xref: /openbmc/linux/fs/btrfs/block-group.c (revision e855afd715656a9f25cf62fa68d99c33213b83b7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	/* Select the highest-redundancy RAID level. */
99 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 		allowed = BTRFS_BLOCK_GROUP_RAID6;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 		allowed = BTRFS_BLOCK_GROUP_RAID5;
107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 		allowed = BTRFS_BLOCK_GROUP_RAID10;
109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 		allowed = BTRFS_BLOCK_GROUP_RAID1;
111 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 		allowed = BTRFS_BLOCK_GROUP_DUP;
113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118 	return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 	unsigned seq;
124 	u64 flags;
125 
126 	do {
127 		flags = orig_flags;
128 		seq = read_seqbegin(&fs_info->profiles_lock);
129 
130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
131 			flags |= fs_info->avail_data_alloc_bits;
132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 			flags |= fs_info->avail_system_alloc_bits;
134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 			flags |= fs_info->avail_metadata_alloc_bits;
136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138 	return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 	refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 	if (refcount_dec_and_test(&cache->refs)) {
149 		WARN_ON(cache->pinned > 0);
150 		/*
151 		 * If there was a failure to cleanup a log tree, very likely due
152 		 * to an IO failure on a writeback attempt of one or more of its
153 		 * extent buffers, we could not do proper (and cheap) unaccounting
154 		 * of their reserved space, so don't warn on reserved > 0 in that
155 		 * case.
156 		 */
157 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 			WARN_ON(cache->reserved > 0);
160 
161 		/*
162 		 * A block_group shouldn't be on the discard_list anymore.
163 		 * Remove the block_group from the discard_list to prevent us
164 		 * from causing a panic due to NULL pointer dereference.
165 		 */
166 		if (WARN_ON(!list_empty(&cache->discard_list)))
167 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 						  cache);
169 
170 		kfree(cache->free_space_ctl);
171 		kfree(cache->physical_map);
172 		kfree(cache);
173 	}
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 				       struct btrfs_block_group *block_group)
181 {
182 	struct rb_node **p;
183 	struct rb_node *parent = NULL;
184 	struct btrfs_block_group *cache;
185 	bool leftmost = true;
186 
187 	ASSERT(block_group->length != 0);
188 
189 	write_lock(&info->block_group_cache_lock);
190 	p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192 	while (*p) {
193 		parent = *p;
194 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 		if (block_group->start < cache->start) {
196 			p = &(*p)->rb_left;
197 		} else if (block_group->start > cache->start) {
198 			p = &(*p)->rb_right;
199 			leftmost = false;
200 		} else {
201 			write_unlock(&info->block_group_cache_lock);
202 			return -EEXIST;
203 		}
204 	}
205 
206 	rb_link_node(&block_group->cache_node, parent, p);
207 	rb_insert_color_cached(&block_group->cache_node,
208 			       &info->block_group_cache_tree, leftmost);
209 
210 	write_unlock(&info->block_group_cache_lock);
211 
212 	return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 		struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 	struct btrfs_block_group *cache, *ret = NULL;
223 	struct rb_node *n;
224 	u64 end, start;
225 
226 	read_lock(&info->block_group_cache_lock);
227 	n = info->block_group_cache_tree.rb_root.rb_node;
228 
229 	while (n) {
230 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 		end = cache->start + cache->length - 1;
232 		start = cache->start;
233 
234 		if (bytenr < start) {
235 			if (!contains && (!ret || start < ret->start))
236 				ret = cache;
237 			n = n->rb_left;
238 		} else if (bytenr > start) {
239 			if (contains && bytenr <= end) {
240 				ret = cache;
241 				break;
242 			}
243 			n = n->rb_right;
244 		} else {
245 			ret = cache;
246 			break;
247 		}
248 	}
249 	if (ret)
250 		btrfs_get_block_group(ret);
251 	read_unlock(&info->block_group_cache_lock);
252 
253 	return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 		struct btrfs_fs_info *info, u64 bytenr)
261 {
262 	return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 		struct btrfs_fs_info *info, u64 bytenr)
270 {
271 	return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275 		struct btrfs_block_group *cache)
276 {
277 	struct btrfs_fs_info *fs_info = cache->fs_info;
278 	struct rb_node *node;
279 
280 	read_lock(&fs_info->block_group_cache_lock);
281 
282 	/* If our block group was removed, we need a full search. */
283 	if (RB_EMPTY_NODE(&cache->cache_node)) {
284 		const u64 next_bytenr = cache->start + cache->length;
285 
286 		read_unlock(&fs_info->block_group_cache_lock);
287 		btrfs_put_block_group(cache);
288 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 	}
290 	node = rb_next(&cache->cache_node);
291 	btrfs_put_block_group(cache);
292 	if (node) {
293 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 		btrfs_get_block_group(cache);
295 	} else
296 		cache = NULL;
297 	read_unlock(&fs_info->block_group_cache_lock);
298 	return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 						  u64 bytenr)
318 {
319 	struct btrfs_block_group *bg;
320 	bool can_nocow = true;
321 
322 	bg = btrfs_lookup_block_group(fs_info, bytenr);
323 	if (!bg)
324 		return NULL;
325 
326 	spin_lock(&bg->lock);
327 	if (bg->ro)
328 		can_nocow = false;
329 	else
330 		atomic_inc(&bg->nocow_writers);
331 	spin_unlock(&bg->lock);
332 
333 	if (!can_nocow) {
334 		btrfs_put_block_group(bg);
335 		return NULL;
336 	}
337 
338 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339 	return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 	if (atomic_dec_and_test(&bg->nocow_writers))
356 		wake_up_var(&bg->nocow_writers);
357 
358 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 	btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 					const u64 start)
369 {
370 	struct btrfs_block_group *bg;
371 
372 	bg = btrfs_lookup_block_group(fs_info, start);
373 	ASSERT(bg);
374 	if (atomic_dec_and_test(&bg->reservations))
375 		wake_up_var(&bg->reservations);
376 	btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 	struct btrfs_space_info *space_info = bg->space_info;
382 
383 	ASSERT(bg->ro);
384 
385 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return;
387 
388 	/*
389 	 * Our block group is read only but before we set it to read only,
390 	 * some task might have had allocated an extent from it already, but it
391 	 * has not yet created a respective ordered extent (and added it to a
392 	 * root's list of ordered extents).
393 	 * Therefore wait for any task currently allocating extents, since the
394 	 * block group's reservations counter is incremented while a read lock
395 	 * on the groups' semaphore is held and decremented after releasing
396 	 * the read access on that semaphore and creating the ordered extent.
397 	 */
398 	down_write(&space_info->groups_sem);
399 	up_write(&space_info->groups_sem);
400 
401 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 		struct btrfs_block_group *cache)
406 {
407 	struct btrfs_caching_control *ctl;
408 
409 	spin_lock(&cache->lock);
410 	if (!cache->caching_ctl) {
411 		spin_unlock(&cache->lock);
412 		return NULL;
413 	}
414 
415 	ctl = cache->caching_ctl;
416 	refcount_inc(&ctl->count);
417 	spin_unlock(&cache->lock);
418 	return ctl;
419 }
420 
421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 	if (refcount_dec_and_test(&ctl->count))
424 		kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 					   u64 num_bytes)
442 {
443 	struct btrfs_caching_control *caching_ctl;
444 	int progress;
445 
446 	caching_ctl = btrfs_get_caching_control(cache);
447 	if (!caching_ctl)
448 		return;
449 
450 	/*
451 	 * We've already failed to allocate from this block group, so even if
452 	 * there's enough space in the block group it isn't contiguous enough to
453 	 * allow for an allocation, so wait for at least the next wakeup tick,
454 	 * or for the thing to be done.
455 	 */
456 	progress = atomic_read(&caching_ctl->progress);
457 
458 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 		   (progress != atomic_read(&caching_ctl->progress) &&
460 		    (cache->free_space_ctl->free_space >= num_bytes)));
461 
462 	btrfs_put_caching_control(caching_ctl);
463 }
464 
465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 				       struct btrfs_caching_control *caching_ctl)
467 {
468 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471 
472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 	struct btrfs_caching_control *caching_ctl;
475 	int ret;
476 
477 	caching_ctl = btrfs_get_caching_control(cache);
478 	if (!caching_ctl)
479 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 	btrfs_put_caching_control(caching_ctl);
482 	return ret;
483 }
484 
485 #ifdef CONFIG_BTRFS_DEBUG
486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 	struct btrfs_fs_info *fs_info = block_group->fs_info;
489 	u64 start = block_group->start;
490 	u64 len = block_group->length;
491 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 		fs_info->nodesize : fs_info->sectorsize;
493 	u64 step = chunk << 1;
494 
495 	while (len > chunk) {
496 		btrfs_remove_free_space(block_group, start, chunk);
497 		start += step;
498 		if (len < step)
499 			len = 0;
500 		else
501 			len -= step;
502 	}
503 }
504 #endif
505 
506 /*
507  * This is only called by btrfs_cache_block_group, since we could have freed
508  * extents we need to check the pinned_extents for any extents that can't be
509  * used yet since their free space will be released as soon as the transaction
510  * commits.
511  */
512 int add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end,
513 		       u64 *total_added_ret)
514 {
515 	struct btrfs_fs_info *info = block_group->fs_info;
516 	u64 extent_start, extent_end, size;
517 	int ret;
518 
519 	if (total_added_ret)
520 		*total_added_ret = 0;
521 
522 	while (start < end) {
523 		ret = find_first_extent_bit(&info->excluded_extents, start,
524 					    &extent_start, &extent_end,
525 					    EXTENT_DIRTY | EXTENT_UPTODATE,
526 					    NULL);
527 		if (ret)
528 			break;
529 
530 		if (extent_start <= start) {
531 			start = extent_end + 1;
532 		} else if (extent_start > start && extent_start < end) {
533 			size = extent_start - start;
534 			ret = btrfs_add_free_space_async_trimmed(block_group,
535 								 start, size);
536 			if (ret)
537 				return ret;
538 			if (total_added_ret)
539 				*total_added_ret += size;
540 			start = extent_end + 1;
541 		} else {
542 			break;
543 		}
544 	}
545 
546 	if (start < end) {
547 		size = end - start;
548 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
549 							 size);
550 		if (ret)
551 			return ret;
552 		if (total_added_ret)
553 			*total_added_ret += size;
554 	}
555 
556 	return 0;
557 }
558 
559 /*
560  * Get an arbitrary extent item index / max_index through the block group
561  *
562  * @block_group   the block group to sample from
563  * @index:        the integral step through the block group to grab from
564  * @max_index:    the granularity of the sampling
565  * @key:          return value parameter for the item we find
566  *
567  * Pre-conditions on indices:
568  * 0 <= index <= max_index
569  * 0 < max_index
570  *
571  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
572  * error code on error.
573  */
574 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
575 					  struct btrfs_block_group *block_group,
576 					  int index, int max_index,
577 					  struct btrfs_key *found_key)
578 {
579 	struct btrfs_fs_info *fs_info = block_group->fs_info;
580 	struct btrfs_root *extent_root;
581 	u64 search_offset;
582 	u64 search_end = block_group->start + block_group->length;
583 	struct btrfs_path *path;
584 	struct btrfs_key search_key;
585 	int ret = 0;
586 
587 	ASSERT(index >= 0);
588 	ASSERT(index <= max_index);
589 	ASSERT(max_index > 0);
590 	lockdep_assert_held(&caching_ctl->mutex);
591 	lockdep_assert_held_read(&fs_info->commit_root_sem);
592 
593 	path = btrfs_alloc_path();
594 	if (!path)
595 		return -ENOMEM;
596 
597 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
598 						       BTRFS_SUPER_INFO_OFFSET));
599 
600 	path->skip_locking = 1;
601 	path->search_commit_root = 1;
602 	path->reada = READA_FORWARD;
603 
604 	search_offset = index * div_u64(block_group->length, max_index);
605 	search_key.objectid = block_group->start + search_offset;
606 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
607 	search_key.offset = 0;
608 
609 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
610 		/* Success; sampled an extent item in the block group */
611 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
612 		    found_key->objectid >= block_group->start &&
613 		    found_key->objectid + found_key->offset <= search_end)
614 			break;
615 
616 		/* We can't possibly find a valid extent item anymore */
617 		if (found_key->objectid >= search_end) {
618 			ret = 1;
619 			break;
620 		}
621 	}
622 
623 	lockdep_assert_held(&caching_ctl->mutex);
624 	lockdep_assert_held_read(&fs_info->commit_root_sem);
625 	btrfs_free_path(path);
626 	return ret;
627 }
628 
629 /*
630  * Best effort attempt to compute a block group's size class while caching it.
631  *
632  * @block_group: the block group we are caching
633  *
634  * We cannot infer the size class while adding free space extents, because that
635  * logic doesn't care about contiguous file extents (it doesn't differentiate
636  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
637  * file extent items. Reading all of them is quite wasteful, because usually
638  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
639  * them at even steps through the block group and pick the smallest size class
640  * we see. Since size class is best effort, and not guaranteed in general,
641  * inaccuracy is acceptable.
642  *
643  * To be more explicit about why this algorithm makes sense:
644  *
645  * If we are caching in a block group from disk, then there are three major cases
646  * to consider:
647  * 1. the block group is well behaved and all extents in it are the same size
648  *    class.
649  * 2. the block group is mostly one size class with rare exceptions for last
650  *    ditch allocations
651  * 3. the block group was populated before size classes and can have a totally
652  *    arbitrary mix of size classes.
653  *
654  * In case 1, looking at any extent in the block group will yield the correct
655  * result. For the mixed cases, taking the minimum size class seems like a good
656  * approximation, since gaps from frees will be usable to the size class. For
657  * 2., a small handful of file extents is likely to yield the right answer. For
658  * 3, we can either read every file extent, or admit that this is best effort
659  * anyway and try to stay fast.
660  *
661  * Returns: 0 on success, negative error code on error.
662  */
663 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
664 				       struct btrfs_block_group *block_group)
665 {
666 	struct btrfs_fs_info *fs_info = block_group->fs_info;
667 	struct btrfs_key key;
668 	int i;
669 	u64 min_size = block_group->length;
670 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
671 	int ret;
672 
673 	if (!btrfs_block_group_should_use_size_class(block_group))
674 		return 0;
675 
676 	lockdep_assert_held(&caching_ctl->mutex);
677 	lockdep_assert_held_read(&fs_info->commit_root_sem);
678 	for (i = 0; i < 5; ++i) {
679 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
680 		if (ret < 0)
681 			goto out;
682 		if (ret > 0)
683 			continue;
684 		min_size = min_t(u64, min_size, key.offset);
685 		size_class = btrfs_calc_block_group_size_class(min_size);
686 	}
687 	if (size_class != BTRFS_BG_SZ_NONE) {
688 		spin_lock(&block_group->lock);
689 		block_group->size_class = size_class;
690 		spin_unlock(&block_group->lock);
691 	}
692 out:
693 	return ret;
694 }
695 
696 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
697 {
698 	struct btrfs_block_group *block_group = caching_ctl->block_group;
699 	struct btrfs_fs_info *fs_info = block_group->fs_info;
700 	struct btrfs_root *extent_root;
701 	struct btrfs_path *path;
702 	struct extent_buffer *leaf;
703 	struct btrfs_key key;
704 	u64 total_found = 0;
705 	u64 last = 0;
706 	u32 nritems;
707 	int ret;
708 	bool wakeup = true;
709 
710 	path = btrfs_alloc_path();
711 	if (!path)
712 		return -ENOMEM;
713 
714 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
715 	extent_root = btrfs_extent_root(fs_info, last);
716 
717 #ifdef CONFIG_BTRFS_DEBUG
718 	/*
719 	 * If we're fragmenting we don't want to make anybody think we can
720 	 * allocate from this block group until we've had a chance to fragment
721 	 * the free space.
722 	 */
723 	if (btrfs_should_fragment_free_space(block_group))
724 		wakeup = false;
725 #endif
726 	/*
727 	 * We don't want to deadlock with somebody trying to allocate a new
728 	 * extent for the extent root while also trying to search the extent
729 	 * root to add free space.  So we skip locking and search the commit
730 	 * root, since its read-only
731 	 */
732 	path->skip_locking = 1;
733 	path->search_commit_root = 1;
734 	path->reada = READA_FORWARD;
735 
736 	key.objectid = last;
737 	key.offset = 0;
738 	key.type = BTRFS_EXTENT_ITEM_KEY;
739 
740 next:
741 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
742 	if (ret < 0)
743 		goto out;
744 
745 	leaf = path->nodes[0];
746 	nritems = btrfs_header_nritems(leaf);
747 
748 	while (1) {
749 		if (btrfs_fs_closing(fs_info) > 1) {
750 			last = (u64)-1;
751 			break;
752 		}
753 
754 		if (path->slots[0] < nritems) {
755 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
756 		} else {
757 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
758 			if (ret)
759 				break;
760 
761 			if (need_resched() ||
762 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
763 				btrfs_release_path(path);
764 				up_read(&fs_info->commit_root_sem);
765 				mutex_unlock(&caching_ctl->mutex);
766 				cond_resched();
767 				mutex_lock(&caching_ctl->mutex);
768 				down_read(&fs_info->commit_root_sem);
769 				goto next;
770 			}
771 
772 			ret = btrfs_next_leaf(extent_root, path);
773 			if (ret < 0)
774 				goto out;
775 			if (ret)
776 				break;
777 			leaf = path->nodes[0];
778 			nritems = btrfs_header_nritems(leaf);
779 			continue;
780 		}
781 
782 		if (key.objectid < last) {
783 			key.objectid = last;
784 			key.offset = 0;
785 			key.type = BTRFS_EXTENT_ITEM_KEY;
786 			btrfs_release_path(path);
787 			goto next;
788 		}
789 
790 		if (key.objectid < block_group->start) {
791 			path->slots[0]++;
792 			continue;
793 		}
794 
795 		if (key.objectid >= block_group->start + block_group->length)
796 			break;
797 
798 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
799 		    key.type == BTRFS_METADATA_ITEM_KEY) {
800 			u64 space_added;
801 
802 			ret = add_new_free_space(block_group, last, key.objectid,
803 						 &space_added);
804 			if (ret)
805 				goto out;
806 			total_found += space_added;
807 			if (key.type == BTRFS_METADATA_ITEM_KEY)
808 				last = key.objectid +
809 					fs_info->nodesize;
810 			else
811 				last = key.objectid + key.offset;
812 
813 			if (total_found > CACHING_CTL_WAKE_UP) {
814 				total_found = 0;
815 				if (wakeup) {
816 					atomic_inc(&caching_ctl->progress);
817 					wake_up(&caching_ctl->wait);
818 				}
819 			}
820 		}
821 		path->slots[0]++;
822 	}
823 
824 	ret = add_new_free_space(block_group, last,
825 				 block_group->start + block_group->length,
826 				 NULL);
827 out:
828 	btrfs_free_path(path);
829 	return ret;
830 }
831 
832 static noinline void caching_thread(struct btrfs_work *work)
833 {
834 	struct btrfs_block_group *block_group;
835 	struct btrfs_fs_info *fs_info;
836 	struct btrfs_caching_control *caching_ctl;
837 	int ret;
838 
839 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
840 	block_group = caching_ctl->block_group;
841 	fs_info = block_group->fs_info;
842 
843 	mutex_lock(&caching_ctl->mutex);
844 	down_read(&fs_info->commit_root_sem);
845 
846 	load_block_group_size_class(caching_ctl, block_group);
847 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
848 		ret = load_free_space_cache(block_group);
849 		if (ret == 1) {
850 			ret = 0;
851 			goto done;
852 		}
853 
854 		/*
855 		 * We failed to load the space cache, set ourselves to
856 		 * CACHE_STARTED and carry on.
857 		 */
858 		spin_lock(&block_group->lock);
859 		block_group->cached = BTRFS_CACHE_STARTED;
860 		spin_unlock(&block_group->lock);
861 		wake_up(&caching_ctl->wait);
862 	}
863 
864 	/*
865 	 * If we are in the transaction that populated the free space tree we
866 	 * can't actually cache from the free space tree as our commit root and
867 	 * real root are the same, so we could change the contents of the blocks
868 	 * while caching.  Instead do the slow caching in this case, and after
869 	 * the transaction has committed we will be safe.
870 	 */
871 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
872 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
873 		ret = load_free_space_tree(caching_ctl);
874 	else
875 		ret = load_extent_tree_free(caching_ctl);
876 done:
877 	spin_lock(&block_group->lock);
878 	block_group->caching_ctl = NULL;
879 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
880 	spin_unlock(&block_group->lock);
881 
882 #ifdef CONFIG_BTRFS_DEBUG
883 	if (btrfs_should_fragment_free_space(block_group)) {
884 		u64 bytes_used;
885 
886 		spin_lock(&block_group->space_info->lock);
887 		spin_lock(&block_group->lock);
888 		bytes_used = block_group->length - block_group->used;
889 		block_group->space_info->bytes_used += bytes_used >> 1;
890 		spin_unlock(&block_group->lock);
891 		spin_unlock(&block_group->space_info->lock);
892 		fragment_free_space(block_group);
893 	}
894 #endif
895 
896 	up_read(&fs_info->commit_root_sem);
897 	btrfs_free_excluded_extents(block_group);
898 	mutex_unlock(&caching_ctl->mutex);
899 
900 	wake_up(&caching_ctl->wait);
901 
902 	btrfs_put_caching_control(caching_ctl);
903 	btrfs_put_block_group(block_group);
904 }
905 
906 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
907 {
908 	struct btrfs_fs_info *fs_info = cache->fs_info;
909 	struct btrfs_caching_control *caching_ctl = NULL;
910 	int ret = 0;
911 
912 	/* Allocator for zoned filesystems does not use the cache at all */
913 	if (btrfs_is_zoned(fs_info))
914 		return 0;
915 
916 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
917 	if (!caching_ctl)
918 		return -ENOMEM;
919 
920 	INIT_LIST_HEAD(&caching_ctl->list);
921 	mutex_init(&caching_ctl->mutex);
922 	init_waitqueue_head(&caching_ctl->wait);
923 	caching_ctl->block_group = cache;
924 	refcount_set(&caching_ctl->count, 2);
925 	atomic_set(&caching_ctl->progress, 0);
926 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
927 
928 	spin_lock(&cache->lock);
929 	if (cache->cached != BTRFS_CACHE_NO) {
930 		kfree(caching_ctl);
931 
932 		caching_ctl = cache->caching_ctl;
933 		if (caching_ctl)
934 			refcount_inc(&caching_ctl->count);
935 		spin_unlock(&cache->lock);
936 		goto out;
937 	}
938 	WARN_ON(cache->caching_ctl);
939 	cache->caching_ctl = caching_ctl;
940 	cache->cached = BTRFS_CACHE_STARTED;
941 	spin_unlock(&cache->lock);
942 
943 	write_lock(&fs_info->block_group_cache_lock);
944 	refcount_inc(&caching_ctl->count);
945 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
946 	write_unlock(&fs_info->block_group_cache_lock);
947 
948 	btrfs_get_block_group(cache);
949 
950 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
951 out:
952 	if (wait && caching_ctl)
953 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
954 	if (caching_ctl)
955 		btrfs_put_caching_control(caching_ctl);
956 
957 	return ret;
958 }
959 
960 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
961 {
962 	u64 extra_flags = chunk_to_extended(flags) &
963 				BTRFS_EXTENDED_PROFILE_MASK;
964 
965 	write_seqlock(&fs_info->profiles_lock);
966 	if (flags & BTRFS_BLOCK_GROUP_DATA)
967 		fs_info->avail_data_alloc_bits &= ~extra_flags;
968 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
969 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
970 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
971 		fs_info->avail_system_alloc_bits &= ~extra_flags;
972 	write_sequnlock(&fs_info->profiles_lock);
973 }
974 
975 /*
976  * Clear incompat bits for the following feature(s):
977  *
978  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
979  *            in the whole filesystem
980  *
981  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
982  */
983 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
984 {
985 	bool found_raid56 = false;
986 	bool found_raid1c34 = false;
987 
988 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
989 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
990 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
991 		struct list_head *head = &fs_info->space_info;
992 		struct btrfs_space_info *sinfo;
993 
994 		list_for_each_entry_rcu(sinfo, head, list) {
995 			down_read(&sinfo->groups_sem);
996 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
997 				found_raid56 = true;
998 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
999 				found_raid56 = true;
1000 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1001 				found_raid1c34 = true;
1002 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1003 				found_raid1c34 = true;
1004 			up_read(&sinfo->groups_sem);
1005 		}
1006 		if (!found_raid56)
1007 			btrfs_clear_fs_incompat(fs_info, RAID56);
1008 		if (!found_raid1c34)
1009 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
1010 	}
1011 }
1012 
1013 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1014 				   struct btrfs_path *path,
1015 				   struct btrfs_block_group *block_group)
1016 {
1017 	struct btrfs_fs_info *fs_info = trans->fs_info;
1018 	struct btrfs_root *root;
1019 	struct btrfs_key key;
1020 	int ret;
1021 
1022 	root = btrfs_block_group_root(fs_info);
1023 	key.objectid = block_group->start;
1024 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1025 	key.offset = block_group->length;
1026 
1027 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1028 	if (ret > 0)
1029 		ret = -ENOENT;
1030 	if (ret < 0)
1031 		return ret;
1032 
1033 	ret = btrfs_del_item(trans, root, path);
1034 	return ret;
1035 }
1036 
1037 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1038 			     u64 group_start, struct extent_map *em)
1039 {
1040 	struct btrfs_fs_info *fs_info = trans->fs_info;
1041 	struct btrfs_path *path;
1042 	struct btrfs_block_group *block_group;
1043 	struct btrfs_free_cluster *cluster;
1044 	struct inode *inode;
1045 	struct kobject *kobj = NULL;
1046 	int ret;
1047 	int index;
1048 	int factor;
1049 	struct btrfs_caching_control *caching_ctl = NULL;
1050 	bool remove_em;
1051 	bool remove_rsv = false;
1052 
1053 	block_group = btrfs_lookup_block_group(fs_info, group_start);
1054 	BUG_ON(!block_group);
1055 	BUG_ON(!block_group->ro);
1056 
1057 	trace_btrfs_remove_block_group(block_group);
1058 	/*
1059 	 * Free the reserved super bytes from this block group before
1060 	 * remove it.
1061 	 */
1062 	btrfs_free_excluded_extents(block_group);
1063 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1064 				  block_group->length);
1065 
1066 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1067 	factor = btrfs_bg_type_to_factor(block_group->flags);
1068 
1069 	/* make sure this block group isn't part of an allocation cluster */
1070 	cluster = &fs_info->data_alloc_cluster;
1071 	spin_lock(&cluster->refill_lock);
1072 	btrfs_return_cluster_to_free_space(block_group, cluster);
1073 	spin_unlock(&cluster->refill_lock);
1074 
1075 	/*
1076 	 * make sure this block group isn't part of a metadata
1077 	 * allocation cluster
1078 	 */
1079 	cluster = &fs_info->meta_alloc_cluster;
1080 	spin_lock(&cluster->refill_lock);
1081 	btrfs_return_cluster_to_free_space(block_group, cluster);
1082 	spin_unlock(&cluster->refill_lock);
1083 
1084 	btrfs_clear_treelog_bg(block_group);
1085 	btrfs_clear_data_reloc_bg(block_group);
1086 
1087 	path = btrfs_alloc_path();
1088 	if (!path) {
1089 		ret = -ENOMEM;
1090 		goto out;
1091 	}
1092 
1093 	/*
1094 	 * get the inode first so any iput calls done for the io_list
1095 	 * aren't the final iput (no unlinks allowed now)
1096 	 */
1097 	inode = lookup_free_space_inode(block_group, path);
1098 
1099 	mutex_lock(&trans->transaction->cache_write_mutex);
1100 	/*
1101 	 * Make sure our free space cache IO is done before removing the
1102 	 * free space inode
1103 	 */
1104 	spin_lock(&trans->transaction->dirty_bgs_lock);
1105 	if (!list_empty(&block_group->io_list)) {
1106 		list_del_init(&block_group->io_list);
1107 
1108 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1109 
1110 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1111 		btrfs_wait_cache_io(trans, block_group, path);
1112 		btrfs_put_block_group(block_group);
1113 		spin_lock(&trans->transaction->dirty_bgs_lock);
1114 	}
1115 
1116 	if (!list_empty(&block_group->dirty_list)) {
1117 		list_del_init(&block_group->dirty_list);
1118 		remove_rsv = true;
1119 		btrfs_put_block_group(block_group);
1120 	}
1121 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1122 	mutex_unlock(&trans->transaction->cache_write_mutex);
1123 
1124 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1125 	if (ret)
1126 		goto out;
1127 
1128 	write_lock(&fs_info->block_group_cache_lock);
1129 	rb_erase_cached(&block_group->cache_node,
1130 			&fs_info->block_group_cache_tree);
1131 	RB_CLEAR_NODE(&block_group->cache_node);
1132 
1133 	/* Once for the block groups rbtree */
1134 	btrfs_put_block_group(block_group);
1135 
1136 	write_unlock(&fs_info->block_group_cache_lock);
1137 
1138 	down_write(&block_group->space_info->groups_sem);
1139 	/*
1140 	 * we must use list_del_init so people can check to see if they
1141 	 * are still on the list after taking the semaphore
1142 	 */
1143 	list_del_init(&block_group->list);
1144 	if (list_empty(&block_group->space_info->block_groups[index])) {
1145 		kobj = block_group->space_info->block_group_kobjs[index];
1146 		block_group->space_info->block_group_kobjs[index] = NULL;
1147 		clear_avail_alloc_bits(fs_info, block_group->flags);
1148 	}
1149 	up_write(&block_group->space_info->groups_sem);
1150 	clear_incompat_bg_bits(fs_info, block_group->flags);
1151 	if (kobj) {
1152 		kobject_del(kobj);
1153 		kobject_put(kobj);
1154 	}
1155 
1156 	if (block_group->cached == BTRFS_CACHE_STARTED)
1157 		btrfs_wait_block_group_cache_done(block_group);
1158 
1159 	write_lock(&fs_info->block_group_cache_lock);
1160 	caching_ctl = btrfs_get_caching_control(block_group);
1161 	if (!caching_ctl) {
1162 		struct btrfs_caching_control *ctl;
1163 
1164 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1165 			if (ctl->block_group == block_group) {
1166 				caching_ctl = ctl;
1167 				refcount_inc(&caching_ctl->count);
1168 				break;
1169 			}
1170 		}
1171 	}
1172 	if (caching_ctl)
1173 		list_del_init(&caching_ctl->list);
1174 	write_unlock(&fs_info->block_group_cache_lock);
1175 
1176 	if (caching_ctl) {
1177 		/* Once for the caching bgs list and once for us. */
1178 		btrfs_put_caching_control(caching_ctl);
1179 		btrfs_put_caching_control(caching_ctl);
1180 	}
1181 
1182 	spin_lock(&trans->transaction->dirty_bgs_lock);
1183 	WARN_ON(!list_empty(&block_group->dirty_list));
1184 	WARN_ON(!list_empty(&block_group->io_list));
1185 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1186 
1187 	btrfs_remove_free_space_cache(block_group);
1188 
1189 	spin_lock(&block_group->space_info->lock);
1190 	list_del_init(&block_group->ro_list);
1191 
1192 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1193 		WARN_ON(block_group->space_info->total_bytes
1194 			< block_group->length);
1195 		WARN_ON(block_group->space_info->bytes_readonly
1196 			< block_group->length - block_group->zone_unusable);
1197 		WARN_ON(block_group->space_info->bytes_zone_unusable
1198 			< block_group->zone_unusable);
1199 		WARN_ON(block_group->space_info->disk_total
1200 			< block_group->length * factor);
1201 	}
1202 	block_group->space_info->total_bytes -= block_group->length;
1203 	block_group->space_info->bytes_readonly -=
1204 		(block_group->length - block_group->zone_unusable);
1205 	block_group->space_info->bytes_zone_unusable -=
1206 		block_group->zone_unusable;
1207 	block_group->space_info->disk_total -= block_group->length * factor;
1208 
1209 	spin_unlock(&block_group->space_info->lock);
1210 
1211 	/*
1212 	 * Remove the free space for the block group from the free space tree
1213 	 * and the block group's item from the extent tree before marking the
1214 	 * block group as removed. This is to prevent races with tasks that
1215 	 * freeze and unfreeze a block group, this task and another task
1216 	 * allocating a new block group - the unfreeze task ends up removing
1217 	 * the block group's extent map before the task calling this function
1218 	 * deletes the block group item from the extent tree, allowing for
1219 	 * another task to attempt to create another block group with the same
1220 	 * item key (and failing with -EEXIST and a transaction abort).
1221 	 */
1222 	ret = remove_block_group_free_space(trans, block_group);
1223 	if (ret)
1224 		goto out;
1225 
1226 	ret = remove_block_group_item(trans, path, block_group);
1227 	if (ret < 0)
1228 		goto out;
1229 
1230 	spin_lock(&block_group->lock);
1231 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1232 
1233 	/*
1234 	 * At this point trimming or scrub can't start on this block group,
1235 	 * because we removed the block group from the rbtree
1236 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1237 	 * even if someone already got this block group before we removed it
1238 	 * from the rbtree, they have already incremented block_group->frozen -
1239 	 * if they didn't, for the trimming case they won't find any free space
1240 	 * entries because we already removed them all when we called
1241 	 * btrfs_remove_free_space_cache().
1242 	 *
1243 	 * And we must not remove the extent map from the fs_info->mapping_tree
1244 	 * to prevent the same logical address range and physical device space
1245 	 * ranges from being reused for a new block group. This is needed to
1246 	 * avoid races with trimming and scrub.
1247 	 *
1248 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1249 	 * completely transactionless, so while it is trimming a range the
1250 	 * currently running transaction might finish and a new one start,
1251 	 * allowing for new block groups to be created that can reuse the same
1252 	 * physical device locations unless we take this special care.
1253 	 *
1254 	 * There may also be an implicit trim operation if the file system
1255 	 * is mounted with -odiscard. The same protections must remain
1256 	 * in place until the extents have been discarded completely when
1257 	 * the transaction commit has completed.
1258 	 */
1259 	remove_em = (atomic_read(&block_group->frozen) == 0);
1260 	spin_unlock(&block_group->lock);
1261 
1262 	if (remove_em) {
1263 		struct extent_map_tree *em_tree;
1264 
1265 		em_tree = &fs_info->mapping_tree;
1266 		write_lock(&em_tree->lock);
1267 		remove_extent_mapping(em_tree, em);
1268 		write_unlock(&em_tree->lock);
1269 		/* once for the tree */
1270 		free_extent_map(em);
1271 	}
1272 
1273 out:
1274 	/* Once for the lookup reference */
1275 	btrfs_put_block_group(block_group);
1276 	if (remove_rsv)
1277 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1278 	btrfs_free_path(path);
1279 	return ret;
1280 }
1281 
1282 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1283 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1284 {
1285 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1286 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1287 	struct extent_map *em;
1288 	struct map_lookup *map;
1289 	unsigned int num_items;
1290 
1291 	read_lock(&em_tree->lock);
1292 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1293 	read_unlock(&em_tree->lock);
1294 	ASSERT(em && em->start == chunk_offset);
1295 
1296 	/*
1297 	 * We need to reserve 3 + N units from the metadata space info in order
1298 	 * to remove a block group (done at btrfs_remove_chunk() and at
1299 	 * btrfs_remove_block_group()), which are used for:
1300 	 *
1301 	 * 1 unit for adding the free space inode's orphan (located in the tree
1302 	 * of tree roots).
1303 	 * 1 unit for deleting the block group item (located in the extent
1304 	 * tree).
1305 	 * 1 unit for deleting the free space item (located in tree of tree
1306 	 * roots).
1307 	 * N units for deleting N device extent items corresponding to each
1308 	 * stripe (located in the device tree).
1309 	 *
1310 	 * In order to remove a block group we also need to reserve units in the
1311 	 * system space info in order to update the chunk tree (update one or
1312 	 * more device items and remove one chunk item), but this is done at
1313 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1314 	 */
1315 	map = em->map_lookup;
1316 	num_items = 3 + map->num_stripes;
1317 	free_extent_map(em);
1318 
1319 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1320 }
1321 
1322 /*
1323  * Mark block group @cache read-only, so later write won't happen to block
1324  * group @cache.
1325  *
1326  * If @force is not set, this function will only mark the block group readonly
1327  * if we have enough free space (1M) in other metadata/system block groups.
1328  * If @force is not set, this function will mark the block group readonly
1329  * without checking free space.
1330  *
1331  * NOTE: This function doesn't care if other block groups can contain all the
1332  * data in this block group. That check should be done by relocation routine,
1333  * not this function.
1334  */
1335 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1336 {
1337 	struct btrfs_space_info *sinfo = cache->space_info;
1338 	u64 num_bytes;
1339 	int ret = -ENOSPC;
1340 
1341 	spin_lock(&sinfo->lock);
1342 	spin_lock(&cache->lock);
1343 
1344 	if (cache->swap_extents) {
1345 		ret = -ETXTBSY;
1346 		goto out;
1347 	}
1348 
1349 	if (cache->ro) {
1350 		cache->ro++;
1351 		ret = 0;
1352 		goto out;
1353 	}
1354 
1355 	num_bytes = cache->length - cache->reserved - cache->pinned -
1356 		    cache->bytes_super - cache->zone_unusable - cache->used;
1357 
1358 	/*
1359 	 * Data never overcommits, even in mixed mode, so do just the straight
1360 	 * check of left over space in how much we have allocated.
1361 	 */
1362 	if (force) {
1363 		ret = 0;
1364 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1365 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1366 
1367 		/*
1368 		 * Here we make sure if we mark this bg RO, we still have enough
1369 		 * free space as buffer.
1370 		 */
1371 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1372 			ret = 0;
1373 	} else {
1374 		/*
1375 		 * We overcommit metadata, so we need to do the
1376 		 * btrfs_can_overcommit check here, and we need to pass in
1377 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1378 		 * leeway to allow us to mark this block group as read only.
1379 		 */
1380 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1381 					 BTRFS_RESERVE_NO_FLUSH))
1382 			ret = 0;
1383 	}
1384 
1385 	if (!ret) {
1386 		sinfo->bytes_readonly += num_bytes;
1387 		if (btrfs_is_zoned(cache->fs_info)) {
1388 			/* Migrate zone_unusable bytes to readonly */
1389 			sinfo->bytes_readonly += cache->zone_unusable;
1390 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1391 			cache->zone_unusable = 0;
1392 		}
1393 		cache->ro++;
1394 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1395 	}
1396 out:
1397 	spin_unlock(&cache->lock);
1398 	spin_unlock(&sinfo->lock);
1399 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1400 		btrfs_info(cache->fs_info,
1401 			"unable to make block group %llu ro", cache->start);
1402 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1403 	}
1404 	return ret;
1405 }
1406 
1407 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1408 				 struct btrfs_block_group *bg)
1409 {
1410 	struct btrfs_fs_info *fs_info = bg->fs_info;
1411 	struct btrfs_transaction *prev_trans = NULL;
1412 	const u64 start = bg->start;
1413 	const u64 end = start + bg->length - 1;
1414 	int ret;
1415 
1416 	spin_lock(&fs_info->trans_lock);
1417 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1418 		prev_trans = list_last_entry(&trans->transaction->list,
1419 					     struct btrfs_transaction, list);
1420 		refcount_inc(&prev_trans->use_count);
1421 	}
1422 	spin_unlock(&fs_info->trans_lock);
1423 
1424 	/*
1425 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1426 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1427 	 * task might be running finish_extent_commit() for the previous
1428 	 * transaction N - 1, and have seen a range belonging to the block
1429 	 * group in pinned_extents before we were able to clear the whole block
1430 	 * group range from pinned_extents. This means that task can lookup for
1431 	 * the block group after we unpinned it from pinned_extents and removed
1432 	 * it, leading to a BUG_ON() at unpin_extent_range().
1433 	 */
1434 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1435 	if (prev_trans) {
1436 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1437 					EXTENT_DIRTY);
1438 		if (ret)
1439 			goto out;
1440 	}
1441 
1442 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1443 				EXTENT_DIRTY);
1444 out:
1445 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1446 	if (prev_trans)
1447 		btrfs_put_transaction(prev_trans);
1448 
1449 	return ret == 0;
1450 }
1451 
1452 /*
1453  * Process the unused_bgs list and remove any that don't have any allocated
1454  * space inside of them.
1455  */
1456 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1457 {
1458 	struct btrfs_block_group *block_group;
1459 	struct btrfs_space_info *space_info;
1460 	struct btrfs_trans_handle *trans;
1461 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1462 	int ret = 0;
1463 
1464 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1465 		return;
1466 
1467 	if (btrfs_fs_closing(fs_info))
1468 		return;
1469 
1470 	/*
1471 	 * Long running balances can keep us blocked here for eternity, so
1472 	 * simply skip deletion if we're unable to get the mutex.
1473 	 */
1474 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1475 		return;
1476 
1477 	spin_lock(&fs_info->unused_bgs_lock);
1478 	while (!list_empty(&fs_info->unused_bgs)) {
1479 		int trimming;
1480 
1481 		block_group = list_first_entry(&fs_info->unused_bgs,
1482 					       struct btrfs_block_group,
1483 					       bg_list);
1484 		list_del_init(&block_group->bg_list);
1485 
1486 		space_info = block_group->space_info;
1487 
1488 		if (ret || btrfs_mixed_space_info(space_info)) {
1489 			btrfs_put_block_group(block_group);
1490 			continue;
1491 		}
1492 		spin_unlock(&fs_info->unused_bgs_lock);
1493 
1494 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1495 
1496 		/* Don't want to race with allocators so take the groups_sem */
1497 		down_write(&space_info->groups_sem);
1498 
1499 		/*
1500 		 * Async discard moves the final block group discard to be prior
1501 		 * to the unused_bgs code path.  Therefore, if it's not fully
1502 		 * trimmed, punt it back to the async discard lists.
1503 		 */
1504 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1505 		    !btrfs_is_free_space_trimmed(block_group)) {
1506 			trace_btrfs_skip_unused_block_group(block_group);
1507 			up_write(&space_info->groups_sem);
1508 			/* Requeue if we failed because of async discard */
1509 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1510 						 block_group);
1511 			goto next;
1512 		}
1513 
1514 		spin_lock(&block_group->lock);
1515 		if (block_group->reserved || block_group->pinned ||
1516 		    block_group->used || block_group->ro ||
1517 		    list_is_singular(&block_group->list)) {
1518 			/*
1519 			 * We want to bail if we made new allocations or have
1520 			 * outstanding allocations in this block group.  We do
1521 			 * the ro check in case balance is currently acting on
1522 			 * this block group.
1523 			 */
1524 			trace_btrfs_skip_unused_block_group(block_group);
1525 			spin_unlock(&block_group->lock);
1526 			up_write(&space_info->groups_sem);
1527 			goto next;
1528 		}
1529 		spin_unlock(&block_group->lock);
1530 
1531 		/* We don't want to force the issue, only flip if it's ok. */
1532 		ret = inc_block_group_ro(block_group, 0);
1533 		up_write(&space_info->groups_sem);
1534 		if (ret < 0) {
1535 			ret = 0;
1536 			goto next;
1537 		}
1538 
1539 		ret = btrfs_zone_finish(block_group);
1540 		if (ret < 0) {
1541 			btrfs_dec_block_group_ro(block_group);
1542 			if (ret == -EAGAIN)
1543 				ret = 0;
1544 			goto next;
1545 		}
1546 
1547 		/*
1548 		 * Want to do this before we do anything else so we can recover
1549 		 * properly if we fail to join the transaction.
1550 		 */
1551 		trans = btrfs_start_trans_remove_block_group(fs_info,
1552 						     block_group->start);
1553 		if (IS_ERR(trans)) {
1554 			btrfs_dec_block_group_ro(block_group);
1555 			ret = PTR_ERR(trans);
1556 			goto next;
1557 		}
1558 
1559 		/*
1560 		 * We could have pending pinned extents for this block group,
1561 		 * just delete them, we don't care about them anymore.
1562 		 */
1563 		if (!clean_pinned_extents(trans, block_group)) {
1564 			btrfs_dec_block_group_ro(block_group);
1565 			goto end_trans;
1566 		}
1567 
1568 		/*
1569 		 * At this point, the block_group is read only and should fail
1570 		 * new allocations.  However, btrfs_finish_extent_commit() can
1571 		 * cause this block_group to be placed back on the discard
1572 		 * lists because now the block_group isn't fully discarded.
1573 		 * Bail here and try again later after discarding everything.
1574 		 */
1575 		spin_lock(&fs_info->discard_ctl.lock);
1576 		if (!list_empty(&block_group->discard_list)) {
1577 			spin_unlock(&fs_info->discard_ctl.lock);
1578 			btrfs_dec_block_group_ro(block_group);
1579 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1580 						 block_group);
1581 			goto end_trans;
1582 		}
1583 		spin_unlock(&fs_info->discard_ctl.lock);
1584 
1585 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1586 		spin_lock(&space_info->lock);
1587 		spin_lock(&block_group->lock);
1588 
1589 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1590 						     -block_group->pinned);
1591 		space_info->bytes_readonly += block_group->pinned;
1592 		block_group->pinned = 0;
1593 
1594 		spin_unlock(&block_group->lock);
1595 		spin_unlock(&space_info->lock);
1596 
1597 		/*
1598 		 * The normal path here is an unused block group is passed here,
1599 		 * then trimming is handled in the transaction commit path.
1600 		 * Async discard interposes before this to do the trimming
1601 		 * before coming down the unused block group path as trimming
1602 		 * will no longer be done later in the transaction commit path.
1603 		 */
1604 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1605 			goto flip_async;
1606 
1607 		/*
1608 		 * DISCARD can flip during remount. On zoned filesystems, we
1609 		 * need to reset sequential-required zones.
1610 		 */
1611 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1612 				btrfs_is_zoned(fs_info);
1613 
1614 		/* Implicit trim during transaction commit. */
1615 		if (trimming)
1616 			btrfs_freeze_block_group(block_group);
1617 
1618 		/*
1619 		 * Btrfs_remove_chunk will abort the transaction if things go
1620 		 * horribly wrong.
1621 		 */
1622 		ret = btrfs_remove_chunk(trans, block_group->start);
1623 
1624 		if (ret) {
1625 			if (trimming)
1626 				btrfs_unfreeze_block_group(block_group);
1627 			goto end_trans;
1628 		}
1629 
1630 		/*
1631 		 * If we're not mounted with -odiscard, we can just forget
1632 		 * about this block group. Otherwise we'll need to wait
1633 		 * until transaction commit to do the actual discard.
1634 		 */
1635 		if (trimming) {
1636 			spin_lock(&fs_info->unused_bgs_lock);
1637 			/*
1638 			 * A concurrent scrub might have added us to the list
1639 			 * fs_info->unused_bgs, so use a list_move operation
1640 			 * to add the block group to the deleted_bgs list.
1641 			 */
1642 			list_move(&block_group->bg_list,
1643 				  &trans->transaction->deleted_bgs);
1644 			spin_unlock(&fs_info->unused_bgs_lock);
1645 			btrfs_get_block_group(block_group);
1646 		}
1647 end_trans:
1648 		btrfs_end_transaction(trans);
1649 next:
1650 		btrfs_put_block_group(block_group);
1651 		spin_lock(&fs_info->unused_bgs_lock);
1652 	}
1653 	spin_unlock(&fs_info->unused_bgs_lock);
1654 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1655 	return;
1656 
1657 flip_async:
1658 	btrfs_end_transaction(trans);
1659 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1660 	btrfs_put_block_group(block_group);
1661 	btrfs_discard_punt_unused_bgs_list(fs_info);
1662 }
1663 
1664 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1665 {
1666 	struct btrfs_fs_info *fs_info = bg->fs_info;
1667 
1668 	spin_lock(&fs_info->unused_bgs_lock);
1669 	if (list_empty(&bg->bg_list)) {
1670 		btrfs_get_block_group(bg);
1671 		trace_btrfs_add_unused_block_group(bg);
1672 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1673 	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1674 		/* Pull out the block group from the reclaim_bgs list. */
1675 		trace_btrfs_add_unused_block_group(bg);
1676 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1677 	}
1678 	spin_unlock(&fs_info->unused_bgs_lock);
1679 }
1680 
1681 /*
1682  * We want block groups with a low number of used bytes to be in the beginning
1683  * of the list, so they will get reclaimed first.
1684  */
1685 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1686 			   const struct list_head *b)
1687 {
1688 	const struct btrfs_block_group *bg1, *bg2;
1689 
1690 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1691 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1692 
1693 	return bg1->used > bg2->used;
1694 }
1695 
1696 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1697 {
1698 	if (btrfs_is_zoned(fs_info))
1699 		return btrfs_zoned_should_reclaim(fs_info);
1700 	return true;
1701 }
1702 
1703 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1704 {
1705 	const struct btrfs_space_info *space_info = bg->space_info;
1706 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1707 	const u64 new_val = bg->used;
1708 	const u64 old_val = new_val + bytes_freed;
1709 	u64 thresh;
1710 
1711 	if (reclaim_thresh == 0)
1712 		return false;
1713 
1714 	thresh = mult_perc(bg->length, reclaim_thresh);
1715 
1716 	/*
1717 	 * If we were below the threshold before don't reclaim, we are likely a
1718 	 * brand new block group and we don't want to relocate new block groups.
1719 	 */
1720 	if (old_val < thresh)
1721 		return false;
1722 	if (new_val >= thresh)
1723 		return false;
1724 	return true;
1725 }
1726 
1727 void btrfs_reclaim_bgs_work(struct work_struct *work)
1728 {
1729 	struct btrfs_fs_info *fs_info =
1730 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1731 	struct btrfs_block_group *bg;
1732 	struct btrfs_space_info *space_info;
1733 
1734 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1735 		return;
1736 
1737 	if (btrfs_fs_closing(fs_info))
1738 		return;
1739 
1740 	if (!btrfs_should_reclaim(fs_info))
1741 		return;
1742 
1743 	sb_start_write(fs_info->sb);
1744 
1745 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1746 		sb_end_write(fs_info->sb);
1747 		return;
1748 	}
1749 
1750 	/*
1751 	 * Long running balances can keep us blocked here for eternity, so
1752 	 * simply skip reclaim if we're unable to get the mutex.
1753 	 */
1754 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1755 		btrfs_exclop_finish(fs_info);
1756 		sb_end_write(fs_info->sb);
1757 		return;
1758 	}
1759 
1760 	spin_lock(&fs_info->unused_bgs_lock);
1761 	/*
1762 	 * Sort happens under lock because we can't simply splice it and sort.
1763 	 * The block groups might still be in use and reachable via bg_list,
1764 	 * and their presence in the reclaim_bgs list must be preserved.
1765 	 */
1766 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1767 	while (!list_empty(&fs_info->reclaim_bgs)) {
1768 		u64 zone_unusable;
1769 		int ret = 0;
1770 
1771 		bg = list_first_entry(&fs_info->reclaim_bgs,
1772 				      struct btrfs_block_group,
1773 				      bg_list);
1774 		list_del_init(&bg->bg_list);
1775 
1776 		space_info = bg->space_info;
1777 		spin_unlock(&fs_info->unused_bgs_lock);
1778 
1779 		/* Don't race with allocators so take the groups_sem */
1780 		down_write(&space_info->groups_sem);
1781 
1782 		spin_lock(&bg->lock);
1783 		if (bg->reserved || bg->pinned || bg->ro) {
1784 			/*
1785 			 * We want to bail if we made new allocations or have
1786 			 * outstanding allocations in this block group.  We do
1787 			 * the ro check in case balance is currently acting on
1788 			 * this block group.
1789 			 */
1790 			spin_unlock(&bg->lock);
1791 			up_write(&space_info->groups_sem);
1792 			goto next;
1793 		}
1794 		if (bg->used == 0) {
1795 			/*
1796 			 * It is possible that we trigger relocation on a block
1797 			 * group as its extents are deleted and it first goes
1798 			 * below the threshold, then shortly after goes empty.
1799 			 *
1800 			 * In this case, relocating it does delete it, but has
1801 			 * some overhead in relocation specific metadata, looking
1802 			 * for the non-existent extents and running some extra
1803 			 * transactions, which we can avoid by using one of the
1804 			 * other mechanisms for dealing with empty block groups.
1805 			 */
1806 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1807 				btrfs_mark_bg_unused(bg);
1808 			spin_unlock(&bg->lock);
1809 			up_write(&space_info->groups_sem);
1810 			goto next;
1811 
1812 		}
1813 		/*
1814 		 * The block group might no longer meet the reclaim condition by
1815 		 * the time we get around to reclaiming it, so to avoid
1816 		 * reclaiming overly full block_groups, skip reclaiming them.
1817 		 *
1818 		 * Since the decision making process also depends on the amount
1819 		 * being freed, pass in a fake giant value to skip that extra
1820 		 * check, which is more meaningful when adding to the list in
1821 		 * the first place.
1822 		 */
1823 		if (!should_reclaim_block_group(bg, bg->length)) {
1824 			spin_unlock(&bg->lock);
1825 			up_write(&space_info->groups_sem);
1826 			goto next;
1827 		}
1828 		spin_unlock(&bg->lock);
1829 
1830 		/*
1831 		 * Get out fast, in case we're read-only or unmounting the
1832 		 * filesystem. It is OK to drop block groups from the list even
1833 		 * for the read-only case. As we did sb_start_write(),
1834 		 * "mount -o remount,ro" won't happen and read-only filesystem
1835 		 * means it is forced read-only due to a fatal error. So, it
1836 		 * never gets back to read-write to let us reclaim again.
1837 		 */
1838 		if (btrfs_need_cleaner_sleep(fs_info)) {
1839 			up_write(&space_info->groups_sem);
1840 			goto next;
1841 		}
1842 
1843 		/*
1844 		 * Cache the zone_unusable value before turning the block group
1845 		 * to read only. As soon as the blog group is read only it's
1846 		 * zone_unusable value gets moved to the block group's read-only
1847 		 * bytes and isn't available for calculations anymore.
1848 		 */
1849 		zone_unusable = bg->zone_unusable;
1850 		ret = inc_block_group_ro(bg, 0);
1851 		up_write(&space_info->groups_sem);
1852 		if (ret < 0)
1853 			goto next;
1854 
1855 		btrfs_info(fs_info,
1856 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1857 				bg->start,
1858 				div64_u64(bg->used * 100, bg->length),
1859 				div64_u64(zone_unusable * 100, bg->length));
1860 		trace_btrfs_reclaim_block_group(bg);
1861 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1862 		if (ret) {
1863 			btrfs_dec_block_group_ro(bg);
1864 			btrfs_err(fs_info, "error relocating chunk %llu",
1865 				  bg->start);
1866 		}
1867 
1868 next:
1869 		if (ret)
1870 			btrfs_mark_bg_to_reclaim(bg);
1871 		btrfs_put_block_group(bg);
1872 
1873 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1874 		/*
1875 		 * Reclaiming all the block groups in the list can take really
1876 		 * long.  Prioritize cleaning up unused block groups.
1877 		 */
1878 		btrfs_delete_unused_bgs(fs_info);
1879 		/*
1880 		 * If we are interrupted by a balance, we can just bail out. The
1881 		 * cleaner thread restart again if necessary.
1882 		 */
1883 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1884 			goto end;
1885 		spin_lock(&fs_info->unused_bgs_lock);
1886 	}
1887 	spin_unlock(&fs_info->unused_bgs_lock);
1888 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1889 end:
1890 	btrfs_exclop_finish(fs_info);
1891 	sb_end_write(fs_info->sb);
1892 }
1893 
1894 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1895 {
1896 	spin_lock(&fs_info->unused_bgs_lock);
1897 	if (!list_empty(&fs_info->reclaim_bgs))
1898 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1899 	spin_unlock(&fs_info->unused_bgs_lock);
1900 }
1901 
1902 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1903 {
1904 	struct btrfs_fs_info *fs_info = bg->fs_info;
1905 
1906 	spin_lock(&fs_info->unused_bgs_lock);
1907 	if (list_empty(&bg->bg_list)) {
1908 		btrfs_get_block_group(bg);
1909 		trace_btrfs_add_reclaim_block_group(bg);
1910 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1911 	}
1912 	spin_unlock(&fs_info->unused_bgs_lock);
1913 }
1914 
1915 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1916 			   struct btrfs_path *path)
1917 {
1918 	struct extent_map_tree *em_tree;
1919 	struct extent_map *em;
1920 	struct btrfs_block_group_item bg;
1921 	struct extent_buffer *leaf;
1922 	int slot;
1923 	u64 flags;
1924 	int ret = 0;
1925 
1926 	slot = path->slots[0];
1927 	leaf = path->nodes[0];
1928 
1929 	em_tree = &fs_info->mapping_tree;
1930 	read_lock(&em_tree->lock);
1931 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1932 	read_unlock(&em_tree->lock);
1933 	if (!em) {
1934 		btrfs_err(fs_info,
1935 			  "logical %llu len %llu found bg but no related chunk",
1936 			  key->objectid, key->offset);
1937 		return -ENOENT;
1938 	}
1939 
1940 	if (em->start != key->objectid || em->len != key->offset) {
1941 		btrfs_err(fs_info,
1942 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1943 			key->objectid, key->offset, em->start, em->len);
1944 		ret = -EUCLEAN;
1945 		goto out_free_em;
1946 	}
1947 
1948 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1949 			   sizeof(bg));
1950 	flags = btrfs_stack_block_group_flags(&bg) &
1951 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1952 
1953 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1954 		btrfs_err(fs_info,
1955 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1956 			  key->objectid, key->offset, flags,
1957 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1958 		ret = -EUCLEAN;
1959 	}
1960 
1961 out_free_em:
1962 	free_extent_map(em);
1963 	return ret;
1964 }
1965 
1966 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1967 				  struct btrfs_path *path,
1968 				  struct btrfs_key *key)
1969 {
1970 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1971 	int ret;
1972 	struct btrfs_key found_key;
1973 
1974 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1975 		if (found_key.objectid >= key->objectid &&
1976 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1977 			return read_bg_from_eb(fs_info, &found_key, path);
1978 		}
1979 	}
1980 	return ret;
1981 }
1982 
1983 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1984 {
1985 	u64 extra_flags = chunk_to_extended(flags) &
1986 				BTRFS_EXTENDED_PROFILE_MASK;
1987 
1988 	write_seqlock(&fs_info->profiles_lock);
1989 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1990 		fs_info->avail_data_alloc_bits |= extra_flags;
1991 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1992 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1993 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1994 		fs_info->avail_system_alloc_bits |= extra_flags;
1995 	write_sequnlock(&fs_info->profiles_lock);
1996 }
1997 
1998 /*
1999  * Map a physical disk address to a list of logical addresses.
2000  *
2001  * @fs_info:       the filesystem
2002  * @chunk_start:   logical address of block group
2003  * @physical:	   physical address to map to logical addresses
2004  * @logical:	   return array of logical addresses which map to @physical
2005  * @naddrs:	   length of @logical
2006  * @stripe_len:    size of IO stripe for the given block group
2007  *
2008  * Maps a particular @physical disk address to a list of @logical addresses.
2009  * Used primarily to exclude those portions of a block group that contain super
2010  * block copies.
2011  */
2012 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2013 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2014 {
2015 	struct extent_map *em;
2016 	struct map_lookup *map;
2017 	u64 *buf;
2018 	u64 bytenr;
2019 	u64 data_stripe_length;
2020 	u64 io_stripe_size;
2021 	int i, nr = 0;
2022 	int ret = 0;
2023 
2024 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2025 	if (IS_ERR(em))
2026 		return -EIO;
2027 
2028 	map = em->map_lookup;
2029 	data_stripe_length = em->orig_block_len;
2030 	io_stripe_size = BTRFS_STRIPE_LEN;
2031 	chunk_start = em->start;
2032 
2033 	/* For RAID5/6 adjust to a full IO stripe length */
2034 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2035 		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2036 
2037 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2038 	if (!buf) {
2039 		ret = -ENOMEM;
2040 		goto out;
2041 	}
2042 
2043 	for (i = 0; i < map->num_stripes; i++) {
2044 		bool already_inserted = false;
2045 		u32 stripe_nr;
2046 		u32 offset;
2047 		int j;
2048 
2049 		if (!in_range(physical, map->stripes[i].physical,
2050 			      data_stripe_length))
2051 			continue;
2052 
2053 		stripe_nr = (physical - map->stripes[i].physical) >>
2054 			    BTRFS_STRIPE_LEN_SHIFT;
2055 		offset = (physical - map->stripes[i].physical) &
2056 			 BTRFS_STRIPE_LEN_MASK;
2057 
2058 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2059 				 BTRFS_BLOCK_GROUP_RAID10))
2060 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2061 					    map->sub_stripes);
2062 		/*
2063 		 * The remaining case would be for RAID56, multiply by
2064 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2065 		 * instead of map->stripe_len
2066 		 */
2067 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2068 
2069 		/* Ensure we don't add duplicate addresses */
2070 		for (j = 0; j < nr; j++) {
2071 			if (buf[j] == bytenr) {
2072 				already_inserted = true;
2073 				break;
2074 			}
2075 		}
2076 
2077 		if (!already_inserted)
2078 			buf[nr++] = bytenr;
2079 	}
2080 
2081 	*logical = buf;
2082 	*naddrs = nr;
2083 	*stripe_len = io_stripe_size;
2084 out:
2085 	free_extent_map(em);
2086 	return ret;
2087 }
2088 
2089 static int exclude_super_stripes(struct btrfs_block_group *cache)
2090 {
2091 	struct btrfs_fs_info *fs_info = cache->fs_info;
2092 	const bool zoned = btrfs_is_zoned(fs_info);
2093 	u64 bytenr;
2094 	u64 *logical;
2095 	int stripe_len;
2096 	int i, nr, ret;
2097 
2098 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2099 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2100 		cache->bytes_super += stripe_len;
2101 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
2102 						stripe_len);
2103 		if (ret)
2104 			return ret;
2105 	}
2106 
2107 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2108 		bytenr = btrfs_sb_offset(i);
2109 		ret = btrfs_rmap_block(fs_info, cache->start,
2110 				       bytenr, &logical, &nr, &stripe_len);
2111 		if (ret)
2112 			return ret;
2113 
2114 		/* Shouldn't have super stripes in sequential zones */
2115 		if (zoned && nr) {
2116 			kfree(logical);
2117 			btrfs_err(fs_info,
2118 			"zoned: block group %llu must not contain super block",
2119 				  cache->start);
2120 			return -EUCLEAN;
2121 		}
2122 
2123 		while (nr--) {
2124 			u64 len = min_t(u64, stripe_len,
2125 				cache->start + cache->length - logical[nr]);
2126 
2127 			cache->bytes_super += len;
2128 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2129 							len);
2130 			if (ret) {
2131 				kfree(logical);
2132 				return ret;
2133 			}
2134 		}
2135 
2136 		kfree(logical);
2137 	}
2138 	return 0;
2139 }
2140 
2141 static struct btrfs_block_group *btrfs_create_block_group_cache(
2142 		struct btrfs_fs_info *fs_info, u64 start)
2143 {
2144 	struct btrfs_block_group *cache;
2145 
2146 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2147 	if (!cache)
2148 		return NULL;
2149 
2150 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2151 					GFP_NOFS);
2152 	if (!cache->free_space_ctl) {
2153 		kfree(cache);
2154 		return NULL;
2155 	}
2156 
2157 	cache->start = start;
2158 
2159 	cache->fs_info = fs_info;
2160 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2161 
2162 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2163 
2164 	refcount_set(&cache->refs, 1);
2165 	spin_lock_init(&cache->lock);
2166 	init_rwsem(&cache->data_rwsem);
2167 	INIT_LIST_HEAD(&cache->list);
2168 	INIT_LIST_HEAD(&cache->cluster_list);
2169 	INIT_LIST_HEAD(&cache->bg_list);
2170 	INIT_LIST_HEAD(&cache->ro_list);
2171 	INIT_LIST_HEAD(&cache->discard_list);
2172 	INIT_LIST_HEAD(&cache->dirty_list);
2173 	INIT_LIST_HEAD(&cache->io_list);
2174 	INIT_LIST_HEAD(&cache->active_bg_list);
2175 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2176 	atomic_set(&cache->frozen, 0);
2177 	mutex_init(&cache->free_space_lock);
2178 
2179 	return cache;
2180 }
2181 
2182 /*
2183  * Iterate all chunks and verify that each of them has the corresponding block
2184  * group
2185  */
2186 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2187 {
2188 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2189 	struct extent_map *em;
2190 	struct btrfs_block_group *bg;
2191 	u64 start = 0;
2192 	int ret = 0;
2193 
2194 	while (1) {
2195 		read_lock(&map_tree->lock);
2196 		/*
2197 		 * lookup_extent_mapping will return the first extent map
2198 		 * intersecting the range, so setting @len to 1 is enough to
2199 		 * get the first chunk.
2200 		 */
2201 		em = lookup_extent_mapping(map_tree, start, 1);
2202 		read_unlock(&map_tree->lock);
2203 		if (!em)
2204 			break;
2205 
2206 		bg = btrfs_lookup_block_group(fs_info, em->start);
2207 		if (!bg) {
2208 			btrfs_err(fs_info,
2209 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2210 				     em->start, em->len);
2211 			ret = -EUCLEAN;
2212 			free_extent_map(em);
2213 			break;
2214 		}
2215 		if (bg->start != em->start || bg->length != em->len ||
2216 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2217 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2218 			btrfs_err(fs_info,
2219 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2220 				em->start, em->len,
2221 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2222 				bg->start, bg->length,
2223 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2224 			ret = -EUCLEAN;
2225 			free_extent_map(em);
2226 			btrfs_put_block_group(bg);
2227 			break;
2228 		}
2229 		start = em->start + em->len;
2230 		free_extent_map(em);
2231 		btrfs_put_block_group(bg);
2232 	}
2233 	return ret;
2234 }
2235 
2236 static int read_one_block_group(struct btrfs_fs_info *info,
2237 				struct btrfs_block_group_item *bgi,
2238 				const struct btrfs_key *key,
2239 				int need_clear)
2240 {
2241 	struct btrfs_block_group *cache;
2242 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2243 	int ret;
2244 
2245 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2246 
2247 	cache = btrfs_create_block_group_cache(info, key->objectid);
2248 	if (!cache)
2249 		return -ENOMEM;
2250 
2251 	cache->length = key->offset;
2252 	cache->used = btrfs_stack_block_group_used(bgi);
2253 	cache->commit_used = cache->used;
2254 	cache->flags = btrfs_stack_block_group_flags(bgi);
2255 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2256 
2257 	set_free_space_tree_thresholds(cache);
2258 
2259 	if (need_clear) {
2260 		/*
2261 		 * When we mount with old space cache, we need to
2262 		 * set BTRFS_DC_CLEAR and set dirty flag.
2263 		 *
2264 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2265 		 *    truncate the old free space cache inode and
2266 		 *    setup a new one.
2267 		 * b) Setting 'dirty flag' makes sure that we flush
2268 		 *    the new space cache info onto disk.
2269 		 */
2270 		if (btrfs_test_opt(info, SPACE_CACHE))
2271 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2272 	}
2273 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2274 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2275 			btrfs_err(info,
2276 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2277 				  cache->start);
2278 			ret = -EINVAL;
2279 			goto error;
2280 	}
2281 
2282 	ret = btrfs_load_block_group_zone_info(cache, false);
2283 	if (ret) {
2284 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2285 			  cache->start);
2286 		goto error;
2287 	}
2288 
2289 	/*
2290 	 * We need to exclude the super stripes now so that the space info has
2291 	 * super bytes accounted for, otherwise we'll think we have more space
2292 	 * than we actually do.
2293 	 */
2294 	ret = exclude_super_stripes(cache);
2295 	if (ret) {
2296 		/* We may have excluded something, so call this just in case. */
2297 		btrfs_free_excluded_extents(cache);
2298 		goto error;
2299 	}
2300 
2301 	/*
2302 	 * For zoned filesystem, space after the allocation offset is the only
2303 	 * free space for a block group. So, we don't need any caching work.
2304 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2305 	 * zone_unusable space.
2306 	 *
2307 	 * For regular filesystem, check for two cases, either we are full, and
2308 	 * therefore don't need to bother with the caching work since we won't
2309 	 * find any space, or we are empty, and we can just add all the space
2310 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2311 	 * in the full case.
2312 	 */
2313 	if (btrfs_is_zoned(info)) {
2314 		btrfs_calc_zone_unusable(cache);
2315 		/* Should not have any excluded extents. Just in case, though. */
2316 		btrfs_free_excluded_extents(cache);
2317 	} else if (cache->length == cache->used) {
2318 		cache->cached = BTRFS_CACHE_FINISHED;
2319 		btrfs_free_excluded_extents(cache);
2320 	} else if (cache->used == 0) {
2321 		cache->cached = BTRFS_CACHE_FINISHED;
2322 		ret = add_new_free_space(cache, cache->start,
2323 					 cache->start + cache->length, NULL);
2324 		btrfs_free_excluded_extents(cache);
2325 		if (ret)
2326 			goto error;
2327 	}
2328 
2329 	ret = btrfs_add_block_group_cache(info, cache);
2330 	if (ret) {
2331 		btrfs_remove_free_space_cache(cache);
2332 		goto error;
2333 	}
2334 	trace_btrfs_add_block_group(info, cache, 0);
2335 	btrfs_add_bg_to_space_info(info, cache);
2336 
2337 	set_avail_alloc_bits(info, cache->flags);
2338 	if (btrfs_chunk_writeable(info, cache->start)) {
2339 		if (cache->used == 0) {
2340 			ASSERT(list_empty(&cache->bg_list));
2341 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2342 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2343 			else
2344 				btrfs_mark_bg_unused(cache);
2345 		}
2346 	} else {
2347 		inc_block_group_ro(cache, 1);
2348 	}
2349 
2350 	return 0;
2351 error:
2352 	btrfs_put_block_group(cache);
2353 	return ret;
2354 }
2355 
2356 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2357 {
2358 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2359 	struct rb_node *node;
2360 	int ret = 0;
2361 
2362 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2363 		struct extent_map *em;
2364 		struct map_lookup *map;
2365 		struct btrfs_block_group *bg;
2366 
2367 		em = rb_entry(node, struct extent_map, rb_node);
2368 		map = em->map_lookup;
2369 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2370 		if (!bg) {
2371 			ret = -ENOMEM;
2372 			break;
2373 		}
2374 
2375 		/* Fill dummy cache as FULL */
2376 		bg->length = em->len;
2377 		bg->flags = map->type;
2378 		bg->cached = BTRFS_CACHE_FINISHED;
2379 		bg->used = em->len;
2380 		bg->flags = map->type;
2381 		ret = btrfs_add_block_group_cache(fs_info, bg);
2382 		/*
2383 		 * We may have some valid block group cache added already, in
2384 		 * that case we skip to the next one.
2385 		 */
2386 		if (ret == -EEXIST) {
2387 			ret = 0;
2388 			btrfs_put_block_group(bg);
2389 			continue;
2390 		}
2391 
2392 		if (ret) {
2393 			btrfs_remove_free_space_cache(bg);
2394 			btrfs_put_block_group(bg);
2395 			break;
2396 		}
2397 
2398 		btrfs_add_bg_to_space_info(fs_info, bg);
2399 
2400 		set_avail_alloc_bits(fs_info, bg->flags);
2401 	}
2402 	if (!ret)
2403 		btrfs_init_global_block_rsv(fs_info);
2404 	return ret;
2405 }
2406 
2407 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2408 {
2409 	struct btrfs_root *root = btrfs_block_group_root(info);
2410 	struct btrfs_path *path;
2411 	int ret;
2412 	struct btrfs_block_group *cache;
2413 	struct btrfs_space_info *space_info;
2414 	struct btrfs_key key;
2415 	int need_clear = 0;
2416 	u64 cache_gen;
2417 
2418 	/*
2419 	 * Either no extent root (with ibadroots rescue option) or we have
2420 	 * unsupported RO options. The fs can never be mounted read-write, so no
2421 	 * need to waste time searching block group items.
2422 	 *
2423 	 * This also allows new extent tree related changes to be RO compat,
2424 	 * no need for a full incompat flag.
2425 	 */
2426 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2427 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2428 		return fill_dummy_bgs(info);
2429 
2430 	key.objectid = 0;
2431 	key.offset = 0;
2432 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2433 	path = btrfs_alloc_path();
2434 	if (!path)
2435 		return -ENOMEM;
2436 
2437 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2438 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2439 	    btrfs_super_generation(info->super_copy) != cache_gen)
2440 		need_clear = 1;
2441 	if (btrfs_test_opt(info, CLEAR_CACHE))
2442 		need_clear = 1;
2443 
2444 	while (1) {
2445 		struct btrfs_block_group_item bgi;
2446 		struct extent_buffer *leaf;
2447 		int slot;
2448 
2449 		ret = find_first_block_group(info, path, &key);
2450 		if (ret > 0)
2451 			break;
2452 		if (ret != 0)
2453 			goto error;
2454 
2455 		leaf = path->nodes[0];
2456 		slot = path->slots[0];
2457 
2458 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2459 				   sizeof(bgi));
2460 
2461 		btrfs_item_key_to_cpu(leaf, &key, slot);
2462 		btrfs_release_path(path);
2463 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2464 		if (ret < 0)
2465 			goto error;
2466 		key.objectid += key.offset;
2467 		key.offset = 0;
2468 	}
2469 	btrfs_release_path(path);
2470 
2471 	list_for_each_entry(space_info, &info->space_info, list) {
2472 		int i;
2473 
2474 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2475 			if (list_empty(&space_info->block_groups[i]))
2476 				continue;
2477 			cache = list_first_entry(&space_info->block_groups[i],
2478 						 struct btrfs_block_group,
2479 						 list);
2480 			btrfs_sysfs_add_block_group_type(cache);
2481 		}
2482 
2483 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2484 		      (BTRFS_BLOCK_GROUP_RAID10 |
2485 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2486 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2487 		       BTRFS_BLOCK_GROUP_DUP)))
2488 			continue;
2489 		/*
2490 		 * Avoid allocating from un-mirrored block group if there are
2491 		 * mirrored block groups.
2492 		 */
2493 		list_for_each_entry(cache,
2494 				&space_info->block_groups[BTRFS_RAID_RAID0],
2495 				list)
2496 			inc_block_group_ro(cache, 1);
2497 		list_for_each_entry(cache,
2498 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2499 				list)
2500 			inc_block_group_ro(cache, 1);
2501 	}
2502 
2503 	btrfs_init_global_block_rsv(info);
2504 	ret = check_chunk_block_group_mappings(info);
2505 error:
2506 	btrfs_free_path(path);
2507 	/*
2508 	 * We've hit some error while reading the extent tree, and have
2509 	 * rescue=ibadroots mount option.
2510 	 * Try to fill the tree using dummy block groups so that the user can
2511 	 * continue to mount and grab their data.
2512 	 */
2513 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2514 		ret = fill_dummy_bgs(info);
2515 	return ret;
2516 }
2517 
2518 /*
2519  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2520  * allocation.
2521  *
2522  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2523  * phases.
2524  */
2525 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2526 				   struct btrfs_block_group *block_group)
2527 {
2528 	struct btrfs_fs_info *fs_info = trans->fs_info;
2529 	struct btrfs_block_group_item bgi;
2530 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2531 	struct btrfs_key key;
2532 	u64 old_commit_used;
2533 	int ret;
2534 
2535 	spin_lock(&block_group->lock);
2536 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2537 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2538 						   block_group->global_root_id);
2539 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2540 	old_commit_used = block_group->commit_used;
2541 	block_group->commit_used = block_group->used;
2542 	key.objectid = block_group->start;
2543 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2544 	key.offset = block_group->length;
2545 	spin_unlock(&block_group->lock);
2546 
2547 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2548 	if (ret < 0) {
2549 		spin_lock(&block_group->lock);
2550 		block_group->commit_used = old_commit_used;
2551 		spin_unlock(&block_group->lock);
2552 	}
2553 
2554 	return ret;
2555 }
2556 
2557 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2558 			    struct btrfs_device *device, u64 chunk_offset,
2559 			    u64 start, u64 num_bytes)
2560 {
2561 	struct btrfs_fs_info *fs_info = device->fs_info;
2562 	struct btrfs_root *root = fs_info->dev_root;
2563 	struct btrfs_path *path;
2564 	struct btrfs_dev_extent *extent;
2565 	struct extent_buffer *leaf;
2566 	struct btrfs_key key;
2567 	int ret;
2568 
2569 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2570 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2571 	path = btrfs_alloc_path();
2572 	if (!path)
2573 		return -ENOMEM;
2574 
2575 	key.objectid = device->devid;
2576 	key.type = BTRFS_DEV_EXTENT_KEY;
2577 	key.offset = start;
2578 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2579 	if (ret)
2580 		goto out;
2581 
2582 	leaf = path->nodes[0];
2583 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2584 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2585 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2586 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2587 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2588 
2589 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2590 	btrfs_mark_buffer_dirty(leaf);
2591 out:
2592 	btrfs_free_path(path);
2593 	return ret;
2594 }
2595 
2596 /*
2597  * This function belongs to phase 2.
2598  *
2599  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2600  * phases.
2601  */
2602 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2603 				   u64 chunk_offset, u64 chunk_size)
2604 {
2605 	struct btrfs_fs_info *fs_info = trans->fs_info;
2606 	struct btrfs_device *device;
2607 	struct extent_map *em;
2608 	struct map_lookup *map;
2609 	u64 dev_offset;
2610 	u64 stripe_size;
2611 	int i;
2612 	int ret = 0;
2613 
2614 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2615 	if (IS_ERR(em))
2616 		return PTR_ERR(em);
2617 
2618 	map = em->map_lookup;
2619 	stripe_size = em->orig_block_len;
2620 
2621 	/*
2622 	 * Take the device list mutex to prevent races with the final phase of
2623 	 * a device replace operation that replaces the device object associated
2624 	 * with the map's stripes, because the device object's id can change
2625 	 * at any time during that final phase of the device replace operation
2626 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2627 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2628 	 * resulting in persisting a device extent item with such ID.
2629 	 */
2630 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2631 	for (i = 0; i < map->num_stripes; i++) {
2632 		device = map->stripes[i].dev;
2633 		dev_offset = map->stripes[i].physical;
2634 
2635 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2636 				       stripe_size);
2637 		if (ret)
2638 			break;
2639 	}
2640 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2641 
2642 	free_extent_map(em);
2643 	return ret;
2644 }
2645 
2646 /*
2647  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2648  * chunk allocation.
2649  *
2650  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2651  * phases.
2652  */
2653 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2654 {
2655 	struct btrfs_fs_info *fs_info = trans->fs_info;
2656 	struct btrfs_block_group *block_group;
2657 	int ret = 0;
2658 
2659 	while (!list_empty(&trans->new_bgs)) {
2660 		int index;
2661 
2662 		block_group = list_first_entry(&trans->new_bgs,
2663 					       struct btrfs_block_group,
2664 					       bg_list);
2665 		if (ret)
2666 			goto next;
2667 
2668 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2669 
2670 		ret = insert_block_group_item(trans, block_group);
2671 		if (ret)
2672 			btrfs_abort_transaction(trans, ret);
2673 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2674 			      &block_group->runtime_flags)) {
2675 			mutex_lock(&fs_info->chunk_mutex);
2676 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2677 			mutex_unlock(&fs_info->chunk_mutex);
2678 			if (ret)
2679 				btrfs_abort_transaction(trans, ret);
2680 		}
2681 		ret = insert_dev_extents(trans, block_group->start,
2682 					 block_group->length);
2683 		if (ret)
2684 			btrfs_abort_transaction(trans, ret);
2685 		add_block_group_free_space(trans, block_group);
2686 
2687 		/*
2688 		 * If we restriped during balance, we may have added a new raid
2689 		 * type, so now add the sysfs entries when it is safe to do so.
2690 		 * We don't have to worry about locking here as it's handled in
2691 		 * btrfs_sysfs_add_block_group_type.
2692 		 */
2693 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2694 			btrfs_sysfs_add_block_group_type(block_group);
2695 
2696 		/* Already aborted the transaction if it failed. */
2697 next:
2698 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2699 		list_del_init(&block_group->bg_list);
2700 		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2701 	}
2702 	btrfs_trans_release_chunk_metadata(trans);
2703 }
2704 
2705 /*
2706  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2707  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2708  */
2709 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2710 {
2711 	u64 div = SZ_1G;
2712 	u64 index;
2713 
2714 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2715 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2716 
2717 	/* If we have a smaller fs index based on 128MiB. */
2718 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2719 		div = SZ_128M;
2720 
2721 	offset = div64_u64(offset, div);
2722 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2723 	return index;
2724 }
2725 
2726 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2727 						 u64 type,
2728 						 u64 chunk_offset, u64 size)
2729 {
2730 	struct btrfs_fs_info *fs_info = trans->fs_info;
2731 	struct btrfs_block_group *cache;
2732 	int ret;
2733 
2734 	btrfs_set_log_full_commit(trans);
2735 
2736 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2737 	if (!cache)
2738 		return ERR_PTR(-ENOMEM);
2739 
2740 	/*
2741 	 * Mark it as new before adding it to the rbtree of block groups or any
2742 	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2743 	 * before the new flag is set.
2744 	 */
2745 	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2746 
2747 	cache->length = size;
2748 	set_free_space_tree_thresholds(cache);
2749 	cache->flags = type;
2750 	cache->cached = BTRFS_CACHE_FINISHED;
2751 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2752 
2753 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2754 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2755 
2756 	ret = btrfs_load_block_group_zone_info(cache, true);
2757 	if (ret) {
2758 		btrfs_put_block_group(cache);
2759 		return ERR_PTR(ret);
2760 	}
2761 
2762 	ret = exclude_super_stripes(cache);
2763 	if (ret) {
2764 		/* We may have excluded something, so call this just in case */
2765 		btrfs_free_excluded_extents(cache);
2766 		btrfs_put_block_group(cache);
2767 		return ERR_PTR(ret);
2768 	}
2769 
2770 	ret = add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2771 	btrfs_free_excluded_extents(cache);
2772 	if (ret) {
2773 		btrfs_put_block_group(cache);
2774 		return ERR_PTR(ret);
2775 	}
2776 
2777 	/*
2778 	 * Ensure the corresponding space_info object is created and
2779 	 * assigned to our block group. We want our bg to be added to the rbtree
2780 	 * with its ->space_info set.
2781 	 */
2782 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2783 	ASSERT(cache->space_info);
2784 
2785 	ret = btrfs_add_block_group_cache(fs_info, cache);
2786 	if (ret) {
2787 		btrfs_remove_free_space_cache(cache);
2788 		btrfs_put_block_group(cache);
2789 		return ERR_PTR(ret);
2790 	}
2791 
2792 	/*
2793 	 * Now that our block group has its ->space_info set and is inserted in
2794 	 * the rbtree, update the space info's counters.
2795 	 */
2796 	trace_btrfs_add_block_group(fs_info, cache, 1);
2797 	btrfs_add_bg_to_space_info(fs_info, cache);
2798 	btrfs_update_global_block_rsv(fs_info);
2799 
2800 #ifdef CONFIG_BTRFS_DEBUG
2801 	if (btrfs_should_fragment_free_space(cache)) {
2802 		cache->space_info->bytes_used += size >> 1;
2803 		fragment_free_space(cache);
2804 	}
2805 #endif
2806 
2807 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2808 	trans->delayed_ref_updates++;
2809 	btrfs_update_delayed_refs_rsv(trans);
2810 
2811 	set_avail_alloc_bits(fs_info, type);
2812 	return cache;
2813 }
2814 
2815 /*
2816  * Mark one block group RO, can be called several times for the same block
2817  * group.
2818  *
2819  * @cache:		the destination block group
2820  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2821  * 			ensure we still have some free space after marking this
2822  * 			block group RO.
2823  */
2824 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2825 			     bool do_chunk_alloc)
2826 {
2827 	struct btrfs_fs_info *fs_info = cache->fs_info;
2828 	struct btrfs_trans_handle *trans;
2829 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2830 	u64 alloc_flags;
2831 	int ret;
2832 	bool dirty_bg_running;
2833 
2834 	/*
2835 	 * This can only happen when we are doing read-only scrub on read-only
2836 	 * mount.
2837 	 * In that case we should not start a new transaction on read-only fs.
2838 	 * Thus here we skip all chunk allocations.
2839 	 */
2840 	if (sb_rdonly(fs_info->sb)) {
2841 		mutex_lock(&fs_info->ro_block_group_mutex);
2842 		ret = inc_block_group_ro(cache, 0);
2843 		mutex_unlock(&fs_info->ro_block_group_mutex);
2844 		return ret;
2845 	}
2846 
2847 	do {
2848 		trans = btrfs_join_transaction(root);
2849 		if (IS_ERR(trans))
2850 			return PTR_ERR(trans);
2851 
2852 		dirty_bg_running = false;
2853 
2854 		/*
2855 		 * We're not allowed to set block groups readonly after the dirty
2856 		 * block group cache has started writing.  If it already started,
2857 		 * back off and let this transaction commit.
2858 		 */
2859 		mutex_lock(&fs_info->ro_block_group_mutex);
2860 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2861 			u64 transid = trans->transid;
2862 
2863 			mutex_unlock(&fs_info->ro_block_group_mutex);
2864 			btrfs_end_transaction(trans);
2865 
2866 			ret = btrfs_wait_for_commit(fs_info, transid);
2867 			if (ret)
2868 				return ret;
2869 			dirty_bg_running = true;
2870 		}
2871 	} while (dirty_bg_running);
2872 
2873 	if (do_chunk_alloc) {
2874 		/*
2875 		 * If we are changing raid levels, try to allocate a
2876 		 * corresponding block group with the new raid level.
2877 		 */
2878 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2879 		if (alloc_flags != cache->flags) {
2880 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2881 						CHUNK_ALLOC_FORCE);
2882 			/*
2883 			 * ENOSPC is allowed here, we may have enough space
2884 			 * already allocated at the new raid level to carry on
2885 			 */
2886 			if (ret == -ENOSPC)
2887 				ret = 0;
2888 			if (ret < 0)
2889 				goto out;
2890 		}
2891 	}
2892 
2893 	ret = inc_block_group_ro(cache, 0);
2894 	if (!ret)
2895 		goto out;
2896 	if (ret == -ETXTBSY)
2897 		goto unlock_out;
2898 
2899 	/*
2900 	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2901 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2902 	 * we still want to try our best to mark the block group read-only.
2903 	 */
2904 	if (!do_chunk_alloc && ret == -ENOSPC &&
2905 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2906 		goto unlock_out;
2907 
2908 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2909 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2910 	if (ret < 0)
2911 		goto out;
2912 	/*
2913 	 * We have allocated a new chunk. We also need to activate that chunk to
2914 	 * grant metadata tickets for zoned filesystem.
2915 	 */
2916 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2917 	if (ret < 0)
2918 		goto out;
2919 
2920 	ret = inc_block_group_ro(cache, 0);
2921 	if (ret == -ETXTBSY)
2922 		goto unlock_out;
2923 out:
2924 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2925 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2926 		mutex_lock(&fs_info->chunk_mutex);
2927 		check_system_chunk(trans, alloc_flags);
2928 		mutex_unlock(&fs_info->chunk_mutex);
2929 	}
2930 unlock_out:
2931 	mutex_unlock(&fs_info->ro_block_group_mutex);
2932 
2933 	btrfs_end_transaction(trans);
2934 	return ret;
2935 }
2936 
2937 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2938 {
2939 	struct btrfs_space_info *sinfo = cache->space_info;
2940 	u64 num_bytes;
2941 
2942 	BUG_ON(!cache->ro);
2943 
2944 	spin_lock(&sinfo->lock);
2945 	spin_lock(&cache->lock);
2946 	if (!--cache->ro) {
2947 		if (btrfs_is_zoned(cache->fs_info)) {
2948 			/* Migrate zone_unusable bytes back */
2949 			cache->zone_unusable =
2950 				(cache->alloc_offset - cache->used) +
2951 				(cache->length - cache->zone_capacity);
2952 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2953 			sinfo->bytes_readonly -= cache->zone_unusable;
2954 		}
2955 		num_bytes = cache->length - cache->reserved -
2956 			    cache->pinned - cache->bytes_super -
2957 			    cache->zone_unusable - cache->used;
2958 		sinfo->bytes_readonly -= num_bytes;
2959 		list_del_init(&cache->ro_list);
2960 	}
2961 	spin_unlock(&cache->lock);
2962 	spin_unlock(&sinfo->lock);
2963 }
2964 
2965 static int update_block_group_item(struct btrfs_trans_handle *trans,
2966 				   struct btrfs_path *path,
2967 				   struct btrfs_block_group *cache)
2968 {
2969 	struct btrfs_fs_info *fs_info = trans->fs_info;
2970 	int ret;
2971 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2972 	unsigned long bi;
2973 	struct extent_buffer *leaf;
2974 	struct btrfs_block_group_item bgi;
2975 	struct btrfs_key key;
2976 	u64 old_commit_used;
2977 	u64 used;
2978 
2979 	/*
2980 	 * Block group items update can be triggered out of commit transaction
2981 	 * critical section, thus we need a consistent view of used bytes.
2982 	 * We cannot use cache->used directly outside of the spin lock, as it
2983 	 * may be changed.
2984 	 */
2985 	spin_lock(&cache->lock);
2986 	old_commit_used = cache->commit_used;
2987 	used = cache->used;
2988 	/* No change in used bytes, can safely skip it. */
2989 	if (cache->commit_used == used) {
2990 		spin_unlock(&cache->lock);
2991 		return 0;
2992 	}
2993 	cache->commit_used = used;
2994 	spin_unlock(&cache->lock);
2995 
2996 	key.objectid = cache->start;
2997 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2998 	key.offset = cache->length;
2999 
3000 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3001 	if (ret) {
3002 		if (ret > 0)
3003 			ret = -ENOENT;
3004 		goto fail;
3005 	}
3006 
3007 	leaf = path->nodes[0];
3008 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3009 	btrfs_set_stack_block_group_used(&bgi, used);
3010 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
3011 						   cache->global_root_id);
3012 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3013 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3014 	btrfs_mark_buffer_dirty(leaf);
3015 fail:
3016 	btrfs_release_path(path);
3017 	/* We didn't update the block group item, need to revert @commit_used. */
3018 	if (ret < 0) {
3019 		spin_lock(&cache->lock);
3020 		cache->commit_used = old_commit_used;
3021 		spin_unlock(&cache->lock);
3022 	}
3023 	return ret;
3024 
3025 }
3026 
3027 static int cache_save_setup(struct btrfs_block_group *block_group,
3028 			    struct btrfs_trans_handle *trans,
3029 			    struct btrfs_path *path)
3030 {
3031 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3032 	struct btrfs_root *root = fs_info->tree_root;
3033 	struct inode *inode = NULL;
3034 	struct extent_changeset *data_reserved = NULL;
3035 	u64 alloc_hint = 0;
3036 	int dcs = BTRFS_DC_ERROR;
3037 	u64 cache_size = 0;
3038 	int retries = 0;
3039 	int ret = 0;
3040 
3041 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3042 		return 0;
3043 
3044 	/*
3045 	 * If this block group is smaller than 100 megs don't bother caching the
3046 	 * block group.
3047 	 */
3048 	if (block_group->length < (100 * SZ_1M)) {
3049 		spin_lock(&block_group->lock);
3050 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3051 		spin_unlock(&block_group->lock);
3052 		return 0;
3053 	}
3054 
3055 	if (TRANS_ABORTED(trans))
3056 		return 0;
3057 again:
3058 	inode = lookup_free_space_inode(block_group, path);
3059 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3060 		ret = PTR_ERR(inode);
3061 		btrfs_release_path(path);
3062 		goto out;
3063 	}
3064 
3065 	if (IS_ERR(inode)) {
3066 		BUG_ON(retries);
3067 		retries++;
3068 
3069 		if (block_group->ro)
3070 			goto out_free;
3071 
3072 		ret = create_free_space_inode(trans, block_group, path);
3073 		if (ret)
3074 			goto out_free;
3075 		goto again;
3076 	}
3077 
3078 	/*
3079 	 * We want to set the generation to 0, that way if anything goes wrong
3080 	 * from here on out we know not to trust this cache when we load up next
3081 	 * time.
3082 	 */
3083 	BTRFS_I(inode)->generation = 0;
3084 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3085 	if (ret) {
3086 		/*
3087 		 * So theoretically we could recover from this, simply set the
3088 		 * super cache generation to 0 so we know to invalidate the
3089 		 * cache, but then we'd have to keep track of the block groups
3090 		 * that fail this way so we know we _have_ to reset this cache
3091 		 * before the next commit or risk reading stale cache.  So to
3092 		 * limit our exposure to horrible edge cases lets just abort the
3093 		 * transaction, this only happens in really bad situations
3094 		 * anyway.
3095 		 */
3096 		btrfs_abort_transaction(trans, ret);
3097 		goto out_put;
3098 	}
3099 	WARN_ON(ret);
3100 
3101 	/* We've already setup this transaction, go ahead and exit */
3102 	if (block_group->cache_generation == trans->transid &&
3103 	    i_size_read(inode)) {
3104 		dcs = BTRFS_DC_SETUP;
3105 		goto out_put;
3106 	}
3107 
3108 	if (i_size_read(inode) > 0) {
3109 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3110 					&fs_info->global_block_rsv);
3111 		if (ret)
3112 			goto out_put;
3113 
3114 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3115 		if (ret)
3116 			goto out_put;
3117 	}
3118 
3119 	spin_lock(&block_group->lock);
3120 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3121 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3122 		/*
3123 		 * don't bother trying to write stuff out _if_
3124 		 * a) we're not cached,
3125 		 * b) we're with nospace_cache mount option,
3126 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3127 		 */
3128 		dcs = BTRFS_DC_WRITTEN;
3129 		spin_unlock(&block_group->lock);
3130 		goto out_put;
3131 	}
3132 	spin_unlock(&block_group->lock);
3133 
3134 	/*
3135 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3136 	 * skip doing the setup, we've already cleared the cache so we're safe.
3137 	 */
3138 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3139 		ret = -ENOSPC;
3140 		goto out_put;
3141 	}
3142 
3143 	/*
3144 	 * Try to preallocate enough space based on how big the block group is.
3145 	 * Keep in mind this has to include any pinned space which could end up
3146 	 * taking up quite a bit since it's not folded into the other space
3147 	 * cache.
3148 	 */
3149 	cache_size = div_u64(block_group->length, SZ_256M);
3150 	if (!cache_size)
3151 		cache_size = 1;
3152 
3153 	cache_size *= 16;
3154 	cache_size *= fs_info->sectorsize;
3155 
3156 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3157 					  cache_size, false);
3158 	if (ret)
3159 		goto out_put;
3160 
3161 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3162 					      cache_size, cache_size,
3163 					      &alloc_hint);
3164 	/*
3165 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3166 	 * of metadata or split extents when writing the cache out, which means
3167 	 * we can enospc if we are heavily fragmented in addition to just normal
3168 	 * out of space conditions.  So if we hit this just skip setting up any
3169 	 * other block groups for this transaction, maybe we'll unpin enough
3170 	 * space the next time around.
3171 	 */
3172 	if (!ret)
3173 		dcs = BTRFS_DC_SETUP;
3174 	else if (ret == -ENOSPC)
3175 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3176 
3177 out_put:
3178 	iput(inode);
3179 out_free:
3180 	btrfs_release_path(path);
3181 out:
3182 	spin_lock(&block_group->lock);
3183 	if (!ret && dcs == BTRFS_DC_SETUP)
3184 		block_group->cache_generation = trans->transid;
3185 	block_group->disk_cache_state = dcs;
3186 	spin_unlock(&block_group->lock);
3187 
3188 	extent_changeset_free(data_reserved);
3189 	return ret;
3190 }
3191 
3192 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3193 {
3194 	struct btrfs_fs_info *fs_info = trans->fs_info;
3195 	struct btrfs_block_group *cache, *tmp;
3196 	struct btrfs_transaction *cur_trans = trans->transaction;
3197 	struct btrfs_path *path;
3198 
3199 	if (list_empty(&cur_trans->dirty_bgs) ||
3200 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3201 		return 0;
3202 
3203 	path = btrfs_alloc_path();
3204 	if (!path)
3205 		return -ENOMEM;
3206 
3207 	/* Could add new block groups, use _safe just in case */
3208 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3209 				 dirty_list) {
3210 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3211 			cache_save_setup(cache, trans, path);
3212 	}
3213 
3214 	btrfs_free_path(path);
3215 	return 0;
3216 }
3217 
3218 /*
3219  * Transaction commit does final block group cache writeback during a critical
3220  * section where nothing is allowed to change the FS.  This is required in
3221  * order for the cache to actually match the block group, but can introduce a
3222  * lot of latency into the commit.
3223  *
3224  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3225  * There's a chance we'll have to redo some of it if the block group changes
3226  * again during the commit, but it greatly reduces the commit latency by
3227  * getting rid of the easy block groups while we're still allowing others to
3228  * join the commit.
3229  */
3230 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3231 {
3232 	struct btrfs_fs_info *fs_info = trans->fs_info;
3233 	struct btrfs_block_group *cache;
3234 	struct btrfs_transaction *cur_trans = trans->transaction;
3235 	int ret = 0;
3236 	int should_put;
3237 	struct btrfs_path *path = NULL;
3238 	LIST_HEAD(dirty);
3239 	struct list_head *io = &cur_trans->io_bgs;
3240 	int loops = 0;
3241 
3242 	spin_lock(&cur_trans->dirty_bgs_lock);
3243 	if (list_empty(&cur_trans->dirty_bgs)) {
3244 		spin_unlock(&cur_trans->dirty_bgs_lock);
3245 		return 0;
3246 	}
3247 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3248 	spin_unlock(&cur_trans->dirty_bgs_lock);
3249 
3250 again:
3251 	/* Make sure all the block groups on our dirty list actually exist */
3252 	btrfs_create_pending_block_groups(trans);
3253 
3254 	if (!path) {
3255 		path = btrfs_alloc_path();
3256 		if (!path) {
3257 			ret = -ENOMEM;
3258 			goto out;
3259 		}
3260 	}
3261 
3262 	/*
3263 	 * cache_write_mutex is here only to save us from balance or automatic
3264 	 * removal of empty block groups deleting this block group while we are
3265 	 * writing out the cache
3266 	 */
3267 	mutex_lock(&trans->transaction->cache_write_mutex);
3268 	while (!list_empty(&dirty)) {
3269 		bool drop_reserve = true;
3270 
3271 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3272 					 dirty_list);
3273 		/*
3274 		 * This can happen if something re-dirties a block group that
3275 		 * is already under IO.  Just wait for it to finish and then do
3276 		 * it all again
3277 		 */
3278 		if (!list_empty(&cache->io_list)) {
3279 			list_del_init(&cache->io_list);
3280 			btrfs_wait_cache_io(trans, cache, path);
3281 			btrfs_put_block_group(cache);
3282 		}
3283 
3284 
3285 		/*
3286 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3287 		 * it should update the cache_state.  Don't delete until after
3288 		 * we wait.
3289 		 *
3290 		 * Since we're not running in the commit critical section
3291 		 * we need the dirty_bgs_lock to protect from update_block_group
3292 		 */
3293 		spin_lock(&cur_trans->dirty_bgs_lock);
3294 		list_del_init(&cache->dirty_list);
3295 		spin_unlock(&cur_trans->dirty_bgs_lock);
3296 
3297 		should_put = 1;
3298 
3299 		cache_save_setup(cache, trans, path);
3300 
3301 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3302 			cache->io_ctl.inode = NULL;
3303 			ret = btrfs_write_out_cache(trans, cache, path);
3304 			if (ret == 0 && cache->io_ctl.inode) {
3305 				should_put = 0;
3306 
3307 				/*
3308 				 * The cache_write_mutex is protecting the
3309 				 * io_list, also refer to the definition of
3310 				 * btrfs_transaction::io_bgs for more details
3311 				 */
3312 				list_add_tail(&cache->io_list, io);
3313 			} else {
3314 				/*
3315 				 * If we failed to write the cache, the
3316 				 * generation will be bad and life goes on
3317 				 */
3318 				ret = 0;
3319 			}
3320 		}
3321 		if (!ret) {
3322 			ret = update_block_group_item(trans, path, cache);
3323 			/*
3324 			 * Our block group might still be attached to the list
3325 			 * of new block groups in the transaction handle of some
3326 			 * other task (struct btrfs_trans_handle->new_bgs). This
3327 			 * means its block group item isn't yet in the extent
3328 			 * tree. If this happens ignore the error, as we will
3329 			 * try again later in the critical section of the
3330 			 * transaction commit.
3331 			 */
3332 			if (ret == -ENOENT) {
3333 				ret = 0;
3334 				spin_lock(&cur_trans->dirty_bgs_lock);
3335 				if (list_empty(&cache->dirty_list)) {
3336 					list_add_tail(&cache->dirty_list,
3337 						      &cur_trans->dirty_bgs);
3338 					btrfs_get_block_group(cache);
3339 					drop_reserve = false;
3340 				}
3341 				spin_unlock(&cur_trans->dirty_bgs_lock);
3342 			} else if (ret) {
3343 				btrfs_abort_transaction(trans, ret);
3344 			}
3345 		}
3346 
3347 		/* If it's not on the io list, we need to put the block group */
3348 		if (should_put)
3349 			btrfs_put_block_group(cache);
3350 		if (drop_reserve)
3351 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3352 		/*
3353 		 * Avoid blocking other tasks for too long. It might even save
3354 		 * us from writing caches for block groups that are going to be
3355 		 * removed.
3356 		 */
3357 		mutex_unlock(&trans->transaction->cache_write_mutex);
3358 		if (ret)
3359 			goto out;
3360 		mutex_lock(&trans->transaction->cache_write_mutex);
3361 	}
3362 	mutex_unlock(&trans->transaction->cache_write_mutex);
3363 
3364 	/*
3365 	 * Go through delayed refs for all the stuff we've just kicked off
3366 	 * and then loop back (just once)
3367 	 */
3368 	if (!ret)
3369 		ret = btrfs_run_delayed_refs(trans, 0);
3370 	if (!ret && loops == 0) {
3371 		loops++;
3372 		spin_lock(&cur_trans->dirty_bgs_lock);
3373 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3374 		/*
3375 		 * dirty_bgs_lock protects us from concurrent block group
3376 		 * deletes too (not just cache_write_mutex).
3377 		 */
3378 		if (!list_empty(&dirty)) {
3379 			spin_unlock(&cur_trans->dirty_bgs_lock);
3380 			goto again;
3381 		}
3382 		spin_unlock(&cur_trans->dirty_bgs_lock);
3383 	}
3384 out:
3385 	if (ret < 0) {
3386 		spin_lock(&cur_trans->dirty_bgs_lock);
3387 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3388 		spin_unlock(&cur_trans->dirty_bgs_lock);
3389 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3390 	}
3391 
3392 	btrfs_free_path(path);
3393 	return ret;
3394 }
3395 
3396 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3397 {
3398 	struct btrfs_fs_info *fs_info = trans->fs_info;
3399 	struct btrfs_block_group *cache;
3400 	struct btrfs_transaction *cur_trans = trans->transaction;
3401 	int ret = 0;
3402 	int should_put;
3403 	struct btrfs_path *path;
3404 	struct list_head *io = &cur_trans->io_bgs;
3405 
3406 	path = btrfs_alloc_path();
3407 	if (!path)
3408 		return -ENOMEM;
3409 
3410 	/*
3411 	 * Even though we are in the critical section of the transaction commit,
3412 	 * we can still have concurrent tasks adding elements to this
3413 	 * transaction's list of dirty block groups. These tasks correspond to
3414 	 * endio free space workers started when writeback finishes for a
3415 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3416 	 * allocate new block groups as a result of COWing nodes of the root
3417 	 * tree when updating the free space inode. The writeback for the space
3418 	 * caches is triggered by an earlier call to
3419 	 * btrfs_start_dirty_block_groups() and iterations of the following
3420 	 * loop.
3421 	 * Also we want to do the cache_save_setup first and then run the
3422 	 * delayed refs to make sure we have the best chance at doing this all
3423 	 * in one shot.
3424 	 */
3425 	spin_lock(&cur_trans->dirty_bgs_lock);
3426 	while (!list_empty(&cur_trans->dirty_bgs)) {
3427 		cache = list_first_entry(&cur_trans->dirty_bgs,
3428 					 struct btrfs_block_group,
3429 					 dirty_list);
3430 
3431 		/*
3432 		 * This can happen if cache_save_setup re-dirties a block group
3433 		 * that is already under IO.  Just wait for it to finish and
3434 		 * then do it all again
3435 		 */
3436 		if (!list_empty(&cache->io_list)) {
3437 			spin_unlock(&cur_trans->dirty_bgs_lock);
3438 			list_del_init(&cache->io_list);
3439 			btrfs_wait_cache_io(trans, cache, path);
3440 			btrfs_put_block_group(cache);
3441 			spin_lock(&cur_trans->dirty_bgs_lock);
3442 		}
3443 
3444 		/*
3445 		 * Don't remove from the dirty list until after we've waited on
3446 		 * any pending IO
3447 		 */
3448 		list_del_init(&cache->dirty_list);
3449 		spin_unlock(&cur_trans->dirty_bgs_lock);
3450 		should_put = 1;
3451 
3452 		cache_save_setup(cache, trans, path);
3453 
3454 		if (!ret)
3455 			ret = btrfs_run_delayed_refs(trans,
3456 						     (unsigned long) -1);
3457 
3458 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3459 			cache->io_ctl.inode = NULL;
3460 			ret = btrfs_write_out_cache(trans, cache, path);
3461 			if (ret == 0 && cache->io_ctl.inode) {
3462 				should_put = 0;
3463 				list_add_tail(&cache->io_list, io);
3464 			} else {
3465 				/*
3466 				 * If we failed to write the cache, the
3467 				 * generation will be bad and life goes on
3468 				 */
3469 				ret = 0;
3470 			}
3471 		}
3472 		if (!ret) {
3473 			ret = update_block_group_item(trans, path, cache);
3474 			/*
3475 			 * One of the free space endio workers might have
3476 			 * created a new block group while updating a free space
3477 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3478 			 * and hasn't released its transaction handle yet, in
3479 			 * which case the new block group is still attached to
3480 			 * its transaction handle and its creation has not
3481 			 * finished yet (no block group item in the extent tree
3482 			 * yet, etc). If this is the case, wait for all free
3483 			 * space endio workers to finish and retry. This is a
3484 			 * very rare case so no need for a more efficient and
3485 			 * complex approach.
3486 			 */
3487 			if (ret == -ENOENT) {
3488 				wait_event(cur_trans->writer_wait,
3489 				   atomic_read(&cur_trans->num_writers) == 1);
3490 				ret = update_block_group_item(trans, path, cache);
3491 			}
3492 			if (ret)
3493 				btrfs_abort_transaction(trans, ret);
3494 		}
3495 
3496 		/* If its not on the io list, we need to put the block group */
3497 		if (should_put)
3498 			btrfs_put_block_group(cache);
3499 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3500 		spin_lock(&cur_trans->dirty_bgs_lock);
3501 	}
3502 	spin_unlock(&cur_trans->dirty_bgs_lock);
3503 
3504 	/*
3505 	 * Refer to the definition of io_bgs member for details why it's safe
3506 	 * to use it without any locking
3507 	 */
3508 	while (!list_empty(io)) {
3509 		cache = list_first_entry(io, struct btrfs_block_group,
3510 					 io_list);
3511 		list_del_init(&cache->io_list);
3512 		btrfs_wait_cache_io(trans, cache, path);
3513 		btrfs_put_block_group(cache);
3514 	}
3515 
3516 	btrfs_free_path(path);
3517 	return ret;
3518 }
3519 
3520 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3521 			     u64 bytenr, u64 num_bytes, bool alloc)
3522 {
3523 	struct btrfs_fs_info *info = trans->fs_info;
3524 	struct btrfs_block_group *cache = NULL;
3525 	u64 total = num_bytes;
3526 	u64 old_val;
3527 	u64 byte_in_group;
3528 	int factor;
3529 	int ret = 0;
3530 
3531 	/* Block accounting for super block */
3532 	spin_lock(&info->delalloc_root_lock);
3533 	old_val = btrfs_super_bytes_used(info->super_copy);
3534 	if (alloc)
3535 		old_val += num_bytes;
3536 	else
3537 		old_val -= num_bytes;
3538 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3539 	spin_unlock(&info->delalloc_root_lock);
3540 
3541 	while (total) {
3542 		struct btrfs_space_info *space_info;
3543 		bool reclaim = false;
3544 
3545 		cache = btrfs_lookup_block_group(info, bytenr);
3546 		if (!cache) {
3547 			ret = -ENOENT;
3548 			break;
3549 		}
3550 		space_info = cache->space_info;
3551 		factor = btrfs_bg_type_to_factor(cache->flags);
3552 
3553 		/*
3554 		 * If this block group has free space cache written out, we
3555 		 * need to make sure to load it if we are removing space.  This
3556 		 * is because we need the unpinning stage to actually add the
3557 		 * space back to the block group, otherwise we will leak space.
3558 		 */
3559 		if (!alloc && !btrfs_block_group_done(cache))
3560 			btrfs_cache_block_group(cache, true);
3561 
3562 		byte_in_group = bytenr - cache->start;
3563 		WARN_ON(byte_in_group > cache->length);
3564 
3565 		spin_lock(&space_info->lock);
3566 		spin_lock(&cache->lock);
3567 
3568 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3569 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3570 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3571 
3572 		old_val = cache->used;
3573 		num_bytes = min(total, cache->length - byte_in_group);
3574 		if (alloc) {
3575 			old_val += num_bytes;
3576 			cache->used = old_val;
3577 			cache->reserved -= num_bytes;
3578 			space_info->bytes_reserved -= num_bytes;
3579 			space_info->bytes_used += num_bytes;
3580 			space_info->disk_used += num_bytes * factor;
3581 			spin_unlock(&cache->lock);
3582 			spin_unlock(&space_info->lock);
3583 		} else {
3584 			old_val -= num_bytes;
3585 			cache->used = old_val;
3586 			cache->pinned += num_bytes;
3587 			btrfs_space_info_update_bytes_pinned(info, space_info,
3588 							     num_bytes);
3589 			space_info->bytes_used -= num_bytes;
3590 			space_info->disk_used -= num_bytes * factor;
3591 
3592 			reclaim = should_reclaim_block_group(cache, num_bytes);
3593 
3594 			spin_unlock(&cache->lock);
3595 			spin_unlock(&space_info->lock);
3596 
3597 			set_extent_bit(&trans->transaction->pinned_extents,
3598 				       bytenr, bytenr + num_bytes - 1,
3599 				       EXTENT_DIRTY, NULL);
3600 		}
3601 
3602 		spin_lock(&trans->transaction->dirty_bgs_lock);
3603 		if (list_empty(&cache->dirty_list)) {
3604 			list_add_tail(&cache->dirty_list,
3605 				      &trans->transaction->dirty_bgs);
3606 			trans->delayed_ref_updates++;
3607 			btrfs_get_block_group(cache);
3608 		}
3609 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3610 
3611 		/*
3612 		 * No longer have used bytes in this block group, queue it for
3613 		 * deletion. We do this after adding the block group to the
3614 		 * dirty list to avoid races between cleaner kthread and space
3615 		 * cache writeout.
3616 		 */
3617 		if (!alloc && old_val == 0) {
3618 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3619 				btrfs_mark_bg_unused(cache);
3620 		} else if (!alloc && reclaim) {
3621 			btrfs_mark_bg_to_reclaim(cache);
3622 		}
3623 
3624 		btrfs_put_block_group(cache);
3625 		total -= num_bytes;
3626 		bytenr += num_bytes;
3627 	}
3628 
3629 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3630 	btrfs_update_delayed_refs_rsv(trans);
3631 	return ret;
3632 }
3633 
3634 /*
3635  * Update the block_group and space info counters.
3636  *
3637  * @cache:	The cache we are manipulating
3638  * @ram_bytes:  The number of bytes of file content, and will be same to
3639  *              @num_bytes except for the compress path.
3640  * @num_bytes:	The number of bytes in question
3641  * @delalloc:   The blocks are allocated for the delalloc write
3642  *
3643  * This is called by the allocator when it reserves space. If this is a
3644  * reservation and the block group has become read only we cannot make the
3645  * reservation and return -EAGAIN, otherwise this function always succeeds.
3646  */
3647 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3648 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3649 			     bool force_wrong_size_class)
3650 {
3651 	struct btrfs_space_info *space_info = cache->space_info;
3652 	enum btrfs_block_group_size_class size_class;
3653 	int ret = 0;
3654 
3655 	spin_lock(&space_info->lock);
3656 	spin_lock(&cache->lock);
3657 	if (cache->ro) {
3658 		ret = -EAGAIN;
3659 		goto out;
3660 	}
3661 
3662 	if (btrfs_block_group_should_use_size_class(cache)) {
3663 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3664 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3665 		if (ret)
3666 			goto out;
3667 	}
3668 	cache->reserved += num_bytes;
3669 	space_info->bytes_reserved += num_bytes;
3670 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3671 				      space_info->flags, num_bytes, 1);
3672 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3673 					      space_info, -ram_bytes);
3674 	if (delalloc)
3675 		cache->delalloc_bytes += num_bytes;
3676 
3677 	/*
3678 	 * Compression can use less space than we reserved, so wake tickets if
3679 	 * that happens.
3680 	 */
3681 	if (num_bytes < ram_bytes)
3682 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3683 out:
3684 	spin_unlock(&cache->lock);
3685 	spin_unlock(&space_info->lock);
3686 	return ret;
3687 }
3688 
3689 /*
3690  * Update the block_group and space info counters.
3691  *
3692  * @cache:      The cache we are manipulating
3693  * @num_bytes:  The number of bytes in question
3694  * @delalloc:   The blocks are allocated for the delalloc write
3695  *
3696  * This is called by somebody who is freeing space that was never actually used
3697  * on disk.  For example if you reserve some space for a new leaf in transaction
3698  * A and before transaction A commits you free that leaf, you call this with
3699  * reserve set to 0 in order to clear the reservation.
3700  */
3701 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3702 			       u64 num_bytes, int delalloc)
3703 {
3704 	struct btrfs_space_info *space_info = cache->space_info;
3705 
3706 	spin_lock(&space_info->lock);
3707 	spin_lock(&cache->lock);
3708 	if (cache->ro)
3709 		space_info->bytes_readonly += num_bytes;
3710 	cache->reserved -= num_bytes;
3711 	space_info->bytes_reserved -= num_bytes;
3712 	space_info->max_extent_size = 0;
3713 
3714 	if (delalloc)
3715 		cache->delalloc_bytes -= num_bytes;
3716 	spin_unlock(&cache->lock);
3717 
3718 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3719 	spin_unlock(&space_info->lock);
3720 }
3721 
3722 static void force_metadata_allocation(struct btrfs_fs_info *info)
3723 {
3724 	struct list_head *head = &info->space_info;
3725 	struct btrfs_space_info *found;
3726 
3727 	list_for_each_entry(found, head, list) {
3728 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3729 			found->force_alloc = CHUNK_ALLOC_FORCE;
3730 	}
3731 }
3732 
3733 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3734 			      struct btrfs_space_info *sinfo, int force)
3735 {
3736 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3737 	u64 thresh;
3738 
3739 	if (force == CHUNK_ALLOC_FORCE)
3740 		return 1;
3741 
3742 	/*
3743 	 * in limited mode, we want to have some free space up to
3744 	 * about 1% of the FS size.
3745 	 */
3746 	if (force == CHUNK_ALLOC_LIMITED) {
3747 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3748 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3749 
3750 		if (sinfo->total_bytes - bytes_used < thresh)
3751 			return 1;
3752 	}
3753 
3754 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3755 		return 0;
3756 	return 1;
3757 }
3758 
3759 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3760 {
3761 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3762 
3763 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3764 }
3765 
3766 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3767 {
3768 	struct btrfs_block_group *bg;
3769 	int ret;
3770 
3771 	/*
3772 	 * Check if we have enough space in the system space info because we
3773 	 * will need to update device items in the chunk btree and insert a new
3774 	 * chunk item in the chunk btree as well. This will allocate a new
3775 	 * system block group if needed.
3776 	 */
3777 	check_system_chunk(trans, flags);
3778 
3779 	bg = btrfs_create_chunk(trans, flags);
3780 	if (IS_ERR(bg)) {
3781 		ret = PTR_ERR(bg);
3782 		goto out;
3783 	}
3784 
3785 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3786 	/*
3787 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3788 	 * previously reserved space in the system space_info and allocated one
3789 	 * new system chunk if necessary. However there are three exceptions:
3790 	 *
3791 	 * 1) We may have enough free space in the system space_info but all the
3792 	 *    existing system block groups have a profile which can not be used
3793 	 *    for extent allocation.
3794 	 *
3795 	 *    This happens when mounting in degraded mode. For example we have a
3796 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3797 	 *    using the other device in degraded mode. If we then allocate a chunk,
3798 	 *    we may have enough free space in the existing system space_info, but
3799 	 *    none of the block groups can be used for extent allocation since they
3800 	 *    have a RAID1 profile, and because we are in degraded mode with a
3801 	 *    single device, we are forced to allocate a new system chunk with a
3802 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3803 	 *    block groups and check if they have a usable profile and enough space
3804 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3805 	 *    try again after forcing allocation of a new system chunk. Like this
3806 	 *    we avoid paying the cost of that search in normal circumstances, when
3807 	 *    we were not mounted in degraded mode;
3808 	 *
3809 	 * 2) We had enough free space info the system space_info, and one suitable
3810 	 *    block group to allocate from when we called check_system_chunk()
3811 	 *    above. However right after we called it, the only system block group
3812 	 *    with enough free space got turned into RO mode by a running scrub,
3813 	 *    and in this case we have to allocate a new one and retry. We only
3814 	 *    need do this allocate and retry once, since we have a transaction
3815 	 *    handle and scrub uses the commit root to search for block groups;
3816 	 *
3817 	 * 3) We had one system block group with enough free space when we called
3818 	 *    check_system_chunk(), but after that, right before we tried to
3819 	 *    allocate the last extent buffer we needed, a discard operation came
3820 	 *    in and it temporarily removed the last free space entry from the
3821 	 *    block group (discard removes a free space entry, discards it, and
3822 	 *    then adds back the entry to the block group cache).
3823 	 */
3824 	if (ret == -ENOSPC) {
3825 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3826 		struct btrfs_block_group *sys_bg;
3827 
3828 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3829 		if (IS_ERR(sys_bg)) {
3830 			ret = PTR_ERR(sys_bg);
3831 			btrfs_abort_transaction(trans, ret);
3832 			goto out;
3833 		}
3834 
3835 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3836 		if (ret) {
3837 			btrfs_abort_transaction(trans, ret);
3838 			goto out;
3839 		}
3840 
3841 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3842 		if (ret) {
3843 			btrfs_abort_transaction(trans, ret);
3844 			goto out;
3845 		}
3846 	} else if (ret) {
3847 		btrfs_abort_transaction(trans, ret);
3848 		goto out;
3849 	}
3850 out:
3851 	btrfs_trans_release_chunk_metadata(trans);
3852 
3853 	if (ret)
3854 		return ERR_PTR(ret);
3855 
3856 	btrfs_get_block_group(bg);
3857 	return bg;
3858 }
3859 
3860 /*
3861  * Chunk allocation is done in 2 phases:
3862  *
3863  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3864  *    the chunk, the chunk mapping, create its block group and add the items
3865  *    that belong in the chunk btree to it - more specifically, we need to
3866  *    update device items in the chunk btree and add a new chunk item to it.
3867  *
3868  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3869  *    group item to the extent btree and the device extent items to the devices
3870  *    btree.
3871  *
3872  * This is done to prevent deadlocks. For example when COWing a node from the
3873  * extent btree we are holding a write lock on the node's parent and if we
3874  * trigger chunk allocation and attempted to insert the new block group item
3875  * in the extent btree right way, we could deadlock because the path for the
3876  * insertion can include that parent node. At first glance it seems impossible
3877  * to trigger chunk allocation after starting a transaction since tasks should
3878  * reserve enough transaction units (metadata space), however while that is true
3879  * most of the time, chunk allocation may still be triggered for several reasons:
3880  *
3881  * 1) When reserving metadata, we check if there is enough free space in the
3882  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3883  *    However later when the task actually tries to COW an extent buffer from
3884  *    the extent btree or from the device btree for example, it is forced to
3885  *    allocate a new block group (chunk) because the only one that had enough
3886  *    free space was just turned to RO mode by a running scrub for example (or
3887  *    device replace, block group reclaim thread, etc), so we can not use it
3888  *    for allocating an extent and end up being forced to allocate a new one;
3889  *
3890  * 2) Because we only check that the metadata space_info has enough free bytes,
3891  *    we end up not allocating a new metadata chunk in that case. However if
3892  *    the filesystem was mounted in degraded mode, none of the existing block
3893  *    groups might be suitable for extent allocation due to their incompatible
3894  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3895  *    use a RAID1 profile, in degraded mode using a single device). In this case
3896  *    when the task attempts to COW some extent buffer of the extent btree for
3897  *    example, it will trigger allocation of a new metadata block group with a
3898  *    suitable profile (SINGLE profile in the example of the degraded mount of
3899  *    the RAID1 filesystem);
3900  *
3901  * 3) The task has reserved enough transaction units / metadata space, but when
3902  *    it attempts to COW an extent buffer from the extent or device btree for
3903  *    example, it does not find any free extent in any metadata block group,
3904  *    therefore forced to try to allocate a new metadata block group.
3905  *    This is because some other task allocated all available extents in the
3906  *    meanwhile - this typically happens with tasks that don't reserve space
3907  *    properly, either intentionally or as a bug. One example where this is
3908  *    done intentionally is fsync, as it does not reserve any transaction units
3909  *    and ends up allocating a variable number of metadata extents for log
3910  *    tree extent buffers;
3911  *
3912  * 4) The task has reserved enough transaction units / metadata space, but right
3913  *    before it tries to allocate the last extent buffer it needs, a discard
3914  *    operation comes in and, temporarily, removes the last free space entry from
3915  *    the only metadata block group that had free space (discard starts by
3916  *    removing a free space entry from a block group, then does the discard
3917  *    operation and, once it's done, it adds back the free space entry to the
3918  *    block group).
3919  *
3920  * We also need this 2 phases setup when adding a device to a filesystem with
3921  * a seed device - we must create new metadata and system chunks without adding
3922  * any of the block group items to the chunk, extent and device btrees. If we
3923  * did not do it this way, we would get ENOSPC when attempting to update those
3924  * btrees, since all the chunks from the seed device are read-only.
3925  *
3926  * Phase 1 does the updates and insertions to the chunk btree because if we had
3927  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3928  * parallel, we risk having too many system chunks allocated by many tasks if
3929  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3930  * extreme case this leads to exhaustion of the system chunk array in the
3931  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3932  * and with RAID filesystems (so we have more device items in the chunk btree).
3933  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3934  * the system chunk array due to concurrent allocations") provides more details.
3935  *
3936  * Allocation of system chunks does not happen through this function. A task that
3937  * needs to update the chunk btree (the only btree that uses system chunks), must
3938  * preallocate chunk space by calling either check_system_chunk() or
3939  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3940  * metadata chunk or when removing a chunk, while the later is used before doing
3941  * a modification to the chunk btree - use cases for the later are adding,
3942  * removing and resizing a device as well as relocation of a system chunk.
3943  * See the comment below for more details.
3944  *
3945  * The reservation of system space, done through check_system_chunk(), as well
3946  * as all the updates and insertions into the chunk btree must be done while
3947  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3948  * an extent buffer from the chunks btree we never trigger allocation of a new
3949  * system chunk, which would result in a deadlock (trying to lock twice an
3950  * extent buffer of the chunk btree, first time before triggering the chunk
3951  * allocation and the second time during chunk allocation while attempting to
3952  * update the chunks btree). The system chunk array is also updated while holding
3953  * that mutex. The same logic applies to removing chunks - we must reserve system
3954  * space, update the chunk btree and the system chunk array in the superblock
3955  * while holding fs_info->chunk_mutex.
3956  *
3957  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3958  *
3959  * If @force is CHUNK_ALLOC_FORCE:
3960  *    - return 1 if it successfully allocates a chunk,
3961  *    - return errors including -ENOSPC otherwise.
3962  * If @force is NOT CHUNK_ALLOC_FORCE:
3963  *    - return 0 if it doesn't need to allocate a new chunk,
3964  *    - return 1 if it successfully allocates a chunk,
3965  *    - return errors including -ENOSPC otherwise.
3966  */
3967 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3968 		      enum btrfs_chunk_alloc_enum force)
3969 {
3970 	struct btrfs_fs_info *fs_info = trans->fs_info;
3971 	struct btrfs_space_info *space_info;
3972 	struct btrfs_block_group *ret_bg;
3973 	bool wait_for_alloc = false;
3974 	bool should_alloc = false;
3975 	bool from_extent_allocation = false;
3976 	int ret = 0;
3977 
3978 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3979 		from_extent_allocation = true;
3980 		force = CHUNK_ALLOC_FORCE;
3981 	}
3982 
3983 	/* Don't re-enter if we're already allocating a chunk */
3984 	if (trans->allocating_chunk)
3985 		return -ENOSPC;
3986 	/*
3987 	 * Allocation of system chunks can not happen through this path, as we
3988 	 * could end up in a deadlock if we are allocating a data or metadata
3989 	 * chunk and there is another task modifying the chunk btree.
3990 	 *
3991 	 * This is because while we are holding the chunk mutex, we will attempt
3992 	 * to add the new chunk item to the chunk btree or update an existing
3993 	 * device item in the chunk btree, while the other task that is modifying
3994 	 * the chunk btree is attempting to COW an extent buffer while holding a
3995 	 * lock on it and on its parent - if the COW operation triggers a system
3996 	 * chunk allocation, then we can deadlock because we are holding the
3997 	 * chunk mutex and we may need to access that extent buffer or its parent
3998 	 * in order to add the chunk item or update a device item.
3999 	 *
4000 	 * Tasks that want to modify the chunk tree should reserve system space
4001 	 * before updating the chunk btree, by calling either
4002 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4003 	 * It's possible that after a task reserves the space, it still ends up
4004 	 * here - this happens in the cases described above at do_chunk_alloc().
4005 	 * The task will have to either retry or fail.
4006 	 */
4007 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4008 		return -ENOSPC;
4009 
4010 	space_info = btrfs_find_space_info(fs_info, flags);
4011 	ASSERT(space_info);
4012 
4013 	do {
4014 		spin_lock(&space_info->lock);
4015 		if (force < space_info->force_alloc)
4016 			force = space_info->force_alloc;
4017 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4018 		if (space_info->full) {
4019 			/* No more free physical space */
4020 			if (should_alloc)
4021 				ret = -ENOSPC;
4022 			else
4023 				ret = 0;
4024 			spin_unlock(&space_info->lock);
4025 			return ret;
4026 		} else if (!should_alloc) {
4027 			spin_unlock(&space_info->lock);
4028 			return 0;
4029 		} else if (space_info->chunk_alloc) {
4030 			/*
4031 			 * Someone is already allocating, so we need to block
4032 			 * until this someone is finished and then loop to
4033 			 * recheck if we should continue with our allocation
4034 			 * attempt.
4035 			 */
4036 			wait_for_alloc = true;
4037 			force = CHUNK_ALLOC_NO_FORCE;
4038 			spin_unlock(&space_info->lock);
4039 			mutex_lock(&fs_info->chunk_mutex);
4040 			mutex_unlock(&fs_info->chunk_mutex);
4041 		} else {
4042 			/* Proceed with allocation */
4043 			space_info->chunk_alloc = 1;
4044 			wait_for_alloc = false;
4045 			spin_unlock(&space_info->lock);
4046 		}
4047 
4048 		cond_resched();
4049 	} while (wait_for_alloc);
4050 
4051 	mutex_lock(&fs_info->chunk_mutex);
4052 	trans->allocating_chunk = true;
4053 
4054 	/*
4055 	 * If we have mixed data/metadata chunks we want to make sure we keep
4056 	 * allocating mixed chunks instead of individual chunks.
4057 	 */
4058 	if (btrfs_mixed_space_info(space_info))
4059 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4060 
4061 	/*
4062 	 * if we're doing a data chunk, go ahead and make sure that
4063 	 * we keep a reasonable number of metadata chunks allocated in the
4064 	 * FS as well.
4065 	 */
4066 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4067 		fs_info->data_chunk_allocations++;
4068 		if (!(fs_info->data_chunk_allocations %
4069 		      fs_info->metadata_ratio))
4070 			force_metadata_allocation(fs_info);
4071 	}
4072 
4073 	ret_bg = do_chunk_alloc(trans, flags);
4074 	trans->allocating_chunk = false;
4075 
4076 	if (IS_ERR(ret_bg)) {
4077 		ret = PTR_ERR(ret_bg);
4078 	} else if (from_extent_allocation) {
4079 		/*
4080 		 * New block group is likely to be used soon. Try to activate
4081 		 * it now. Failure is OK for now.
4082 		 */
4083 		btrfs_zone_activate(ret_bg);
4084 	}
4085 
4086 	if (!ret)
4087 		btrfs_put_block_group(ret_bg);
4088 
4089 	spin_lock(&space_info->lock);
4090 	if (ret < 0) {
4091 		if (ret == -ENOSPC)
4092 			space_info->full = 1;
4093 		else
4094 			goto out;
4095 	} else {
4096 		ret = 1;
4097 		space_info->max_extent_size = 0;
4098 	}
4099 
4100 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4101 out:
4102 	space_info->chunk_alloc = 0;
4103 	spin_unlock(&space_info->lock);
4104 	mutex_unlock(&fs_info->chunk_mutex);
4105 
4106 	return ret;
4107 }
4108 
4109 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4110 {
4111 	u64 num_dev;
4112 
4113 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4114 	if (!num_dev)
4115 		num_dev = fs_info->fs_devices->rw_devices;
4116 
4117 	return num_dev;
4118 }
4119 
4120 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4121 				u64 bytes,
4122 				u64 type)
4123 {
4124 	struct btrfs_fs_info *fs_info = trans->fs_info;
4125 	struct btrfs_space_info *info;
4126 	u64 left;
4127 	int ret = 0;
4128 
4129 	/*
4130 	 * Needed because we can end up allocating a system chunk and for an
4131 	 * atomic and race free space reservation in the chunk block reserve.
4132 	 */
4133 	lockdep_assert_held(&fs_info->chunk_mutex);
4134 
4135 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4136 	spin_lock(&info->lock);
4137 	left = info->total_bytes - btrfs_space_info_used(info, true);
4138 	spin_unlock(&info->lock);
4139 
4140 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4141 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4142 			   left, bytes, type);
4143 		btrfs_dump_space_info(fs_info, info, 0, 0);
4144 	}
4145 
4146 	if (left < bytes) {
4147 		u64 flags = btrfs_system_alloc_profile(fs_info);
4148 		struct btrfs_block_group *bg;
4149 
4150 		/*
4151 		 * Ignore failure to create system chunk. We might end up not
4152 		 * needing it, as we might not need to COW all nodes/leafs from
4153 		 * the paths we visit in the chunk tree (they were already COWed
4154 		 * or created in the current transaction for example).
4155 		 */
4156 		bg = btrfs_create_chunk(trans, flags);
4157 		if (IS_ERR(bg)) {
4158 			ret = PTR_ERR(bg);
4159 		} else {
4160 			/*
4161 			 * We have a new chunk. We also need to activate it for
4162 			 * zoned filesystem.
4163 			 */
4164 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4165 			if (ret < 0)
4166 				return;
4167 
4168 			/*
4169 			 * If we fail to add the chunk item here, we end up
4170 			 * trying again at phase 2 of chunk allocation, at
4171 			 * btrfs_create_pending_block_groups(). So ignore
4172 			 * any error here. An ENOSPC here could happen, due to
4173 			 * the cases described at do_chunk_alloc() - the system
4174 			 * block group we just created was just turned into RO
4175 			 * mode by a scrub for example, or a running discard
4176 			 * temporarily removed its free space entries, etc.
4177 			 */
4178 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4179 		}
4180 	}
4181 
4182 	if (!ret) {
4183 		ret = btrfs_block_rsv_add(fs_info,
4184 					  &fs_info->chunk_block_rsv,
4185 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4186 		if (!ret)
4187 			trans->chunk_bytes_reserved += bytes;
4188 	}
4189 }
4190 
4191 /*
4192  * Reserve space in the system space for allocating or removing a chunk.
4193  * The caller must be holding fs_info->chunk_mutex.
4194  */
4195 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4196 {
4197 	struct btrfs_fs_info *fs_info = trans->fs_info;
4198 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4199 	u64 bytes;
4200 
4201 	/* num_devs device items to update and 1 chunk item to add or remove. */
4202 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4203 		btrfs_calc_insert_metadata_size(fs_info, 1);
4204 
4205 	reserve_chunk_space(trans, bytes, type);
4206 }
4207 
4208 /*
4209  * Reserve space in the system space, if needed, for doing a modification to the
4210  * chunk btree.
4211  *
4212  * @trans:		A transaction handle.
4213  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4214  *			in the chunk btree or if it's for the deletion or update
4215  *			of an existing item.
4216  *
4217  * This is used in a context where we need to update the chunk btree outside
4218  * block group allocation and removal, to avoid a deadlock with a concurrent
4219  * task that is allocating a metadata or data block group and therefore needs to
4220  * update the chunk btree while holding the chunk mutex. After the update to the
4221  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4222  *
4223  */
4224 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4225 				  bool is_item_insertion)
4226 {
4227 	struct btrfs_fs_info *fs_info = trans->fs_info;
4228 	u64 bytes;
4229 
4230 	if (is_item_insertion)
4231 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4232 	else
4233 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4234 
4235 	mutex_lock(&fs_info->chunk_mutex);
4236 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4237 	mutex_unlock(&fs_info->chunk_mutex);
4238 }
4239 
4240 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4241 {
4242 	struct btrfs_block_group *block_group;
4243 
4244 	block_group = btrfs_lookup_first_block_group(info, 0);
4245 	while (block_group) {
4246 		btrfs_wait_block_group_cache_done(block_group);
4247 		spin_lock(&block_group->lock);
4248 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4249 				       &block_group->runtime_flags)) {
4250 			struct inode *inode = block_group->inode;
4251 
4252 			block_group->inode = NULL;
4253 			spin_unlock(&block_group->lock);
4254 
4255 			ASSERT(block_group->io_ctl.inode == NULL);
4256 			iput(inode);
4257 		} else {
4258 			spin_unlock(&block_group->lock);
4259 		}
4260 		block_group = btrfs_next_block_group(block_group);
4261 	}
4262 }
4263 
4264 /*
4265  * Must be called only after stopping all workers, since we could have block
4266  * group caching kthreads running, and therefore they could race with us if we
4267  * freed the block groups before stopping them.
4268  */
4269 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4270 {
4271 	struct btrfs_block_group *block_group;
4272 	struct btrfs_space_info *space_info;
4273 	struct btrfs_caching_control *caching_ctl;
4274 	struct rb_node *n;
4275 
4276 	write_lock(&info->block_group_cache_lock);
4277 	while (!list_empty(&info->caching_block_groups)) {
4278 		caching_ctl = list_entry(info->caching_block_groups.next,
4279 					 struct btrfs_caching_control, list);
4280 		list_del(&caching_ctl->list);
4281 		btrfs_put_caching_control(caching_ctl);
4282 	}
4283 	write_unlock(&info->block_group_cache_lock);
4284 
4285 	spin_lock(&info->unused_bgs_lock);
4286 	while (!list_empty(&info->unused_bgs)) {
4287 		block_group = list_first_entry(&info->unused_bgs,
4288 					       struct btrfs_block_group,
4289 					       bg_list);
4290 		list_del_init(&block_group->bg_list);
4291 		btrfs_put_block_group(block_group);
4292 	}
4293 
4294 	while (!list_empty(&info->reclaim_bgs)) {
4295 		block_group = list_first_entry(&info->reclaim_bgs,
4296 					       struct btrfs_block_group,
4297 					       bg_list);
4298 		list_del_init(&block_group->bg_list);
4299 		btrfs_put_block_group(block_group);
4300 	}
4301 	spin_unlock(&info->unused_bgs_lock);
4302 
4303 	spin_lock(&info->zone_active_bgs_lock);
4304 	while (!list_empty(&info->zone_active_bgs)) {
4305 		block_group = list_first_entry(&info->zone_active_bgs,
4306 					       struct btrfs_block_group,
4307 					       active_bg_list);
4308 		list_del_init(&block_group->active_bg_list);
4309 		btrfs_put_block_group(block_group);
4310 	}
4311 	spin_unlock(&info->zone_active_bgs_lock);
4312 
4313 	write_lock(&info->block_group_cache_lock);
4314 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4315 		block_group = rb_entry(n, struct btrfs_block_group,
4316 				       cache_node);
4317 		rb_erase_cached(&block_group->cache_node,
4318 				&info->block_group_cache_tree);
4319 		RB_CLEAR_NODE(&block_group->cache_node);
4320 		write_unlock(&info->block_group_cache_lock);
4321 
4322 		down_write(&block_group->space_info->groups_sem);
4323 		list_del(&block_group->list);
4324 		up_write(&block_group->space_info->groups_sem);
4325 
4326 		/*
4327 		 * We haven't cached this block group, which means we could
4328 		 * possibly have excluded extents on this block group.
4329 		 */
4330 		if (block_group->cached == BTRFS_CACHE_NO ||
4331 		    block_group->cached == BTRFS_CACHE_ERROR)
4332 			btrfs_free_excluded_extents(block_group);
4333 
4334 		btrfs_remove_free_space_cache(block_group);
4335 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4336 		ASSERT(list_empty(&block_group->dirty_list));
4337 		ASSERT(list_empty(&block_group->io_list));
4338 		ASSERT(list_empty(&block_group->bg_list));
4339 		ASSERT(refcount_read(&block_group->refs) == 1);
4340 		ASSERT(block_group->swap_extents == 0);
4341 		btrfs_put_block_group(block_group);
4342 
4343 		write_lock(&info->block_group_cache_lock);
4344 	}
4345 	write_unlock(&info->block_group_cache_lock);
4346 
4347 	btrfs_release_global_block_rsv(info);
4348 
4349 	while (!list_empty(&info->space_info)) {
4350 		space_info = list_entry(info->space_info.next,
4351 					struct btrfs_space_info,
4352 					list);
4353 
4354 		/*
4355 		 * Do not hide this behind enospc_debug, this is actually
4356 		 * important and indicates a real bug if this happens.
4357 		 */
4358 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4359 			    space_info->bytes_may_use > 0))
4360 			btrfs_dump_space_info(info, space_info, 0, 0);
4361 
4362 		/*
4363 		 * If there was a failure to cleanup a log tree, very likely due
4364 		 * to an IO failure on a writeback attempt of one or more of its
4365 		 * extent buffers, we could not do proper (and cheap) unaccounting
4366 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4367 		 * that case.
4368 		 */
4369 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4370 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4371 			if (WARN_ON(space_info->bytes_reserved > 0))
4372 				btrfs_dump_space_info(info, space_info, 0, 0);
4373 		}
4374 
4375 		WARN_ON(space_info->reclaim_size > 0);
4376 		list_del(&space_info->list);
4377 		btrfs_sysfs_remove_space_info(space_info);
4378 	}
4379 	return 0;
4380 }
4381 
4382 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4383 {
4384 	atomic_inc(&cache->frozen);
4385 }
4386 
4387 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4388 {
4389 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4390 	struct extent_map_tree *em_tree;
4391 	struct extent_map *em;
4392 	bool cleanup;
4393 
4394 	spin_lock(&block_group->lock);
4395 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4396 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4397 	spin_unlock(&block_group->lock);
4398 
4399 	if (cleanup) {
4400 		em_tree = &fs_info->mapping_tree;
4401 		write_lock(&em_tree->lock);
4402 		em = lookup_extent_mapping(em_tree, block_group->start,
4403 					   1);
4404 		BUG_ON(!em); /* logic error, can't happen */
4405 		remove_extent_mapping(em_tree, em);
4406 		write_unlock(&em_tree->lock);
4407 
4408 		/* once for us and once for the tree */
4409 		free_extent_map(em);
4410 		free_extent_map(em);
4411 
4412 		/*
4413 		 * We may have left one free space entry and other possible
4414 		 * tasks trimming this block group have left 1 entry each one.
4415 		 * Free them if any.
4416 		 */
4417 		btrfs_remove_free_space_cache(block_group);
4418 	}
4419 }
4420 
4421 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4422 {
4423 	bool ret = true;
4424 
4425 	spin_lock(&bg->lock);
4426 	if (bg->ro)
4427 		ret = false;
4428 	else
4429 		bg->swap_extents++;
4430 	spin_unlock(&bg->lock);
4431 
4432 	return ret;
4433 }
4434 
4435 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4436 {
4437 	spin_lock(&bg->lock);
4438 	ASSERT(!bg->ro);
4439 	ASSERT(bg->swap_extents >= amount);
4440 	bg->swap_extents -= amount;
4441 	spin_unlock(&bg->lock);
4442 }
4443 
4444 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4445 {
4446 	if (size <= SZ_128K)
4447 		return BTRFS_BG_SZ_SMALL;
4448 	if (size <= SZ_8M)
4449 		return BTRFS_BG_SZ_MEDIUM;
4450 	return BTRFS_BG_SZ_LARGE;
4451 }
4452 
4453 /*
4454  * Handle a block group allocating an extent in a size class
4455  *
4456  * @bg:				The block group we allocated in.
4457  * @size_class:			The size class of the allocation.
4458  * @force_wrong_size_class:	Whether we are desperate enough to allow
4459  *				mismatched size classes.
4460  *
4461  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4462  * case of a race that leads to the wrong size class without
4463  * force_wrong_size_class set.
4464  *
4465  * find_free_extent will skip block groups with a mismatched size class until
4466  * it really needs to avoid ENOSPC. In that case it will set
4467  * force_wrong_size_class. However, if a block group is newly allocated and
4468  * doesn't yet have a size class, then it is possible for two allocations of
4469  * different sizes to race and both try to use it. The loser is caught here and
4470  * has to retry.
4471  */
4472 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4473 				     enum btrfs_block_group_size_class size_class,
4474 				     bool force_wrong_size_class)
4475 {
4476 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4477 
4478 	/* The new allocation is in the right size class, do nothing */
4479 	if (bg->size_class == size_class)
4480 		return 0;
4481 	/*
4482 	 * The new allocation is in a mismatched size class.
4483 	 * This means one of two things:
4484 	 *
4485 	 * 1. Two tasks in find_free_extent for different size_classes raced
4486 	 *    and hit the same empty block_group. Make the loser try again.
4487 	 * 2. A call to find_free_extent got desperate enough to set
4488 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4489 	 *    allocation.
4490 	 */
4491 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4492 		if (force_wrong_size_class)
4493 			return 0;
4494 		return -EAGAIN;
4495 	}
4496 	/*
4497 	 * The happy new block group case: the new allocation is the first
4498 	 * one in the block_group so we set size_class.
4499 	 */
4500 	bg->size_class = size_class;
4501 
4502 	return 0;
4503 }
4504 
4505 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4506 {
4507 	if (btrfs_is_zoned(bg->fs_info))
4508 		return false;
4509 	if (!btrfs_is_block_group_data_only(bg))
4510 		return false;
4511 	return true;
4512 }
4513