1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "volumes.h" 11 #include "transaction.h" 12 #include "ref-verify.h" 13 #include "sysfs.h" 14 #include "tree-log.h" 15 #include "delalloc-space.h" 16 #include "discard.h" 17 #include "raid56.h" 18 #include "zoned.h" 19 20 /* 21 * Return target flags in extended format or 0 if restripe for this chunk_type 22 * is not in progress 23 * 24 * Should be called with balance_lock held 25 */ 26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 27 { 28 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 29 u64 target = 0; 30 31 if (!bctl) 32 return 0; 33 34 if (flags & BTRFS_BLOCK_GROUP_DATA && 35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 43 } 44 45 return target; 46 } 47 48 /* 49 * @flags: available profiles in extended format (see ctree.h) 50 * 51 * Return reduced profile in chunk format. If profile changing is in progress 52 * (either running or paused) picks the target profile (if it's already 53 * available), otherwise falls back to plain reducing. 54 */ 55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 56 { 57 u64 num_devices = fs_info->fs_devices->rw_devices; 58 u64 target; 59 u64 raid_type; 60 u64 allowed = 0; 61 62 /* 63 * See if restripe for this chunk_type is in progress, if so try to 64 * reduce to the target profile 65 */ 66 spin_lock(&fs_info->balance_lock); 67 target = get_restripe_target(fs_info, flags); 68 if (target) { 69 spin_unlock(&fs_info->balance_lock); 70 return extended_to_chunk(target); 71 } 72 spin_unlock(&fs_info->balance_lock); 73 74 /* First, mask out the RAID levels which aren't possible */ 75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 76 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 77 allowed |= btrfs_raid_array[raid_type].bg_flag; 78 } 79 allowed &= flags; 80 81 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 82 allowed = BTRFS_BLOCK_GROUP_RAID6; 83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 84 allowed = BTRFS_BLOCK_GROUP_RAID5; 85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 86 allowed = BTRFS_BLOCK_GROUP_RAID10; 87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 88 allowed = BTRFS_BLOCK_GROUP_RAID1; 89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 90 allowed = BTRFS_BLOCK_GROUP_RAID0; 91 92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 93 94 return extended_to_chunk(flags | allowed); 95 } 96 97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 98 { 99 unsigned seq; 100 u64 flags; 101 102 do { 103 flags = orig_flags; 104 seq = read_seqbegin(&fs_info->profiles_lock); 105 106 if (flags & BTRFS_BLOCK_GROUP_DATA) 107 flags |= fs_info->avail_data_alloc_bits; 108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 109 flags |= fs_info->avail_system_alloc_bits; 110 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 111 flags |= fs_info->avail_metadata_alloc_bits; 112 } while (read_seqretry(&fs_info->profiles_lock, seq)); 113 114 return btrfs_reduce_alloc_profile(fs_info, flags); 115 } 116 117 void btrfs_get_block_group(struct btrfs_block_group *cache) 118 { 119 refcount_inc(&cache->refs); 120 } 121 122 void btrfs_put_block_group(struct btrfs_block_group *cache) 123 { 124 if (refcount_dec_and_test(&cache->refs)) { 125 WARN_ON(cache->pinned > 0); 126 WARN_ON(cache->reserved > 0); 127 128 /* 129 * A block_group shouldn't be on the discard_list anymore. 130 * Remove the block_group from the discard_list to prevent us 131 * from causing a panic due to NULL pointer dereference. 132 */ 133 if (WARN_ON(!list_empty(&cache->discard_list))) 134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 135 cache); 136 137 /* 138 * If not empty, someone is still holding mutex of 139 * full_stripe_lock, which can only be released by caller. 140 * And it will definitely cause use-after-free when caller 141 * tries to release full stripe lock. 142 * 143 * No better way to resolve, but only to warn. 144 */ 145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 146 kfree(cache->free_space_ctl); 147 kfree(cache); 148 } 149 } 150 151 /* 152 * This adds the block group to the fs_info rb tree for the block group cache 153 */ 154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 155 struct btrfs_block_group *block_group) 156 { 157 struct rb_node **p; 158 struct rb_node *parent = NULL; 159 struct btrfs_block_group *cache; 160 161 ASSERT(block_group->length != 0); 162 163 spin_lock(&info->block_group_cache_lock); 164 p = &info->block_group_cache_tree.rb_node; 165 166 while (*p) { 167 parent = *p; 168 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 169 if (block_group->start < cache->start) { 170 p = &(*p)->rb_left; 171 } else if (block_group->start > cache->start) { 172 p = &(*p)->rb_right; 173 } else { 174 spin_unlock(&info->block_group_cache_lock); 175 return -EEXIST; 176 } 177 } 178 179 rb_link_node(&block_group->cache_node, parent, p); 180 rb_insert_color(&block_group->cache_node, 181 &info->block_group_cache_tree); 182 183 if (info->first_logical_byte > block_group->start) 184 info->first_logical_byte = block_group->start; 185 186 spin_unlock(&info->block_group_cache_lock); 187 188 return 0; 189 } 190 191 /* 192 * This will return the block group at or after bytenr if contains is 0, else 193 * it will return the block group that contains the bytenr 194 */ 195 static struct btrfs_block_group *block_group_cache_tree_search( 196 struct btrfs_fs_info *info, u64 bytenr, int contains) 197 { 198 struct btrfs_block_group *cache, *ret = NULL; 199 struct rb_node *n; 200 u64 end, start; 201 202 spin_lock(&info->block_group_cache_lock); 203 n = info->block_group_cache_tree.rb_node; 204 205 while (n) { 206 cache = rb_entry(n, struct btrfs_block_group, cache_node); 207 end = cache->start + cache->length - 1; 208 start = cache->start; 209 210 if (bytenr < start) { 211 if (!contains && (!ret || start < ret->start)) 212 ret = cache; 213 n = n->rb_left; 214 } else if (bytenr > start) { 215 if (contains && bytenr <= end) { 216 ret = cache; 217 break; 218 } 219 n = n->rb_right; 220 } else { 221 ret = cache; 222 break; 223 } 224 } 225 if (ret) { 226 btrfs_get_block_group(ret); 227 if (bytenr == 0 && info->first_logical_byte > ret->start) 228 info->first_logical_byte = ret->start; 229 } 230 spin_unlock(&info->block_group_cache_lock); 231 232 return ret; 233 } 234 235 /* 236 * Return the block group that starts at or after bytenr 237 */ 238 struct btrfs_block_group *btrfs_lookup_first_block_group( 239 struct btrfs_fs_info *info, u64 bytenr) 240 { 241 return block_group_cache_tree_search(info, bytenr, 0); 242 } 243 244 /* 245 * Return the block group that contains the given bytenr 246 */ 247 struct btrfs_block_group *btrfs_lookup_block_group( 248 struct btrfs_fs_info *info, u64 bytenr) 249 { 250 return block_group_cache_tree_search(info, bytenr, 1); 251 } 252 253 struct btrfs_block_group *btrfs_next_block_group( 254 struct btrfs_block_group *cache) 255 { 256 struct btrfs_fs_info *fs_info = cache->fs_info; 257 struct rb_node *node; 258 259 spin_lock(&fs_info->block_group_cache_lock); 260 261 /* If our block group was removed, we need a full search. */ 262 if (RB_EMPTY_NODE(&cache->cache_node)) { 263 const u64 next_bytenr = cache->start + cache->length; 264 265 spin_unlock(&fs_info->block_group_cache_lock); 266 btrfs_put_block_group(cache); 267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 268 } 269 node = rb_next(&cache->cache_node); 270 btrfs_put_block_group(cache); 271 if (node) { 272 cache = rb_entry(node, struct btrfs_block_group, cache_node); 273 btrfs_get_block_group(cache); 274 } else 275 cache = NULL; 276 spin_unlock(&fs_info->block_group_cache_lock); 277 return cache; 278 } 279 280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 281 { 282 struct btrfs_block_group *bg; 283 bool ret = true; 284 285 bg = btrfs_lookup_block_group(fs_info, bytenr); 286 if (!bg) 287 return false; 288 289 spin_lock(&bg->lock); 290 if (bg->ro) 291 ret = false; 292 else 293 atomic_inc(&bg->nocow_writers); 294 spin_unlock(&bg->lock); 295 296 /* No put on block group, done by btrfs_dec_nocow_writers */ 297 if (!ret) 298 btrfs_put_block_group(bg); 299 300 return ret; 301 } 302 303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 304 { 305 struct btrfs_block_group *bg; 306 307 bg = btrfs_lookup_block_group(fs_info, bytenr); 308 ASSERT(bg); 309 if (atomic_dec_and_test(&bg->nocow_writers)) 310 wake_up_var(&bg->nocow_writers); 311 /* 312 * Once for our lookup and once for the lookup done by a previous call 313 * to btrfs_inc_nocow_writers() 314 */ 315 btrfs_put_block_group(bg); 316 btrfs_put_block_group(bg); 317 } 318 319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 320 { 321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 322 } 323 324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 325 const u64 start) 326 { 327 struct btrfs_block_group *bg; 328 329 bg = btrfs_lookup_block_group(fs_info, start); 330 ASSERT(bg); 331 if (atomic_dec_and_test(&bg->reservations)) 332 wake_up_var(&bg->reservations); 333 btrfs_put_block_group(bg); 334 } 335 336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 337 { 338 struct btrfs_space_info *space_info = bg->space_info; 339 340 ASSERT(bg->ro); 341 342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 343 return; 344 345 /* 346 * Our block group is read only but before we set it to read only, 347 * some task might have had allocated an extent from it already, but it 348 * has not yet created a respective ordered extent (and added it to a 349 * root's list of ordered extents). 350 * Therefore wait for any task currently allocating extents, since the 351 * block group's reservations counter is incremented while a read lock 352 * on the groups' semaphore is held and decremented after releasing 353 * the read access on that semaphore and creating the ordered extent. 354 */ 355 down_write(&space_info->groups_sem); 356 up_write(&space_info->groups_sem); 357 358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 359 } 360 361 struct btrfs_caching_control *btrfs_get_caching_control( 362 struct btrfs_block_group *cache) 363 { 364 struct btrfs_caching_control *ctl; 365 366 spin_lock(&cache->lock); 367 if (!cache->caching_ctl) { 368 spin_unlock(&cache->lock); 369 return NULL; 370 } 371 372 ctl = cache->caching_ctl; 373 refcount_inc(&ctl->count); 374 spin_unlock(&cache->lock); 375 return ctl; 376 } 377 378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 379 { 380 if (refcount_dec_and_test(&ctl->count)) 381 kfree(ctl); 382 } 383 384 /* 385 * When we wait for progress in the block group caching, its because our 386 * allocation attempt failed at least once. So, we must sleep and let some 387 * progress happen before we try again. 388 * 389 * This function will sleep at least once waiting for new free space to show 390 * up, and then it will check the block group free space numbers for our min 391 * num_bytes. Another option is to have it go ahead and look in the rbtree for 392 * a free extent of a given size, but this is a good start. 393 * 394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 395 * any of the information in this block group. 396 */ 397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 398 u64 num_bytes) 399 { 400 struct btrfs_caching_control *caching_ctl; 401 402 caching_ctl = btrfs_get_caching_control(cache); 403 if (!caching_ctl) 404 return; 405 406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 407 (cache->free_space_ctl->free_space >= num_bytes)); 408 409 btrfs_put_caching_control(caching_ctl); 410 } 411 412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 413 { 414 struct btrfs_caching_control *caching_ctl; 415 int ret = 0; 416 417 caching_ctl = btrfs_get_caching_control(cache); 418 if (!caching_ctl) 419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 420 421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 422 if (cache->cached == BTRFS_CACHE_ERROR) 423 ret = -EIO; 424 btrfs_put_caching_control(caching_ctl); 425 return ret; 426 } 427 428 static bool space_cache_v1_done(struct btrfs_block_group *cache) 429 { 430 bool ret; 431 432 spin_lock(&cache->lock); 433 ret = cache->cached != BTRFS_CACHE_FAST; 434 spin_unlock(&cache->lock); 435 436 return ret; 437 } 438 439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 440 struct btrfs_caching_control *caching_ctl) 441 { 442 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 443 } 444 445 #ifdef CONFIG_BTRFS_DEBUG 446 static void fragment_free_space(struct btrfs_block_group *block_group) 447 { 448 struct btrfs_fs_info *fs_info = block_group->fs_info; 449 u64 start = block_group->start; 450 u64 len = block_group->length; 451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 452 fs_info->nodesize : fs_info->sectorsize; 453 u64 step = chunk << 1; 454 455 while (len > chunk) { 456 btrfs_remove_free_space(block_group, start, chunk); 457 start += step; 458 if (len < step) 459 len = 0; 460 else 461 len -= step; 462 } 463 } 464 #endif 465 466 /* 467 * This is only called by btrfs_cache_block_group, since we could have freed 468 * extents we need to check the pinned_extents for any extents that can't be 469 * used yet since their free space will be released as soon as the transaction 470 * commits. 471 */ 472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 473 { 474 struct btrfs_fs_info *info = block_group->fs_info; 475 u64 extent_start, extent_end, size, total_added = 0; 476 int ret; 477 478 while (start < end) { 479 ret = find_first_extent_bit(&info->excluded_extents, start, 480 &extent_start, &extent_end, 481 EXTENT_DIRTY | EXTENT_UPTODATE, 482 NULL); 483 if (ret) 484 break; 485 486 if (extent_start <= start) { 487 start = extent_end + 1; 488 } else if (extent_start > start && extent_start < end) { 489 size = extent_start - start; 490 total_added += size; 491 ret = btrfs_add_free_space_async_trimmed(block_group, 492 start, size); 493 BUG_ON(ret); /* -ENOMEM or logic error */ 494 start = extent_end + 1; 495 } else { 496 break; 497 } 498 } 499 500 if (start < end) { 501 size = end - start; 502 total_added += size; 503 ret = btrfs_add_free_space_async_trimmed(block_group, start, 504 size); 505 BUG_ON(ret); /* -ENOMEM or logic error */ 506 } 507 508 return total_added; 509 } 510 511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 512 { 513 struct btrfs_block_group *block_group = caching_ctl->block_group; 514 struct btrfs_fs_info *fs_info = block_group->fs_info; 515 struct btrfs_root *extent_root = fs_info->extent_root; 516 struct btrfs_path *path; 517 struct extent_buffer *leaf; 518 struct btrfs_key key; 519 u64 total_found = 0; 520 u64 last = 0; 521 u32 nritems; 522 int ret; 523 bool wakeup = true; 524 525 path = btrfs_alloc_path(); 526 if (!path) 527 return -ENOMEM; 528 529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 530 531 #ifdef CONFIG_BTRFS_DEBUG 532 /* 533 * If we're fragmenting we don't want to make anybody think we can 534 * allocate from this block group until we've had a chance to fragment 535 * the free space. 536 */ 537 if (btrfs_should_fragment_free_space(block_group)) 538 wakeup = false; 539 #endif 540 /* 541 * We don't want to deadlock with somebody trying to allocate a new 542 * extent for the extent root while also trying to search the extent 543 * root to add free space. So we skip locking and search the commit 544 * root, since its read-only 545 */ 546 path->skip_locking = 1; 547 path->search_commit_root = 1; 548 path->reada = READA_FORWARD; 549 550 key.objectid = last; 551 key.offset = 0; 552 key.type = BTRFS_EXTENT_ITEM_KEY; 553 554 next: 555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 556 if (ret < 0) 557 goto out; 558 559 leaf = path->nodes[0]; 560 nritems = btrfs_header_nritems(leaf); 561 562 while (1) { 563 if (btrfs_fs_closing(fs_info) > 1) { 564 last = (u64)-1; 565 break; 566 } 567 568 if (path->slots[0] < nritems) { 569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 570 } else { 571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 572 if (ret) 573 break; 574 575 if (need_resched() || 576 rwsem_is_contended(&fs_info->commit_root_sem)) { 577 if (wakeup) 578 caching_ctl->progress = last; 579 btrfs_release_path(path); 580 up_read(&fs_info->commit_root_sem); 581 mutex_unlock(&caching_ctl->mutex); 582 cond_resched(); 583 mutex_lock(&caching_ctl->mutex); 584 down_read(&fs_info->commit_root_sem); 585 goto next; 586 } 587 588 ret = btrfs_next_leaf(extent_root, path); 589 if (ret < 0) 590 goto out; 591 if (ret) 592 break; 593 leaf = path->nodes[0]; 594 nritems = btrfs_header_nritems(leaf); 595 continue; 596 } 597 598 if (key.objectid < last) { 599 key.objectid = last; 600 key.offset = 0; 601 key.type = BTRFS_EXTENT_ITEM_KEY; 602 603 if (wakeup) 604 caching_ctl->progress = last; 605 btrfs_release_path(path); 606 goto next; 607 } 608 609 if (key.objectid < block_group->start) { 610 path->slots[0]++; 611 continue; 612 } 613 614 if (key.objectid >= block_group->start + block_group->length) 615 break; 616 617 if (key.type == BTRFS_EXTENT_ITEM_KEY || 618 key.type == BTRFS_METADATA_ITEM_KEY) { 619 total_found += add_new_free_space(block_group, last, 620 key.objectid); 621 if (key.type == BTRFS_METADATA_ITEM_KEY) 622 last = key.objectid + 623 fs_info->nodesize; 624 else 625 last = key.objectid + key.offset; 626 627 if (total_found > CACHING_CTL_WAKE_UP) { 628 total_found = 0; 629 if (wakeup) 630 wake_up(&caching_ctl->wait); 631 } 632 } 633 path->slots[0]++; 634 } 635 ret = 0; 636 637 total_found += add_new_free_space(block_group, last, 638 block_group->start + block_group->length); 639 caching_ctl->progress = (u64)-1; 640 641 out: 642 btrfs_free_path(path); 643 return ret; 644 } 645 646 static noinline void caching_thread(struct btrfs_work *work) 647 { 648 struct btrfs_block_group *block_group; 649 struct btrfs_fs_info *fs_info; 650 struct btrfs_caching_control *caching_ctl; 651 int ret; 652 653 caching_ctl = container_of(work, struct btrfs_caching_control, work); 654 block_group = caching_ctl->block_group; 655 fs_info = block_group->fs_info; 656 657 mutex_lock(&caching_ctl->mutex); 658 down_read(&fs_info->commit_root_sem); 659 660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 661 ret = load_free_space_cache(block_group); 662 if (ret == 1) { 663 ret = 0; 664 goto done; 665 } 666 667 /* 668 * We failed to load the space cache, set ourselves to 669 * CACHE_STARTED and carry on. 670 */ 671 spin_lock(&block_group->lock); 672 block_group->cached = BTRFS_CACHE_STARTED; 673 spin_unlock(&block_group->lock); 674 wake_up(&caching_ctl->wait); 675 } 676 677 /* 678 * If we are in the transaction that populated the free space tree we 679 * can't actually cache from the free space tree as our commit root and 680 * real root are the same, so we could change the contents of the blocks 681 * while caching. Instead do the slow caching in this case, and after 682 * the transaction has committed we will be safe. 683 */ 684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 686 ret = load_free_space_tree(caching_ctl); 687 else 688 ret = load_extent_tree_free(caching_ctl); 689 done: 690 spin_lock(&block_group->lock); 691 block_group->caching_ctl = NULL; 692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 693 spin_unlock(&block_group->lock); 694 695 #ifdef CONFIG_BTRFS_DEBUG 696 if (btrfs_should_fragment_free_space(block_group)) { 697 u64 bytes_used; 698 699 spin_lock(&block_group->space_info->lock); 700 spin_lock(&block_group->lock); 701 bytes_used = block_group->length - block_group->used; 702 block_group->space_info->bytes_used += bytes_used >> 1; 703 spin_unlock(&block_group->lock); 704 spin_unlock(&block_group->space_info->lock); 705 fragment_free_space(block_group); 706 } 707 #endif 708 709 caching_ctl->progress = (u64)-1; 710 711 up_read(&fs_info->commit_root_sem); 712 btrfs_free_excluded_extents(block_group); 713 mutex_unlock(&caching_ctl->mutex); 714 715 wake_up(&caching_ctl->wait); 716 717 btrfs_put_caching_control(caching_ctl); 718 btrfs_put_block_group(block_group); 719 } 720 721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 722 { 723 DEFINE_WAIT(wait); 724 struct btrfs_fs_info *fs_info = cache->fs_info; 725 struct btrfs_caching_control *caching_ctl = NULL; 726 int ret = 0; 727 728 /* Allocator for zoned filesystems does not use the cache at all */ 729 if (btrfs_is_zoned(fs_info)) 730 return 0; 731 732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 733 if (!caching_ctl) 734 return -ENOMEM; 735 736 INIT_LIST_HEAD(&caching_ctl->list); 737 mutex_init(&caching_ctl->mutex); 738 init_waitqueue_head(&caching_ctl->wait); 739 caching_ctl->block_group = cache; 740 caching_ctl->progress = cache->start; 741 refcount_set(&caching_ctl->count, 2); 742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 743 744 spin_lock(&cache->lock); 745 if (cache->cached != BTRFS_CACHE_NO) { 746 kfree(caching_ctl); 747 748 caching_ctl = cache->caching_ctl; 749 if (caching_ctl) 750 refcount_inc(&caching_ctl->count); 751 spin_unlock(&cache->lock); 752 goto out; 753 } 754 WARN_ON(cache->caching_ctl); 755 cache->caching_ctl = caching_ctl; 756 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 757 cache->cached = BTRFS_CACHE_FAST; 758 else 759 cache->cached = BTRFS_CACHE_STARTED; 760 cache->has_caching_ctl = 1; 761 spin_unlock(&cache->lock); 762 763 spin_lock(&fs_info->block_group_cache_lock); 764 refcount_inc(&caching_ctl->count); 765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 766 spin_unlock(&fs_info->block_group_cache_lock); 767 768 btrfs_get_block_group(cache); 769 770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 771 out: 772 if (load_cache_only && caching_ctl) 773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 774 if (caching_ctl) 775 btrfs_put_caching_control(caching_ctl); 776 777 return ret; 778 } 779 780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 781 { 782 u64 extra_flags = chunk_to_extended(flags) & 783 BTRFS_EXTENDED_PROFILE_MASK; 784 785 write_seqlock(&fs_info->profiles_lock); 786 if (flags & BTRFS_BLOCK_GROUP_DATA) 787 fs_info->avail_data_alloc_bits &= ~extra_flags; 788 if (flags & BTRFS_BLOCK_GROUP_METADATA) 789 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 791 fs_info->avail_system_alloc_bits &= ~extra_flags; 792 write_sequnlock(&fs_info->profiles_lock); 793 } 794 795 /* 796 * Clear incompat bits for the following feature(s): 797 * 798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 799 * in the whole filesystem 800 * 801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 802 */ 803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 804 { 805 bool found_raid56 = false; 806 bool found_raid1c34 = false; 807 808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 811 struct list_head *head = &fs_info->space_info; 812 struct btrfs_space_info *sinfo; 813 814 list_for_each_entry_rcu(sinfo, head, list) { 815 down_read(&sinfo->groups_sem); 816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 817 found_raid56 = true; 818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 819 found_raid56 = true; 820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 821 found_raid1c34 = true; 822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 823 found_raid1c34 = true; 824 up_read(&sinfo->groups_sem); 825 } 826 if (!found_raid56) 827 btrfs_clear_fs_incompat(fs_info, RAID56); 828 if (!found_raid1c34) 829 btrfs_clear_fs_incompat(fs_info, RAID1C34); 830 } 831 } 832 833 static int remove_block_group_item(struct btrfs_trans_handle *trans, 834 struct btrfs_path *path, 835 struct btrfs_block_group *block_group) 836 { 837 struct btrfs_fs_info *fs_info = trans->fs_info; 838 struct btrfs_root *root; 839 struct btrfs_key key; 840 int ret; 841 842 root = fs_info->extent_root; 843 key.objectid = block_group->start; 844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 845 key.offset = block_group->length; 846 847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 848 if (ret > 0) 849 ret = -ENOENT; 850 if (ret < 0) 851 return ret; 852 853 ret = btrfs_del_item(trans, root, path); 854 return ret; 855 } 856 857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 858 u64 group_start, struct extent_map *em) 859 { 860 struct btrfs_fs_info *fs_info = trans->fs_info; 861 struct btrfs_path *path; 862 struct btrfs_block_group *block_group; 863 struct btrfs_free_cluster *cluster; 864 struct inode *inode; 865 struct kobject *kobj = NULL; 866 int ret; 867 int index; 868 int factor; 869 struct btrfs_caching_control *caching_ctl = NULL; 870 bool remove_em; 871 bool remove_rsv = false; 872 873 block_group = btrfs_lookup_block_group(fs_info, group_start); 874 BUG_ON(!block_group); 875 BUG_ON(!block_group->ro); 876 877 trace_btrfs_remove_block_group(block_group); 878 /* 879 * Free the reserved super bytes from this block group before 880 * remove it. 881 */ 882 btrfs_free_excluded_extents(block_group); 883 btrfs_free_ref_tree_range(fs_info, block_group->start, 884 block_group->length); 885 886 index = btrfs_bg_flags_to_raid_index(block_group->flags); 887 factor = btrfs_bg_type_to_factor(block_group->flags); 888 889 /* make sure this block group isn't part of an allocation cluster */ 890 cluster = &fs_info->data_alloc_cluster; 891 spin_lock(&cluster->refill_lock); 892 btrfs_return_cluster_to_free_space(block_group, cluster); 893 spin_unlock(&cluster->refill_lock); 894 895 /* 896 * make sure this block group isn't part of a metadata 897 * allocation cluster 898 */ 899 cluster = &fs_info->meta_alloc_cluster; 900 spin_lock(&cluster->refill_lock); 901 btrfs_return_cluster_to_free_space(block_group, cluster); 902 spin_unlock(&cluster->refill_lock); 903 904 btrfs_clear_treelog_bg(block_group); 905 906 path = btrfs_alloc_path(); 907 if (!path) { 908 ret = -ENOMEM; 909 goto out; 910 } 911 912 /* 913 * get the inode first so any iput calls done for the io_list 914 * aren't the final iput (no unlinks allowed now) 915 */ 916 inode = lookup_free_space_inode(block_group, path); 917 918 mutex_lock(&trans->transaction->cache_write_mutex); 919 /* 920 * Make sure our free space cache IO is done before removing the 921 * free space inode 922 */ 923 spin_lock(&trans->transaction->dirty_bgs_lock); 924 if (!list_empty(&block_group->io_list)) { 925 list_del_init(&block_group->io_list); 926 927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 928 929 spin_unlock(&trans->transaction->dirty_bgs_lock); 930 btrfs_wait_cache_io(trans, block_group, path); 931 btrfs_put_block_group(block_group); 932 spin_lock(&trans->transaction->dirty_bgs_lock); 933 } 934 935 if (!list_empty(&block_group->dirty_list)) { 936 list_del_init(&block_group->dirty_list); 937 remove_rsv = true; 938 btrfs_put_block_group(block_group); 939 } 940 spin_unlock(&trans->transaction->dirty_bgs_lock); 941 mutex_unlock(&trans->transaction->cache_write_mutex); 942 943 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 944 if (ret) 945 goto out; 946 947 spin_lock(&fs_info->block_group_cache_lock); 948 rb_erase(&block_group->cache_node, 949 &fs_info->block_group_cache_tree); 950 RB_CLEAR_NODE(&block_group->cache_node); 951 952 /* Once for the block groups rbtree */ 953 btrfs_put_block_group(block_group); 954 955 if (fs_info->first_logical_byte == block_group->start) 956 fs_info->first_logical_byte = (u64)-1; 957 spin_unlock(&fs_info->block_group_cache_lock); 958 959 down_write(&block_group->space_info->groups_sem); 960 /* 961 * we must use list_del_init so people can check to see if they 962 * are still on the list after taking the semaphore 963 */ 964 list_del_init(&block_group->list); 965 if (list_empty(&block_group->space_info->block_groups[index])) { 966 kobj = block_group->space_info->block_group_kobjs[index]; 967 block_group->space_info->block_group_kobjs[index] = NULL; 968 clear_avail_alloc_bits(fs_info, block_group->flags); 969 } 970 up_write(&block_group->space_info->groups_sem); 971 clear_incompat_bg_bits(fs_info, block_group->flags); 972 if (kobj) { 973 kobject_del(kobj); 974 kobject_put(kobj); 975 } 976 977 if (block_group->has_caching_ctl) 978 caching_ctl = btrfs_get_caching_control(block_group); 979 if (block_group->cached == BTRFS_CACHE_STARTED) 980 btrfs_wait_block_group_cache_done(block_group); 981 if (block_group->has_caching_ctl) { 982 spin_lock(&fs_info->block_group_cache_lock); 983 if (!caching_ctl) { 984 struct btrfs_caching_control *ctl; 985 986 list_for_each_entry(ctl, 987 &fs_info->caching_block_groups, list) 988 if (ctl->block_group == block_group) { 989 caching_ctl = ctl; 990 refcount_inc(&caching_ctl->count); 991 break; 992 } 993 } 994 if (caching_ctl) 995 list_del_init(&caching_ctl->list); 996 spin_unlock(&fs_info->block_group_cache_lock); 997 if (caching_ctl) { 998 /* Once for the caching bgs list and once for us. */ 999 btrfs_put_caching_control(caching_ctl); 1000 btrfs_put_caching_control(caching_ctl); 1001 } 1002 } 1003 1004 spin_lock(&trans->transaction->dirty_bgs_lock); 1005 WARN_ON(!list_empty(&block_group->dirty_list)); 1006 WARN_ON(!list_empty(&block_group->io_list)); 1007 spin_unlock(&trans->transaction->dirty_bgs_lock); 1008 1009 btrfs_remove_free_space_cache(block_group); 1010 1011 spin_lock(&block_group->space_info->lock); 1012 list_del_init(&block_group->ro_list); 1013 1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1015 WARN_ON(block_group->space_info->total_bytes 1016 < block_group->length); 1017 WARN_ON(block_group->space_info->bytes_readonly 1018 < block_group->length - block_group->zone_unusable); 1019 WARN_ON(block_group->space_info->bytes_zone_unusable 1020 < block_group->zone_unusable); 1021 WARN_ON(block_group->space_info->disk_total 1022 < block_group->length * factor); 1023 } 1024 block_group->space_info->total_bytes -= block_group->length; 1025 block_group->space_info->bytes_readonly -= 1026 (block_group->length - block_group->zone_unusable); 1027 block_group->space_info->bytes_zone_unusable -= 1028 block_group->zone_unusable; 1029 block_group->space_info->disk_total -= block_group->length * factor; 1030 1031 spin_unlock(&block_group->space_info->lock); 1032 1033 /* 1034 * Remove the free space for the block group from the free space tree 1035 * and the block group's item from the extent tree before marking the 1036 * block group as removed. This is to prevent races with tasks that 1037 * freeze and unfreeze a block group, this task and another task 1038 * allocating a new block group - the unfreeze task ends up removing 1039 * the block group's extent map before the task calling this function 1040 * deletes the block group item from the extent tree, allowing for 1041 * another task to attempt to create another block group with the same 1042 * item key (and failing with -EEXIST and a transaction abort). 1043 */ 1044 ret = remove_block_group_free_space(trans, block_group); 1045 if (ret) 1046 goto out; 1047 1048 ret = remove_block_group_item(trans, path, block_group); 1049 if (ret < 0) 1050 goto out; 1051 1052 spin_lock(&block_group->lock); 1053 block_group->removed = 1; 1054 /* 1055 * At this point trimming or scrub can't start on this block group, 1056 * because we removed the block group from the rbtree 1057 * fs_info->block_group_cache_tree so no one can't find it anymore and 1058 * even if someone already got this block group before we removed it 1059 * from the rbtree, they have already incremented block_group->frozen - 1060 * if they didn't, for the trimming case they won't find any free space 1061 * entries because we already removed them all when we called 1062 * btrfs_remove_free_space_cache(). 1063 * 1064 * And we must not remove the extent map from the fs_info->mapping_tree 1065 * to prevent the same logical address range and physical device space 1066 * ranges from being reused for a new block group. This is needed to 1067 * avoid races with trimming and scrub. 1068 * 1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1070 * completely transactionless, so while it is trimming a range the 1071 * currently running transaction might finish and a new one start, 1072 * allowing for new block groups to be created that can reuse the same 1073 * physical device locations unless we take this special care. 1074 * 1075 * There may also be an implicit trim operation if the file system 1076 * is mounted with -odiscard. The same protections must remain 1077 * in place until the extents have been discarded completely when 1078 * the transaction commit has completed. 1079 */ 1080 remove_em = (atomic_read(&block_group->frozen) == 0); 1081 spin_unlock(&block_group->lock); 1082 1083 if (remove_em) { 1084 struct extent_map_tree *em_tree; 1085 1086 em_tree = &fs_info->mapping_tree; 1087 write_lock(&em_tree->lock); 1088 remove_extent_mapping(em_tree, em); 1089 write_unlock(&em_tree->lock); 1090 /* once for the tree */ 1091 free_extent_map(em); 1092 } 1093 1094 out: 1095 /* Once for the lookup reference */ 1096 btrfs_put_block_group(block_group); 1097 if (remove_rsv) 1098 btrfs_delayed_refs_rsv_release(fs_info, 1); 1099 btrfs_free_path(path); 1100 return ret; 1101 } 1102 1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1105 { 1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1107 struct extent_map *em; 1108 struct map_lookup *map; 1109 unsigned int num_items; 1110 1111 read_lock(&em_tree->lock); 1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1113 read_unlock(&em_tree->lock); 1114 ASSERT(em && em->start == chunk_offset); 1115 1116 /* 1117 * We need to reserve 3 + N units from the metadata space info in order 1118 * to remove a block group (done at btrfs_remove_chunk() and at 1119 * btrfs_remove_block_group()), which are used for: 1120 * 1121 * 1 unit for adding the free space inode's orphan (located in the tree 1122 * of tree roots). 1123 * 1 unit for deleting the block group item (located in the extent 1124 * tree). 1125 * 1 unit for deleting the free space item (located in tree of tree 1126 * roots). 1127 * N units for deleting N device extent items corresponding to each 1128 * stripe (located in the device tree). 1129 * 1130 * In order to remove a block group we also need to reserve units in the 1131 * system space info in order to update the chunk tree (update one or 1132 * more device items and remove one chunk item), but this is done at 1133 * btrfs_remove_chunk() through a call to check_system_chunk(). 1134 */ 1135 map = em->map_lookup; 1136 num_items = 3 + map->num_stripes; 1137 free_extent_map(em); 1138 1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1140 num_items); 1141 } 1142 1143 /* 1144 * Mark block group @cache read-only, so later write won't happen to block 1145 * group @cache. 1146 * 1147 * If @force is not set, this function will only mark the block group readonly 1148 * if we have enough free space (1M) in other metadata/system block groups. 1149 * If @force is not set, this function will mark the block group readonly 1150 * without checking free space. 1151 * 1152 * NOTE: This function doesn't care if other block groups can contain all the 1153 * data in this block group. That check should be done by relocation routine, 1154 * not this function. 1155 */ 1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1157 { 1158 struct btrfs_space_info *sinfo = cache->space_info; 1159 u64 num_bytes; 1160 int ret = -ENOSPC; 1161 1162 spin_lock(&sinfo->lock); 1163 spin_lock(&cache->lock); 1164 1165 if (cache->swap_extents) { 1166 ret = -ETXTBSY; 1167 goto out; 1168 } 1169 1170 if (cache->ro) { 1171 cache->ro++; 1172 ret = 0; 1173 goto out; 1174 } 1175 1176 num_bytes = cache->length - cache->reserved - cache->pinned - 1177 cache->bytes_super - cache->zone_unusable - cache->used; 1178 1179 /* 1180 * Data never overcommits, even in mixed mode, so do just the straight 1181 * check of left over space in how much we have allocated. 1182 */ 1183 if (force) { 1184 ret = 0; 1185 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1186 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1187 1188 /* 1189 * Here we make sure if we mark this bg RO, we still have enough 1190 * free space as buffer. 1191 */ 1192 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1193 ret = 0; 1194 } else { 1195 /* 1196 * We overcommit metadata, so we need to do the 1197 * btrfs_can_overcommit check here, and we need to pass in 1198 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1199 * leeway to allow us to mark this block group as read only. 1200 */ 1201 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1202 BTRFS_RESERVE_NO_FLUSH)) 1203 ret = 0; 1204 } 1205 1206 if (!ret) { 1207 sinfo->bytes_readonly += num_bytes; 1208 if (btrfs_is_zoned(cache->fs_info)) { 1209 /* Migrate zone_unusable bytes to readonly */ 1210 sinfo->bytes_readonly += cache->zone_unusable; 1211 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1212 cache->zone_unusable = 0; 1213 } 1214 cache->ro++; 1215 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1216 } 1217 out: 1218 spin_unlock(&cache->lock); 1219 spin_unlock(&sinfo->lock); 1220 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1221 btrfs_info(cache->fs_info, 1222 "unable to make block group %llu ro", cache->start); 1223 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1224 } 1225 return ret; 1226 } 1227 1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1229 struct btrfs_block_group *bg) 1230 { 1231 struct btrfs_fs_info *fs_info = bg->fs_info; 1232 struct btrfs_transaction *prev_trans = NULL; 1233 const u64 start = bg->start; 1234 const u64 end = start + bg->length - 1; 1235 int ret; 1236 1237 spin_lock(&fs_info->trans_lock); 1238 if (trans->transaction->list.prev != &fs_info->trans_list) { 1239 prev_trans = list_last_entry(&trans->transaction->list, 1240 struct btrfs_transaction, list); 1241 refcount_inc(&prev_trans->use_count); 1242 } 1243 spin_unlock(&fs_info->trans_lock); 1244 1245 /* 1246 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1247 * btrfs_finish_extent_commit(). If we are at transaction N, another 1248 * task might be running finish_extent_commit() for the previous 1249 * transaction N - 1, and have seen a range belonging to the block 1250 * group in pinned_extents before we were able to clear the whole block 1251 * group range from pinned_extents. This means that task can lookup for 1252 * the block group after we unpinned it from pinned_extents and removed 1253 * it, leading to a BUG_ON() at unpin_extent_range(). 1254 */ 1255 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1256 if (prev_trans) { 1257 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1258 EXTENT_DIRTY); 1259 if (ret) 1260 goto out; 1261 } 1262 1263 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1264 EXTENT_DIRTY); 1265 out: 1266 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1267 if (prev_trans) 1268 btrfs_put_transaction(prev_trans); 1269 1270 return ret == 0; 1271 } 1272 1273 /* 1274 * Process the unused_bgs list and remove any that don't have any allocated 1275 * space inside of them. 1276 */ 1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1278 { 1279 struct btrfs_block_group *block_group; 1280 struct btrfs_space_info *space_info; 1281 struct btrfs_trans_handle *trans; 1282 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1283 int ret = 0; 1284 1285 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1286 return; 1287 1288 /* 1289 * Long running balances can keep us blocked here for eternity, so 1290 * simply skip deletion if we're unable to get the mutex. 1291 */ 1292 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1293 return; 1294 1295 spin_lock(&fs_info->unused_bgs_lock); 1296 while (!list_empty(&fs_info->unused_bgs)) { 1297 int trimming; 1298 1299 block_group = list_first_entry(&fs_info->unused_bgs, 1300 struct btrfs_block_group, 1301 bg_list); 1302 list_del_init(&block_group->bg_list); 1303 1304 space_info = block_group->space_info; 1305 1306 if (ret || btrfs_mixed_space_info(space_info)) { 1307 btrfs_put_block_group(block_group); 1308 continue; 1309 } 1310 spin_unlock(&fs_info->unused_bgs_lock); 1311 1312 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1313 1314 /* Don't want to race with allocators so take the groups_sem */ 1315 down_write(&space_info->groups_sem); 1316 1317 /* 1318 * Async discard moves the final block group discard to be prior 1319 * to the unused_bgs code path. Therefore, if it's not fully 1320 * trimmed, punt it back to the async discard lists. 1321 */ 1322 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1323 !btrfs_is_free_space_trimmed(block_group)) { 1324 trace_btrfs_skip_unused_block_group(block_group); 1325 up_write(&space_info->groups_sem); 1326 /* Requeue if we failed because of async discard */ 1327 btrfs_discard_queue_work(&fs_info->discard_ctl, 1328 block_group); 1329 goto next; 1330 } 1331 1332 spin_lock(&block_group->lock); 1333 if (block_group->reserved || block_group->pinned || 1334 block_group->used || block_group->ro || 1335 list_is_singular(&block_group->list)) { 1336 /* 1337 * We want to bail if we made new allocations or have 1338 * outstanding allocations in this block group. We do 1339 * the ro check in case balance is currently acting on 1340 * this block group. 1341 */ 1342 trace_btrfs_skip_unused_block_group(block_group); 1343 spin_unlock(&block_group->lock); 1344 up_write(&space_info->groups_sem); 1345 goto next; 1346 } 1347 spin_unlock(&block_group->lock); 1348 1349 /* We don't want to force the issue, only flip if it's ok. */ 1350 ret = inc_block_group_ro(block_group, 0); 1351 up_write(&space_info->groups_sem); 1352 if (ret < 0) { 1353 ret = 0; 1354 goto next; 1355 } 1356 1357 /* 1358 * Want to do this before we do anything else so we can recover 1359 * properly if we fail to join the transaction. 1360 */ 1361 trans = btrfs_start_trans_remove_block_group(fs_info, 1362 block_group->start); 1363 if (IS_ERR(trans)) { 1364 btrfs_dec_block_group_ro(block_group); 1365 ret = PTR_ERR(trans); 1366 goto next; 1367 } 1368 1369 /* 1370 * We could have pending pinned extents for this block group, 1371 * just delete them, we don't care about them anymore. 1372 */ 1373 if (!clean_pinned_extents(trans, block_group)) { 1374 btrfs_dec_block_group_ro(block_group); 1375 goto end_trans; 1376 } 1377 1378 /* 1379 * At this point, the block_group is read only and should fail 1380 * new allocations. However, btrfs_finish_extent_commit() can 1381 * cause this block_group to be placed back on the discard 1382 * lists because now the block_group isn't fully discarded. 1383 * Bail here and try again later after discarding everything. 1384 */ 1385 spin_lock(&fs_info->discard_ctl.lock); 1386 if (!list_empty(&block_group->discard_list)) { 1387 spin_unlock(&fs_info->discard_ctl.lock); 1388 btrfs_dec_block_group_ro(block_group); 1389 btrfs_discard_queue_work(&fs_info->discard_ctl, 1390 block_group); 1391 goto end_trans; 1392 } 1393 spin_unlock(&fs_info->discard_ctl.lock); 1394 1395 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1396 spin_lock(&space_info->lock); 1397 spin_lock(&block_group->lock); 1398 1399 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1400 -block_group->pinned); 1401 space_info->bytes_readonly += block_group->pinned; 1402 __btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned); 1403 block_group->pinned = 0; 1404 1405 spin_unlock(&block_group->lock); 1406 spin_unlock(&space_info->lock); 1407 1408 /* 1409 * The normal path here is an unused block group is passed here, 1410 * then trimming is handled in the transaction commit path. 1411 * Async discard interposes before this to do the trimming 1412 * before coming down the unused block group path as trimming 1413 * will no longer be done later in the transaction commit path. 1414 */ 1415 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1416 goto flip_async; 1417 1418 /* 1419 * DISCARD can flip during remount. On zoned filesystems, we 1420 * need to reset sequential-required zones. 1421 */ 1422 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1423 btrfs_is_zoned(fs_info); 1424 1425 /* Implicit trim during transaction commit. */ 1426 if (trimming) 1427 btrfs_freeze_block_group(block_group); 1428 1429 /* 1430 * Btrfs_remove_chunk will abort the transaction if things go 1431 * horribly wrong. 1432 */ 1433 ret = btrfs_remove_chunk(trans, block_group->start); 1434 1435 if (ret) { 1436 if (trimming) 1437 btrfs_unfreeze_block_group(block_group); 1438 goto end_trans; 1439 } 1440 1441 /* 1442 * If we're not mounted with -odiscard, we can just forget 1443 * about this block group. Otherwise we'll need to wait 1444 * until transaction commit to do the actual discard. 1445 */ 1446 if (trimming) { 1447 spin_lock(&fs_info->unused_bgs_lock); 1448 /* 1449 * A concurrent scrub might have added us to the list 1450 * fs_info->unused_bgs, so use a list_move operation 1451 * to add the block group to the deleted_bgs list. 1452 */ 1453 list_move(&block_group->bg_list, 1454 &trans->transaction->deleted_bgs); 1455 spin_unlock(&fs_info->unused_bgs_lock); 1456 btrfs_get_block_group(block_group); 1457 } 1458 end_trans: 1459 btrfs_end_transaction(trans); 1460 next: 1461 btrfs_put_block_group(block_group); 1462 spin_lock(&fs_info->unused_bgs_lock); 1463 } 1464 spin_unlock(&fs_info->unused_bgs_lock); 1465 mutex_unlock(&fs_info->reclaim_bgs_lock); 1466 return; 1467 1468 flip_async: 1469 btrfs_end_transaction(trans); 1470 mutex_unlock(&fs_info->reclaim_bgs_lock); 1471 btrfs_put_block_group(block_group); 1472 btrfs_discard_punt_unused_bgs_list(fs_info); 1473 } 1474 1475 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1476 { 1477 struct btrfs_fs_info *fs_info = bg->fs_info; 1478 1479 spin_lock(&fs_info->unused_bgs_lock); 1480 if (list_empty(&bg->bg_list)) { 1481 btrfs_get_block_group(bg); 1482 trace_btrfs_add_unused_block_group(bg); 1483 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1484 } 1485 spin_unlock(&fs_info->unused_bgs_lock); 1486 } 1487 1488 void btrfs_reclaim_bgs_work(struct work_struct *work) 1489 { 1490 struct btrfs_fs_info *fs_info = 1491 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1492 struct btrfs_block_group *bg; 1493 struct btrfs_space_info *space_info; 1494 int ret; 1495 1496 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1497 return; 1498 1499 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 1500 return; 1501 1502 mutex_lock(&fs_info->reclaim_bgs_lock); 1503 spin_lock(&fs_info->unused_bgs_lock); 1504 while (!list_empty(&fs_info->reclaim_bgs)) { 1505 bg = list_first_entry(&fs_info->reclaim_bgs, 1506 struct btrfs_block_group, 1507 bg_list); 1508 list_del_init(&bg->bg_list); 1509 1510 space_info = bg->space_info; 1511 spin_unlock(&fs_info->unused_bgs_lock); 1512 1513 /* Don't race with allocators so take the groups_sem */ 1514 down_write(&space_info->groups_sem); 1515 1516 spin_lock(&bg->lock); 1517 if (bg->reserved || bg->pinned || bg->ro) { 1518 /* 1519 * We want to bail if we made new allocations or have 1520 * outstanding allocations in this block group. We do 1521 * the ro check in case balance is currently acting on 1522 * this block group. 1523 */ 1524 spin_unlock(&bg->lock); 1525 up_write(&space_info->groups_sem); 1526 goto next; 1527 } 1528 spin_unlock(&bg->lock); 1529 1530 /* Get out fast, in case we're unmounting the filesystem */ 1531 if (btrfs_fs_closing(fs_info)) { 1532 up_write(&space_info->groups_sem); 1533 goto next; 1534 } 1535 1536 ret = inc_block_group_ro(bg, 0); 1537 up_write(&space_info->groups_sem); 1538 if (ret < 0) 1539 goto next; 1540 1541 btrfs_info(fs_info, "reclaiming chunk %llu with %llu%% used", 1542 bg->start, div_u64(bg->used * 100, bg->length)); 1543 trace_btrfs_reclaim_block_group(bg); 1544 ret = btrfs_relocate_chunk(fs_info, bg->start); 1545 if (ret) 1546 btrfs_err(fs_info, "error relocating chunk %llu", 1547 bg->start); 1548 1549 next: 1550 btrfs_put_block_group(bg); 1551 spin_lock(&fs_info->unused_bgs_lock); 1552 } 1553 spin_unlock(&fs_info->unused_bgs_lock); 1554 mutex_unlock(&fs_info->reclaim_bgs_lock); 1555 btrfs_exclop_finish(fs_info); 1556 } 1557 1558 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1559 { 1560 spin_lock(&fs_info->unused_bgs_lock); 1561 if (!list_empty(&fs_info->reclaim_bgs)) 1562 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1563 spin_unlock(&fs_info->unused_bgs_lock); 1564 } 1565 1566 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1567 { 1568 struct btrfs_fs_info *fs_info = bg->fs_info; 1569 1570 spin_lock(&fs_info->unused_bgs_lock); 1571 if (list_empty(&bg->bg_list)) { 1572 btrfs_get_block_group(bg); 1573 trace_btrfs_add_reclaim_block_group(bg); 1574 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1575 } 1576 spin_unlock(&fs_info->unused_bgs_lock); 1577 } 1578 1579 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1580 struct btrfs_path *path) 1581 { 1582 struct extent_map_tree *em_tree; 1583 struct extent_map *em; 1584 struct btrfs_block_group_item bg; 1585 struct extent_buffer *leaf; 1586 int slot; 1587 u64 flags; 1588 int ret = 0; 1589 1590 slot = path->slots[0]; 1591 leaf = path->nodes[0]; 1592 1593 em_tree = &fs_info->mapping_tree; 1594 read_lock(&em_tree->lock); 1595 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1596 read_unlock(&em_tree->lock); 1597 if (!em) { 1598 btrfs_err(fs_info, 1599 "logical %llu len %llu found bg but no related chunk", 1600 key->objectid, key->offset); 1601 return -ENOENT; 1602 } 1603 1604 if (em->start != key->objectid || em->len != key->offset) { 1605 btrfs_err(fs_info, 1606 "block group %llu len %llu mismatch with chunk %llu len %llu", 1607 key->objectid, key->offset, em->start, em->len); 1608 ret = -EUCLEAN; 1609 goto out_free_em; 1610 } 1611 1612 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1613 sizeof(bg)); 1614 flags = btrfs_stack_block_group_flags(&bg) & 1615 BTRFS_BLOCK_GROUP_TYPE_MASK; 1616 1617 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1618 btrfs_err(fs_info, 1619 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1620 key->objectid, key->offset, flags, 1621 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1622 ret = -EUCLEAN; 1623 } 1624 1625 out_free_em: 1626 free_extent_map(em); 1627 return ret; 1628 } 1629 1630 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1631 struct btrfs_path *path, 1632 struct btrfs_key *key) 1633 { 1634 struct btrfs_root *root = fs_info->extent_root; 1635 int ret; 1636 struct btrfs_key found_key; 1637 struct extent_buffer *leaf; 1638 int slot; 1639 1640 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1641 if (ret < 0) 1642 return ret; 1643 1644 while (1) { 1645 slot = path->slots[0]; 1646 leaf = path->nodes[0]; 1647 if (slot >= btrfs_header_nritems(leaf)) { 1648 ret = btrfs_next_leaf(root, path); 1649 if (ret == 0) 1650 continue; 1651 if (ret < 0) 1652 goto out; 1653 break; 1654 } 1655 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1656 1657 if (found_key.objectid >= key->objectid && 1658 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1659 ret = read_bg_from_eb(fs_info, &found_key, path); 1660 break; 1661 } 1662 1663 path->slots[0]++; 1664 } 1665 out: 1666 return ret; 1667 } 1668 1669 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1670 { 1671 u64 extra_flags = chunk_to_extended(flags) & 1672 BTRFS_EXTENDED_PROFILE_MASK; 1673 1674 write_seqlock(&fs_info->profiles_lock); 1675 if (flags & BTRFS_BLOCK_GROUP_DATA) 1676 fs_info->avail_data_alloc_bits |= extra_flags; 1677 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1678 fs_info->avail_metadata_alloc_bits |= extra_flags; 1679 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1680 fs_info->avail_system_alloc_bits |= extra_flags; 1681 write_sequnlock(&fs_info->profiles_lock); 1682 } 1683 1684 /** 1685 * Map a physical disk address to a list of logical addresses 1686 * 1687 * @fs_info: the filesystem 1688 * @chunk_start: logical address of block group 1689 * @bdev: physical device to resolve, can be NULL to indicate any device 1690 * @physical: physical address to map to logical addresses 1691 * @logical: return array of logical addresses which map to @physical 1692 * @naddrs: length of @logical 1693 * @stripe_len: size of IO stripe for the given block group 1694 * 1695 * Maps a particular @physical disk address to a list of @logical addresses. 1696 * Used primarily to exclude those portions of a block group that contain super 1697 * block copies. 1698 */ 1699 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1700 struct block_device *bdev, u64 physical, u64 **logical, 1701 int *naddrs, int *stripe_len) 1702 { 1703 struct extent_map *em; 1704 struct map_lookup *map; 1705 u64 *buf; 1706 u64 bytenr; 1707 u64 data_stripe_length; 1708 u64 io_stripe_size; 1709 int i, nr = 0; 1710 int ret = 0; 1711 1712 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1713 if (IS_ERR(em)) 1714 return -EIO; 1715 1716 map = em->map_lookup; 1717 data_stripe_length = em->orig_block_len; 1718 io_stripe_size = map->stripe_len; 1719 chunk_start = em->start; 1720 1721 /* For RAID5/6 adjust to a full IO stripe length */ 1722 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1723 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1724 1725 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1726 if (!buf) { 1727 ret = -ENOMEM; 1728 goto out; 1729 } 1730 1731 for (i = 0; i < map->num_stripes; i++) { 1732 bool already_inserted = false; 1733 u64 stripe_nr; 1734 u64 offset; 1735 int j; 1736 1737 if (!in_range(physical, map->stripes[i].physical, 1738 data_stripe_length)) 1739 continue; 1740 1741 if (bdev && map->stripes[i].dev->bdev != bdev) 1742 continue; 1743 1744 stripe_nr = physical - map->stripes[i].physical; 1745 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1746 1747 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1748 stripe_nr = stripe_nr * map->num_stripes + i; 1749 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1750 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1751 stripe_nr = stripe_nr * map->num_stripes + i; 1752 } 1753 /* 1754 * The remaining case would be for RAID56, multiply by 1755 * nr_data_stripes(). Alternatively, just use rmap_len below 1756 * instead of map->stripe_len 1757 */ 1758 1759 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1760 1761 /* Ensure we don't add duplicate addresses */ 1762 for (j = 0; j < nr; j++) { 1763 if (buf[j] == bytenr) { 1764 already_inserted = true; 1765 break; 1766 } 1767 } 1768 1769 if (!already_inserted) 1770 buf[nr++] = bytenr; 1771 } 1772 1773 *logical = buf; 1774 *naddrs = nr; 1775 *stripe_len = io_stripe_size; 1776 out: 1777 free_extent_map(em); 1778 return ret; 1779 } 1780 1781 static int exclude_super_stripes(struct btrfs_block_group *cache) 1782 { 1783 struct btrfs_fs_info *fs_info = cache->fs_info; 1784 const bool zoned = btrfs_is_zoned(fs_info); 1785 u64 bytenr; 1786 u64 *logical; 1787 int stripe_len; 1788 int i, nr, ret; 1789 1790 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1791 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1792 cache->bytes_super += stripe_len; 1793 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1794 stripe_len); 1795 if (ret) 1796 return ret; 1797 } 1798 1799 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1800 bytenr = btrfs_sb_offset(i); 1801 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1802 bytenr, &logical, &nr, &stripe_len); 1803 if (ret) 1804 return ret; 1805 1806 /* Shouldn't have super stripes in sequential zones */ 1807 if (zoned && nr) { 1808 btrfs_err(fs_info, 1809 "zoned: block group %llu must not contain super block", 1810 cache->start); 1811 return -EUCLEAN; 1812 } 1813 1814 while (nr--) { 1815 u64 len = min_t(u64, stripe_len, 1816 cache->start + cache->length - logical[nr]); 1817 1818 cache->bytes_super += len; 1819 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1820 len); 1821 if (ret) { 1822 kfree(logical); 1823 return ret; 1824 } 1825 } 1826 1827 kfree(logical); 1828 } 1829 return 0; 1830 } 1831 1832 static void link_block_group(struct btrfs_block_group *cache) 1833 { 1834 struct btrfs_space_info *space_info = cache->space_info; 1835 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1836 1837 down_write(&space_info->groups_sem); 1838 list_add_tail(&cache->list, &space_info->block_groups[index]); 1839 up_write(&space_info->groups_sem); 1840 } 1841 1842 static struct btrfs_block_group *btrfs_create_block_group_cache( 1843 struct btrfs_fs_info *fs_info, u64 start) 1844 { 1845 struct btrfs_block_group *cache; 1846 1847 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1848 if (!cache) 1849 return NULL; 1850 1851 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1852 GFP_NOFS); 1853 if (!cache->free_space_ctl) { 1854 kfree(cache); 1855 return NULL; 1856 } 1857 1858 cache->start = start; 1859 1860 cache->fs_info = fs_info; 1861 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1862 1863 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1864 1865 refcount_set(&cache->refs, 1); 1866 spin_lock_init(&cache->lock); 1867 init_rwsem(&cache->data_rwsem); 1868 INIT_LIST_HEAD(&cache->list); 1869 INIT_LIST_HEAD(&cache->cluster_list); 1870 INIT_LIST_HEAD(&cache->bg_list); 1871 INIT_LIST_HEAD(&cache->ro_list); 1872 INIT_LIST_HEAD(&cache->discard_list); 1873 INIT_LIST_HEAD(&cache->dirty_list); 1874 INIT_LIST_HEAD(&cache->io_list); 1875 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1876 atomic_set(&cache->frozen, 0); 1877 mutex_init(&cache->free_space_lock); 1878 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1879 1880 return cache; 1881 } 1882 1883 /* 1884 * Iterate all chunks and verify that each of them has the corresponding block 1885 * group 1886 */ 1887 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1888 { 1889 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1890 struct extent_map *em; 1891 struct btrfs_block_group *bg; 1892 u64 start = 0; 1893 int ret = 0; 1894 1895 while (1) { 1896 read_lock(&map_tree->lock); 1897 /* 1898 * lookup_extent_mapping will return the first extent map 1899 * intersecting the range, so setting @len to 1 is enough to 1900 * get the first chunk. 1901 */ 1902 em = lookup_extent_mapping(map_tree, start, 1); 1903 read_unlock(&map_tree->lock); 1904 if (!em) 1905 break; 1906 1907 bg = btrfs_lookup_block_group(fs_info, em->start); 1908 if (!bg) { 1909 btrfs_err(fs_info, 1910 "chunk start=%llu len=%llu doesn't have corresponding block group", 1911 em->start, em->len); 1912 ret = -EUCLEAN; 1913 free_extent_map(em); 1914 break; 1915 } 1916 if (bg->start != em->start || bg->length != em->len || 1917 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1918 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1919 btrfs_err(fs_info, 1920 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1921 em->start, em->len, 1922 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1923 bg->start, bg->length, 1924 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1925 ret = -EUCLEAN; 1926 free_extent_map(em); 1927 btrfs_put_block_group(bg); 1928 break; 1929 } 1930 start = em->start + em->len; 1931 free_extent_map(em); 1932 btrfs_put_block_group(bg); 1933 } 1934 return ret; 1935 } 1936 1937 static int read_one_block_group(struct btrfs_fs_info *info, 1938 struct btrfs_block_group_item *bgi, 1939 const struct btrfs_key *key, 1940 int need_clear) 1941 { 1942 struct btrfs_block_group *cache; 1943 struct btrfs_space_info *space_info; 1944 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1945 int ret; 1946 1947 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1948 1949 cache = btrfs_create_block_group_cache(info, key->objectid); 1950 if (!cache) 1951 return -ENOMEM; 1952 1953 cache->length = key->offset; 1954 cache->used = btrfs_stack_block_group_used(bgi); 1955 cache->flags = btrfs_stack_block_group_flags(bgi); 1956 1957 set_free_space_tree_thresholds(cache); 1958 1959 if (need_clear) { 1960 /* 1961 * When we mount with old space cache, we need to 1962 * set BTRFS_DC_CLEAR and set dirty flag. 1963 * 1964 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1965 * truncate the old free space cache inode and 1966 * setup a new one. 1967 * b) Setting 'dirty flag' makes sure that we flush 1968 * the new space cache info onto disk. 1969 */ 1970 if (btrfs_test_opt(info, SPACE_CACHE)) 1971 cache->disk_cache_state = BTRFS_DC_CLEAR; 1972 } 1973 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1974 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1975 btrfs_err(info, 1976 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1977 cache->start); 1978 ret = -EINVAL; 1979 goto error; 1980 } 1981 1982 ret = btrfs_load_block_group_zone_info(cache, false); 1983 if (ret) { 1984 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 1985 cache->start); 1986 goto error; 1987 } 1988 1989 /* 1990 * We need to exclude the super stripes now so that the space info has 1991 * super bytes accounted for, otherwise we'll think we have more space 1992 * than we actually do. 1993 */ 1994 ret = exclude_super_stripes(cache); 1995 if (ret) { 1996 /* We may have excluded something, so call this just in case. */ 1997 btrfs_free_excluded_extents(cache); 1998 goto error; 1999 } 2000 2001 /* 2002 * For zoned filesystem, space after the allocation offset is the only 2003 * free space for a block group. So, we don't need any caching work. 2004 * btrfs_calc_zone_unusable() will set the amount of free space and 2005 * zone_unusable space. 2006 * 2007 * For regular filesystem, check for two cases, either we are full, and 2008 * therefore don't need to bother with the caching work since we won't 2009 * find any space, or we are empty, and we can just add all the space 2010 * in and be done with it. This saves us _a_lot_ of time, particularly 2011 * in the full case. 2012 */ 2013 if (btrfs_is_zoned(info)) { 2014 btrfs_calc_zone_unusable(cache); 2015 } else if (cache->length == cache->used) { 2016 cache->last_byte_to_unpin = (u64)-1; 2017 cache->cached = BTRFS_CACHE_FINISHED; 2018 btrfs_free_excluded_extents(cache); 2019 } else if (cache->used == 0) { 2020 cache->last_byte_to_unpin = (u64)-1; 2021 cache->cached = BTRFS_CACHE_FINISHED; 2022 add_new_free_space(cache, cache->start, 2023 cache->start + cache->length); 2024 btrfs_free_excluded_extents(cache); 2025 } 2026 2027 ret = btrfs_add_block_group_cache(info, cache); 2028 if (ret) { 2029 btrfs_remove_free_space_cache(cache); 2030 goto error; 2031 } 2032 trace_btrfs_add_block_group(info, cache, 0); 2033 btrfs_update_space_info(info, cache->flags, cache->length, 2034 cache->used, cache->bytes_super, 2035 cache->zone_unusable, &space_info); 2036 2037 cache->space_info = space_info; 2038 2039 link_block_group(cache); 2040 2041 set_avail_alloc_bits(info, cache->flags); 2042 if (btrfs_chunk_readonly(info, cache->start)) { 2043 inc_block_group_ro(cache, 1); 2044 } else if (cache->used == 0) { 2045 ASSERT(list_empty(&cache->bg_list)); 2046 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2047 btrfs_discard_queue_work(&info->discard_ctl, cache); 2048 else 2049 btrfs_mark_bg_unused(cache); 2050 } 2051 return 0; 2052 error: 2053 btrfs_put_block_group(cache); 2054 return ret; 2055 } 2056 2057 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2058 { 2059 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2060 struct btrfs_space_info *space_info; 2061 struct rb_node *node; 2062 int ret = 0; 2063 2064 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2065 struct extent_map *em; 2066 struct map_lookup *map; 2067 struct btrfs_block_group *bg; 2068 2069 em = rb_entry(node, struct extent_map, rb_node); 2070 map = em->map_lookup; 2071 bg = btrfs_create_block_group_cache(fs_info, em->start); 2072 if (!bg) { 2073 ret = -ENOMEM; 2074 break; 2075 } 2076 2077 /* Fill dummy cache as FULL */ 2078 bg->length = em->len; 2079 bg->flags = map->type; 2080 bg->last_byte_to_unpin = (u64)-1; 2081 bg->cached = BTRFS_CACHE_FINISHED; 2082 bg->used = em->len; 2083 bg->flags = map->type; 2084 ret = btrfs_add_block_group_cache(fs_info, bg); 2085 if (ret) { 2086 btrfs_remove_free_space_cache(bg); 2087 btrfs_put_block_group(bg); 2088 break; 2089 } 2090 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 2091 0, 0, &space_info); 2092 bg->space_info = space_info; 2093 link_block_group(bg); 2094 2095 set_avail_alloc_bits(fs_info, bg->flags); 2096 } 2097 if (!ret) 2098 btrfs_init_global_block_rsv(fs_info); 2099 return ret; 2100 } 2101 2102 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2103 { 2104 struct btrfs_path *path; 2105 int ret; 2106 struct btrfs_block_group *cache; 2107 struct btrfs_space_info *space_info; 2108 struct btrfs_key key; 2109 int need_clear = 0; 2110 u64 cache_gen; 2111 2112 if (!info->extent_root) 2113 return fill_dummy_bgs(info); 2114 2115 key.objectid = 0; 2116 key.offset = 0; 2117 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2118 path = btrfs_alloc_path(); 2119 if (!path) 2120 return -ENOMEM; 2121 2122 cache_gen = btrfs_super_cache_generation(info->super_copy); 2123 if (btrfs_test_opt(info, SPACE_CACHE) && 2124 btrfs_super_generation(info->super_copy) != cache_gen) 2125 need_clear = 1; 2126 if (btrfs_test_opt(info, CLEAR_CACHE)) 2127 need_clear = 1; 2128 2129 while (1) { 2130 struct btrfs_block_group_item bgi; 2131 struct extent_buffer *leaf; 2132 int slot; 2133 2134 ret = find_first_block_group(info, path, &key); 2135 if (ret > 0) 2136 break; 2137 if (ret != 0) 2138 goto error; 2139 2140 leaf = path->nodes[0]; 2141 slot = path->slots[0]; 2142 2143 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2144 sizeof(bgi)); 2145 2146 btrfs_item_key_to_cpu(leaf, &key, slot); 2147 btrfs_release_path(path); 2148 ret = read_one_block_group(info, &bgi, &key, need_clear); 2149 if (ret < 0) 2150 goto error; 2151 key.objectid += key.offset; 2152 key.offset = 0; 2153 } 2154 btrfs_release_path(path); 2155 2156 list_for_each_entry(space_info, &info->space_info, list) { 2157 int i; 2158 2159 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2160 if (list_empty(&space_info->block_groups[i])) 2161 continue; 2162 cache = list_first_entry(&space_info->block_groups[i], 2163 struct btrfs_block_group, 2164 list); 2165 btrfs_sysfs_add_block_group_type(cache); 2166 } 2167 2168 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2169 (BTRFS_BLOCK_GROUP_RAID10 | 2170 BTRFS_BLOCK_GROUP_RAID1_MASK | 2171 BTRFS_BLOCK_GROUP_RAID56_MASK | 2172 BTRFS_BLOCK_GROUP_DUP))) 2173 continue; 2174 /* 2175 * Avoid allocating from un-mirrored block group if there are 2176 * mirrored block groups. 2177 */ 2178 list_for_each_entry(cache, 2179 &space_info->block_groups[BTRFS_RAID_RAID0], 2180 list) 2181 inc_block_group_ro(cache, 1); 2182 list_for_each_entry(cache, 2183 &space_info->block_groups[BTRFS_RAID_SINGLE], 2184 list) 2185 inc_block_group_ro(cache, 1); 2186 } 2187 2188 btrfs_init_global_block_rsv(info); 2189 ret = check_chunk_block_group_mappings(info); 2190 error: 2191 btrfs_free_path(path); 2192 return ret; 2193 } 2194 2195 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2196 struct btrfs_block_group *block_group) 2197 { 2198 struct btrfs_fs_info *fs_info = trans->fs_info; 2199 struct btrfs_block_group_item bgi; 2200 struct btrfs_root *root; 2201 struct btrfs_key key; 2202 2203 spin_lock(&block_group->lock); 2204 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2205 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2206 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2207 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2208 key.objectid = block_group->start; 2209 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2210 key.offset = block_group->length; 2211 spin_unlock(&block_group->lock); 2212 2213 root = fs_info->extent_root; 2214 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2215 } 2216 2217 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2218 { 2219 struct btrfs_fs_info *fs_info = trans->fs_info; 2220 struct btrfs_block_group *block_group; 2221 int ret = 0; 2222 2223 if (!trans->can_flush_pending_bgs) 2224 return; 2225 2226 while (!list_empty(&trans->new_bgs)) { 2227 int index; 2228 2229 block_group = list_first_entry(&trans->new_bgs, 2230 struct btrfs_block_group, 2231 bg_list); 2232 if (ret) 2233 goto next; 2234 2235 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2236 2237 ret = insert_block_group_item(trans, block_group); 2238 if (ret) 2239 btrfs_abort_transaction(trans, ret); 2240 ret = btrfs_finish_chunk_alloc(trans, block_group->start, 2241 block_group->length); 2242 if (ret) 2243 btrfs_abort_transaction(trans, ret); 2244 add_block_group_free_space(trans, block_group); 2245 2246 /* 2247 * If we restriped during balance, we may have added a new raid 2248 * type, so now add the sysfs entries when it is safe to do so. 2249 * We don't have to worry about locking here as it's handled in 2250 * btrfs_sysfs_add_block_group_type. 2251 */ 2252 if (block_group->space_info->block_group_kobjs[index] == NULL) 2253 btrfs_sysfs_add_block_group_type(block_group); 2254 2255 /* Already aborted the transaction if it failed. */ 2256 next: 2257 btrfs_delayed_refs_rsv_release(fs_info, 1); 2258 list_del_init(&block_group->bg_list); 2259 } 2260 btrfs_trans_release_chunk_metadata(trans); 2261 } 2262 2263 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2264 u64 type, u64 chunk_offset, u64 size) 2265 { 2266 struct btrfs_fs_info *fs_info = trans->fs_info; 2267 struct btrfs_block_group *cache; 2268 int ret; 2269 2270 btrfs_set_log_full_commit(trans); 2271 2272 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2273 if (!cache) 2274 return -ENOMEM; 2275 2276 cache->length = size; 2277 set_free_space_tree_thresholds(cache); 2278 cache->used = bytes_used; 2279 cache->flags = type; 2280 cache->last_byte_to_unpin = (u64)-1; 2281 cache->cached = BTRFS_CACHE_FINISHED; 2282 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2283 cache->needs_free_space = 1; 2284 2285 ret = btrfs_load_block_group_zone_info(cache, true); 2286 if (ret) { 2287 btrfs_put_block_group(cache); 2288 return ret; 2289 } 2290 2291 ret = exclude_super_stripes(cache); 2292 if (ret) { 2293 /* We may have excluded something, so call this just in case */ 2294 btrfs_free_excluded_extents(cache); 2295 btrfs_put_block_group(cache); 2296 return ret; 2297 } 2298 2299 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2300 2301 btrfs_free_excluded_extents(cache); 2302 2303 #ifdef CONFIG_BTRFS_DEBUG 2304 if (btrfs_should_fragment_free_space(cache)) { 2305 u64 new_bytes_used = size - bytes_used; 2306 2307 bytes_used += new_bytes_used >> 1; 2308 fragment_free_space(cache); 2309 } 2310 #endif 2311 /* 2312 * Ensure the corresponding space_info object is created and 2313 * assigned to our block group. We want our bg to be added to the rbtree 2314 * with its ->space_info set. 2315 */ 2316 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2317 ASSERT(cache->space_info); 2318 2319 ret = btrfs_add_block_group_cache(fs_info, cache); 2320 if (ret) { 2321 btrfs_remove_free_space_cache(cache); 2322 btrfs_put_block_group(cache); 2323 return ret; 2324 } 2325 2326 /* 2327 * Now that our block group has its ->space_info set and is inserted in 2328 * the rbtree, update the space info's counters. 2329 */ 2330 trace_btrfs_add_block_group(fs_info, cache, 1); 2331 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2332 cache->bytes_super, 0, &cache->space_info); 2333 btrfs_update_global_block_rsv(fs_info); 2334 2335 link_block_group(cache); 2336 2337 list_add_tail(&cache->bg_list, &trans->new_bgs); 2338 trans->delayed_ref_updates++; 2339 btrfs_update_delayed_refs_rsv(trans); 2340 2341 set_avail_alloc_bits(fs_info, type); 2342 return 0; 2343 } 2344 2345 /* 2346 * Mark one block group RO, can be called several times for the same block 2347 * group. 2348 * 2349 * @cache: the destination block group 2350 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2351 * ensure we still have some free space after marking this 2352 * block group RO. 2353 */ 2354 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2355 bool do_chunk_alloc) 2356 { 2357 struct btrfs_fs_info *fs_info = cache->fs_info; 2358 struct btrfs_trans_handle *trans; 2359 u64 alloc_flags; 2360 int ret; 2361 bool dirty_bg_running; 2362 2363 do { 2364 trans = btrfs_join_transaction(fs_info->extent_root); 2365 if (IS_ERR(trans)) 2366 return PTR_ERR(trans); 2367 2368 dirty_bg_running = false; 2369 2370 /* 2371 * We're not allowed to set block groups readonly after the dirty 2372 * block group cache has started writing. If it already started, 2373 * back off and let this transaction commit. 2374 */ 2375 mutex_lock(&fs_info->ro_block_group_mutex); 2376 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2377 u64 transid = trans->transid; 2378 2379 mutex_unlock(&fs_info->ro_block_group_mutex); 2380 btrfs_end_transaction(trans); 2381 2382 ret = btrfs_wait_for_commit(fs_info, transid); 2383 if (ret) 2384 return ret; 2385 dirty_bg_running = true; 2386 } 2387 } while (dirty_bg_running); 2388 2389 if (do_chunk_alloc) { 2390 /* 2391 * If we are changing raid levels, try to allocate a 2392 * corresponding block group with the new raid level. 2393 */ 2394 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2395 if (alloc_flags != cache->flags) { 2396 ret = btrfs_chunk_alloc(trans, alloc_flags, 2397 CHUNK_ALLOC_FORCE); 2398 /* 2399 * ENOSPC is allowed here, we may have enough space 2400 * already allocated at the new raid level to carry on 2401 */ 2402 if (ret == -ENOSPC) 2403 ret = 0; 2404 if (ret < 0) 2405 goto out; 2406 } 2407 } 2408 2409 ret = inc_block_group_ro(cache, 0); 2410 if (!do_chunk_alloc || ret == -ETXTBSY) 2411 goto unlock_out; 2412 if (!ret) 2413 goto out; 2414 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2415 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2416 if (ret < 0) 2417 goto out; 2418 ret = inc_block_group_ro(cache, 0); 2419 if (ret == -ETXTBSY) 2420 goto unlock_out; 2421 out: 2422 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2423 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2424 mutex_lock(&fs_info->chunk_mutex); 2425 check_system_chunk(trans, alloc_flags); 2426 mutex_unlock(&fs_info->chunk_mutex); 2427 } 2428 unlock_out: 2429 mutex_unlock(&fs_info->ro_block_group_mutex); 2430 2431 btrfs_end_transaction(trans); 2432 return ret; 2433 } 2434 2435 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2436 { 2437 struct btrfs_space_info *sinfo = cache->space_info; 2438 u64 num_bytes; 2439 2440 BUG_ON(!cache->ro); 2441 2442 spin_lock(&sinfo->lock); 2443 spin_lock(&cache->lock); 2444 if (!--cache->ro) { 2445 num_bytes = cache->length - cache->reserved - 2446 cache->pinned - cache->bytes_super - 2447 cache->zone_unusable - cache->used; 2448 sinfo->bytes_readonly -= num_bytes; 2449 if (btrfs_is_zoned(cache->fs_info)) { 2450 /* Migrate zone_unusable bytes back */ 2451 cache->zone_unusable = cache->alloc_offset - cache->used; 2452 sinfo->bytes_zone_unusable += cache->zone_unusable; 2453 sinfo->bytes_readonly -= cache->zone_unusable; 2454 } 2455 list_del_init(&cache->ro_list); 2456 } 2457 spin_unlock(&cache->lock); 2458 spin_unlock(&sinfo->lock); 2459 } 2460 2461 static int update_block_group_item(struct btrfs_trans_handle *trans, 2462 struct btrfs_path *path, 2463 struct btrfs_block_group *cache) 2464 { 2465 struct btrfs_fs_info *fs_info = trans->fs_info; 2466 int ret; 2467 struct btrfs_root *root = fs_info->extent_root; 2468 unsigned long bi; 2469 struct extent_buffer *leaf; 2470 struct btrfs_block_group_item bgi; 2471 struct btrfs_key key; 2472 2473 key.objectid = cache->start; 2474 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2475 key.offset = cache->length; 2476 2477 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2478 if (ret) { 2479 if (ret > 0) 2480 ret = -ENOENT; 2481 goto fail; 2482 } 2483 2484 leaf = path->nodes[0]; 2485 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2486 btrfs_set_stack_block_group_used(&bgi, cache->used); 2487 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2488 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2489 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2490 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2491 btrfs_mark_buffer_dirty(leaf); 2492 fail: 2493 btrfs_release_path(path); 2494 return ret; 2495 2496 } 2497 2498 static int cache_save_setup(struct btrfs_block_group *block_group, 2499 struct btrfs_trans_handle *trans, 2500 struct btrfs_path *path) 2501 { 2502 struct btrfs_fs_info *fs_info = block_group->fs_info; 2503 struct btrfs_root *root = fs_info->tree_root; 2504 struct inode *inode = NULL; 2505 struct extent_changeset *data_reserved = NULL; 2506 u64 alloc_hint = 0; 2507 int dcs = BTRFS_DC_ERROR; 2508 u64 num_pages = 0; 2509 int retries = 0; 2510 int ret = 0; 2511 2512 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2513 return 0; 2514 2515 /* 2516 * If this block group is smaller than 100 megs don't bother caching the 2517 * block group. 2518 */ 2519 if (block_group->length < (100 * SZ_1M)) { 2520 spin_lock(&block_group->lock); 2521 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2522 spin_unlock(&block_group->lock); 2523 return 0; 2524 } 2525 2526 if (TRANS_ABORTED(trans)) 2527 return 0; 2528 again: 2529 inode = lookup_free_space_inode(block_group, path); 2530 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2531 ret = PTR_ERR(inode); 2532 btrfs_release_path(path); 2533 goto out; 2534 } 2535 2536 if (IS_ERR(inode)) { 2537 BUG_ON(retries); 2538 retries++; 2539 2540 if (block_group->ro) 2541 goto out_free; 2542 2543 ret = create_free_space_inode(trans, block_group, path); 2544 if (ret) 2545 goto out_free; 2546 goto again; 2547 } 2548 2549 /* 2550 * We want to set the generation to 0, that way if anything goes wrong 2551 * from here on out we know not to trust this cache when we load up next 2552 * time. 2553 */ 2554 BTRFS_I(inode)->generation = 0; 2555 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2556 if (ret) { 2557 /* 2558 * So theoretically we could recover from this, simply set the 2559 * super cache generation to 0 so we know to invalidate the 2560 * cache, but then we'd have to keep track of the block groups 2561 * that fail this way so we know we _have_ to reset this cache 2562 * before the next commit or risk reading stale cache. So to 2563 * limit our exposure to horrible edge cases lets just abort the 2564 * transaction, this only happens in really bad situations 2565 * anyway. 2566 */ 2567 btrfs_abort_transaction(trans, ret); 2568 goto out_put; 2569 } 2570 WARN_ON(ret); 2571 2572 /* We've already setup this transaction, go ahead and exit */ 2573 if (block_group->cache_generation == trans->transid && 2574 i_size_read(inode)) { 2575 dcs = BTRFS_DC_SETUP; 2576 goto out_put; 2577 } 2578 2579 if (i_size_read(inode) > 0) { 2580 ret = btrfs_check_trunc_cache_free_space(fs_info, 2581 &fs_info->global_block_rsv); 2582 if (ret) 2583 goto out_put; 2584 2585 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2586 if (ret) 2587 goto out_put; 2588 } 2589 2590 spin_lock(&block_group->lock); 2591 if (block_group->cached != BTRFS_CACHE_FINISHED || 2592 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2593 /* 2594 * don't bother trying to write stuff out _if_ 2595 * a) we're not cached, 2596 * b) we're with nospace_cache mount option, 2597 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2598 */ 2599 dcs = BTRFS_DC_WRITTEN; 2600 spin_unlock(&block_group->lock); 2601 goto out_put; 2602 } 2603 spin_unlock(&block_group->lock); 2604 2605 /* 2606 * We hit an ENOSPC when setting up the cache in this transaction, just 2607 * skip doing the setup, we've already cleared the cache so we're safe. 2608 */ 2609 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2610 ret = -ENOSPC; 2611 goto out_put; 2612 } 2613 2614 /* 2615 * Try to preallocate enough space based on how big the block group is. 2616 * Keep in mind this has to include any pinned space which could end up 2617 * taking up quite a bit since it's not folded into the other space 2618 * cache. 2619 */ 2620 num_pages = div_u64(block_group->length, SZ_256M); 2621 if (!num_pages) 2622 num_pages = 1; 2623 2624 num_pages *= 16; 2625 num_pages *= PAGE_SIZE; 2626 2627 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2628 num_pages); 2629 if (ret) 2630 goto out_put; 2631 2632 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2633 num_pages, num_pages, 2634 &alloc_hint); 2635 /* 2636 * Our cache requires contiguous chunks so that we don't modify a bunch 2637 * of metadata or split extents when writing the cache out, which means 2638 * we can enospc if we are heavily fragmented in addition to just normal 2639 * out of space conditions. So if we hit this just skip setting up any 2640 * other block groups for this transaction, maybe we'll unpin enough 2641 * space the next time around. 2642 */ 2643 if (!ret) 2644 dcs = BTRFS_DC_SETUP; 2645 else if (ret == -ENOSPC) 2646 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2647 2648 out_put: 2649 iput(inode); 2650 out_free: 2651 btrfs_release_path(path); 2652 out: 2653 spin_lock(&block_group->lock); 2654 if (!ret && dcs == BTRFS_DC_SETUP) 2655 block_group->cache_generation = trans->transid; 2656 block_group->disk_cache_state = dcs; 2657 spin_unlock(&block_group->lock); 2658 2659 extent_changeset_free(data_reserved); 2660 return ret; 2661 } 2662 2663 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2664 { 2665 struct btrfs_fs_info *fs_info = trans->fs_info; 2666 struct btrfs_block_group *cache, *tmp; 2667 struct btrfs_transaction *cur_trans = trans->transaction; 2668 struct btrfs_path *path; 2669 2670 if (list_empty(&cur_trans->dirty_bgs) || 2671 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2672 return 0; 2673 2674 path = btrfs_alloc_path(); 2675 if (!path) 2676 return -ENOMEM; 2677 2678 /* Could add new block groups, use _safe just in case */ 2679 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2680 dirty_list) { 2681 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2682 cache_save_setup(cache, trans, path); 2683 } 2684 2685 btrfs_free_path(path); 2686 return 0; 2687 } 2688 2689 /* 2690 * Transaction commit does final block group cache writeback during a critical 2691 * section where nothing is allowed to change the FS. This is required in 2692 * order for the cache to actually match the block group, but can introduce a 2693 * lot of latency into the commit. 2694 * 2695 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2696 * There's a chance we'll have to redo some of it if the block group changes 2697 * again during the commit, but it greatly reduces the commit latency by 2698 * getting rid of the easy block groups while we're still allowing others to 2699 * join the commit. 2700 */ 2701 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2702 { 2703 struct btrfs_fs_info *fs_info = trans->fs_info; 2704 struct btrfs_block_group *cache; 2705 struct btrfs_transaction *cur_trans = trans->transaction; 2706 int ret = 0; 2707 int should_put; 2708 struct btrfs_path *path = NULL; 2709 LIST_HEAD(dirty); 2710 struct list_head *io = &cur_trans->io_bgs; 2711 int num_started = 0; 2712 int loops = 0; 2713 2714 spin_lock(&cur_trans->dirty_bgs_lock); 2715 if (list_empty(&cur_trans->dirty_bgs)) { 2716 spin_unlock(&cur_trans->dirty_bgs_lock); 2717 return 0; 2718 } 2719 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2720 spin_unlock(&cur_trans->dirty_bgs_lock); 2721 2722 again: 2723 /* Make sure all the block groups on our dirty list actually exist */ 2724 btrfs_create_pending_block_groups(trans); 2725 2726 if (!path) { 2727 path = btrfs_alloc_path(); 2728 if (!path) { 2729 ret = -ENOMEM; 2730 goto out; 2731 } 2732 } 2733 2734 /* 2735 * cache_write_mutex is here only to save us from balance or automatic 2736 * removal of empty block groups deleting this block group while we are 2737 * writing out the cache 2738 */ 2739 mutex_lock(&trans->transaction->cache_write_mutex); 2740 while (!list_empty(&dirty)) { 2741 bool drop_reserve = true; 2742 2743 cache = list_first_entry(&dirty, struct btrfs_block_group, 2744 dirty_list); 2745 /* 2746 * This can happen if something re-dirties a block group that 2747 * is already under IO. Just wait for it to finish and then do 2748 * it all again 2749 */ 2750 if (!list_empty(&cache->io_list)) { 2751 list_del_init(&cache->io_list); 2752 btrfs_wait_cache_io(trans, cache, path); 2753 btrfs_put_block_group(cache); 2754 } 2755 2756 2757 /* 2758 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2759 * it should update the cache_state. Don't delete until after 2760 * we wait. 2761 * 2762 * Since we're not running in the commit critical section 2763 * we need the dirty_bgs_lock to protect from update_block_group 2764 */ 2765 spin_lock(&cur_trans->dirty_bgs_lock); 2766 list_del_init(&cache->dirty_list); 2767 spin_unlock(&cur_trans->dirty_bgs_lock); 2768 2769 should_put = 1; 2770 2771 cache_save_setup(cache, trans, path); 2772 2773 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2774 cache->io_ctl.inode = NULL; 2775 ret = btrfs_write_out_cache(trans, cache, path); 2776 if (ret == 0 && cache->io_ctl.inode) { 2777 num_started++; 2778 should_put = 0; 2779 2780 /* 2781 * The cache_write_mutex is protecting the 2782 * io_list, also refer to the definition of 2783 * btrfs_transaction::io_bgs for more details 2784 */ 2785 list_add_tail(&cache->io_list, io); 2786 } else { 2787 /* 2788 * If we failed to write the cache, the 2789 * generation will be bad and life goes on 2790 */ 2791 ret = 0; 2792 } 2793 } 2794 if (!ret) { 2795 ret = update_block_group_item(trans, path, cache); 2796 /* 2797 * Our block group might still be attached to the list 2798 * of new block groups in the transaction handle of some 2799 * other task (struct btrfs_trans_handle->new_bgs). This 2800 * means its block group item isn't yet in the extent 2801 * tree. If this happens ignore the error, as we will 2802 * try again later in the critical section of the 2803 * transaction commit. 2804 */ 2805 if (ret == -ENOENT) { 2806 ret = 0; 2807 spin_lock(&cur_trans->dirty_bgs_lock); 2808 if (list_empty(&cache->dirty_list)) { 2809 list_add_tail(&cache->dirty_list, 2810 &cur_trans->dirty_bgs); 2811 btrfs_get_block_group(cache); 2812 drop_reserve = false; 2813 } 2814 spin_unlock(&cur_trans->dirty_bgs_lock); 2815 } else if (ret) { 2816 btrfs_abort_transaction(trans, ret); 2817 } 2818 } 2819 2820 /* If it's not on the io list, we need to put the block group */ 2821 if (should_put) 2822 btrfs_put_block_group(cache); 2823 if (drop_reserve) 2824 btrfs_delayed_refs_rsv_release(fs_info, 1); 2825 /* 2826 * Avoid blocking other tasks for too long. It might even save 2827 * us from writing caches for block groups that are going to be 2828 * removed. 2829 */ 2830 mutex_unlock(&trans->transaction->cache_write_mutex); 2831 if (ret) 2832 goto out; 2833 mutex_lock(&trans->transaction->cache_write_mutex); 2834 } 2835 mutex_unlock(&trans->transaction->cache_write_mutex); 2836 2837 /* 2838 * Go through delayed refs for all the stuff we've just kicked off 2839 * and then loop back (just once) 2840 */ 2841 if (!ret) 2842 ret = btrfs_run_delayed_refs(trans, 0); 2843 if (!ret && loops == 0) { 2844 loops++; 2845 spin_lock(&cur_trans->dirty_bgs_lock); 2846 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2847 /* 2848 * dirty_bgs_lock protects us from concurrent block group 2849 * deletes too (not just cache_write_mutex). 2850 */ 2851 if (!list_empty(&dirty)) { 2852 spin_unlock(&cur_trans->dirty_bgs_lock); 2853 goto again; 2854 } 2855 spin_unlock(&cur_trans->dirty_bgs_lock); 2856 } 2857 out: 2858 if (ret < 0) { 2859 spin_lock(&cur_trans->dirty_bgs_lock); 2860 list_splice_init(&dirty, &cur_trans->dirty_bgs); 2861 spin_unlock(&cur_trans->dirty_bgs_lock); 2862 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2863 } 2864 2865 btrfs_free_path(path); 2866 return ret; 2867 } 2868 2869 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2870 { 2871 struct btrfs_fs_info *fs_info = trans->fs_info; 2872 struct btrfs_block_group *cache; 2873 struct btrfs_transaction *cur_trans = trans->transaction; 2874 int ret = 0; 2875 int should_put; 2876 struct btrfs_path *path; 2877 struct list_head *io = &cur_trans->io_bgs; 2878 int num_started = 0; 2879 2880 path = btrfs_alloc_path(); 2881 if (!path) 2882 return -ENOMEM; 2883 2884 /* 2885 * Even though we are in the critical section of the transaction commit, 2886 * we can still have concurrent tasks adding elements to this 2887 * transaction's list of dirty block groups. These tasks correspond to 2888 * endio free space workers started when writeback finishes for a 2889 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2890 * allocate new block groups as a result of COWing nodes of the root 2891 * tree when updating the free space inode. The writeback for the space 2892 * caches is triggered by an earlier call to 2893 * btrfs_start_dirty_block_groups() and iterations of the following 2894 * loop. 2895 * Also we want to do the cache_save_setup first and then run the 2896 * delayed refs to make sure we have the best chance at doing this all 2897 * in one shot. 2898 */ 2899 spin_lock(&cur_trans->dirty_bgs_lock); 2900 while (!list_empty(&cur_trans->dirty_bgs)) { 2901 cache = list_first_entry(&cur_trans->dirty_bgs, 2902 struct btrfs_block_group, 2903 dirty_list); 2904 2905 /* 2906 * This can happen if cache_save_setup re-dirties a block group 2907 * that is already under IO. Just wait for it to finish and 2908 * then do it all again 2909 */ 2910 if (!list_empty(&cache->io_list)) { 2911 spin_unlock(&cur_trans->dirty_bgs_lock); 2912 list_del_init(&cache->io_list); 2913 btrfs_wait_cache_io(trans, cache, path); 2914 btrfs_put_block_group(cache); 2915 spin_lock(&cur_trans->dirty_bgs_lock); 2916 } 2917 2918 /* 2919 * Don't remove from the dirty list until after we've waited on 2920 * any pending IO 2921 */ 2922 list_del_init(&cache->dirty_list); 2923 spin_unlock(&cur_trans->dirty_bgs_lock); 2924 should_put = 1; 2925 2926 cache_save_setup(cache, trans, path); 2927 2928 if (!ret) 2929 ret = btrfs_run_delayed_refs(trans, 2930 (unsigned long) -1); 2931 2932 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2933 cache->io_ctl.inode = NULL; 2934 ret = btrfs_write_out_cache(trans, cache, path); 2935 if (ret == 0 && cache->io_ctl.inode) { 2936 num_started++; 2937 should_put = 0; 2938 list_add_tail(&cache->io_list, io); 2939 } else { 2940 /* 2941 * If we failed to write the cache, the 2942 * generation will be bad and life goes on 2943 */ 2944 ret = 0; 2945 } 2946 } 2947 if (!ret) { 2948 ret = update_block_group_item(trans, path, cache); 2949 /* 2950 * One of the free space endio workers might have 2951 * created a new block group while updating a free space 2952 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2953 * and hasn't released its transaction handle yet, in 2954 * which case the new block group is still attached to 2955 * its transaction handle and its creation has not 2956 * finished yet (no block group item in the extent tree 2957 * yet, etc). If this is the case, wait for all free 2958 * space endio workers to finish and retry. This is a 2959 * very rare case so no need for a more efficient and 2960 * complex approach. 2961 */ 2962 if (ret == -ENOENT) { 2963 wait_event(cur_trans->writer_wait, 2964 atomic_read(&cur_trans->num_writers) == 1); 2965 ret = update_block_group_item(trans, path, cache); 2966 } 2967 if (ret) 2968 btrfs_abort_transaction(trans, ret); 2969 } 2970 2971 /* If its not on the io list, we need to put the block group */ 2972 if (should_put) 2973 btrfs_put_block_group(cache); 2974 btrfs_delayed_refs_rsv_release(fs_info, 1); 2975 spin_lock(&cur_trans->dirty_bgs_lock); 2976 } 2977 spin_unlock(&cur_trans->dirty_bgs_lock); 2978 2979 /* 2980 * Refer to the definition of io_bgs member for details why it's safe 2981 * to use it without any locking 2982 */ 2983 while (!list_empty(io)) { 2984 cache = list_first_entry(io, struct btrfs_block_group, 2985 io_list); 2986 list_del_init(&cache->io_list); 2987 btrfs_wait_cache_io(trans, cache, path); 2988 btrfs_put_block_group(cache); 2989 } 2990 2991 btrfs_free_path(path); 2992 return ret; 2993 } 2994 2995 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2996 u64 bytenr, u64 num_bytes, int alloc) 2997 { 2998 struct btrfs_fs_info *info = trans->fs_info; 2999 struct btrfs_block_group *cache = NULL; 3000 u64 total = num_bytes; 3001 u64 old_val; 3002 u64 byte_in_group; 3003 int factor; 3004 int ret = 0; 3005 3006 /* Block accounting for super block */ 3007 spin_lock(&info->delalloc_root_lock); 3008 old_val = btrfs_super_bytes_used(info->super_copy); 3009 if (alloc) 3010 old_val += num_bytes; 3011 else 3012 old_val -= num_bytes; 3013 btrfs_set_super_bytes_used(info->super_copy, old_val); 3014 spin_unlock(&info->delalloc_root_lock); 3015 3016 while (total) { 3017 cache = btrfs_lookup_block_group(info, bytenr); 3018 if (!cache) { 3019 ret = -ENOENT; 3020 break; 3021 } 3022 factor = btrfs_bg_type_to_factor(cache->flags); 3023 3024 /* 3025 * If this block group has free space cache written out, we 3026 * need to make sure to load it if we are removing space. This 3027 * is because we need the unpinning stage to actually add the 3028 * space back to the block group, otherwise we will leak space. 3029 */ 3030 if (!alloc && !btrfs_block_group_done(cache)) 3031 btrfs_cache_block_group(cache, 1); 3032 3033 byte_in_group = bytenr - cache->start; 3034 WARN_ON(byte_in_group > cache->length); 3035 3036 spin_lock(&cache->space_info->lock); 3037 spin_lock(&cache->lock); 3038 3039 if (btrfs_test_opt(info, SPACE_CACHE) && 3040 cache->disk_cache_state < BTRFS_DC_CLEAR) 3041 cache->disk_cache_state = BTRFS_DC_CLEAR; 3042 3043 old_val = cache->used; 3044 num_bytes = min(total, cache->length - byte_in_group); 3045 if (alloc) { 3046 old_val += num_bytes; 3047 cache->used = old_val; 3048 cache->reserved -= num_bytes; 3049 cache->space_info->bytes_reserved -= num_bytes; 3050 cache->space_info->bytes_used += num_bytes; 3051 cache->space_info->disk_used += num_bytes * factor; 3052 spin_unlock(&cache->lock); 3053 spin_unlock(&cache->space_info->lock); 3054 } else { 3055 old_val -= num_bytes; 3056 cache->used = old_val; 3057 cache->pinned += num_bytes; 3058 btrfs_space_info_update_bytes_pinned(info, 3059 cache->space_info, num_bytes); 3060 cache->space_info->bytes_used -= num_bytes; 3061 cache->space_info->disk_used -= num_bytes * factor; 3062 spin_unlock(&cache->lock); 3063 spin_unlock(&cache->space_info->lock); 3064 3065 __btrfs_mod_total_bytes_pinned(cache->space_info, 3066 num_bytes); 3067 set_extent_dirty(&trans->transaction->pinned_extents, 3068 bytenr, bytenr + num_bytes - 1, 3069 GFP_NOFS | __GFP_NOFAIL); 3070 } 3071 3072 spin_lock(&trans->transaction->dirty_bgs_lock); 3073 if (list_empty(&cache->dirty_list)) { 3074 list_add_tail(&cache->dirty_list, 3075 &trans->transaction->dirty_bgs); 3076 trans->delayed_ref_updates++; 3077 btrfs_get_block_group(cache); 3078 } 3079 spin_unlock(&trans->transaction->dirty_bgs_lock); 3080 3081 /* 3082 * No longer have used bytes in this block group, queue it for 3083 * deletion. We do this after adding the block group to the 3084 * dirty list to avoid races between cleaner kthread and space 3085 * cache writeout. 3086 */ 3087 if (!alloc && old_val == 0) { 3088 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3089 btrfs_mark_bg_unused(cache); 3090 } 3091 3092 btrfs_put_block_group(cache); 3093 total -= num_bytes; 3094 bytenr += num_bytes; 3095 } 3096 3097 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3098 btrfs_update_delayed_refs_rsv(trans); 3099 return ret; 3100 } 3101 3102 /** 3103 * btrfs_add_reserved_bytes - update the block_group and space info counters 3104 * @cache: The cache we are manipulating 3105 * @ram_bytes: The number of bytes of file content, and will be same to 3106 * @num_bytes except for the compress path. 3107 * @num_bytes: The number of bytes in question 3108 * @delalloc: The blocks are allocated for the delalloc write 3109 * 3110 * This is called by the allocator when it reserves space. If this is a 3111 * reservation and the block group has become read only we cannot make the 3112 * reservation and return -EAGAIN, otherwise this function always succeeds. 3113 */ 3114 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3115 u64 ram_bytes, u64 num_bytes, int delalloc) 3116 { 3117 struct btrfs_space_info *space_info = cache->space_info; 3118 int ret = 0; 3119 3120 spin_lock(&space_info->lock); 3121 spin_lock(&cache->lock); 3122 if (cache->ro) { 3123 ret = -EAGAIN; 3124 } else { 3125 cache->reserved += num_bytes; 3126 space_info->bytes_reserved += num_bytes; 3127 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3128 space_info->flags, num_bytes, 1); 3129 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3130 space_info, -ram_bytes); 3131 if (delalloc) 3132 cache->delalloc_bytes += num_bytes; 3133 3134 /* 3135 * Compression can use less space than we reserved, so wake 3136 * tickets if that happens 3137 */ 3138 if (num_bytes < ram_bytes) 3139 btrfs_try_granting_tickets(cache->fs_info, space_info); 3140 } 3141 spin_unlock(&cache->lock); 3142 spin_unlock(&space_info->lock); 3143 return ret; 3144 } 3145 3146 /** 3147 * btrfs_free_reserved_bytes - update the block_group and space info counters 3148 * @cache: The cache we are manipulating 3149 * @num_bytes: The number of bytes in question 3150 * @delalloc: The blocks are allocated for the delalloc write 3151 * 3152 * This is called by somebody who is freeing space that was never actually used 3153 * on disk. For example if you reserve some space for a new leaf in transaction 3154 * A and before transaction A commits you free that leaf, you call this with 3155 * reserve set to 0 in order to clear the reservation. 3156 */ 3157 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3158 u64 num_bytes, int delalloc) 3159 { 3160 struct btrfs_space_info *space_info = cache->space_info; 3161 3162 spin_lock(&space_info->lock); 3163 spin_lock(&cache->lock); 3164 if (cache->ro) 3165 space_info->bytes_readonly += num_bytes; 3166 cache->reserved -= num_bytes; 3167 space_info->bytes_reserved -= num_bytes; 3168 space_info->max_extent_size = 0; 3169 3170 if (delalloc) 3171 cache->delalloc_bytes -= num_bytes; 3172 spin_unlock(&cache->lock); 3173 3174 btrfs_try_granting_tickets(cache->fs_info, space_info); 3175 spin_unlock(&space_info->lock); 3176 } 3177 3178 static void force_metadata_allocation(struct btrfs_fs_info *info) 3179 { 3180 struct list_head *head = &info->space_info; 3181 struct btrfs_space_info *found; 3182 3183 list_for_each_entry(found, head, list) { 3184 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3185 found->force_alloc = CHUNK_ALLOC_FORCE; 3186 } 3187 } 3188 3189 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3190 struct btrfs_space_info *sinfo, int force) 3191 { 3192 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3193 u64 thresh; 3194 3195 if (force == CHUNK_ALLOC_FORCE) 3196 return 1; 3197 3198 /* 3199 * in limited mode, we want to have some free space up to 3200 * about 1% of the FS size. 3201 */ 3202 if (force == CHUNK_ALLOC_LIMITED) { 3203 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3204 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3205 3206 if (sinfo->total_bytes - bytes_used < thresh) 3207 return 1; 3208 } 3209 3210 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3211 return 0; 3212 return 1; 3213 } 3214 3215 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3216 { 3217 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3218 3219 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3220 } 3221 3222 /* 3223 * If force is CHUNK_ALLOC_FORCE: 3224 * - return 1 if it successfully allocates a chunk, 3225 * - return errors including -ENOSPC otherwise. 3226 * If force is NOT CHUNK_ALLOC_FORCE: 3227 * - return 0 if it doesn't need to allocate a new chunk, 3228 * - return 1 if it successfully allocates a chunk, 3229 * - return errors including -ENOSPC otherwise. 3230 */ 3231 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3232 enum btrfs_chunk_alloc_enum force) 3233 { 3234 struct btrfs_fs_info *fs_info = trans->fs_info; 3235 struct btrfs_space_info *space_info; 3236 bool wait_for_alloc = false; 3237 bool should_alloc = false; 3238 int ret = 0; 3239 3240 /* Don't re-enter if we're already allocating a chunk */ 3241 if (trans->allocating_chunk) 3242 return -ENOSPC; 3243 3244 space_info = btrfs_find_space_info(fs_info, flags); 3245 ASSERT(space_info); 3246 3247 do { 3248 spin_lock(&space_info->lock); 3249 if (force < space_info->force_alloc) 3250 force = space_info->force_alloc; 3251 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3252 if (space_info->full) { 3253 /* No more free physical space */ 3254 if (should_alloc) 3255 ret = -ENOSPC; 3256 else 3257 ret = 0; 3258 spin_unlock(&space_info->lock); 3259 return ret; 3260 } else if (!should_alloc) { 3261 spin_unlock(&space_info->lock); 3262 return 0; 3263 } else if (space_info->chunk_alloc) { 3264 /* 3265 * Someone is already allocating, so we need to block 3266 * until this someone is finished and then loop to 3267 * recheck if we should continue with our allocation 3268 * attempt. 3269 */ 3270 wait_for_alloc = true; 3271 spin_unlock(&space_info->lock); 3272 mutex_lock(&fs_info->chunk_mutex); 3273 mutex_unlock(&fs_info->chunk_mutex); 3274 } else { 3275 /* Proceed with allocation */ 3276 space_info->chunk_alloc = 1; 3277 wait_for_alloc = false; 3278 spin_unlock(&space_info->lock); 3279 } 3280 3281 cond_resched(); 3282 } while (wait_for_alloc); 3283 3284 mutex_lock(&fs_info->chunk_mutex); 3285 trans->allocating_chunk = true; 3286 3287 /* 3288 * If we have mixed data/metadata chunks we want to make sure we keep 3289 * allocating mixed chunks instead of individual chunks. 3290 */ 3291 if (btrfs_mixed_space_info(space_info)) 3292 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3293 3294 /* 3295 * if we're doing a data chunk, go ahead and make sure that 3296 * we keep a reasonable number of metadata chunks allocated in the 3297 * FS as well. 3298 */ 3299 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3300 fs_info->data_chunk_allocations++; 3301 if (!(fs_info->data_chunk_allocations % 3302 fs_info->metadata_ratio)) 3303 force_metadata_allocation(fs_info); 3304 } 3305 3306 /* 3307 * Check if we have enough space in SYSTEM chunk because we may need 3308 * to update devices. 3309 */ 3310 check_system_chunk(trans, flags); 3311 3312 ret = btrfs_alloc_chunk(trans, flags); 3313 trans->allocating_chunk = false; 3314 3315 spin_lock(&space_info->lock); 3316 if (ret < 0) { 3317 if (ret == -ENOSPC) 3318 space_info->full = 1; 3319 else 3320 goto out; 3321 } else { 3322 ret = 1; 3323 space_info->max_extent_size = 0; 3324 } 3325 3326 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3327 out: 3328 space_info->chunk_alloc = 0; 3329 spin_unlock(&space_info->lock); 3330 mutex_unlock(&fs_info->chunk_mutex); 3331 /* 3332 * When we allocate a new chunk we reserve space in the chunk block 3333 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3334 * add new nodes/leafs to it if we end up needing to do it when 3335 * inserting the chunk item and updating device items as part of the 3336 * second phase of chunk allocation, performed by 3337 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3338 * large number of new block groups to create in our transaction 3339 * handle's new_bgs list to avoid exhausting the chunk block reserve 3340 * in extreme cases - like having a single transaction create many new 3341 * block groups when starting to write out the free space caches of all 3342 * the block groups that were made dirty during the lifetime of the 3343 * transaction. 3344 */ 3345 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3346 btrfs_create_pending_block_groups(trans); 3347 3348 return ret; 3349 } 3350 3351 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3352 { 3353 u64 num_dev; 3354 3355 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3356 if (!num_dev) 3357 num_dev = fs_info->fs_devices->rw_devices; 3358 3359 return num_dev; 3360 } 3361 3362 /* 3363 * Reserve space in the system space for allocating or removing a chunk 3364 */ 3365 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3366 { 3367 struct btrfs_transaction *cur_trans = trans->transaction; 3368 struct btrfs_fs_info *fs_info = trans->fs_info; 3369 struct btrfs_space_info *info; 3370 u64 left; 3371 u64 thresh; 3372 int ret = 0; 3373 u64 num_devs; 3374 3375 /* 3376 * Needed because we can end up allocating a system chunk and for an 3377 * atomic and race free space reservation in the chunk block reserve. 3378 */ 3379 lockdep_assert_held(&fs_info->chunk_mutex); 3380 3381 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3382 again: 3383 spin_lock(&info->lock); 3384 left = info->total_bytes - btrfs_space_info_used(info, true); 3385 spin_unlock(&info->lock); 3386 3387 num_devs = get_profile_num_devs(fs_info, type); 3388 3389 /* num_devs device items to update and 1 chunk item to add or remove */ 3390 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3391 btrfs_calc_insert_metadata_size(fs_info, 1); 3392 3393 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3394 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3395 left, thresh, type); 3396 btrfs_dump_space_info(fs_info, info, 0, 0); 3397 } 3398 3399 if (left < thresh) { 3400 u64 flags = btrfs_system_alloc_profile(fs_info); 3401 u64 reserved = atomic64_read(&cur_trans->chunk_bytes_reserved); 3402 3403 /* 3404 * If there's not available space for the chunk tree (system 3405 * space) and there are other tasks that reserved space for 3406 * creating a new system block group, wait for them to complete 3407 * the creation of their system block group and release excess 3408 * reserved space. We do this because: 3409 * 3410 * *) We can end up allocating more system chunks than necessary 3411 * when there are multiple tasks that are concurrently 3412 * allocating block groups, which can lead to exhaustion of 3413 * the system array in the superblock; 3414 * 3415 * *) If we allocate extra and unnecessary system block groups, 3416 * despite being empty for a long time, and possibly forever, 3417 * they end not being added to the list of unused block groups 3418 * because that typically happens only when deallocating the 3419 * last extent from a block group - which never happens since 3420 * we never allocate from them in the first place. The few 3421 * exceptions are when mounting a filesystem or running scrub, 3422 * which add unused block groups to the list of unused block 3423 * groups, to be deleted by the cleaner kthread. 3424 * And even when they are added to the list of unused block 3425 * groups, it can take a long time until they get deleted, 3426 * since the cleaner kthread might be sleeping or busy with 3427 * other work (deleting subvolumes, running delayed iputs, 3428 * defrag scheduling, etc); 3429 * 3430 * This is rare in practice, but can happen when too many tasks 3431 * are allocating blocks groups in parallel (via fallocate()) 3432 * and before the one that reserved space for a new system block 3433 * group finishes the block group creation and releases the space 3434 * reserved in excess (at btrfs_create_pending_block_groups()), 3435 * other tasks end up here and see free system space temporarily 3436 * not enough for updating the chunk tree. 3437 * 3438 * We unlock the chunk mutex before waiting for such tasks and 3439 * lock it again after the wait, otherwise we would deadlock. 3440 * It is safe to do so because allocating a system chunk is the 3441 * first thing done while allocating a new block group. 3442 */ 3443 if (reserved > trans->chunk_bytes_reserved) { 3444 const u64 min_needed = reserved - thresh; 3445 3446 mutex_unlock(&fs_info->chunk_mutex); 3447 wait_event(cur_trans->chunk_reserve_wait, 3448 atomic64_read(&cur_trans->chunk_bytes_reserved) <= 3449 min_needed); 3450 mutex_lock(&fs_info->chunk_mutex); 3451 goto again; 3452 } 3453 3454 /* 3455 * Ignore failure to create system chunk. We might end up not 3456 * needing it, as we might not need to COW all nodes/leafs from 3457 * the paths we visit in the chunk tree (they were already COWed 3458 * or created in the current transaction for example). 3459 */ 3460 ret = btrfs_alloc_chunk(trans, flags); 3461 } 3462 3463 if (!ret) { 3464 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3465 &fs_info->chunk_block_rsv, 3466 thresh, BTRFS_RESERVE_NO_FLUSH); 3467 if (!ret) { 3468 atomic64_add(thresh, &cur_trans->chunk_bytes_reserved); 3469 trans->chunk_bytes_reserved += thresh; 3470 } 3471 } 3472 } 3473 3474 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3475 { 3476 struct btrfs_block_group *block_group; 3477 u64 last = 0; 3478 3479 while (1) { 3480 struct inode *inode; 3481 3482 block_group = btrfs_lookup_first_block_group(info, last); 3483 while (block_group) { 3484 btrfs_wait_block_group_cache_done(block_group); 3485 spin_lock(&block_group->lock); 3486 if (block_group->iref) 3487 break; 3488 spin_unlock(&block_group->lock); 3489 block_group = btrfs_next_block_group(block_group); 3490 } 3491 if (!block_group) { 3492 if (last == 0) 3493 break; 3494 last = 0; 3495 continue; 3496 } 3497 3498 inode = block_group->inode; 3499 block_group->iref = 0; 3500 block_group->inode = NULL; 3501 spin_unlock(&block_group->lock); 3502 ASSERT(block_group->io_ctl.inode == NULL); 3503 iput(inode); 3504 last = block_group->start + block_group->length; 3505 btrfs_put_block_group(block_group); 3506 } 3507 } 3508 3509 /* 3510 * Must be called only after stopping all workers, since we could have block 3511 * group caching kthreads running, and therefore they could race with us if we 3512 * freed the block groups before stopping them. 3513 */ 3514 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3515 { 3516 struct btrfs_block_group *block_group; 3517 struct btrfs_space_info *space_info; 3518 struct btrfs_caching_control *caching_ctl; 3519 struct rb_node *n; 3520 3521 spin_lock(&info->block_group_cache_lock); 3522 while (!list_empty(&info->caching_block_groups)) { 3523 caching_ctl = list_entry(info->caching_block_groups.next, 3524 struct btrfs_caching_control, list); 3525 list_del(&caching_ctl->list); 3526 btrfs_put_caching_control(caching_ctl); 3527 } 3528 spin_unlock(&info->block_group_cache_lock); 3529 3530 spin_lock(&info->unused_bgs_lock); 3531 while (!list_empty(&info->unused_bgs)) { 3532 block_group = list_first_entry(&info->unused_bgs, 3533 struct btrfs_block_group, 3534 bg_list); 3535 list_del_init(&block_group->bg_list); 3536 btrfs_put_block_group(block_group); 3537 } 3538 spin_unlock(&info->unused_bgs_lock); 3539 3540 spin_lock(&info->unused_bgs_lock); 3541 while (!list_empty(&info->reclaim_bgs)) { 3542 block_group = list_first_entry(&info->reclaim_bgs, 3543 struct btrfs_block_group, 3544 bg_list); 3545 list_del_init(&block_group->bg_list); 3546 btrfs_put_block_group(block_group); 3547 } 3548 spin_unlock(&info->unused_bgs_lock); 3549 3550 spin_lock(&info->block_group_cache_lock); 3551 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3552 block_group = rb_entry(n, struct btrfs_block_group, 3553 cache_node); 3554 rb_erase(&block_group->cache_node, 3555 &info->block_group_cache_tree); 3556 RB_CLEAR_NODE(&block_group->cache_node); 3557 spin_unlock(&info->block_group_cache_lock); 3558 3559 down_write(&block_group->space_info->groups_sem); 3560 list_del(&block_group->list); 3561 up_write(&block_group->space_info->groups_sem); 3562 3563 /* 3564 * We haven't cached this block group, which means we could 3565 * possibly have excluded extents on this block group. 3566 */ 3567 if (block_group->cached == BTRFS_CACHE_NO || 3568 block_group->cached == BTRFS_CACHE_ERROR) 3569 btrfs_free_excluded_extents(block_group); 3570 3571 btrfs_remove_free_space_cache(block_group); 3572 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3573 ASSERT(list_empty(&block_group->dirty_list)); 3574 ASSERT(list_empty(&block_group->io_list)); 3575 ASSERT(list_empty(&block_group->bg_list)); 3576 ASSERT(refcount_read(&block_group->refs) == 1); 3577 ASSERT(block_group->swap_extents == 0); 3578 btrfs_put_block_group(block_group); 3579 3580 spin_lock(&info->block_group_cache_lock); 3581 } 3582 spin_unlock(&info->block_group_cache_lock); 3583 3584 btrfs_release_global_block_rsv(info); 3585 3586 while (!list_empty(&info->space_info)) { 3587 space_info = list_entry(info->space_info.next, 3588 struct btrfs_space_info, 3589 list); 3590 3591 /* 3592 * Do not hide this behind enospc_debug, this is actually 3593 * important and indicates a real bug if this happens. 3594 */ 3595 if (WARN_ON(space_info->bytes_pinned > 0 || 3596 space_info->bytes_reserved > 0 || 3597 space_info->bytes_may_use > 0)) 3598 btrfs_dump_space_info(info, space_info, 0, 0); 3599 WARN_ON(space_info->reclaim_size > 0); 3600 list_del(&space_info->list); 3601 btrfs_sysfs_remove_space_info(space_info); 3602 } 3603 return 0; 3604 } 3605 3606 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 3607 { 3608 atomic_inc(&cache->frozen); 3609 } 3610 3611 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 3612 { 3613 struct btrfs_fs_info *fs_info = block_group->fs_info; 3614 struct extent_map_tree *em_tree; 3615 struct extent_map *em; 3616 bool cleanup; 3617 3618 spin_lock(&block_group->lock); 3619 cleanup = (atomic_dec_and_test(&block_group->frozen) && 3620 block_group->removed); 3621 spin_unlock(&block_group->lock); 3622 3623 if (cleanup) { 3624 em_tree = &fs_info->mapping_tree; 3625 write_lock(&em_tree->lock); 3626 em = lookup_extent_mapping(em_tree, block_group->start, 3627 1); 3628 BUG_ON(!em); /* logic error, can't happen */ 3629 remove_extent_mapping(em_tree, em); 3630 write_unlock(&em_tree->lock); 3631 3632 /* once for us and once for the tree */ 3633 free_extent_map(em); 3634 free_extent_map(em); 3635 3636 /* 3637 * We may have left one free space entry and other possible 3638 * tasks trimming this block group have left 1 entry each one. 3639 * Free them if any. 3640 */ 3641 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3642 } 3643 } 3644 3645 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 3646 { 3647 bool ret = true; 3648 3649 spin_lock(&bg->lock); 3650 if (bg->ro) 3651 ret = false; 3652 else 3653 bg->swap_extents++; 3654 spin_unlock(&bg->lock); 3655 3656 return ret; 3657 } 3658 3659 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 3660 { 3661 spin_lock(&bg->lock); 3662 ASSERT(!bg->ro); 3663 ASSERT(bg->swap_extents >= amount); 3664 bg->swap_extents -= amount; 3665 spin_unlock(&bg->lock); 3666 } 3667