int ret = 0; 2467 2468 while (!list_empty(&trans->new_bgs)) { 2469 int index; 2470 2471 block_group = list_first_entry(&trans->new_bgs, 2472 struct btrfs_block_group, 2473 bg_list); 2474 if (ret) 2475 goto next; 2476 2477 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2478 2479 ret = insert_block_group_item(trans, block_group); 2480 if (ret) 2481 btrfs_abort_transaction(trans, ret); 2482 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2483 &block_group->runtime_flags)) { 2484 mutex_lock(&fs_info->chunk_mutex); 2485 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2486 mutex_unlock(&fs_info->chunk_mutex); 2487 if (ret) 2488 btrfs_abort_transaction(trans, ret); 2489 } 2490 ret = insert_dev_extents(trans, block_group->start, 2491 block_group->length); 2492 if (ret) 2493 btrfs_abort_transaction(trans, ret); 2494 add_block_group_free_space(trans, block_group); 2495 2496 /* 2497 * If we restriped during balance, we may have added a new raid 2498 * type, so now add the sysfs entries when it is safe to do so. 2499 * We don't have to worry about locking here as it's handled in 2500 * btrfs_sysfs_add_block_group_type. 2501 */ 2502 if (block_group->space_info->block_group_kobjs[index] == NULL) 2503 btrfs_sysfs_add_block_group_type(block_group); 2504 2505 /* Already aborted the transaction if it failed. */ 2506 next: 2507 btrfs_delayed_refs_rsv_release(fs_info, 1); 2508 list_del_init(&block_group->bg_list); 2509 } 2510 btrfs_trans_release_chunk_metadata(trans); 2511 } 2512 2513 /* 2514 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2515 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2516 */ 2517 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2518 { 2519 u64 div = SZ_1G; 2520 u64 index; 2521 2522 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2523 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2524 2525 /* If we have a smaller fs index based on 128MiB. */ 2526 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2527 div = SZ_128M; 2528 2529 offset = div64_u64(offset, div); 2530 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2531 return index; 2532 } 2533 2534 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2535 u64 bytes_used, u64 type, 2536 u64 chunk_offset, u64 size) 2537 { 2538 struct btrfs_fs_info *fs_info = trans->fs_info; 2539 struct btrfs_block_group *cache; 2540 int ret; 2541 2542 btrfs_set_log_full_commit(trans); 2543 2544 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2545 if (!cache) 2546 return ERR_PTR(-ENOMEM); 2547 2548 cache->length = size; 2549 set_free_space_tree_thresholds(cache); 2550 cache->used = bytes_used; 2551 cache->flags = type; 2552 cache->cached = BTRFS_CACHE_FINISHED; 2553 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2554 2555 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2556 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2557 2558 ret = btrfs_load_block_group_zone_info(cache, true); 2559 if (ret) { 2560 btrfs_put_block_group(cache); 2561 return ERR_PTR(ret); 2562 } 2563 2564 ret = exclude_super_stripes(cache); 2565 if (ret) { 2566 /* We may have excluded something, so call this just in case */ 2567 btrfs_free_excluded_extents(cache); 2568 btrfs_put_block_group(cache); 2569 return ERR_PTR(ret); 2570 } 2571 2572 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2573 2574 btrfs_free_excluded_extents(cache); 2575 2576 /* 2577 * Ensure the corresponding space_info object is created and 2578 * assigned to our block group. We want our bg to be added to the rbtree 2579 * with its ->space_info set. 2580 */ 2581 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2582 ASSERT(cache->space_info); 2583 2584 ret = btrfs_add_block_group_cache(fs_info, cache); 2585 if (ret) { 2586 btrfs_remove_free_space_cache(cache); 2587 btrfs_put_block_group(cache); 2588 return ERR_PTR(ret); 2589 } 2590 2591 /* 2592 * Now that our block group has its ->space_info set and is inserted in 2593 * the rbtree, update the space info's counters. 2594 */ 2595 trace_btrfs_add_block_group(fs_info, cache, 1); 2596 btrfs_add_bg_to_space_info(fs_info, cache); 2597 btrfs_update_global_block_rsv(fs_info); 2598 2599 #ifdef CONFIG_BTRFS_DEBUG 2600 if (btrfs_should_fragment_free_space(cache)) { 2601 u64 new_bytes_used = size - bytes_used; 2602 2603 cache->space_info->bytes_used += new_bytes_used >> 1; 2604 fragment_free_space(cache); 2605 } 2606 #endif 2607 2608 list_add_tail(&cache->bg_list, &trans->new_bgs); 2609 trans->delayed_ref_updates++; 2610 btrfs_update_delayed_refs_rsv(trans); 2611 2612 set_avail_alloc_bits(fs_info, type); 2613 return cache; 2614 } 2615 2616 /* 2617 * Mark one block group RO, can be called several times for the same block 2618 * group. 2619 * 2620 * @cache: the destination block group 2621 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2622 * ensure we still have some free space after marking this 2623 * block group RO. 2624 */ 2625 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2626 bool do_chunk_alloc) 2627 { 2628 struct btrfs_fs_info *fs_info = cache->fs_info; 2629 struct btrfs_trans_handle *trans; 2630 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2631 u64 alloc_flags; 2632 int ret; 2633 bool dirty_bg_running; 2634 2635 /* 2636 * This can only happen when we are doing read-only scrub on read-only 2637 * mount. 2638 * In that case we should not start a new transaction on read-only fs. 2639 * Thus here we skip all chunk allocations. 2640 */ 2641 if (sb_rdonly(fs_info->sb)) { 2642 mutex_lock(&fs_info->ro_block_group_mutex); 2643 ret = inc_block_group_ro(cache, 0); 2644 mutex_unlock(&fs_info->ro_block_group_mutex); 2645 return ret; 2646 } 2647 2648 do { 2649 trans = btrfs_join_transaction(root); 2650 if (IS_ERR(trans)) 2651 return PTR_ERR(trans); 2652 2653 dirty_bg_running = false; 2654 2655 /* 2656 * We're not allowed to set block groups readonly after the dirty 2657 * block group cache has started writing. If it already started, 2658 * back off and let this transaction commit. 2659 */ 2660 mutex_lock(&fs_info->ro_block_group_mutex); 2661 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2662 u64 transid = trans->transid; 2663 2664 mutex_unlock(&fs_info->ro_block_group_mutex); 2665 btrfs_end_transaction(trans); 2666 2667 ret = btrfs_wait_for_commit(fs_info, transid); 2668 if (ret) 2669 return ret; 2670 dirty_bg_running = true; 2671 } 2672 } while (dirty_bg_running); 2673 2674 if (do_chunk_alloc) { 2675 /* 2676 * If we are changing raid levels, try to allocate a 2677 * corresponding block group with the new raid level. 2678 */ 2679 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2680 if (alloc_flags != cache->flags) { 2681 ret = btrfs_chunk_alloc(trans, alloc_flags, 2682 CHUNK_ALLOC_FORCE); 2683 /* 2684 * ENOSPC is allowed here, we may have enough space 2685 * already allocated at the new raid level to carry on 2686 */ 2687 if (ret == -ENOSPC) 2688 ret = 0; 2689 if (ret < 0) 2690 goto out; 2691 } 2692 } 2693 2694 ret = inc_block_group_ro(cache, 0); 2695 if (!do_chunk_alloc || ret == -ETXTBSY) 2696 goto unlock_out; 2697 if (!ret) 2698 goto out; 2699 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2700 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2701 if (ret < 0) 2702 goto out; 2703 /* 2704 * We have allocated a new chunk. We also need to activate that chunk to 2705 * grant metadata tickets for zoned filesystem. 2706 */ 2707 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2708 if (ret < 0) 2709 goto out; 2710 2711 ret = inc_block_group_ro(cache, 0); 2712 if (ret == -ETXTBSY) 2713 goto unlock_out; 2714 out: 2715 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2716 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2717 mutex_lock(&fs_info->chunk_mutex); 2718 check_system_chunk(trans, alloc_flags); 2719 mutex_unlock(&fs_info->chunk_mutex); 2720 } 2721 unlock_out: 2722 mutex_unlock(&fs_info->ro_block_group_mutex); 2723 2724 btrfs_end_transaction(trans); 2725 return ret; 2726 } 2727 2728 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2729 { 2730 struct btrfs_space_info *sinfo = cache->space_info; 2731 u64 num_bytes; 2732 2733 BUG_ON(!cache->ro); 2734 2735 spin_lock(&sinfo->lock); 2736 spin_lock(&cache->lock); 2737 if (!--cache->ro) { 2738 if (btrfs_is_zoned(cache->fs_info)) { 2739 /* Migrate zone_unusable bytes back */ 2740 cache->zone_unusable = 2741 (cache->alloc_offset - cache->used) + 2742 (cache->length - cache->zone_capacity); 2743 sinfo->bytes_zone_unusable += cache->zone_unusable; 2744 sinfo->bytes_readonly -= cache->zone_unusable; 2745 } 2746 num_bytes = cache->length - cache->reserved - 2747 cache->pinned - cache->bytes_super - 2748 cache->zone_unusable - cache->used; 2749 sinfo->bytes_readonly -= num_bytes; 2750 list_del_init(&cache->ro_list); 2751 } 2752 spin_unlock(&cache->lock); 2753 spin_unlock(&sinfo->lock); 2754 } 2755 2756 static int update_block_group_item(struct btrfs_trans_handle *trans, 2757 struct btrfs_path *path, 2758 struct btrfs_block_group *cache) 2759 { 2760 struct btrfs_fs_info *fs_info = trans->fs_info; 2761 int ret; 2762 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2763 unsigned long bi; 2764 struct extent_buffer *leaf; 2765 struct btrfs_block_group_item bgi; 2766 struct btrfs_key key; 2767 u64 old_commit_used; 2768 u64 used; 2769 2770 /* 2771 * Block group items update can be triggered out of commit transaction 2772 * critical section, thus we need a consistent view of used bytes. 2773 * We cannot use cache->used directly outside of the spin lock, as it 2774 * may be changed. 2775 */ 2776 spin_lock(&cache->lock); 2777 old_commit_used = cache->commit_used; 2778 used = cache->used; 2779 /* No change in used bytes, can safely skip it. */ 2780 if (cache->commit_used == used) { 2781 spin_unlock(&cache->lock); 2782 return 0; 2783 } 2784 cache->commit_used = used; 2785 spin_unlock(&cache->lock); 2786 2787 key.objectid = cache->start; 2788 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2789 key.offset = cache->length; 2790 2791 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2792 if (ret) { 2793 if (ret > 0) 2794 ret = -ENOENT; 2795 goto fail; 2796 } 2797 2798 leaf = path->nodes[0]; 2799 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2800 btrfs_set_stack_block_group_used(&bgi, used); 2801 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2802 cache->global_root_id); 2803 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2804 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2805 btrfs_mark_buffer_dirty(leaf); 2806 fail: 2807 btrfs_release_path(path); 2808 /* We didn't update the block group item, need to revert @commit_used. */ 2809 if (ret < 0) { 2810 spin_lock(&cache->lock); 2811 cache->commit_used = old_commit_used; 2812 spin_unlock(&cache->lock); 2813 } 2814 return ret; 2815 2816 } 2817 2818 static int cache_save_setup(struct btrfs_block_group *block_group, 2819 struct btrfs_trans_handle *trans, 2820 struct btrfs_path *path) 2821 { 2822 struct btrfs_fs_info *fs_info = block_group->fs_info; 2823 struct btrfs_root *root = fs_info->tree_root; 2824 struct inode *inode = NULL; 2825 struct extent_changeset *data_reserved = NULL; 2826 u64 alloc_hint = 0; 2827 int dcs = BTRFS_DC_ERROR; 2828 u64 cache_size = 0; 2829 int retries = 0; 2830 int ret = 0; 2831 2832 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2833 return 0; 2834 2835 /* 2836 * If this block group is smaller than 100 megs don't bother caching the 2837 * block group. 2838 */ 2839 if (block_group->length < (100 * SZ_1M)) { 2840 spin_lock(&block_group->lock); 2841 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2842 spin_unlock(&block_group->lock); 2843 return 0; 2844 } 2845 2846 if (TRANS_ABORTED(trans)) 2847 return 0; 2848 again: 2849 inode = lookup_free_space_inode(block_group, path); 2850 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2851 ret = PTR_ERR(inode); 2852 btrfs_release_path(path); 2853 goto out; 2854 } 2855 2856 if (IS_ERR(inode)) { 2857 BUG_ON(retries); 2858 retries++; 2859 2860 if (block_group->ro) 2861 goto out_free; 2862 2863 ret = create_free_space_inode(trans, block_group, path); 2864 if (ret) 2865 goto out_free; 2866 goto again; 2867 } 2868 2869 /* 2870 * We want to set the generation to 0, that way if anything goes wrong 2871 * from here on out we know not to trust this cache when we load up next 2872 * time. 2873 */ 2874 BTRFS_I(inode)->generation = 0; 2875 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2876 if (ret) { 2877 /* 2878 * So theoretically we could recover from this, simply set the 2879 * super cache generation to 0 so we know to invalidate the 2880 * cache, but then we'd have to keep track of the block groups 2881 * that fail this way so we know we _have_ to reset this cache 2882 * before the next commit or risk reading stale cache. So to 2883 * limit our exposure to horrible edge cases lets just abort the 2884 * transaction, this only happens in really bad situations 2885 * anyway. 2886 */ 2887 btrfs_abort_transaction(trans, ret); 2888 goto out_put; 2889 } 2890 WARN_ON(ret); 2891 2892 /* We've already setup this transaction, go ahead and exit */ 2893 if (block_group->cache_generation == trans->transid && 2894 i_size_read(inode)) { 2895 dcs = BTRFS_DC_SETUP; 2896 goto out_put; 2897 } 2898 2899 if (i_size_read(inode) > 0) { 2900 ret = btrfs_check_trunc_cache_free_space(fs_info, 2901 &fs_info->global_block_rsv); 2902 if (ret) 2903 goto out_put; 2904 2905 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2906 if (ret) 2907 goto out_put; 2908 } 2909 2910 spin_lock(&block_group->lock); 2911 if (block_group->cached != BTRFS_CACHE_FINISHED || 2912 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2913 /* 2914 * don't bother trying to write stuff out _if_ 2915 * a) we're not cached, 2916 * b) we're with nospace_cache mount option, 2917 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2918 */ 2919 dcs = BTRFS_DC_WRITTEN; 2920 spin_unlock(&block_group->lock); 2921 goto out_put; 2922 } 2923 spin_unlock(&block_group->lock); 2924 2925 /* 2926 * We hit an ENOSPC when setting up the cache in this transaction, just 2927 * skip doing the setup, we've already cleared the cache so we're safe. 2928 */ 2929 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2930 ret = -ENOSPC; 2931 goto out_put; 2932 } 2933 2934 /* 2935 * Try to preallocate enough space based on how big the block group is. 2936 * Keep in mind this has to include any pinned space which could end up 2937 * taking up quite a bit since it's not folded into the other space 2938 * cache. 2939 */ 2940 cache_size = div_u64(block_group->length, SZ_256M); 2941 if (!cache_size) 2942 cache_size = 1; 2943 2944 cache_size *= 16; 2945 cache_size *= fs_info->sectorsize; 2946 2947 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2948 cache_size, false); 2949 if (ret) 2950 goto out_put; 2951 2952 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2953 cache_size, cache_size, 2954 &alloc_hint); 2955 /* 2956 * Our cache requires contiguous chunks so that we don't modify a bunch 2957 * of metadata or split extents when writing the cache out, which means 2958 * we can enospc if we are heavily fragmented in addition to just normal 2959 * out of space conditions. So if we hit this just skip setting up any 2960 * other block groups for this transaction, maybe we'll unpin enough 2961 * space the next time around. 2962 */ 2963 if (!ret) 2964 dcs = BTRFS_DC_SETUP; 2965 else if (ret == -ENOSPC) 2966 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2967 2968 out_put: 2969 iput(inode); 2970 out_free: 2971 btrfs_release_path(path); 2972 out: 2973 spin_lock(&block_group->lock); 2974 if (!ret && dcs == BTRFS_DC_SETUP) 2975 block_group->cache_generation = trans->transid; 2976 block_group->disk_cache_state = dcs; 2977 spin_unlock(&block_group->lock); 2978 2979 extent_changeset_free(data_reserved); 2980 return ret; 2981 } 2982 2983 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2984 { 2985 struct btrfs_fs_info *fs_info = trans->fs_info; 2986 struct btrfs_block_group *cache, *tmp; 2987 struct btrfs_transaction *cur_trans = trans->transaction; 2988 struct btrfs_path *path; 2989 2990 if (list_empty(&cur_trans->dirty_bgs) || 2991 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2992 return 0; 2993 2994 path = btrfs_alloc_path(); 2995 if (!path) 2996 return -ENOMEM; 2997 2998 /* Could add new block groups, use _safe just in case */ 2999 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3000 dirty_list) { 3001 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3002 cache_save_setup(cache, trans, path); 3003 } 3004 3005 btrfs_free_path(path); 3006 return 0; 3007 } 3008 3009 /* 3010 * Transaction commit does final block group cache writeback during a critical 3011 * section where nothing is allowed to change the FS. This is required in 3012 * order for the cache to actually match the block group, but can introduce a 3013 * lot of latency into the commit. 3014 * 3015 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3016 * There's a chance we'll have to redo some of it if the block group changes 3017 * again during the commit, but it greatly reduces the commit latency by 3018 * getting rid of the easy block groups while we're still allowing others to 3019 * join the commit. 3020 */ 3021 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3022 { 3023 struct btrfs_fs_info *fs_info = trans->fs_info; 3024 struct btrfs_block_group *cache; 3025 struct btrfs_transaction *cur_trans = trans->transaction; 3026 int ret = 0; 3027 int should_put; 3028 struct btrfs_path *path = NULL; 3029 LIST_HEAD(dirty); 3030 struct list_head *io = &cur_trans->io_bgs; 3031 int loops = 0; 3032 3033 spin_lock(&cur_trans->dirty_bgs_lock); 3034 if (list_empty(&cur_trans->dirty_bgs)) { 3035 spin_unlock(&cur_trans->dirty_bgs_lock); 3036 return 0; 3037 } 3038 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3039 spin_unlock(&cur_trans->dirty_bgs_lock); 3040 3041 again: 3042 /* Make sure all the block groups on our dirty list actually exist */ 3043 btrfs_create_pending_block_groups(trans); 3044 3045 if (!path) { 3046 path = btrfs_alloc_path(); 3047 if (!path) { 3048 ret = -ENOMEM; 3049 goto out; 3050 } 3051 } 3052 3053 /* 3054 * cache_write_mutex is here only to save us from balance or automatic 3055 * removal of empty block groups deleting this block group while we are 3056 * writing out the cache 3057 */ 3058 mutex_lock(&trans->transaction->cache_write_mutex); 3059 while (!list_empty(&dirty)) { 3060 bool drop_reserve = true; 3061 3062 cache = list_first_entry(&dirty, struct btrfs_block_group, 3063 dirty_list); 3064 /* 3065 * This can happen if something re-dirties a block group that 3066 * is already under IO. Just wait for it to finish and then do 3067 * it all again 3068 */ 3069 if (!list_empty(&cache->io_list)) { 3070 list_del_init(&cache->io_list); 3071 btrfs_wait_cache_io(trans, cache, path); 3072 btrfs_put_block_group(cache); 3073 } 3074 3075 3076 /* 3077 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3078 * it should update the cache_state. Don't delete until after 3079 * we wait. 3080 * 3081 * Since we're not running in the commit critical section 3082 * we need the dirty_bgs_lock to protect from update_block_group 3083 */ 3084 spin_lock(&cur_trans->dirty_bgs_lock); 3085 list_del_init(&cache->dirty_list); 3086 spin_unlock(&cur_trans->dirty_bgs_lock); 3087 3088 should_put = 1; 3089 3090 cache_save_setup(cache, trans, path); 3091 3092 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3093 cache->io_ctl.inode = NULL; 3094 ret = btrfs_write_out_cache(trans, cache, path); 3095 if (ret == 0 && cache->io_ctl.inode) { 3096 should_put = 0; 3097 3098 /* 3099 * The cache_write_mutex is protecting the 3100 * io_list, also refer to the definition of 3101 * btrfs_transaction::io_bgs for more details 3102 */ 3103 list_add_tail(&cache->io_list, io); 3104 } else { 3105 /* 3106 * If we failed to write the cache, the 3107 * generation will be bad and life goes on 3108 */ 3109 ret = 0; 3110 } 3111 } 3112 if (!ret) { 3113 ret = update_block_group_item(trans, path, cache); 3114 /* 3115 * Our block group might still be attached to the list 3116 * of new block groups in the transaction handle of some 3117 * other task (struct btrfs_trans_handle->new_bgs). This 3118 * means its block group item isn't yet in the extent 3119 * tree. If this happens ignore the error, as we will 3120 * try again later in the critical section of the 3121 * transaction commit. 3122 */ 3123 if (ret == -ENOENT) { 3124 ret = 0; 3125 spin_lock(&cur_trans->dirty_bgs_lock); 3126 if (list_empty(&cache->dirty_list)) { 3127 list_add_tail(&cache->dirty_list, 3128 &cur_trans->dirty_bgs); 3129 btrfs_get_block_group(cache); 3130 drop_reserve = false; 3131 } 3132 spin_unlock(&cur_trans->dirty_bgs_lock); 3133 } else if (ret) { 3134 btrfs_abort_transaction(trans, ret); 3135 } 3136 } 3137 3138 /* If it's not on the io list, we need to put the block group */ 3139 if (should_put) 3140 btrfs_put_block_group(cache); 3141 if (drop_reserve) 3142 btrfs_delayed_refs_rsv_release(fs_info, 1); 3143 /* 3144 * Avoid blocking other tasks for too long. It might even save 3145 * us from writing caches for block groups that are going to be 3146 * removed. 3147 */ 3148 mutex_unlock(&trans->transaction->cache_write_mutex); 3149 if (ret) 3150 goto out; 3151 mutex_lock(&trans->transaction->cache_write_mutex); 3152 } 3153 mutex_unlock(&trans->transaction->cache_write_mutex); 3154 3155 /* 3156 * Go through delayed refs for all the stuff we've just kicked off 3157 * and then loop back (just once) 3158 */ 3159 if (!ret) 3160 ret = btrfs_run_delayed_refs(trans, 0); 3161 if (!ret && loops == 0) { 3162 loops++; 3163 spin_lock(&cur_trans->dirty_bgs_lock); 3164 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3165 /* 3166 * dirty_bgs_lock protects us from concurrent block group 3167 * deletes too (not just cache_write_mutex). 3168 */ 3169 if (!list_empty(&dirty)) { 3170 spin_unlock(&cur_trans->dirty_bgs_lock); 3171 goto again; 3172 } 3173 spin_unlock(&cur_trans->dirty_bgs_lock); 3174 } 3175 out: 3176 if (ret < 0) { 3177 spin_lock(&cur_trans->dirty_bgs_lock); 3178 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3179 spin_unlock(&cur_trans->dirty_bgs_lock); 3180 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3181 } 3182 3183 btrfs_free_path(path); 3184 return ret; 3185 } 3186 3187 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3188 { 3189 struct btrfs_fs_info *fs_info = trans->fs_info; 3190 struct btrfs_block_group *cache; 3191 struct btrfs_transaction *cur_trans = trans->transaction; 3192 int ret = 0; 3193 int should_put; 3194 struct btrfs_path *path; 3195 struct list_head *io = &cur_trans->io_bgs; 3196 3197 path = btrfs_alloc_path(); 3198 if (!path) 3199 return -ENOMEM; 3200 3201 /* 3202 * Even though we are in the critical section of the transaction commit, 3203 * we can still have concurrent tasks adding elements to this 3204 * transaction's list of dirty block groups. These tasks correspond to 3205 * endio free space workers started when writeback finishes for a 3206 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3207 * allocate new block groups as a result of COWing nodes of the root 3208 * tree when updating the free space inode. The writeback for the space 3209 * caches is triggered by an earlier call to 3210 * btrfs_start_dirty_block_groups() and iterations of the following 3211 * loop. 3212 * Also we want to do the cache_save_setup first and then run the 3213 * delayed refs to make sure we have the best chance at doing this all 3214 * in one shot. 3215 */ 3216 spin_lock(&cur_trans->dirty_bgs_lock); 3217 while (!list_empty(&cur_trans->dirty_bgs)) { 3218 cache = list_first_entry(&cur_trans->dirty_bgs, 3219 struct btrfs_block_group, 3220 dirty_list); 3221 3222 /* 3223 * This can happen if cache_save_setup re-dirties a block group 3224 * that is already under IO. Just wait for it to finish and 3225 * then do it all again 3226 */ 3227 if (!list_empty(&cache->io_list)) { 3228 spin_unlock(&cur_trans->dirty_bgs_lock); 3229 list_del_init(&cache->io_list); 3230 btrfs_wait_cache_io(trans, cache, path); 3231 btrfs_put_block_group(cache); 3232 spin_lock(&cur_trans->dirty_bgs_lock); 3233 } 3234 3235 /* 3236 * Don't remove from the dirty list until after we've waited on 3237 * any pending IO 3238 */ 3239 list_del_init(&cache->dirty_list); 3240 spin_unlock(&cur_trans->dirty_bgs_lock); 3241 should_put = 1; 3242 3243 cache_save_setup(cache, trans, path); 3244 3245 if (!ret) 3246 ret = btrfs_run_delayed_refs(trans, 3247 (unsigned long) -1); 3248 3249 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3250 cache->io_ctl.inode = NULL; 3251 ret = btrfs_write_out_cache(trans, cache, path); 3252 if (ret == 0 && cache->io_ctl.inode) { 3253 should_put = 0; 3254 list_add_tail(&cache->io_list, io); 3255 } else { 3256 /* 3257 * If we failed to write the cache, the 3258 * generation will be bad and life goes on 3259 */ 3260 ret = 0; 3261 } 3262 } 3263 if (!ret) { 3264 ret = update_block_group_item(trans, path, cache); 3265 /* 3266 * One of the free space endio workers might have 3267 * created a new block group while updating a free space 3268 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3269 * and hasn't released its transaction handle yet, in 3270 * which case the new block group is still attached to 3271 * its transaction handle and its creation has not 3272 * finished yet (no block group item in the extent tree 3273 * yet, etc). If this is the case, wait for all free 3274 * space endio workers to finish and retry. This is a 3275 * very rare case so no need for a more efficient and 3276 * complex approach. 3277 */ 3278 if (ret == -ENOENT) { 3279 wait_event(cur_trans->writer_wait, 3280 atomic_read(&cur_trans->num_writers) == 1); 3281 ret = update_block_group_item(trans, path, cache); 3282 } 3283 if (ret) 3284 btrfs_abort_transaction(trans, ret); 3285 } 3286 3287 /* If its not on the io list, we need to put the block group */ 3288 if (should_put) 3289 btrfs_put_block_group(cache); 3290 btrfs_delayed_refs_rsv_release(fs_info, 1); 3291 spin_lock(&cur_trans->dirty_bgs_lock); 3292 } 3293 spin_unlock(&cur_trans->dirty_bgs_lock); 3294 3295 /* 3296 * Refer to the definition of io_bgs member for details why it's safe 3297 * to use it without any locking 3298 */ 3299 while (!list_empty(io)) { 3300 cache = list_first_entry(io, struct btrfs_block_group, 3301 io_list); 3302 list_del_init(&cache->io_list); 3303 btrfs_wait_cache_io(trans, cache, path); 3304 btrfs_put_block_group(cache); 3305 } 3306 3307 btrfs_free_path(path); 3308 return ret; 3309 } 3310 3311 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3312 u64 bytenr, u64 num_bytes, bool alloc) 3313 { 3314 struct btrfs_fs_info *info = trans->fs_info; 3315 struct btrfs_block_group *cache = NULL; 3316 u64 total = num_bytes; 3317 u64 old_val; 3318 u64 byte_in_group; 3319 int factor; 3320 int ret = 0; 3321 3322 /* Block accounting for super block */ 3323 spin_lock(&info->delalloc_root_lock); 3324 old_val = btrfs_super_bytes_used(info->super_copy); 3325 if (alloc) 3326 old_val += num_bytes; 3327 else 3328 old_val -= num_bytes; 3329 btrfs_set_super_bytes_used(info->super_copy, old_val); 3330 spin_unlock(&info->delalloc_root_lock); 3331 3332 while (total) { 3333 bool reclaim; 3334 3335 cache = btrfs_lookup_block_group(info, bytenr); 3336 if (!cache) { 3337 ret = -ENOENT; 3338 break; 3339 } 3340 factor = btrfs_bg_type_to_factor(cache->flags); 3341 3342 /* 3343 * If this block group has free space cache written out, we 3344 * need to make sure to load it if we are removing space. This 3345 * is because we need the unpinning stage to actually add the 3346 * space back to the block group, otherwise we will leak space. 3347 */ 3348 if (!alloc && !btrfs_block_group_done(cache)) 3349 btrfs_cache_block_group(cache, true); 3350 3351 byte_in_group = bytenr - cache->start; 3352 WARN_ON(byte_in_group > cache->length); 3353 3354 spin_lock(&cache->space_info->lock); 3355 spin_lock(&cache->lock); 3356 3357 if (btrfs_test_opt(info, SPACE_CACHE) && 3358 cache->disk_cache_state < BTRFS_DC_CLEAR) 3359 cache->disk_cache_state = BTRFS_DC_CLEAR; 3360 3361 old_val = cache->used; 3362 num_bytes = min(total, cache->length - byte_in_group); 3363 if (alloc) { 3364 old_val += num_bytes; 3365 cache->used = old_val; 3366 cache->reserved -= num_bytes; 3367 cache->space_info->bytes_reserved -= num_bytes; 3368 cache->space_info->bytes_used += num_bytes; 3369 cache->space_info->disk_used += num_bytes * factor; 3370 spin_unlock(&cache->lock); 3371 spin_unlock(&cache->space_info->lock); 3372 } else { 3373 old_val -= num_bytes; 3374 cache->used = old_val; 3375 cache->pinned += num_bytes; 3376 btrfs_space_info_update_bytes_pinned(info, 3377 cache->space_info, num_bytes); 3378 cache->space_info->bytes_used -= num_bytes; 3379 cache->space_info->disk_used -= num_bytes * factor; 3380 3381 reclaim = should_reclaim_block_group(cache, num_bytes); 3382 spin_unlock(&cache->lock); 3383 spin_unlock(&cache->space_info->lock); 3384 3385 set_extent_dirty(&trans->transaction->pinned_extents, 3386 bytenr, bytenr + num_bytes - 1, 3387 GFP_NOFS | __GFP_NOFAIL); 3388 } 3389 3390 spin_lock(&trans->transaction->dirty_bgs_lock); 3391 if (list_empty(&cache->dirty_list)) { 3392 list_add_tail(&cache->dirty_list, 3393 &trans->transaction->dirty_bgs); 3394 trans->delayed_ref_updates++; 3395 btrfs_get_block_group(cache); 3396 } 3397 spin_unlock(&trans->transaction->dirty_bgs_lock); 3398 3399 /* 3400 * No longer have used bytes in this block group, queue it for 3401 * deletion. We do this after adding the block group to the 3402 * dirty list to avoid races between cleaner kthread and space 3403 * cache writeout. 3404 */ 3405 if (!alloc && old_val == 0) { 3406 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3407 btrfs_mark_bg_unused(cache); 3408 } else if (!alloc && reclaim) { 3409 btrfs_mark_bg_to_reclaim(cache); 3410 } 3411 3412 btrfs_put_block_group(cache); 3413 total -= num_bytes; 3414 bytenr += num_bytes; 3415 } 3416 3417 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3418 btrfs_update_delayed_refs_rsv(trans); 3419 return ret; 3420 } 3421 3422 /* 3423 * Update the block_group and space info counters. 3424 * 3425 * @cache: The cache we are manipulating 3426 * @ram_bytes: The number of bytes of file content, and will be same to 3427 * @num_bytes except for the compress path. 3428 * @num_bytes: The number of bytes in question 3429 * @delalloc: The blocks are allocated for the delalloc write 3430 * 3431 * This is called by the allocator when it reserves space. If this is a 3432 * reservation and the block group has become read only we cannot make the 3433 * reservation and return -EAGAIN, otherwise this function always succeeds. 3434 */ 3435 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3436 u64 ram_bytes, u64 num_bytes, int delalloc) 3437 { 3438 struct btrfs_space_info *space_info = cache->space_info; 3439 int ret = 0; 3440 3441 spin_lock(&space_info->lock); 3442 spin_lock(&cache->lock); 3443 if (cache->ro) { 3444 ret = -EAGAIN; 3445 } else { 3446 cache->reserved += num_bytes; 3447 space_info->bytes_reserved += num_bytes; 3448 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3449 space_info->flags, num_bytes, 1); 3450 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3451 space_info, -ram_bytes); 3452 if (delalloc) 3453 cache->delalloc_bytes += num_bytes; 3454 3455 /* 3456 * Compression can use less space than we reserved, so wake 3457 * tickets if that happens 3458 */ 3459 if (num_bytes < ram_bytes) 3460 btrfs_try_granting_tickets(cache->fs_info, space_info); 3461 } 3462 spin_unlock(&cache->lock); 3463 spin_unlock(&space_info->lock); 3464 return ret; 3465 } 3466 3467 /* 3468 * Update the block_group and space info counters. 3469 * 3470 * @cache: The cache we are manipulating 3471 * @num_bytes: The number of bytes in question 3472 * @delalloc: The blocks are allocated for the delalloc write 3473 * 3474 * This is called by somebody who is freeing space that was never actually used 3475 * on disk. For example if you reserve some space for a new leaf in transaction 3476 * A and before transaction A commits you free that leaf, you call this with 3477 * reserve set to 0 in order to clear the reservation. 3478 */ 3479 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3480 u64 num_bytes, int delalloc) 3481 { 3482 struct btrfs_space_info *space_info = cache->space_info; 3483 3484 spin_lock(&space_info->lock); 3485 spin_lock(&cache->lock); 3486 if (cache->ro) 3487 space_info->bytes_readonly += num_bytes; 3488 cache->reserved -= num_bytes; 3489 space_info->bytes_reserved -= num_bytes; 3490 space_info->max_extent_size = 0; 3491 3492 if (delalloc) 3493 cache->delalloc_bytes -= num_bytes; 3494 spin_unlock(&cache->lock); 3495 3496 btrfs_try_granting_tickets(cache->fs_info, space_info); 3497 spin_unlock(&space_info->lock); 3498 } 3499 3500 static void force_metadata_allocation(struct btrfs_fs_info *info) 3501 { 3502 struct list_head *head = &info->space_info; 3503 struct btrfs_space_info *found; 3504 3505 list_for_each_entry(found, head, list) { 3506 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3507 found->force_alloc = CHUNK_ALLOC_FORCE; 3508 } 3509 } 3510 3511 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3512 struct btrfs_space_info *sinfo, int force) 3513 { 3514 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3515 u64 thresh; 3516 3517 if (force == CHUNK_ALLOC_FORCE) 3518 return 1; 3519 3520 /* 3521 * in limited mode, we want to have some free space up to 3522 * about 1% of the FS size. 3523 */ 3524 if (force == CHUNK_ALLOC_LIMITED) { 3525 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3526 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3527 3528 if (sinfo->total_bytes - bytes_used < thresh) 3529 return 1; 3530 } 3531 3532 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3533 return 0; 3534 return 1; 3535 } 3536 3537 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3538 { 3539 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3540 3541 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3542 } 3543 3544 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3545 { 3546 struct btrfs_block_group *bg; 3547 int ret; 3548 3549 /* 3550 * Check if we have enough space in the system space info because we 3551 * will need to update device items in the chunk btree and insert a new 3552 * chunk item in the chunk btree as well. This will allocate a new 3553 * system block group if needed. 3554 */ 3555 check_system_chunk(trans, flags); 3556 3557 bg = btrfs_create_chunk(trans, flags); 3558 if (IS_ERR(bg)) { 3559 ret = PTR_ERR(bg); 3560 goto out; 3561 } 3562 3563 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3564 /* 3565 * Normally we are not expected to fail with -ENOSPC here, since we have 3566 * previously reserved space in the system space_info and allocated one 3567 * new system chunk if necessary. However there are three exceptions: 3568 * 3569 * 1) We may have enough free space in the system space_info but all the 3570 * existing system block groups have a profile which can not be used 3571 * for extent allocation. 3572 * 3573 * This happens when mounting in degraded mode. For example we have a 3574 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3575 * using the other device in degraded mode. If we then allocate a chunk, 3576 * we may have enough free space in the existing system space_info, but 3577 * none of the block groups can be used for extent allocation since they 3578 * have a RAID1 profile, and because we are in degraded mode with a 3579 * single device, we are forced to allocate a new system chunk with a 3580 * SINGLE profile. Making check_system_chunk() iterate over all system 3581 * block groups and check if they have a usable profile and enough space 3582 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3583 * try again after forcing allocation of a new system chunk. Like this 3584 * we avoid paying the cost of that search in normal circumstances, when 3585 * we were not mounted in degraded mode; 3586 * 3587 * 2) We had enough free space info the system space_info, and one suitable 3588 * block group to allocate from when we called check_system_chunk() 3589 * above. However right after we called it, the only system block group 3590 * with enough free space got turned into RO mode by a running scrub, 3591 * and in this case we have to allocate a new one and retry. We only 3592 * need do this allocate and retry once, since we have a transaction 3593 * handle and scrub uses the commit root to search for block groups; 3594 * 3595 * 3) We had one system block group with enough free space when we called 3596 * check_system_chunk(), but after that, right before we tried to 3597 * allocate the last extent buffer we needed, a discard operation came 3598 * in and it temporarily removed the last free space entry from the 3599 * block group (discard removes a free space entry, discards it, and 3600 * then adds back the entry to the block group cache). 3601 */ 3602 if (ret == -ENOSPC) { 3603 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3604 struct btrfs_block_group *sys_bg; 3605 3606 sys_bg = btrfs_create_chunk(trans, sys_flags); 3607 if (IS_ERR(sys_bg)) { 3608 ret = PTR_ERR(sys_bg); 3609 btrfs_abort_transaction(trans, ret); 3610 goto out; 3611 } 3612 3613 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3614 if (ret) { 3615 btrfs_abort_transaction(trans, ret); 3616 goto out; 3617 } 3618 3619 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3620 if (ret) { 3621 btrfs_abort_transaction(trans, ret); 3622 goto out; 3623 } 3624 } else if (ret) { 3625 btrfs_abort_transaction(trans, ret); 3626 goto out; 3627 } 3628 out: 3629 btrfs_trans_release_chunk_metadata(trans); 3630 3631 if (ret) 3632 return ERR_PTR(ret); 3633 3634 btrfs_get_block_group(bg); 3635 return bg; 3636 } 3637 3638 /* 3639 * Chunk allocation is done in 2 phases: 3640 * 3641 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3642 * the chunk, the chunk mapping, create its block group and add the items 3643 * that belong in the chunk btree to it - more specifically, we need to 3644 * update device items in the chunk btree and add a new chunk item to it. 3645 * 3646 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3647 * group item to the extent btree and the device extent items to the devices 3648 * btree. 3649 * 3650 * This is done to prevent deadlocks. For example when COWing a node from the 3651 * extent btree we are holding a write lock on the node's parent and if we 3652 * trigger chunk allocation and attempted to insert the new block group item 3653 * in the extent btree right way, we could deadlock because the path for the 3654 * insertion can include that parent node. At first glance it seems impossible 3655 * to trigger chunk allocation after starting a transaction since tasks should 3656 * reserve enough transaction units (metadata space), however while that is true 3657 * most of the time, chunk allocation may still be triggered for several reasons: 3658 * 3659 * 1) When reserving metadata, we check if there is enough free space in the 3660 * metadata space_info and therefore don't trigger allocation of a new chunk. 3661 * However later when the task actually tries to COW an extent buffer from 3662 * the extent btree or from the device btree for example, it is forced to 3663 * allocate a new block group (chunk) because the only one that had enough 3664 * free space was just turned to RO mode by a running scrub for example (or 3665 * device replace, block group reclaim thread, etc), so we can not use it 3666 * for allocating an extent and end up being forced to allocate a new one; 3667 * 3668 * 2) Because we only check that the metadata space_info has enough free bytes, 3669 * we end up not allocating a new metadata chunk in that case. However if 3670 * the filesystem was mounted in degraded mode, none of the existing block 3671 * groups might be suitable for extent allocation due to their incompatible 3672 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3673 * use a RAID1 profile, in degraded mode using a single device). In this case 3674 * when the task attempts to COW some extent buffer of the extent btree for 3675 * example, it will trigger allocation of a new metadata block group with a 3676 * suitable profile (SINGLE profile in the example of the degraded mount of 3677 * the RAID1 filesystem); 3678 * 3679 * 3) The task has reserved enough transaction units / metadata space, but when 3680 * it attempts to COW an extent buffer from the extent or device btree for 3681 * example, it does not find any free extent in any metadata block group, 3682 * therefore forced to try to allocate a new metadata block group. 3683 * This is because some other task allocated all available extents in the 3684 * meanwhile - this typically happens with tasks that don't reserve space 3685 * properly, either intentionally or as a bug. One example where this is 3686 * done intentionally is fsync, as it does not reserve any transaction units 3687 * and ends up allocating a variable number of metadata extents for log 3688 * tree extent buffers; 3689 * 3690 * 4) The task has reserved enough transaction units / metadata space, but right 3691 * before it tries to allocate the last extent buffer it needs, a discard 3692 * operation comes in and, temporarily, removes the last free space entry from 3693 * the only metadata block group that had free space (discard starts by 3694 * removing a free space entry from a block group, then does the discard 3695 * operation and, once it's done, it adds back the free space entry to the 3696 * block group). 3697 * 3698 * We also need this 2 phases setup when adding a device to a filesystem with 3699 * a seed device - we must create new metadata and system chunks without adding 3700 * any of the block group items to the chunk, extent and device btrees. If we 3701 * did not do it this way, we would get ENOSPC when attempting to update those 3702 * btrees, since all the chunks from the seed device are read-only. 3703 * 3704 * Phase 1 does the updates and insertions to the chunk btree because if we had 3705 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3706 * parallel, we risk having too many system chunks allocated by many tasks if 3707 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3708 * extreme case this leads to exhaustion of the system chunk array in the 3709 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3710 * and with RAID filesystems (so we have more device items in the chunk btree). 3711 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 3712 * the system chunk array due to concurrent allocations") provides more details. 3713 * 3714 * Allocation of system chunks does not happen through this function. A task that 3715 * needs to update the chunk btree (the only btree that uses system chunks), must 3716 * preallocate chunk space by calling either check_system_chunk() or 3717 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 3718 * metadata chunk or when removing a chunk, while the later is used before doing 3719 * a modification to the chunk btree - use cases for the later are adding, 3720 * removing and resizing a device as well as relocation of a system chunk. 3721 * See the comment below for more details. 3722 * 3723 * The reservation of system space, done through check_system_chunk(), as well 3724 * as all the updates and insertions into the chunk btree must be done while 3725 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 3726 * an extent buffer from the chunks btree we never trigger allocation of a new 3727 * system chunk, which would result in a deadlock (trying to lock twice an 3728 * extent buffer of the chunk btree, first time before triggering the chunk 3729 * allocation and the second time during chunk allocation while attempting to 3730 * update the chunks btree). The system chunk array is also updated while holding 3731 * that mutex. The same logic applies to removing chunks - we must reserve system 3732 * space, update the chunk btree and the system chunk array in the superblock 3733 * while holding fs_info->chunk_mutex. 3734 * 3735 * This function, btrfs_chunk_alloc(), belongs to phase 1. 3736 * 3737 * If @force is CHUNK_ALLOC_FORCE: 3738 * - return 1 if it successfully allocates a chunk, 3739 * - return errors including -ENOSPC otherwise. 3740 * If @force is NOT CHUNK_ALLOC_FORCE: 3741 * - return 0 if it doesn't need to allocate a new chunk, 3742 * - return 1 if it successfully allocates a chunk, 3743 * - return errors including -ENOSPC otherwise. 3744 */ 3745 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3746 enum btrfs_chunk_alloc_enum force) 3747 { 3748 struct btrfs_fs_info *fs_info = trans->fs_info; 3749 struct btrfs_space_info *space_info; 3750 struct btrfs_block_group *ret_bg; 3751 bool wait_for_alloc = false; 3752 bool should_alloc = false; 3753 bool from_extent_allocation = false; 3754 int ret = 0; 3755 3756 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 3757 from_extent_allocation = true; 3758 force = CHUNK_ALLOC_FORCE; 3759 } 3760 3761 /* Don't re-enter if we're already allocating a chunk */ 3762 if (trans->allocating_chunk) 3763 return -ENOSPC; 3764 /* 3765 * Allocation of system chunks can not happen through this path, as we 3766 * could end up in a deadlock if we are allocating a data or metadata 3767 * chunk and there is another task modifying the chunk btree. 3768 * 3769 * This is because while we are holding the chunk mutex, we will attempt 3770 * to add the new chunk item to the chunk btree or update an existing 3771 * device item in the chunk btree, while the other task that is modifying 3772 * the chunk btree is attempting to COW an extent buffer while holding a 3773 * lock on it and on its parent - if the COW operation triggers a system 3774 * chunk allocation, then we can deadlock because we are holding the 3775 * chunk mutex and we may need to access that extent buffer or its parent 3776 * in order to add the chunk item or update a device item. 3777 * 3778 * Tasks that want to modify the chunk tree should reserve system space 3779 * before updating the chunk btree, by calling either 3780 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 3781 * It's possible that after a task reserves the space, it still ends up 3782 * here - this happens in the cases described above at do_chunk_alloc(). 3783 * The task will have to either retry or fail. 3784 */ 3785 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3786 return -ENOSPC; 3787 3788 space_info = btrfs_find_space_info(fs_info, flags); 3789 ASSERT(space_info); 3790 3791 do { 3792 spin_lock(&space_info->lock); 3793 if (force < space_info->force_alloc) 3794 force = space_info->force_alloc; 3795 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3796 if (space_info->full) { 3797 /* No more free physical space */ 3798 if (should_alloc) 3799 ret = -ENOSPC; 3800 else 3801 ret = 0; 3802 spin_unlock(&space_info->lock); 3803 return ret; 3804 } else if (!should_alloc) { 3805 spin_unlock(&space_info->lock); 3806 return 0; 3807 } else if (space_info->chunk_alloc) { 3808 /* 3809 * Someone is already allocating, so we need to block 3810 * until this someone is finished and then loop to 3811 * recheck if we should continue with our allocation 3812 * attempt. 3813 */ 3814 wait_for_alloc = true; 3815 force = CHUNK_ALLOC_NO_FORCE; 3816 spin_unlock(&space_info->lock); 3817 mutex_lock(&fs_info->chunk_mutex); 3818 mutex_unlock(&fs_info->chunk_mutex); 3819 } else { 3820 /* Proceed with allocation */ 3821 space_info->chunk_alloc = 1; 3822 wait_for_alloc = false; 3823 spin_unlock(&space_info->lock); 3824 } 3825 3826 cond_resched(); 3827 } while (wait_for_alloc); 3828 3829 mutex_lock(&fs_info->chunk_mutex); 3830 trans->allocating_chunk = true; 3831 3832 /* 3833 * If we have mixed data/metadata chunks we want to make sure we keep 3834 * allocating mixed chunks instead of individual chunks. 3835 */ 3836 if (btrfs_mixed_space_info(space_info)) 3837 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3838 3839 /* 3840 * if we're doing a data chunk, go ahead and make sure that 3841 * we keep a reasonable number of metadata chunks allocated in the 3842 * FS as well. 3843 */ 3844 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3845 fs_info->data_chunk_allocations++; 3846 if (!(fs_info->data_chunk_allocations % 3847 fs_info->metadata_ratio)) 3848 force_metadata_allocation(fs_info); 3849 } 3850 3851 ret_bg = do_chunk_alloc(trans, flags); 3852 trans->allocating_chunk = false; 3853 3854 if (IS_ERR(ret_bg)) { 3855 ret = PTR_ERR(ret_bg); 3856 } else if (from_extent_allocation) { 3857 /* 3858 * New block group is likely to be used soon. Try to activate 3859 * it now. Failure is OK for now. 3860 */ 3861 btrfs_zone_activate(ret_bg); 3862 } 3863 3864 if (!ret) 3865 btrfs_put_block_group(ret_bg); 3866 3867 spin_lock(&space_info->lock); 3868 if (ret < 0) { 3869 if (ret == -ENOSPC) 3870 space_info->full = 1; 3871 else 3872 goto out; 3873 } else { 3874 ret = 1; 3875 space_info->max_extent_size = 0; 3876 } 3877 3878 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3879 out: 3880 space_info->chunk_alloc = 0; 3881 spin_unlock(&space_info->lock); 3882 mutex_unlock(&fs_info->chunk_mutex); 3883 3884 return ret; 3885 } 3886 3887 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3888 { 3889 u64 num_dev; 3890 3891 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3892 if (!num_dev) 3893 num_dev = fs_info->fs_devices->rw_devices; 3894 3895 return num_dev; 3896 } 3897 3898 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 3899 u64 bytes, 3900 u64 type) 3901 { 3902 struct btrfs_fs_info *fs_info = trans->fs_info; 3903 struct btrfs_space_info *info; 3904 u64 left; 3905 int ret = 0; 3906 3907 /* 3908 * Needed because we can end up allocating a system chunk and for an 3909 * atomic and race free space reservation in the chunk block reserve. 3910 */ 3911 lockdep_assert_held(&fs_info->chunk_mutex); 3912 3913 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3914 spin_lock(&info->lock); 3915 left = info->total_bytes - btrfs_space_info_used(info, true); 3916 spin_unlock(&info->lock); 3917 3918 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3919 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3920 left, bytes, type); 3921 btrfs_dump_space_info(fs_info, info, 0, 0); 3922 } 3923 3924 if (left < bytes) { 3925 u64 flags = btrfs_system_alloc_profile(fs_info); 3926 struct btrfs_block_group *bg; 3927 3928 /* 3929 * Ignore failure to create system chunk. We might end up not 3930 * needing it, as we might not need to COW all nodes/leafs from 3931 * the paths we visit in the chunk tree (they were already COWed 3932 * or created in the current transaction for example). 3933 */ 3934 bg = btrfs_create_chunk(trans, flags); 3935 if (IS_ERR(bg)) { 3936 ret = PTR_ERR(bg); 3937 } else { 3938 /* 3939 * We have a new chunk. We also need to activate it for 3940 * zoned filesystem. 3941 */ 3942 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 3943 if (ret < 0) 3944 return; 3945 3946 /* 3947 * If we fail to add the chunk item here, we end up 3948 * trying again at phase 2 of chunk allocation, at 3949 * btrfs_create_pending_block_groups(). So ignore 3950 * any error here. An ENOSPC here could happen, due to 3951 * the cases described at do_chunk_alloc() - the system 3952 * block group we just created was just turned into RO 3953 * mode by a scrub for example, or a running discard 3954 * temporarily removed its free space entries, etc. 3955 */ 3956 btrfs_chunk_alloc_add_chunk_item(trans, bg); 3957 } 3958 } 3959 3960 if (!ret) { 3961 ret = btrfs_block_rsv_add(fs_info, 3962 &fs_info->chunk_block_rsv, 3963 bytes, BTRFS_RESERVE_NO_FLUSH); 3964 if (!ret) 3965 trans->chunk_bytes_reserved += bytes; 3966 } 3967 } 3968 3969 /* 3970 * Reserve space in the system space for allocating or removing a chunk. 3971 * The caller must be holding fs_info->chunk_mutex. 3972 */ 3973 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3974 { 3975 struct btrfs_fs_info *fs_info = trans->fs_info; 3976 const u64 num_devs = get_profile_num_devs(fs_info, type); 3977 u64 bytes; 3978 3979 /* num_devs device items to update and 1 chunk item to add or remove. */ 3980 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 3981 btrfs_calc_insert_metadata_size(fs_info, 1); 3982 3983 reserve_chunk_space(trans, bytes, type); 3984 } 3985 3986 /* 3987 * Reserve space in the system space, if needed, for doing a modification to the 3988 * chunk btree. 3989 * 3990 * @trans: A transaction handle. 3991 * @is_item_insertion: Indicate if the modification is for inserting a new item 3992 * in the chunk btree or if it's for the deletion or update 3993 * of an existing item. 3994 * 3995 * This is used in a context where we need to update the chunk btree outside 3996 * block group allocation and removal, to avoid a deadlock with a concurrent 3997 * task that is allocating a metadata or data block group and therefore needs to 3998 * update the chunk btree while holding the chunk mutex. After the update to the 3999 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4000 * 4001 */ 4002 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4003 bool is_item_insertion) 4004 { 4005 struct btrfs_fs_info *fs_info = trans->fs_info; 4006 u64 bytes; 4007 4008 if (is_item_insertion) 4009 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4010 else 4011 bytes = btrfs_calc_metadata_size(fs_info, 1); 4012 4013 mutex_lock(&fs_info->chunk_mutex); 4014 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4015 mutex_unlock(&fs_info->chunk_mutex); 4016 } 4017 4018 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4019 { 4020 struct btrfs_block_group *block_group; 4021 4022 block_group = btrfs_lookup_first_block_group(info, 0); 4023 while (block_group) { 4024 btrfs_wait_block_group_cache_done(block_group); 4025 spin_lock(&block_group->lock); 4026 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4027 &block_group->runtime_flags)) { 4028 struct inode *inode = block_group->inode; 4029 4030 block_group->inode = NULL; 4031 spin_unlock(&block_group->lock); 4032 4033 ASSERT(block_group->io_ctl.inode == NULL); 4034 iput(inode); 4035 } else { 4036 spin_unlock(&block_group->lock); 4037 } 4038 block_group = btrfs_next_block_group(block_group); 4039 } 4040 } 4041 4042 /* 4043 * Must be called only after stopping all workers, since we could have block 4044 * group caching kthreads running, and therefore they could race with us if we 4045 * freed the block groups before stopping them. 4046 */ 4047 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4048 { 4049 struct btrfs_block_group *block_group; 4050 struct btrfs_space_info *space_info; 4051 struct btrfs_caching_control *caching_ctl; 4052 struct rb_node *n; 4053 4054 write_lock(&info->block_group_cache_lock); 4055 while (!list_empty(&info->caching_block_groups)) { 4056 caching_ctl = list_entry(info->caching_block_groups.next, 4057 struct btrfs_caching_control, list); 4058 list_del(&caching_ctl->list); 4059 btrfs_put_caching_control(caching_ctl); 4060 } 4061 write_unlock(&info->block_group_cache_lock); 4062 4063 spin_lock(&info->unused_bgs_lock); 4064 while (!list_empty(&info->unused_bgs)) { 4065 block_group = list_first_entry(&info->unused_bgs, 4066 struct btrfs_block_group, 4067 bg_list); 4068 list_del_init(&block_group->bg_list); 4069 btrfs_put_block_group(block_group); 4070 } 4071 4072 while (!list_empty(&info->reclaim_bgs)) { 4073 block_group = list_first_entry(&info->reclaim_bgs, 4074 struct btrfs_block_group, 4075 bg_list); 4076 list_del_init(&block_group->bg_list); 4077 btrfs_put_block_group(block_group); 4078 } 4079 spin_unlock(&info->unused_bgs_lock); 4080 4081 spin_lock(&info->zone_active_bgs_lock); 4082 while (!list_empty(&info->zone_active_bgs)) { 4083 block_group = list_first_entry(&info->zone_active_bgs, 4084 struct btrfs_block_group, 4085 active_bg_list); 4086 list_del_init(&block_group->active_bg_list); 4087 btrfs_put_block_group(block_group); 4088 } 4089 spin_unlock(&info->zone_active_bgs_lock); 4090 4091 write_lock(&info->block_group_cache_lock); 4092 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4093 block_group = rb_entry(n, struct btrfs_block_group, 4094 cache_node); 4095 rb_erase_cached(&block_group->cache_node, 4096 &info->block_group_cache_tree); 4097 RB_CLEAR_NODE(&block_group->cache_node); 4098 write_unlock(&info->block_group_cache_lock); 4099 4100 down_write(&block_group->space_info->groups_sem); 4101 list_del(&block_group->list); 4102 up_write(&block_group->space_info->groups_sem); 4103 4104 /* 4105 * We haven't cached this block group, which means we could 4106 * possibly have excluded extents on this block group. 4107 */ 4108 if (block_group->cached == BTRFS_CACHE_NO || 4109 block_group->cached == BTRFS_CACHE_ERROR) 4110 btrfs_free_excluded_extents(block_group); 4111 4112 btrfs_remove_free_space_cache(block_group); 4113 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4114 ASSERT(list_empty(&block_group->dirty_list)); 4115 ASSERT(list_empty(&block_group->io_list)); 4116 ASSERT(list_empty(&block_group->bg_list)); 4117 ASSERT(refcount_read(&block_group->refs) == 1); 4118 ASSERT(block_group->swap_extents == 0); 4119 btrfs_put_block_group(block_group); 4120 4121 write_lock(&info->block_group_cache_lock); 4122 } 4123 write_unlock(&info->block_group_cache_lock); 4124 4125 btrfs_release_global_block_rsv(info); 4126 4127 while (!list_empty(&info->space_info)) { 4128 space_info = list_entry(info->space_info.next, 4129 struct btrfs_space_info, 4130 list); 4131 4132 /* 4133 * Do not hide this behind enospc_debug, this is actually 4134 * important and indicates a real bug if this happens. 4135 */ 4136 if (WARN_ON(space_info->bytes_pinned > 0 || 4137 space_info->bytes_may_use > 0)) 4138 btrfs_dump_space_info(info, space_info, 0, 0); 4139 4140 /* 4141 * If there was a failure to cleanup a log tree, very likely due 4142 * to an IO failure on a writeback attempt of one or more of its 4143 * extent buffers, we could not do proper (and cheap) unaccounting 4144 * of their reserved space, so don't warn on bytes_reserved > 0 in 4145 * that case. 4146 */ 4147 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4148 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4149 if (WARN_ON(space_info->bytes_reserved > 0)) 4150 btrfs_dump_space_info(info, space_info, 0, 0); 4151 } 4152 4153 WARN_ON(space_info->reclaim_size > 0); 4154 list_del(&space_info->list); 4155 btrfs_sysfs_remove_space_info(space_info); 4156 } 4157 return 0; 4158 } 4159 4160 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4161 { 4162 atomic_inc(&cache->frozen); 4163 } 4164 4165 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4166 { 4167 struct btrfs_fs_info *fs_info = block_group->fs_info; 4168 struct extent_map_tree *em_tree; 4169 struct extent_map *em; 4170 bool cleanup; 4171 4172 spin_lock(&block_group->lock); 4173 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4174 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4175 spin_unlock(&block_group->lock); 4176 4177 if (cleanup) { 4178 em_tree = &fs_info->mapping_tree; 4179 write_lock(&em_tree->lock); 4180 em = lookup_extent_mapping(em_tree, block_group->start, 4181 1); 4182 BUG_ON(!em); /* logic error, can't happen */ 4183 remove_extent_mapping(em_tree, em); 4184 write_unlock(&em_tree->lock); 4185 4186 /* once for us and once for the tree */ 4187 free_extent_map(em); 4188 free_extent_map(em); 4189 4190 /* 4191 * We may have left one free space entry and other possible 4192 * tasks trimming this block group have left 1 entry each one. 4193 * Free them if any. 4194 */ 4195 btrfs_remove_free_space_cache(block_group); 4196 } 4197 } 4198 4199 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4200 { 4201 bool ret = true; 4202 4203 spin_lock(&bg->lock); 4204 if (bg->ro) 4205 ret = false; 4206 else 4207 bg->swap_extents++; 4208 spin_unlock(&bg->lock); 4209 4210 return ret; 4211 } 4212 4213 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4214 { 4215 spin_lock(&bg->lock); 4216 ASSERT(!bg->ro); 4217 ASSERT(bg->swap_extents >= amount); 4218 bg->swap_extents -= amount; 4219 spin_unlock(&bg->lock); 4220 } 4221