xref: /openbmc/linux/fs/btrfs/block-group.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 	u64 target = 0;
29 
30 	if (!bctl)
31 		return 0;
32 
33 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42 	}
43 
44 	return target;
45 }
46 
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56 	u64 num_devices = fs_info->fs_devices->rw_devices;
57 	u64 target;
58 	u64 raid_type;
59 	u64 allowed = 0;
60 
61 	/*
62 	 * See if restripe for this chunk_type is in progress, if so try to
63 	 * reduce to the target profile
64 	 */
65 	spin_lock(&fs_info->balance_lock);
66 	target = get_restripe_target(fs_info, flags);
67 	if (target) {
68 		spin_unlock(&fs_info->balance_lock);
69 		return extended_to_chunk(target);
70 	}
71 	spin_unlock(&fs_info->balance_lock);
72 
73 	/* First, mask out the RAID levels which aren't possible */
74 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
75 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
76 			allowed |= btrfs_raid_array[raid_type].bg_flag;
77 	}
78 	allowed &= flags;
79 
80 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
81 		allowed = BTRFS_BLOCK_GROUP_RAID6;
82 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
83 		allowed = BTRFS_BLOCK_GROUP_RAID5;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
85 		allowed = BTRFS_BLOCK_GROUP_RAID10;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
87 		allowed = BTRFS_BLOCK_GROUP_RAID1;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
89 		allowed = BTRFS_BLOCK_GROUP_RAID0;
90 
91 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
92 
93 	return extended_to_chunk(flags | allowed);
94 }
95 
96 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
97 {
98 	unsigned seq;
99 	u64 flags;
100 
101 	do {
102 		flags = orig_flags;
103 		seq = read_seqbegin(&fs_info->profiles_lock);
104 
105 		if (flags & BTRFS_BLOCK_GROUP_DATA)
106 			flags |= fs_info->avail_data_alloc_bits;
107 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
108 			flags |= fs_info->avail_system_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
110 			flags |= fs_info->avail_metadata_alloc_bits;
111 	} while (read_seqretry(&fs_info->profiles_lock, seq));
112 
113 	return btrfs_reduce_alloc_profile(fs_info, flags);
114 }
115 
116 void btrfs_get_block_group(struct btrfs_block_group *cache)
117 {
118 	refcount_inc(&cache->refs);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group *cache)
122 {
123 	if (refcount_dec_and_test(&cache->refs)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 
127 		/*
128 		 * A block_group shouldn't be on the discard_list anymore.
129 		 * Remove the block_group from the discard_list to prevent us
130 		 * from causing a panic due to NULL pointer dereference.
131 		 */
132 		if (WARN_ON(!list_empty(&cache->discard_list)))
133 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
134 						  cache);
135 
136 		/*
137 		 * If not empty, someone is still holding mutex of
138 		 * full_stripe_lock, which can only be released by caller.
139 		 * And it will definitely cause use-after-free when caller
140 		 * tries to release full stripe lock.
141 		 *
142 		 * No better way to resolve, but only to warn.
143 		 */
144 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 		kfree(cache->free_space_ctl);
146 		kfree(cache);
147 	}
148 }
149 
150 /*
151  * This adds the block group to the fs_info rb tree for the block group cache
152  */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 				       struct btrfs_block_group *block_group)
155 {
156 	struct rb_node **p;
157 	struct rb_node *parent = NULL;
158 	struct btrfs_block_group *cache;
159 
160 	ASSERT(block_group->length != 0);
161 
162 	spin_lock(&info->block_group_cache_lock);
163 	p = &info->block_group_cache_tree.rb_node;
164 
165 	while (*p) {
166 		parent = *p;
167 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
168 		if (block_group->start < cache->start) {
169 			p = &(*p)->rb_left;
170 		} else if (block_group->start > cache->start) {
171 			p = &(*p)->rb_right;
172 		} else {
173 			spin_unlock(&info->block_group_cache_lock);
174 			return -EEXIST;
175 		}
176 	}
177 
178 	rb_link_node(&block_group->cache_node, parent, p);
179 	rb_insert_color(&block_group->cache_node,
180 			&info->block_group_cache_tree);
181 
182 	if (info->first_logical_byte > block_group->start)
183 		info->first_logical_byte = block_group->start;
184 
185 	spin_unlock(&info->block_group_cache_lock);
186 
187 	return 0;
188 }
189 
190 /*
191  * This will return the block group at or after bytenr if contains is 0, else
192  * it will return the block group that contains the bytenr
193  */
194 static struct btrfs_block_group *block_group_cache_tree_search(
195 		struct btrfs_fs_info *info, u64 bytenr, int contains)
196 {
197 	struct btrfs_block_group *cache, *ret = NULL;
198 	struct rb_node *n;
199 	u64 end, start;
200 
201 	spin_lock(&info->block_group_cache_lock);
202 	n = info->block_group_cache_tree.rb_node;
203 
204 	while (n) {
205 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
206 		end = cache->start + cache->length - 1;
207 		start = cache->start;
208 
209 		if (bytenr < start) {
210 			if (!contains && (!ret || start < ret->start))
211 				ret = cache;
212 			n = n->rb_left;
213 		} else if (bytenr > start) {
214 			if (contains && bytenr <= end) {
215 				ret = cache;
216 				break;
217 			}
218 			n = n->rb_right;
219 		} else {
220 			ret = cache;
221 			break;
222 		}
223 	}
224 	if (ret) {
225 		btrfs_get_block_group(ret);
226 		if (bytenr == 0 && info->first_logical_byte > ret->start)
227 			info->first_logical_byte = ret->start;
228 	}
229 	spin_unlock(&info->block_group_cache_lock);
230 
231 	return ret;
232 }
233 
234 /*
235  * Return the block group that starts at or after bytenr
236  */
237 struct btrfs_block_group *btrfs_lookup_first_block_group(
238 		struct btrfs_fs_info *info, u64 bytenr)
239 {
240 	return block_group_cache_tree_search(info, bytenr, 0);
241 }
242 
243 /*
244  * Return the block group that contains the given bytenr
245  */
246 struct btrfs_block_group *btrfs_lookup_block_group(
247 		struct btrfs_fs_info *info, u64 bytenr)
248 {
249 	return block_group_cache_tree_search(info, bytenr, 1);
250 }
251 
252 struct btrfs_block_group *btrfs_next_block_group(
253 		struct btrfs_block_group *cache)
254 {
255 	struct btrfs_fs_info *fs_info = cache->fs_info;
256 	struct rb_node *node;
257 
258 	spin_lock(&fs_info->block_group_cache_lock);
259 
260 	/* If our block group was removed, we need a full search. */
261 	if (RB_EMPTY_NODE(&cache->cache_node)) {
262 		const u64 next_bytenr = cache->start + cache->length;
263 
264 		spin_unlock(&fs_info->block_group_cache_lock);
265 		btrfs_put_block_group(cache);
266 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
267 	}
268 	node = rb_next(&cache->cache_node);
269 	btrfs_put_block_group(cache);
270 	if (node) {
271 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
272 		btrfs_get_block_group(cache);
273 	} else
274 		cache = NULL;
275 	spin_unlock(&fs_info->block_group_cache_lock);
276 	return cache;
277 }
278 
279 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
280 {
281 	struct btrfs_block_group *bg;
282 	bool ret = true;
283 
284 	bg = btrfs_lookup_block_group(fs_info, bytenr);
285 	if (!bg)
286 		return false;
287 
288 	spin_lock(&bg->lock);
289 	if (bg->ro)
290 		ret = false;
291 	else
292 		atomic_inc(&bg->nocow_writers);
293 	spin_unlock(&bg->lock);
294 
295 	/* No put on block group, done by btrfs_dec_nocow_writers */
296 	if (!ret)
297 		btrfs_put_block_group(bg);
298 
299 	return ret;
300 }
301 
302 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
303 {
304 	struct btrfs_block_group *bg;
305 
306 	bg = btrfs_lookup_block_group(fs_info, bytenr);
307 	ASSERT(bg);
308 	if (atomic_dec_and_test(&bg->nocow_writers))
309 		wake_up_var(&bg->nocow_writers);
310 	/*
311 	 * Once for our lookup and once for the lookup done by a previous call
312 	 * to btrfs_inc_nocow_writers()
313 	 */
314 	btrfs_put_block_group(bg);
315 	btrfs_put_block_group(bg);
316 }
317 
318 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
319 {
320 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
321 }
322 
323 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
324 					const u64 start)
325 {
326 	struct btrfs_block_group *bg;
327 
328 	bg = btrfs_lookup_block_group(fs_info, start);
329 	ASSERT(bg);
330 	if (atomic_dec_and_test(&bg->reservations))
331 		wake_up_var(&bg->reservations);
332 	btrfs_put_block_group(bg);
333 }
334 
335 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
336 {
337 	struct btrfs_space_info *space_info = bg->space_info;
338 
339 	ASSERT(bg->ro);
340 
341 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
342 		return;
343 
344 	/*
345 	 * Our block group is read only but before we set it to read only,
346 	 * some task might have had allocated an extent from it already, but it
347 	 * has not yet created a respective ordered extent (and added it to a
348 	 * root's list of ordered extents).
349 	 * Therefore wait for any task currently allocating extents, since the
350 	 * block group's reservations counter is incremented while a read lock
351 	 * on the groups' semaphore is held and decremented after releasing
352 	 * the read access on that semaphore and creating the ordered extent.
353 	 */
354 	down_write(&space_info->groups_sem);
355 	up_write(&space_info->groups_sem);
356 
357 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
358 }
359 
360 struct btrfs_caching_control *btrfs_get_caching_control(
361 		struct btrfs_block_group *cache)
362 {
363 	struct btrfs_caching_control *ctl;
364 
365 	spin_lock(&cache->lock);
366 	if (!cache->caching_ctl) {
367 		spin_unlock(&cache->lock);
368 		return NULL;
369 	}
370 
371 	ctl = cache->caching_ctl;
372 	refcount_inc(&ctl->count);
373 	spin_unlock(&cache->lock);
374 	return ctl;
375 }
376 
377 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
378 {
379 	if (refcount_dec_and_test(&ctl->count))
380 		kfree(ctl);
381 }
382 
383 /*
384  * When we wait for progress in the block group caching, its because our
385  * allocation attempt failed at least once.  So, we must sleep and let some
386  * progress happen before we try again.
387  *
388  * This function will sleep at least once waiting for new free space to show
389  * up, and then it will check the block group free space numbers for our min
390  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
391  * a free extent of a given size, but this is a good start.
392  *
393  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
394  * any of the information in this block group.
395  */
396 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
397 					   u64 num_bytes)
398 {
399 	struct btrfs_caching_control *caching_ctl;
400 
401 	caching_ctl = btrfs_get_caching_control(cache);
402 	if (!caching_ctl)
403 		return;
404 
405 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
406 		   (cache->free_space_ctl->free_space >= num_bytes));
407 
408 	btrfs_put_caching_control(caching_ctl);
409 }
410 
411 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
412 {
413 	struct btrfs_caching_control *caching_ctl;
414 	int ret = 0;
415 
416 	caching_ctl = btrfs_get_caching_control(cache);
417 	if (!caching_ctl)
418 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
419 
420 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
421 	if (cache->cached == BTRFS_CACHE_ERROR)
422 		ret = -EIO;
423 	btrfs_put_caching_control(caching_ctl);
424 	return ret;
425 }
426 
427 #ifdef CONFIG_BTRFS_DEBUG
428 static void fragment_free_space(struct btrfs_block_group *block_group)
429 {
430 	struct btrfs_fs_info *fs_info = block_group->fs_info;
431 	u64 start = block_group->start;
432 	u64 len = block_group->length;
433 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
434 		fs_info->nodesize : fs_info->sectorsize;
435 	u64 step = chunk << 1;
436 
437 	while (len > chunk) {
438 		btrfs_remove_free_space(block_group, start, chunk);
439 		start += step;
440 		if (len < step)
441 			len = 0;
442 		else
443 			len -= step;
444 	}
445 }
446 #endif
447 
448 /*
449  * This is only called by btrfs_cache_block_group, since we could have freed
450  * extents we need to check the pinned_extents for any extents that can't be
451  * used yet since their free space will be released as soon as the transaction
452  * commits.
453  */
454 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
455 {
456 	struct btrfs_fs_info *info = block_group->fs_info;
457 	u64 extent_start, extent_end, size, total_added = 0;
458 	int ret;
459 
460 	while (start < end) {
461 		ret = find_first_extent_bit(&info->excluded_extents, start,
462 					    &extent_start, &extent_end,
463 					    EXTENT_DIRTY | EXTENT_UPTODATE,
464 					    NULL);
465 		if (ret)
466 			break;
467 
468 		if (extent_start <= start) {
469 			start = extent_end + 1;
470 		} else if (extent_start > start && extent_start < end) {
471 			size = extent_start - start;
472 			total_added += size;
473 			ret = btrfs_add_free_space_async_trimmed(block_group,
474 								 start, size);
475 			BUG_ON(ret); /* -ENOMEM or logic error */
476 			start = extent_end + 1;
477 		} else {
478 			break;
479 		}
480 	}
481 
482 	if (start < end) {
483 		size = end - start;
484 		total_added += size;
485 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
486 							 size);
487 		BUG_ON(ret); /* -ENOMEM or logic error */
488 	}
489 
490 	return total_added;
491 }
492 
493 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
494 {
495 	struct btrfs_block_group *block_group = caching_ctl->block_group;
496 	struct btrfs_fs_info *fs_info = block_group->fs_info;
497 	struct btrfs_root *extent_root = fs_info->extent_root;
498 	struct btrfs_path *path;
499 	struct extent_buffer *leaf;
500 	struct btrfs_key key;
501 	u64 total_found = 0;
502 	u64 last = 0;
503 	u32 nritems;
504 	int ret;
505 	bool wakeup = true;
506 
507 	path = btrfs_alloc_path();
508 	if (!path)
509 		return -ENOMEM;
510 
511 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
512 
513 #ifdef CONFIG_BTRFS_DEBUG
514 	/*
515 	 * If we're fragmenting we don't want to make anybody think we can
516 	 * allocate from this block group until we've had a chance to fragment
517 	 * the free space.
518 	 */
519 	if (btrfs_should_fragment_free_space(block_group))
520 		wakeup = false;
521 #endif
522 	/*
523 	 * We don't want to deadlock with somebody trying to allocate a new
524 	 * extent for the extent root while also trying to search the extent
525 	 * root to add free space.  So we skip locking and search the commit
526 	 * root, since its read-only
527 	 */
528 	path->skip_locking = 1;
529 	path->search_commit_root = 1;
530 	path->reada = READA_FORWARD;
531 
532 	key.objectid = last;
533 	key.offset = 0;
534 	key.type = BTRFS_EXTENT_ITEM_KEY;
535 
536 next:
537 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
538 	if (ret < 0)
539 		goto out;
540 
541 	leaf = path->nodes[0];
542 	nritems = btrfs_header_nritems(leaf);
543 
544 	while (1) {
545 		if (btrfs_fs_closing(fs_info) > 1) {
546 			last = (u64)-1;
547 			break;
548 		}
549 
550 		if (path->slots[0] < nritems) {
551 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
552 		} else {
553 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
554 			if (ret)
555 				break;
556 
557 			if (need_resched() ||
558 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
559 				if (wakeup)
560 					caching_ctl->progress = last;
561 				btrfs_release_path(path);
562 				up_read(&fs_info->commit_root_sem);
563 				mutex_unlock(&caching_ctl->mutex);
564 				cond_resched();
565 				mutex_lock(&caching_ctl->mutex);
566 				down_read(&fs_info->commit_root_sem);
567 				goto next;
568 			}
569 
570 			ret = btrfs_next_leaf(extent_root, path);
571 			if (ret < 0)
572 				goto out;
573 			if (ret)
574 				break;
575 			leaf = path->nodes[0];
576 			nritems = btrfs_header_nritems(leaf);
577 			continue;
578 		}
579 
580 		if (key.objectid < last) {
581 			key.objectid = last;
582 			key.offset = 0;
583 			key.type = BTRFS_EXTENT_ITEM_KEY;
584 
585 			if (wakeup)
586 				caching_ctl->progress = last;
587 			btrfs_release_path(path);
588 			goto next;
589 		}
590 
591 		if (key.objectid < block_group->start) {
592 			path->slots[0]++;
593 			continue;
594 		}
595 
596 		if (key.objectid >= block_group->start + block_group->length)
597 			break;
598 
599 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
600 		    key.type == BTRFS_METADATA_ITEM_KEY) {
601 			total_found += add_new_free_space(block_group, last,
602 							  key.objectid);
603 			if (key.type == BTRFS_METADATA_ITEM_KEY)
604 				last = key.objectid +
605 					fs_info->nodesize;
606 			else
607 				last = key.objectid + key.offset;
608 
609 			if (total_found > CACHING_CTL_WAKE_UP) {
610 				total_found = 0;
611 				if (wakeup)
612 					wake_up(&caching_ctl->wait);
613 			}
614 		}
615 		path->slots[0]++;
616 	}
617 	ret = 0;
618 
619 	total_found += add_new_free_space(block_group, last,
620 				block_group->start + block_group->length);
621 	caching_ctl->progress = (u64)-1;
622 
623 out:
624 	btrfs_free_path(path);
625 	return ret;
626 }
627 
628 static noinline void caching_thread(struct btrfs_work *work)
629 {
630 	struct btrfs_block_group *block_group;
631 	struct btrfs_fs_info *fs_info;
632 	struct btrfs_caching_control *caching_ctl;
633 	int ret;
634 
635 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
636 	block_group = caching_ctl->block_group;
637 	fs_info = block_group->fs_info;
638 
639 	mutex_lock(&caching_ctl->mutex);
640 	down_read(&fs_info->commit_root_sem);
641 
642 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
643 		ret = load_free_space_tree(caching_ctl);
644 	else
645 		ret = load_extent_tree_free(caching_ctl);
646 
647 	spin_lock(&block_group->lock);
648 	block_group->caching_ctl = NULL;
649 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
650 	spin_unlock(&block_group->lock);
651 
652 #ifdef CONFIG_BTRFS_DEBUG
653 	if (btrfs_should_fragment_free_space(block_group)) {
654 		u64 bytes_used;
655 
656 		spin_lock(&block_group->space_info->lock);
657 		spin_lock(&block_group->lock);
658 		bytes_used = block_group->length - block_group->used;
659 		block_group->space_info->bytes_used += bytes_used >> 1;
660 		spin_unlock(&block_group->lock);
661 		spin_unlock(&block_group->space_info->lock);
662 		fragment_free_space(block_group);
663 	}
664 #endif
665 
666 	caching_ctl->progress = (u64)-1;
667 
668 	up_read(&fs_info->commit_root_sem);
669 	btrfs_free_excluded_extents(block_group);
670 	mutex_unlock(&caching_ctl->mutex);
671 
672 	wake_up(&caching_ctl->wait);
673 
674 	btrfs_put_caching_control(caching_ctl);
675 	btrfs_put_block_group(block_group);
676 }
677 
678 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
679 {
680 	DEFINE_WAIT(wait);
681 	struct btrfs_fs_info *fs_info = cache->fs_info;
682 	struct btrfs_caching_control *caching_ctl;
683 	int ret = 0;
684 
685 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
686 	if (!caching_ctl)
687 		return -ENOMEM;
688 
689 	INIT_LIST_HEAD(&caching_ctl->list);
690 	mutex_init(&caching_ctl->mutex);
691 	init_waitqueue_head(&caching_ctl->wait);
692 	caching_ctl->block_group = cache;
693 	caching_ctl->progress = cache->start;
694 	refcount_set(&caching_ctl->count, 1);
695 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
696 
697 	spin_lock(&cache->lock);
698 	/*
699 	 * This should be a rare occasion, but this could happen I think in the
700 	 * case where one thread starts to load the space cache info, and then
701 	 * some other thread starts a transaction commit which tries to do an
702 	 * allocation while the other thread is still loading the space cache
703 	 * info.  The previous loop should have kept us from choosing this block
704 	 * group, but if we've moved to the state where we will wait on caching
705 	 * block groups we need to first check if we're doing a fast load here,
706 	 * so we can wait for it to finish, otherwise we could end up allocating
707 	 * from a block group who's cache gets evicted for one reason or
708 	 * another.
709 	 */
710 	while (cache->cached == BTRFS_CACHE_FAST) {
711 		struct btrfs_caching_control *ctl;
712 
713 		ctl = cache->caching_ctl;
714 		refcount_inc(&ctl->count);
715 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
716 		spin_unlock(&cache->lock);
717 
718 		schedule();
719 
720 		finish_wait(&ctl->wait, &wait);
721 		btrfs_put_caching_control(ctl);
722 		spin_lock(&cache->lock);
723 	}
724 
725 	if (cache->cached != BTRFS_CACHE_NO) {
726 		spin_unlock(&cache->lock);
727 		kfree(caching_ctl);
728 		return 0;
729 	}
730 	WARN_ON(cache->caching_ctl);
731 	cache->caching_ctl = caching_ctl;
732 	cache->cached = BTRFS_CACHE_FAST;
733 	spin_unlock(&cache->lock);
734 
735 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
736 		mutex_lock(&caching_ctl->mutex);
737 		ret = load_free_space_cache(cache);
738 
739 		spin_lock(&cache->lock);
740 		if (ret == 1) {
741 			cache->caching_ctl = NULL;
742 			cache->cached = BTRFS_CACHE_FINISHED;
743 			cache->last_byte_to_unpin = (u64)-1;
744 			caching_ctl->progress = (u64)-1;
745 		} else {
746 			if (load_cache_only) {
747 				cache->caching_ctl = NULL;
748 				cache->cached = BTRFS_CACHE_NO;
749 			} else {
750 				cache->cached = BTRFS_CACHE_STARTED;
751 				cache->has_caching_ctl = 1;
752 			}
753 		}
754 		spin_unlock(&cache->lock);
755 #ifdef CONFIG_BTRFS_DEBUG
756 		if (ret == 1 &&
757 		    btrfs_should_fragment_free_space(cache)) {
758 			u64 bytes_used;
759 
760 			spin_lock(&cache->space_info->lock);
761 			spin_lock(&cache->lock);
762 			bytes_used = cache->length - cache->used;
763 			cache->space_info->bytes_used += bytes_used >> 1;
764 			spin_unlock(&cache->lock);
765 			spin_unlock(&cache->space_info->lock);
766 			fragment_free_space(cache);
767 		}
768 #endif
769 		mutex_unlock(&caching_ctl->mutex);
770 
771 		wake_up(&caching_ctl->wait);
772 		if (ret == 1) {
773 			btrfs_put_caching_control(caching_ctl);
774 			btrfs_free_excluded_extents(cache);
775 			return 0;
776 		}
777 	} else {
778 		/*
779 		 * We're either using the free space tree or no caching at all.
780 		 * Set cached to the appropriate value and wakeup any waiters.
781 		 */
782 		spin_lock(&cache->lock);
783 		if (load_cache_only) {
784 			cache->caching_ctl = NULL;
785 			cache->cached = BTRFS_CACHE_NO;
786 		} else {
787 			cache->cached = BTRFS_CACHE_STARTED;
788 			cache->has_caching_ctl = 1;
789 		}
790 		spin_unlock(&cache->lock);
791 		wake_up(&caching_ctl->wait);
792 	}
793 
794 	if (load_cache_only) {
795 		btrfs_put_caching_control(caching_ctl);
796 		return 0;
797 	}
798 
799 	down_write(&fs_info->commit_root_sem);
800 	refcount_inc(&caching_ctl->count);
801 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
802 	up_write(&fs_info->commit_root_sem);
803 
804 	btrfs_get_block_group(cache);
805 
806 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
807 
808 	return ret;
809 }
810 
811 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
812 {
813 	u64 extra_flags = chunk_to_extended(flags) &
814 				BTRFS_EXTENDED_PROFILE_MASK;
815 
816 	write_seqlock(&fs_info->profiles_lock);
817 	if (flags & BTRFS_BLOCK_GROUP_DATA)
818 		fs_info->avail_data_alloc_bits &= ~extra_flags;
819 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
820 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
821 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
822 		fs_info->avail_system_alloc_bits &= ~extra_flags;
823 	write_sequnlock(&fs_info->profiles_lock);
824 }
825 
826 /*
827  * Clear incompat bits for the following feature(s):
828  *
829  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
830  *            in the whole filesystem
831  *
832  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
833  */
834 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
835 {
836 	bool found_raid56 = false;
837 	bool found_raid1c34 = false;
838 
839 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
840 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
841 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
842 		struct list_head *head = &fs_info->space_info;
843 		struct btrfs_space_info *sinfo;
844 
845 		list_for_each_entry_rcu(sinfo, head, list) {
846 			down_read(&sinfo->groups_sem);
847 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
848 				found_raid56 = true;
849 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
850 				found_raid56 = true;
851 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
852 				found_raid1c34 = true;
853 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
854 				found_raid1c34 = true;
855 			up_read(&sinfo->groups_sem);
856 		}
857 		if (!found_raid56)
858 			btrfs_clear_fs_incompat(fs_info, RAID56);
859 		if (!found_raid1c34)
860 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
861 	}
862 }
863 
864 static int remove_block_group_item(struct btrfs_trans_handle *trans,
865 				   struct btrfs_path *path,
866 				   struct btrfs_block_group *block_group)
867 {
868 	struct btrfs_fs_info *fs_info = trans->fs_info;
869 	struct btrfs_root *root;
870 	struct btrfs_key key;
871 	int ret;
872 
873 	root = fs_info->extent_root;
874 	key.objectid = block_group->start;
875 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
876 	key.offset = block_group->length;
877 
878 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
879 	if (ret > 0)
880 		ret = -ENOENT;
881 	if (ret < 0)
882 		return ret;
883 
884 	ret = btrfs_del_item(trans, root, path);
885 	return ret;
886 }
887 
888 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
889 			     u64 group_start, struct extent_map *em)
890 {
891 	struct btrfs_fs_info *fs_info = trans->fs_info;
892 	struct btrfs_path *path;
893 	struct btrfs_block_group *block_group;
894 	struct btrfs_free_cluster *cluster;
895 	struct btrfs_root *tree_root = fs_info->tree_root;
896 	struct btrfs_key key;
897 	struct inode *inode;
898 	struct kobject *kobj = NULL;
899 	int ret;
900 	int index;
901 	int factor;
902 	struct btrfs_caching_control *caching_ctl = NULL;
903 	bool remove_em;
904 	bool remove_rsv = false;
905 
906 	block_group = btrfs_lookup_block_group(fs_info, group_start);
907 	BUG_ON(!block_group);
908 	BUG_ON(!block_group->ro);
909 
910 	trace_btrfs_remove_block_group(block_group);
911 	/*
912 	 * Free the reserved super bytes from this block group before
913 	 * remove it.
914 	 */
915 	btrfs_free_excluded_extents(block_group);
916 	btrfs_free_ref_tree_range(fs_info, block_group->start,
917 				  block_group->length);
918 
919 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
920 	factor = btrfs_bg_type_to_factor(block_group->flags);
921 
922 	/* make sure this block group isn't part of an allocation cluster */
923 	cluster = &fs_info->data_alloc_cluster;
924 	spin_lock(&cluster->refill_lock);
925 	btrfs_return_cluster_to_free_space(block_group, cluster);
926 	spin_unlock(&cluster->refill_lock);
927 
928 	/*
929 	 * make sure this block group isn't part of a metadata
930 	 * allocation cluster
931 	 */
932 	cluster = &fs_info->meta_alloc_cluster;
933 	spin_lock(&cluster->refill_lock);
934 	btrfs_return_cluster_to_free_space(block_group, cluster);
935 	spin_unlock(&cluster->refill_lock);
936 
937 	path = btrfs_alloc_path();
938 	if (!path) {
939 		ret = -ENOMEM;
940 		goto out;
941 	}
942 
943 	/*
944 	 * get the inode first so any iput calls done for the io_list
945 	 * aren't the final iput (no unlinks allowed now)
946 	 */
947 	inode = lookup_free_space_inode(block_group, path);
948 
949 	mutex_lock(&trans->transaction->cache_write_mutex);
950 	/*
951 	 * Make sure our free space cache IO is done before removing the
952 	 * free space inode
953 	 */
954 	spin_lock(&trans->transaction->dirty_bgs_lock);
955 	if (!list_empty(&block_group->io_list)) {
956 		list_del_init(&block_group->io_list);
957 
958 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
959 
960 		spin_unlock(&trans->transaction->dirty_bgs_lock);
961 		btrfs_wait_cache_io(trans, block_group, path);
962 		btrfs_put_block_group(block_group);
963 		spin_lock(&trans->transaction->dirty_bgs_lock);
964 	}
965 
966 	if (!list_empty(&block_group->dirty_list)) {
967 		list_del_init(&block_group->dirty_list);
968 		remove_rsv = true;
969 		btrfs_put_block_group(block_group);
970 	}
971 	spin_unlock(&trans->transaction->dirty_bgs_lock);
972 	mutex_unlock(&trans->transaction->cache_write_mutex);
973 
974 	if (!IS_ERR(inode)) {
975 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
976 		if (ret) {
977 			btrfs_add_delayed_iput(inode);
978 			goto out;
979 		}
980 		clear_nlink(inode);
981 		/* One for the block groups ref */
982 		spin_lock(&block_group->lock);
983 		if (block_group->iref) {
984 			block_group->iref = 0;
985 			block_group->inode = NULL;
986 			spin_unlock(&block_group->lock);
987 			iput(inode);
988 		} else {
989 			spin_unlock(&block_group->lock);
990 		}
991 		/* One for our lookup ref */
992 		btrfs_add_delayed_iput(inode);
993 	}
994 
995 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
996 	key.type = 0;
997 	key.offset = block_group->start;
998 
999 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1000 	if (ret < 0)
1001 		goto out;
1002 	if (ret > 0)
1003 		btrfs_release_path(path);
1004 	if (ret == 0) {
1005 		ret = btrfs_del_item(trans, tree_root, path);
1006 		if (ret)
1007 			goto out;
1008 		btrfs_release_path(path);
1009 	}
1010 
1011 	spin_lock(&fs_info->block_group_cache_lock);
1012 	rb_erase(&block_group->cache_node,
1013 		 &fs_info->block_group_cache_tree);
1014 	RB_CLEAR_NODE(&block_group->cache_node);
1015 
1016 	/* Once for the block groups rbtree */
1017 	btrfs_put_block_group(block_group);
1018 
1019 	if (fs_info->first_logical_byte == block_group->start)
1020 		fs_info->first_logical_byte = (u64)-1;
1021 	spin_unlock(&fs_info->block_group_cache_lock);
1022 
1023 	down_write(&block_group->space_info->groups_sem);
1024 	/*
1025 	 * we must use list_del_init so people can check to see if they
1026 	 * are still on the list after taking the semaphore
1027 	 */
1028 	list_del_init(&block_group->list);
1029 	if (list_empty(&block_group->space_info->block_groups[index])) {
1030 		kobj = block_group->space_info->block_group_kobjs[index];
1031 		block_group->space_info->block_group_kobjs[index] = NULL;
1032 		clear_avail_alloc_bits(fs_info, block_group->flags);
1033 	}
1034 	up_write(&block_group->space_info->groups_sem);
1035 	clear_incompat_bg_bits(fs_info, block_group->flags);
1036 	if (kobj) {
1037 		kobject_del(kobj);
1038 		kobject_put(kobj);
1039 	}
1040 
1041 	if (block_group->has_caching_ctl)
1042 		caching_ctl = btrfs_get_caching_control(block_group);
1043 	if (block_group->cached == BTRFS_CACHE_STARTED)
1044 		btrfs_wait_block_group_cache_done(block_group);
1045 	if (block_group->has_caching_ctl) {
1046 		down_write(&fs_info->commit_root_sem);
1047 		if (!caching_ctl) {
1048 			struct btrfs_caching_control *ctl;
1049 
1050 			list_for_each_entry(ctl,
1051 				    &fs_info->caching_block_groups, list)
1052 				if (ctl->block_group == block_group) {
1053 					caching_ctl = ctl;
1054 					refcount_inc(&caching_ctl->count);
1055 					break;
1056 				}
1057 		}
1058 		if (caching_ctl)
1059 			list_del_init(&caching_ctl->list);
1060 		up_write(&fs_info->commit_root_sem);
1061 		if (caching_ctl) {
1062 			/* Once for the caching bgs list and once for us. */
1063 			btrfs_put_caching_control(caching_ctl);
1064 			btrfs_put_caching_control(caching_ctl);
1065 		}
1066 	}
1067 
1068 	spin_lock(&trans->transaction->dirty_bgs_lock);
1069 	WARN_ON(!list_empty(&block_group->dirty_list));
1070 	WARN_ON(!list_empty(&block_group->io_list));
1071 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1072 
1073 	btrfs_remove_free_space_cache(block_group);
1074 
1075 	spin_lock(&block_group->space_info->lock);
1076 	list_del_init(&block_group->ro_list);
1077 
1078 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1079 		WARN_ON(block_group->space_info->total_bytes
1080 			< block_group->length);
1081 		WARN_ON(block_group->space_info->bytes_readonly
1082 			< block_group->length);
1083 		WARN_ON(block_group->space_info->disk_total
1084 			< block_group->length * factor);
1085 	}
1086 	block_group->space_info->total_bytes -= block_group->length;
1087 	block_group->space_info->bytes_readonly -= block_group->length;
1088 	block_group->space_info->disk_total -= block_group->length * factor;
1089 
1090 	spin_unlock(&block_group->space_info->lock);
1091 
1092 	/*
1093 	 * Remove the free space for the block group from the free space tree
1094 	 * and the block group's item from the extent tree before marking the
1095 	 * block group as removed. This is to prevent races with tasks that
1096 	 * freeze and unfreeze a block group, this task and another task
1097 	 * allocating a new block group - the unfreeze task ends up removing
1098 	 * the block group's extent map before the task calling this function
1099 	 * deletes the block group item from the extent tree, allowing for
1100 	 * another task to attempt to create another block group with the same
1101 	 * item key (and failing with -EEXIST and a transaction abort).
1102 	 */
1103 	ret = remove_block_group_free_space(trans, block_group);
1104 	if (ret)
1105 		goto out;
1106 
1107 	ret = remove_block_group_item(trans, path, block_group);
1108 	if (ret < 0)
1109 		goto out;
1110 
1111 	spin_lock(&block_group->lock);
1112 	block_group->removed = 1;
1113 	/*
1114 	 * At this point trimming or scrub can't start on this block group,
1115 	 * because we removed the block group from the rbtree
1116 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1117 	 * even if someone already got this block group before we removed it
1118 	 * from the rbtree, they have already incremented block_group->frozen -
1119 	 * if they didn't, for the trimming case they won't find any free space
1120 	 * entries because we already removed them all when we called
1121 	 * btrfs_remove_free_space_cache().
1122 	 *
1123 	 * And we must not remove the extent map from the fs_info->mapping_tree
1124 	 * to prevent the same logical address range and physical device space
1125 	 * ranges from being reused for a new block group. This is needed to
1126 	 * avoid races with trimming and scrub.
1127 	 *
1128 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1129 	 * completely transactionless, so while it is trimming a range the
1130 	 * currently running transaction might finish and a new one start,
1131 	 * allowing for new block groups to be created that can reuse the same
1132 	 * physical device locations unless we take this special care.
1133 	 *
1134 	 * There may also be an implicit trim operation if the file system
1135 	 * is mounted with -odiscard. The same protections must remain
1136 	 * in place until the extents have been discarded completely when
1137 	 * the transaction commit has completed.
1138 	 */
1139 	remove_em = (atomic_read(&block_group->frozen) == 0);
1140 	spin_unlock(&block_group->lock);
1141 
1142 	if (remove_em) {
1143 		struct extent_map_tree *em_tree;
1144 
1145 		em_tree = &fs_info->mapping_tree;
1146 		write_lock(&em_tree->lock);
1147 		remove_extent_mapping(em_tree, em);
1148 		write_unlock(&em_tree->lock);
1149 		/* once for the tree */
1150 		free_extent_map(em);
1151 	}
1152 
1153 out:
1154 	/* Once for the lookup reference */
1155 	btrfs_put_block_group(block_group);
1156 	if (remove_rsv)
1157 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1158 	btrfs_free_path(path);
1159 	return ret;
1160 }
1161 
1162 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1163 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1164 {
1165 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1166 	struct extent_map *em;
1167 	struct map_lookup *map;
1168 	unsigned int num_items;
1169 
1170 	read_lock(&em_tree->lock);
1171 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1172 	read_unlock(&em_tree->lock);
1173 	ASSERT(em && em->start == chunk_offset);
1174 
1175 	/*
1176 	 * We need to reserve 3 + N units from the metadata space info in order
1177 	 * to remove a block group (done at btrfs_remove_chunk() and at
1178 	 * btrfs_remove_block_group()), which are used for:
1179 	 *
1180 	 * 1 unit for adding the free space inode's orphan (located in the tree
1181 	 * of tree roots).
1182 	 * 1 unit for deleting the block group item (located in the extent
1183 	 * tree).
1184 	 * 1 unit for deleting the free space item (located in tree of tree
1185 	 * roots).
1186 	 * N units for deleting N device extent items corresponding to each
1187 	 * stripe (located in the device tree).
1188 	 *
1189 	 * In order to remove a block group we also need to reserve units in the
1190 	 * system space info in order to update the chunk tree (update one or
1191 	 * more device items and remove one chunk item), but this is done at
1192 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1193 	 */
1194 	map = em->map_lookup;
1195 	num_items = 3 + map->num_stripes;
1196 	free_extent_map(em);
1197 
1198 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1199 							   num_items);
1200 }
1201 
1202 /*
1203  * Mark block group @cache read-only, so later write won't happen to block
1204  * group @cache.
1205  *
1206  * If @force is not set, this function will only mark the block group readonly
1207  * if we have enough free space (1M) in other metadata/system block groups.
1208  * If @force is not set, this function will mark the block group readonly
1209  * without checking free space.
1210  *
1211  * NOTE: This function doesn't care if other block groups can contain all the
1212  * data in this block group. That check should be done by relocation routine,
1213  * not this function.
1214  */
1215 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1216 {
1217 	struct btrfs_space_info *sinfo = cache->space_info;
1218 	u64 num_bytes;
1219 	int ret = -ENOSPC;
1220 
1221 	spin_lock(&sinfo->lock);
1222 	spin_lock(&cache->lock);
1223 
1224 	if (cache->ro) {
1225 		cache->ro++;
1226 		ret = 0;
1227 		goto out;
1228 	}
1229 
1230 	num_bytes = cache->length - cache->reserved - cache->pinned -
1231 		    cache->bytes_super - cache->used;
1232 
1233 	/*
1234 	 * Data never overcommits, even in mixed mode, so do just the straight
1235 	 * check of left over space in how much we have allocated.
1236 	 */
1237 	if (force) {
1238 		ret = 0;
1239 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1240 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1241 
1242 		/*
1243 		 * Here we make sure if we mark this bg RO, we still have enough
1244 		 * free space as buffer.
1245 		 */
1246 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1247 			ret = 0;
1248 	} else {
1249 		/*
1250 		 * We overcommit metadata, so we need to do the
1251 		 * btrfs_can_overcommit check here, and we need to pass in
1252 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1253 		 * leeway to allow us to mark this block group as read only.
1254 		 */
1255 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1256 					 BTRFS_RESERVE_NO_FLUSH))
1257 			ret = 0;
1258 	}
1259 
1260 	if (!ret) {
1261 		sinfo->bytes_readonly += num_bytes;
1262 		cache->ro++;
1263 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1264 	}
1265 out:
1266 	spin_unlock(&cache->lock);
1267 	spin_unlock(&sinfo->lock);
1268 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1269 		btrfs_info(cache->fs_info,
1270 			"unable to make block group %llu ro", cache->start);
1271 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1272 	}
1273 	return ret;
1274 }
1275 
1276 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1277 				 struct btrfs_block_group *bg)
1278 {
1279 	struct btrfs_fs_info *fs_info = bg->fs_info;
1280 	struct btrfs_transaction *prev_trans = NULL;
1281 	const u64 start = bg->start;
1282 	const u64 end = start + bg->length - 1;
1283 	int ret;
1284 
1285 	spin_lock(&fs_info->trans_lock);
1286 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1287 		prev_trans = list_last_entry(&trans->transaction->list,
1288 					     struct btrfs_transaction, list);
1289 		refcount_inc(&prev_trans->use_count);
1290 	}
1291 	spin_unlock(&fs_info->trans_lock);
1292 
1293 	/*
1294 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1295 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1296 	 * task might be running finish_extent_commit() for the previous
1297 	 * transaction N - 1, and have seen a range belonging to the block
1298 	 * group in pinned_extents before we were able to clear the whole block
1299 	 * group range from pinned_extents. This means that task can lookup for
1300 	 * the block group after we unpinned it from pinned_extents and removed
1301 	 * it, leading to a BUG_ON() at unpin_extent_range().
1302 	 */
1303 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1304 	if (prev_trans) {
1305 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1306 					EXTENT_DIRTY);
1307 		if (ret)
1308 			goto out;
1309 	}
1310 
1311 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1312 				EXTENT_DIRTY);
1313 out:
1314 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1315 	if (prev_trans)
1316 		btrfs_put_transaction(prev_trans);
1317 
1318 	return ret == 0;
1319 }
1320 
1321 /*
1322  * Process the unused_bgs list and remove any that don't have any allocated
1323  * space inside of them.
1324  */
1325 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1326 {
1327 	struct btrfs_block_group *block_group;
1328 	struct btrfs_space_info *space_info;
1329 	struct btrfs_trans_handle *trans;
1330 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1331 	int ret = 0;
1332 
1333 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1334 		return;
1335 
1336 	spin_lock(&fs_info->unused_bgs_lock);
1337 	while (!list_empty(&fs_info->unused_bgs)) {
1338 		int trimming;
1339 
1340 		block_group = list_first_entry(&fs_info->unused_bgs,
1341 					       struct btrfs_block_group,
1342 					       bg_list);
1343 		list_del_init(&block_group->bg_list);
1344 
1345 		space_info = block_group->space_info;
1346 
1347 		if (ret || btrfs_mixed_space_info(space_info)) {
1348 			btrfs_put_block_group(block_group);
1349 			continue;
1350 		}
1351 		spin_unlock(&fs_info->unused_bgs_lock);
1352 
1353 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1354 
1355 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1356 
1357 		/* Don't want to race with allocators so take the groups_sem */
1358 		down_write(&space_info->groups_sem);
1359 
1360 		/*
1361 		 * Async discard moves the final block group discard to be prior
1362 		 * to the unused_bgs code path.  Therefore, if it's not fully
1363 		 * trimmed, punt it back to the async discard lists.
1364 		 */
1365 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1366 		    !btrfs_is_free_space_trimmed(block_group)) {
1367 			trace_btrfs_skip_unused_block_group(block_group);
1368 			up_write(&space_info->groups_sem);
1369 			/* Requeue if we failed because of async discard */
1370 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1371 						 block_group);
1372 			goto next;
1373 		}
1374 
1375 		spin_lock(&block_group->lock);
1376 		if (block_group->reserved || block_group->pinned ||
1377 		    block_group->used || block_group->ro ||
1378 		    list_is_singular(&block_group->list)) {
1379 			/*
1380 			 * We want to bail if we made new allocations or have
1381 			 * outstanding allocations in this block group.  We do
1382 			 * the ro check in case balance is currently acting on
1383 			 * this block group.
1384 			 */
1385 			trace_btrfs_skip_unused_block_group(block_group);
1386 			spin_unlock(&block_group->lock);
1387 			up_write(&space_info->groups_sem);
1388 			goto next;
1389 		}
1390 		spin_unlock(&block_group->lock);
1391 
1392 		/* We don't want to force the issue, only flip if it's ok. */
1393 		ret = inc_block_group_ro(block_group, 0);
1394 		up_write(&space_info->groups_sem);
1395 		if (ret < 0) {
1396 			ret = 0;
1397 			goto next;
1398 		}
1399 
1400 		/*
1401 		 * Want to do this before we do anything else so we can recover
1402 		 * properly if we fail to join the transaction.
1403 		 */
1404 		trans = btrfs_start_trans_remove_block_group(fs_info,
1405 						     block_group->start);
1406 		if (IS_ERR(trans)) {
1407 			btrfs_dec_block_group_ro(block_group);
1408 			ret = PTR_ERR(trans);
1409 			goto next;
1410 		}
1411 
1412 		/*
1413 		 * We could have pending pinned extents for this block group,
1414 		 * just delete them, we don't care about them anymore.
1415 		 */
1416 		if (!clean_pinned_extents(trans, block_group)) {
1417 			btrfs_dec_block_group_ro(block_group);
1418 			goto end_trans;
1419 		}
1420 
1421 		/*
1422 		 * At this point, the block_group is read only and should fail
1423 		 * new allocations.  However, btrfs_finish_extent_commit() can
1424 		 * cause this block_group to be placed back on the discard
1425 		 * lists because now the block_group isn't fully discarded.
1426 		 * Bail here and try again later after discarding everything.
1427 		 */
1428 		spin_lock(&fs_info->discard_ctl.lock);
1429 		if (!list_empty(&block_group->discard_list)) {
1430 			spin_unlock(&fs_info->discard_ctl.lock);
1431 			btrfs_dec_block_group_ro(block_group);
1432 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1433 						 block_group);
1434 			goto end_trans;
1435 		}
1436 		spin_unlock(&fs_info->discard_ctl.lock);
1437 
1438 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1439 		spin_lock(&space_info->lock);
1440 		spin_lock(&block_group->lock);
1441 
1442 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1443 						     -block_group->pinned);
1444 		space_info->bytes_readonly += block_group->pinned;
1445 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1446 				   -block_group->pinned,
1447 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1448 		block_group->pinned = 0;
1449 
1450 		spin_unlock(&block_group->lock);
1451 		spin_unlock(&space_info->lock);
1452 
1453 		/*
1454 		 * The normal path here is an unused block group is passed here,
1455 		 * then trimming is handled in the transaction commit path.
1456 		 * Async discard interposes before this to do the trimming
1457 		 * before coming down the unused block group path as trimming
1458 		 * will no longer be done later in the transaction commit path.
1459 		 */
1460 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1461 			goto flip_async;
1462 
1463 		/* DISCARD can flip during remount */
1464 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1465 
1466 		/* Implicit trim during transaction commit. */
1467 		if (trimming)
1468 			btrfs_freeze_block_group(block_group);
1469 
1470 		/*
1471 		 * Btrfs_remove_chunk will abort the transaction if things go
1472 		 * horribly wrong.
1473 		 */
1474 		ret = btrfs_remove_chunk(trans, block_group->start);
1475 
1476 		if (ret) {
1477 			if (trimming)
1478 				btrfs_unfreeze_block_group(block_group);
1479 			goto end_trans;
1480 		}
1481 
1482 		/*
1483 		 * If we're not mounted with -odiscard, we can just forget
1484 		 * about this block group. Otherwise we'll need to wait
1485 		 * until transaction commit to do the actual discard.
1486 		 */
1487 		if (trimming) {
1488 			spin_lock(&fs_info->unused_bgs_lock);
1489 			/*
1490 			 * A concurrent scrub might have added us to the list
1491 			 * fs_info->unused_bgs, so use a list_move operation
1492 			 * to add the block group to the deleted_bgs list.
1493 			 */
1494 			list_move(&block_group->bg_list,
1495 				  &trans->transaction->deleted_bgs);
1496 			spin_unlock(&fs_info->unused_bgs_lock);
1497 			btrfs_get_block_group(block_group);
1498 		}
1499 end_trans:
1500 		btrfs_end_transaction(trans);
1501 next:
1502 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1503 		btrfs_put_block_group(block_group);
1504 		spin_lock(&fs_info->unused_bgs_lock);
1505 	}
1506 	spin_unlock(&fs_info->unused_bgs_lock);
1507 	return;
1508 
1509 flip_async:
1510 	btrfs_end_transaction(trans);
1511 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1512 	btrfs_put_block_group(block_group);
1513 	btrfs_discard_punt_unused_bgs_list(fs_info);
1514 }
1515 
1516 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1517 {
1518 	struct btrfs_fs_info *fs_info = bg->fs_info;
1519 
1520 	spin_lock(&fs_info->unused_bgs_lock);
1521 	if (list_empty(&bg->bg_list)) {
1522 		btrfs_get_block_group(bg);
1523 		trace_btrfs_add_unused_block_group(bg);
1524 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1525 	}
1526 	spin_unlock(&fs_info->unused_bgs_lock);
1527 }
1528 
1529 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1530 			   struct btrfs_path *path)
1531 {
1532 	struct extent_map_tree *em_tree;
1533 	struct extent_map *em;
1534 	struct btrfs_block_group_item bg;
1535 	struct extent_buffer *leaf;
1536 	int slot;
1537 	u64 flags;
1538 	int ret = 0;
1539 
1540 	slot = path->slots[0];
1541 	leaf = path->nodes[0];
1542 
1543 	em_tree = &fs_info->mapping_tree;
1544 	read_lock(&em_tree->lock);
1545 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1546 	read_unlock(&em_tree->lock);
1547 	if (!em) {
1548 		btrfs_err(fs_info,
1549 			  "logical %llu len %llu found bg but no related chunk",
1550 			  key->objectid, key->offset);
1551 		return -ENOENT;
1552 	}
1553 
1554 	if (em->start != key->objectid || em->len != key->offset) {
1555 		btrfs_err(fs_info,
1556 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1557 			key->objectid, key->offset, em->start, em->len);
1558 		ret = -EUCLEAN;
1559 		goto out_free_em;
1560 	}
1561 
1562 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1563 			   sizeof(bg));
1564 	flags = btrfs_stack_block_group_flags(&bg) &
1565 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1566 
1567 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1568 		btrfs_err(fs_info,
1569 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1570 			  key->objectid, key->offset, flags,
1571 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1572 		ret = -EUCLEAN;
1573 	}
1574 
1575 out_free_em:
1576 	free_extent_map(em);
1577 	return ret;
1578 }
1579 
1580 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1581 				  struct btrfs_path *path,
1582 				  struct btrfs_key *key)
1583 {
1584 	struct btrfs_root *root = fs_info->extent_root;
1585 	int ret;
1586 	struct btrfs_key found_key;
1587 	struct extent_buffer *leaf;
1588 	int slot;
1589 
1590 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1591 	if (ret < 0)
1592 		return ret;
1593 
1594 	while (1) {
1595 		slot = path->slots[0];
1596 		leaf = path->nodes[0];
1597 		if (slot >= btrfs_header_nritems(leaf)) {
1598 			ret = btrfs_next_leaf(root, path);
1599 			if (ret == 0)
1600 				continue;
1601 			if (ret < 0)
1602 				goto out;
1603 			break;
1604 		}
1605 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1606 
1607 		if (found_key.objectid >= key->objectid &&
1608 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1609 			ret = read_bg_from_eb(fs_info, &found_key, path);
1610 			break;
1611 		}
1612 
1613 		path->slots[0]++;
1614 	}
1615 out:
1616 	return ret;
1617 }
1618 
1619 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1620 {
1621 	u64 extra_flags = chunk_to_extended(flags) &
1622 				BTRFS_EXTENDED_PROFILE_MASK;
1623 
1624 	write_seqlock(&fs_info->profiles_lock);
1625 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1626 		fs_info->avail_data_alloc_bits |= extra_flags;
1627 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1628 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1629 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1630 		fs_info->avail_system_alloc_bits |= extra_flags;
1631 	write_sequnlock(&fs_info->profiles_lock);
1632 }
1633 
1634 /**
1635  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1636  * @chunk_start:   logical address of block group
1637  * @physical:	   physical address to map to logical addresses
1638  * @logical:	   return array of logical addresses which map to @physical
1639  * @naddrs:	   length of @logical
1640  * @stripe_len:    size of IO stripe for the given block group
1641  *
1642  * Maps a particular @physical disk address to a list of @logical addresses.
1643  * Used primarily to exclude those portions of a block group that contain super
1644  * block copies.
1645  */
1646 EXPORT_FOR_TESTS
1647 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1648 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1649 {
1650 	struct extent_map *em;
1651 	struct map_lookup *map;
1652 	u64 *buf;
1653 	u64 bytenr;
1654 	u64 data_stripe_length;
1655 	u64 io_stripe_size;
1656 	int i, nr = 0;
1657 	int ret = 0;
1658 
1659 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1660 	if (IS_ERR(em))
1661 		return -EIO;
1662 
1663 	map = em->map_lookup;
1664 	data_stripe_length = em->orig_block_len;
1665 	io_stripe_size = map->stripe_len;
1666 
1667 	/* For RAID5/6 adjust to a full IO stripe length */
1668 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1669 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1670 
1671 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1672 	if (!buf) {
1673 		ret = -ENOMEM;
1674 		goto out;
1675 	}
1676 
1677 	for (i = 0; i < map->num_stripes; i++) {
1678 		bool already_inserted = false;
1679 		u64 stripe_nr;
1680 		int j;
1681 
1682 		if (!in_range(physical, map->stripes[i].physical,
1683 			      data_stripe_length))
1684 			continue;
1685 
1686 		stripe_nr = physical - map->stripes[i].physical;
1687 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1688 
1689 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1690 			stripe_nr = stripe_nr * map->num_stripes + i;
1691 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1692 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1693 			stripe_nr = stripe_nr * map->num_stripes + i;
1694 		}
1695 		/*
1696 		 * The remaining case would be for RAID56, multiply by
1697 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1698 		 * instead of map->stripe_len
1699 		 */
1700 
1701 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1702 
1703 		/* Ensure we don't add duplicate addresses */
1704 		for (j = 0; j < nr; j++) {
1705 			if (buf[j] == bytenr) {
1706 				already_inserted = true;
1707 				break;
1708 			}
1709 		}
1710 
1711 		if (!already_inserted)
1712 			buf[nr++] = bytenr;
1713 	}
1714 
1715 	*logical = buf;
1716 	*naddrs = nr;
1717 	*stripe_len = io_stripe_size;
1718 out:
1719 	free_extent_map(em);
1720 	return ret;
1721 }
1722 
1723 static int exclude_super_stripes(struct btrfs_block_group *cache)
1724 {
1725 	struct btrfs_fs_info *fs_info = cache->fs_info;
1726 	u64 bytenr;
1727 	u64 *logical;
1728 	int stripe_len;
1729 	int i, nr, ret;
1730 
1731 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1732 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1733 		cache->bytes_super += stripe_len;
1734 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1735 						stripe_len);
1736 		if (ret)
1737 			return ret;
1738 	}
1739 
1740 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1741 		bytenr = btrfs_sb_offset(i);
1742 		ret = btrfs_rmap_block(fs_info, cache->start,
1743 				       bytenr, &logical, &nr, &stripe_len);
1744 		if (ret)
1745 			return ret;
1746 
1747 		while (nr--) {
1748 			u64 len = min_t(u64, stripe_len,
1749 				cache->start + cache->length - logical[nr]);
1750 
1751 			cache->bytes_super += len;
1752 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1753 							len);
1754 			if (ret) {
1755 				kfree(logical);
1756 				return ret;
1757 			}
1758 		}
1759 
1760 		kfree(logical);
1761 	}
1762 	return 0;
1763 }
1764 
1765 static void link_block_group(struct btrfs_block_group *cache)
1766 {
1767 	struct btrfs_space_info *space_info = cache->space_info;
1768 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1769 
1770 	down_write(&space_info->groups_sem);
1771 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1772 	up_write(&space_info->groups_sem);
1773 }
1774 
1775 static struct btrfs_block_group *btrfs_create_block_group_cache(
1776 		struct btrfs_fs_info *fs_info, u64 start)
1777 {
1778 	struct btrfs_block_group *cache;
1779 
1780 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1781 	if (!cache)
1782 		return NULL;
1783 
1784 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1785 					GFP_NOFS);
1786 	if (!cache->free_space_ctl) {
1787 		kfree(cache);
1788 		return NULL;
1789 	}
1790 
1791 	cache->start = start;
1792 
1793 	cache->fs_info = fs_info;
1794 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1795 
1796 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1797 
1798 	refcount_set(&cache->refs, 1);
1799 	spin_lock_init(&cache->lock);
1800 	init_rwsem(&cache->data_rwsem);
1801 	INIT_LIST_HEAD(&cache->list);
1802 	INIT_LIST_HEAD(&cache->cluster_list);
1803 	INIT_LIST_HEAD(&cache->bg_list);
1804 	INIT_LIST_HEAD(&cache->ro_list);
1805 	INIT_LIST_HEAD(&cache->discard_list);
1806 	INIT_LIST_HEAD(&cache->dirty_list);
1807 	INIT_LIST_HEAD(&cache->io_list);
1808 	btrfs_init_free_space_ctl(cache);
1809 	atomic_set(&cache->frozen, 0);
1810 	mutex_init(&cache->free_space_lock);
1811 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1812 
1813 	return cache;
1814 }
1815 
1816 /*
1817  * Iterate all chunks and verify that each of them has the corresponding block
1818  * group
1819  */
1820 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1821 {
1822 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1823 	struct extent_map *em;
1824 	struct btrfs_block_group *bg;
1825 	u64 start = 0;
1826 	int ret = 0;
1827 
1828 	while (1) {
1829 		read_lock(&map_tree->lock);
1830 		/*
1831 		 * lookup_extent_mapping will return the first extent map
1832 		 * intersecting the range, so setting @len to 1 is enough to
1833 		 * get the first chunk.
1834 		 */
1835 		em = lookup_extent_mapping(map_tree, start, 1);
1836 		read_unlock(&map_tree->lock);
1837 		if (!em)
1838 			break;
1839 
1840 		bg = btrfs_lookup_block_group(fs_info, em->start);
1841 		if (!bg) {
1842 			btrfs_err(fs_info,
1843 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1844 				     em->start, em->len);
1845 			ret = -EUCLEAN;
1846 			free_extent_map(em);
1847 			break;
1848 		}
1849 		if (bg->start != em->start || bg->length != em->len ||
1850 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1851 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1852 			btrfs_err(fs_info,
1853 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1854 				em->start, em->len,
1855 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1856 				bg->start, bg->length,
1857 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1858 			ret = -EUCLEAN;
1859 			free_extent_map(em);
1860 			btrfs_put_block_group(bg);
1861 			break;
1862 		}
1863 		start = em->start + em->len;
1864 		free_extent_map(em);
1865 		btrfs_put_block_group(bg);
1866 	}
1867 	return ret;
1868 }
1869 
1870 static void read_block_group_item(struct btrfs_block_group *cache,
1871 				 struct btrfs_path *path,
1872 				 const struct btrfs_key *key)
1873 {
1874 	struct extent_buffer *leaf = path->nodes[0];
1875 	struct btrfs_block_group_item bgi;
1876 	int slot = path->slots[0];
1877 
1878 	cache->length = key->offset;
1879 
1880 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1881 			   sizeof(bgi));
1882 	cache->used = btrfs_stack_block_group_used(&bgi);
1883 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1884 }
1885 
1886 static int read_one_block_group(struct btrfs_fs_info *info,
1887 				struct btrfs_path *path,
1888 				const struct btrfs_key *key,
1889 				int need_clear)
1890 {
1891 	struct btrfs_block_group *cache;
1892 	struct btrfs_space_info *space_info;
1893 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1894 	int ret;
1895 
1896 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1897 
1898 	cache = btrfs_create_block_group_cache(info, key->objectid);
1899 	if (!cache)
1900 		return -ENOMEM;
1901 
1902 	read_block_group_item(cache, path, key);
1903 
1904 	set_free_space_tree_thresholds(cache);
1905 
1906 	if (need_clear) {
1907 		/*
1908 		 * When we mount with old space cache, we need to
1909 		 * set BTRFS_DC_CLEAR and set dirty flag.
1910 		 *
1911 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1912 		 *    truncate the old free space cache inode and
1913 		 *    setup a new one.
1914 		 * b) Setting 'dirty flag' makes sure that we flush
1915 		 *    the new space cache info onto disk.
1916 		 */
1917 		if (btrfs_test_opt(info, SPACE_CACHE))
1918 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1919 	}
1920 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1921 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1922 			btrfs_err(info,
1923 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1924 				  cache->start);
1925 			ret = -EINVAL;
1926 			goto error;
1927 	}
1928 
1929 	/*
1930 	 * We need to exclude the super stripes now so that the space info has
1931 	 * super bytes accounted for, otherwise we'll think we have more space
1932 	 * than we actually do.
1933 	 */
1934 	ret = exclude_super_stripes(cache);
1935 	if (ret) {
1936 		/* We may have excluded something, so call this just in case. */
1937 		btrfs_free_excluded_extents(cache);
1938 		goto error;
1939 	}
1940 
1941 	/*
1942 	 * Check for two cases, either we are full, and therefore don't need
1943 	 * to bother with the caching work since we won't find any space, or we
1944 	 * are empty, and we can just add all the space in and be done with it.
1945 	 * This saves us _a_lot_ of time, particularly in the full case.
1946 	 */
1947 	if (cache->length == cache->used) {
1948 		cache->last_byte_to_unpin = (u64)-1;
1949 		cache->cached = BTRFS_CACHE_FINISHED;
1950 		btrfs_free_excluded_extents(cache);
1951 	} else if (cache->used == 0) {
1952 		cache->last_byte_to_unpin = (u64)-1;
1953 		cache->cached = BTRFS_CACHE_FINISHED;
1954 		add_new_free_space(cache, cache->start,
1955 				   cache->start + cache->length);
1956 		btrfs_free_excluded_extents(cache);
1957 	}
1958 
1959 	ret = btrfs_add_block_group_cache(info, cache);
1960 	if (ret) {
1961 		btrfs_remove_free_space_cache(cache);
1962 		goto error;
1963 	}
1964 	trace_btrfs_add_block_group(info, cache, 0);
1965 	btrfs_update_space_info(info, cache->flags, cache->length,
1966 				cache->used, cache->bytes_super, &space_info);
1967 
1968 	cache->space_info = space_info;
1969 
1970 	link_block_group(cache);
1971 
1972 	set_avail_alloc_bits(info, cache->flags);
1973 	if (btrfs_chunk_readonly(info, cache->start)) {
1974 		inc_block_group_ro(cache, 1);
1975 	} else if (cache->used == 0) {
1976 		ASSERT(list_empty(&cache->bg_list));
1977 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1978 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1979 		else
1980 			btrfs_mark_bg_unused(cache);
1981 	}
1982 	return 0;
1983 error:
1984 	btrfs_put_block_group(cache);
1985 	return ret;
1986 }
1987 
1988 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1989 {
1990 	struct btrfs_path *path;
1991 	int ret;
1992 	struct btrfs_block_group *cache;
1993 	struct btrfs_space_info *space_info;
1994 	struct btrfs_key key;
1995 	int need_clear = 0;
1996 	u64 cache_gen;
1997 
1998 	key.objectid = 0;
1999 	key.offset = 0;
2000 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2001 	path = btrfs_alloc_path();
2002 	if (!path)
2003 		return -ENOMEM;
2004 
2005 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2006 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2007 	    btrfs_super_generation(info->super_copy) != cache_gen)
2008 		need_clear = 1;
2009 	if (btrfs_test_opt(info, CLEAR_CACHE))
2010 		need_clear = 1;
2011 
2012 	while (1) {
2013 		ret = find_first_block_group(info, path, &key);
2014 		if (ret > 0)
2015 			break;
2016 		if (ret != 0)
2017 			goto error;
2018 
2019 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2020 		ret = read_one_block_group(info, path, &key, need_clear);
2021 		if (ret < 0)
2022 			goto error;
2023 		key.objectid += key.offset;
2024 		key.offset = 0;
2025 		btrfs_release_path(path);
2026 	}
2027 	btrfs_release_path(path);
2028 
2029 	list_for_each_entry(space_info, &info->space_info, list) {
2030 		int i;
2031 
2032 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2033 			if (list_empty(&space_info->block_groups[i]))
2034 				continue;
2035 			cache = list_first_entry(&space_info->block_groups[i],
2036 						 struct btrfs_block_group,
2037 						 list);
2038 			btrfs_sysfs_add_block_group_type(cache);
2039 		}
2040 
2041 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2042 		      (BTRFS_BLOCK_GROUP_RAID10 |
2043 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2044 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2045 		       BTRFS_BLOCK_GROUP_DUP)))
2046 			continue;
2047 		/*
2048 		 * Avoid allocating from un-mirrored block group if there are
2049 		 * mirrored block groups.
2050 		 */
2051 		list_for_each_entry(cache,
2052 				&space_info->block_groups[BTRFS_RAID_RAID0],
2053 				list)
2054 			inc_block_group_ro(cache, 1);
2055 		list_for_each_entry(cache,
2056 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2057 				list)
2058 			inc_block_group_ro(cache, 1);
2059 	}
2060 
2061 	btrfs_init_global_block_rsv(info);
2062 	ret = check_chunk_block_group_mappings(info);
2063 error:
2064 	btrfs_free_path(path);
2065 	return ret;
2066 }
2067 
2068 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2069 				   struct btrfs_block_group *block_group)
2070 {
2071 	struct btrfs_fs_info *fs_info = trans->fs_info;
2072 	struct btrfs_block_group_item bgi;
2073 	struct btrfs_root *root;
2074 	struct btrfs_key key;
2075 
2076 	spin_lock(&block_group->lock);
2077 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2078 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2079 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2080 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2081 	key.objectid = block_group->start;
2082 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2083 	key.offset = block_group->length;
2084 	spin_unlock(&block_group->lock);
2085 
2086 	root = fs_info->extent_root;
2087 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2088 }
2089 
2090 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2091 {
2092 	struct btrfs_fs_info *fs_info = trans->fs_info;
2093 	struct btrfs_block_group *block_group;
2094 	int ret = 0;
2095 
2096 	if (!trans->can_flush_pending_bgs)
2097 		return;
2098 
2099 	while (!list_empty(&trans->new_bgs)) {
2100 		int index;
2101 
2102 		block_group = list_first_entry(&trans->new_bgs,
2103 					       struct btrfs_block_group,
2104 					       bg_list);
2105 		if (ret)
2106 			goto next;
2107 
2108 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2109 
2110 		ret = insert_block_group_item(trans, block_group);
2111 		if (ret)
2112 			btrfs_abort_transaction(trans, ret);
2113 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2114 					block_group->length);
2115 		if (ret)
2116 			btrfs_abort_transaction(trans, ret);
2117 		add_block_group_free_space(trans, block_group);
2118 
2119 		/*
2120 		 * If we restriped during balance, we may have added a new raid
2121 		 * type, so now add the sysfs entries when it is safe to do so.
2122 		 * We don't have to worry about locking here as it's handled in
2123 		 * btrfs_sysfs_add_block_group_type.
2124 		 */
2125 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2126 			btrfs_sysfs_add_block_group_type(block_group);
2127 
2128 		/* Already aborted the transaction if it failed. */
2129 next:
2130 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2131 		list_del_init(&block_group->bg_list);
2132 	}
2133 	btrfs_trans_release_chunk_metadata(trans);
2134 }
2135 
2136 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2137 			   u64 type, u64 chunk_offset, u64 size)
2138 {
2139 	struct btrfs_fs_info *fs_info = trans->fs_info;
2140 	struct btrfs_block_group *cache;
2141 	int ret;
2142 
2143 	btrfs_set_log_full_commit(trans);
2144 
2145 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2146 	if (!cache)
2147 		return -ENOMEM;
2148 
2149 	cache->length = size;
2150 	set_free_space_tree_thresholds(cache);
2151 	cache->used = bytes_used;
2152 	cache->flags = type;
2153 	cache->last_byte_to_unpin = (u64)-1;
2154 	cache->cached = BTRFS_CACHE_FINISHED;
2155 	cache->needs_free_space = 1;
2156 	ret = exclude_super_stripes(cache);
2157 	if (ret) {
2158 		/* We may have excluded something, so call this just in case */
2159 		btrfs_free_excluded_extents(cache);
2160 		btrfs_put_block_group(cache);
2161 		return ret;
2162 	}
2163 
2164 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2165 
2166 	btrfs_free_excluded_extents(cache);
2167 
2168 #ifdef CONFIG_BTRFS_DEBUG
2169 	if (btrfs_should_fragment_free_space(cache)) {
2170 		u64 new_bytes_used = size - bytes_used;
2171 
2172 		bytes_used += new_bytes_used >> 1;
2173 		fragment_free_space(cache);
2174 	}
2175 #endif
2176 	/*
2177 	 * Ensure the corresponding space_info object is created and
2178 	 * assigned to our block group. We want our bg to be added to the rbtree
2179 	 * with its ->space_info set.
2180 	 */
2181 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2182 	ASSERT(cache->space_info);
2183 
2184 	ret = btrfs_add_block_group_cache(fs_info, cache);
2185 	if (ret) {
2186 		btrfs_remove_free_space_cache(cache);
2187 		btrfs_put_block_group(cache);
2188 		return ret;
2189 	}
2190 
2191 	/*
2192 	 * Now that our block group has its ->space_info set and is inserted in
2193 	 * the rbtree, update the space info's counters.
2194 	 */
2195 	trace_btrfs_add_block_group(fs_info, cache, 1);
2196 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2197 				cache->bytes_super, &cache->space_info);
2198 	btrfs_update_global_block_rsv(fs_info);
2199 
2200 	link_block_group(cache);
2201 
2202 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2203 	trans->delayed_ref_updates++;
2204 	btrfs_update_delayed_refs_rsv(trans);
2205 
2206 	set_avail_alloc_bits(fs_info, type);
2207 	return 0;
2208 }
2209 
2210 /*
2211  * Mark one block group RO, can be called several times for the same block
2212  * group.
2213  *
2214  * @cache:		the destination block group
2215  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2216  * 			ensure we still have some free space after marking this
2217  * 			block group RO.
2218  */
2219 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2220 			     bool do_chunk_alloc)
2221 {
2222 	struct btrfs_fs_info *fs_info = cache->fs_info;
2223 	struct btrfs_trans_handle *trans;
2224 	u64 alloc_flags;
2225 	int ret;
2226 
2227 again:
2228 	trans = btrfs_join_transaction(fs_info->extent_root);
2229 	if (IS_ERR(trans))
2230 		return PTR_ERR(trans);
2231 
2232 	/*
2233 	 * we're not allowed to set block groups readonly after the dirty
2234 	 * block groups cache has started writing.  If it already started,
2235 	 * back off and let this transaction commit
2236 	 */
2237 	mutex_lock(&fs_info->ro_block_group_mutex);
2238 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2239 		u64 transid = trans->transid;
2240 
2241 		mutex_unlock(&fs_info->ro_block_group_mutex);
2242 		btrfs_end_transaction(trans);
2243 
2244 		ret = btrfs_wait_for_commit(fs_info, transid);
2245 		if (ret)
2246 			return ret;
2247 		goto again;
2248 	}
2249 
2250 	if (do_chunk_alloc) {
2251 		/*
2252 		 * If we are changing raid levels, try to allocate a
2253 		 * corresponding block group with the new raid level.
2254 		 */
2255 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2256 		if (alloc_flags != cache->flags) {
2257 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2258 						CHUNK_ALLOC_FORCE);
2259 			/*
2260 			 * ENOSPC is allowed here, we may have enough space
2261 			 * already allocated at the new raid level to carry on
2262 			 */
2263 			if (ret == -ENOSPC)
2264 				ret = 0;
2265 			if (ret < 0)
2266 				goto out;
2267 		}
2268 	}
2269 
2270 	ret = inc_block_group_ro(cache, 0);
2271 	if (!do_chunk_alloc)
2272 		goto unlock_out;
2273 	if (!ret)
2274 		goto out;
2275 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2276 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2277 	if (ret < 0)
2278 		goto out;
2279 	ret = inc_block_group_ro(cache, 0);
2280 out:
2281 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2282 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2283 		mutex_lock(&fs_info->chunk_mutex);
2284 		check_system_chunk(trans, alloc_flags);
2285 		mutex_unlock(&fs_info->chunk_mutex);
2286 	}
2287 unlock_out:
2288 	mutex_unlock(&fs_info->ro_block_group_mutex);
2289 
2290 	btrfs_end_transaction(trans);
2291 	return ret;
2292 }
2293 
2294 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2295 {
2296 	struct btrfs_space_info *sinfo = cache->space_info;
2297 	u64 num_bytes;
2298 
2299 	BUG_ON(!cache->ro);
2300 
2301 	spin_lock(&sinfo->lock);
2302 	spin_lock(&cache->lock);
2303 	if (!--cache->ro) {
2304 		num_bytes = cache->length - cache->reserved -
2305 			    cache->pinned - cache->bytes_super - cache->used;
2306 		sinfo->bytes_readonly -= num_bytes;
2307 		list_del_init(&cache->ro_list);
2308 	}
2309 	spin_unlock(&cache->lock);
2310 	spin_unlock(&sinfo->lock);
2311 }
2312 
2313 static int update_block_group_item(struct btrfs_trans_handle *trans,
2314 				   struct btrfs_path *path,
2315 				   struct btrfs_block_group *cache)
2316 {
2317 	struct btrfs_fs_info *fs_info = trans->fs_info;
2318 	int ret;
2319 	struct btrfs_root *root = fs_info->extent_root;
2320 	unsigned long bi;
2321 	struct extent_buffer *leaf;
2322 	struct btrfs_block_group_item bgi;
2323 	struct btrfs_key key;
2324 
2325 	key.objectid = cache->start;
2326 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2327 	key.offset = cache->length;
2328 
2329 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2330 	if (ret) {
2331 		if (ret > 0)
2332 			ret = -ENOENT;
2333 		goto fail;
2334 	}
2335 
2336 	leaf = path->nodes[0];
2337 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2338 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2339 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2340 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2341 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2342 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2343 	btrfs_mark_buffer_dirty(leaf);
2344 fail:
2345 	btrfs_release_path(path);
2346 	return ret;
2347 
2348 }
2349 
2350 static int cache_save_setup(struct btrfs_block_group *block_group,
2351 			    struct btrfs_trans_handle *trans,
2352 			    struct btrfs_path *path)
2353 {
2354 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2355 	struct btrfs_root *root = fs_info->tree_root;
2356 	struct inode *inode = NULL;
2357 	struct extent_changeset *data_reserved = NULL;
2358 	u64 alloc_hint = 0;
2359 	int dcs = BTRFS_DC_ERROR;
2360 	u64 num_pages = 0;
2361 	int retries = 0;
2362 	int ret = 0;
2363 
2364 	/*
2365 	 * If this block group is smaller than 100 megs don't bother caching the
2366 	 * block group.
2367 	 */
2368 	if (block_group->length < (100 * SZ_1M)) {
2369 		spin_lock(&block_group->lock);
2370 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2371 		spin_unlock(&block_group->lock);
2372 		return 0;
2373 	}
2374 
2375 	if (TRANS_ABORTED(trans))
2376 		return 0;
2377 again:
2378 	inode = lookup_free_space_inode(block_group, path);
2379 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2380 		ret = PTR_ERR(inode);
2381 		btrfs_release_path(path);
2382 		goto out;
2383 	}
2384 
2385 	if (IS_ERR(inode)) {
2386 		BUG_ON(retries);
2387 		retries++;
2388 
2389 		if (block_group->ro)
2390 			goto out_free;
2391 
2392 		ret = create_free_space_inode(trans, block_group, path);
2393 		if (ret)
2394 			goto out_free;
2395 		goto again;
2396 	}
2397 
2398 	/*
2399 	 * We want to set the generation to 0, that way if anything goes wrong
2400 	 * from here on out we know not to trust this cache when we load up next
2401 	 * time.
2402 	 */
2403 	BTRFS_I(inode)->generation = 0;
2404 	ret = btrfs_update_inode(trans, root, inode);
2405 	if (ret) {
2406 		/*
2407 		 * So theoretically we could recover from this, simply set the
2408 		 * super cache generation to 0 so we know to invalidate the
2409 		 * cache, but then we'd have to keep track of the block groups
2410 		 * that fail this way so we know we _have_ to reset this cache
2411 		 * before the next commit or risk reading stale cache.  So to
2412 		 * limit our exposure to horrible edge cases lets just abort the
2413 		 * transaction, this only happens in really bad situations
2414 		 * anyway.
2415 		 */
2416 		btrfs_abort_transaction(trans, ret);
2417 		goto out_put;
2418 	}
2419 	WARN_ON(ret);
2420 
2421 	/* We've already setup this transaction, go ahead and exit */
2422 	if (block_group->cache_generation == trans->transid &&
2423 	    i_size_read(inode)) {
2424 		dcs = BTRFS_DC_SETUP;
2425 		goto out_put;
2426 	}
2427 
2428 	if (i_size_read(inode) > 0) {
2429 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2430 					&fs_info->global_block_rsv);
2431 		if (ret)
2432 			goto out_put;
2433 
2434 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2435 		if (ret)
2436 			goto out_put;
2437 	}
2438 
2439 	spin_lock(&block_group->lock);
2440 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2441 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2442 		/*
2443 		 * don't bother trying to write stuff out _if_
2444 		 * a) we're not cached,
2445 		 * b) we're with nospace_cache mount option,
2446 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2447 		 */
2448 		dcs = BTRFS_DC_WRITTEN;
2449 		spin_unlock(&block_group->lock);
2450 		goto out_put;
2451 	}
2452 	spin_unlock(&block_group->lock);
2453 
2454 	/*
2455 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2456 	 * skip doing the setup, we've already cleared the cache so we're safe.
2457 	 */
2458 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2459 		ret = -ENOSPC;
2460 		goto out_put;
2461 	}
2462 
2463 	/*
2464 	 * Try to preallocate enough space based on how big the block group is.
2465 	 * Keep in mind this has to include any pinned space which could end up
2466 	 * taking up quite a bit since it's not folded into the other space
2467 	 * cache.
2468 	 */
2469 	num_pages = div_u64(block_group->length, SZ_256M);
2470 	if (!num_pages)
2471 		num_pages = 1;
2472 
2473 	num_pages *= 16;
2474 	num_pages *= PAGE_SIZE;
2475 
2476 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2477 					  num_pages);
2478 	if (ret)
2479 		goto out_put;
2480 
2481 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2482 					      num_pages, num_pages,
2483 					      &alloc_hint);
2484 	/*
2485 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2486 	 * of metadata or split extents when writing the cache out, which means
2487 	 * we can enospc if we are heavily fragmented in addition to just normal
2488 	 * out of space conditions.  So if we hit this just skip setting up any
2489 	 * other block groups for this transaction, maybe we'll unpin enough
2490 	 * space the next time around.
2491 	 */
2492 	if (!ret)
2493 		dcs = BTRFS_DC_SETUP;
2494 	else if (ret == -ENOSPC)
2495 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2496 
2497 out_put:
2498 	iput(inode);
2499 out_free:
2500 	btrfs_release_path(path);
2501 out:
2502 	spin_lock(&block_group->lock);
2503 	if (!ret && dcs == BTRFS_DC_SETUP)
2504 		block_group->cache_generation = trans->transid;
2505 	block_group->disk_cache_state = dcs;
2506 	spin_unlock(&block_group->lock);
2507 
2508 	extent_changeset_free(data_reserved);
2509 	return ret;
2510 }
2511 
2512 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2513 {
2514 	struct btrfs_fs_info *fs_info = trans->fs_info;
2515 	struct btrfs_block_group *cache, *tmp;
2516 	struct btrfs_transaction *cur_trans = trans->transaction;
2517 	struct btrfs_path *path;
2518 
2519 	if (list_empty(&cur_trans->dirty_bgs) ||
2520 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2521 		return 0;
2522 
2523 	path = btrfs_alloc_path();
2524 	if (!path)
2525 		return -ENOMEM;
2526 
2527 	/* Could add new block groups, use _safe just in case */
2528 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2529 				 dirty_list) {
2530 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2531 			cache_save_setup(cache, trans, path);
2532 	}
2533 
2534 	btrfs_free_path(path);
2535 	return 0;
2536 }
2537 
2538 /*
2539  * Transaction commit does final block group cache writeback during a critical
2540  * section where nothing is allowed to change the FS.  This is required in
2541  * order for the cache to actually match the block group, but can introduce a
2542  * lot of latency into the commit.
2543  *
2544  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2545  * There's a chance we'll have to redo some of it if the block group changes
2546  * again during the commit, but it greatly reduces the commit latency by
2547  * getting rid of the easy block groups while we're still allowing others to
2548  * join the commit.
2549  */
2550 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2551 {
2552 	struct btrfs_fs_info *fs_info = trans->fs_info;
2553 	struct btrfs_block_group *cache;
2554 	struct btrfs_transaction *cur_trans = trans->transaction;
2555 	int ret = 0;
2556 	int should_put;
2557 	struct btrfs_path *path = NULL;
2558 	LIST_HEAD(dirty);
2559 	struct list_head *io = &cur_trans->io_bgs;
2560 	int num_started = 0;
2561 	int loops = 0;
2562 
2563 	spin_lock(&cur_trans->dirty_bgs_lock);
2564 	if (list_empty(&cur_trans->dirty_bgs)) {
2565 		spin_unlock(&cur_trans->dirty_bgs_lock);
2566 		return 0;
2567 	}
2568 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2569 	spin_unlock(&cur_trans->dirty_bgs_lock);
2570 
2571 again:
2572 	/* Make sure all the block groups on our dirty list actually exist */
2573 	btrfs_create_pending_block_groups(trans);
2574 
2575 	if (!path) {
2576 		path = btrfs_alloc_path();
2577 		if (!path)
2578 			return -ENOMEM;
2579 	}
2580 
2581 	/*
2582 	 * cache_write_mutex is here only to save us from balance or automatic
2583 	 * removal of empty block groups deleting this block group while we are
2584 	 * writing out the cache
2585 	 */
2586 	mutex_lock(&trans->transaction->cache_write_mutex);
2587 	while (!list_empty(&dirty)) {
2588 		bool drop_reserve = true;
2589 
2590 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2591 					 dirty_list);
2592 		/*
2593 		 * This can happen if something re-dirties a block group that
2594 		 * is already under IO.  Just wait for it to finish and then do
2595 		 * it all again
2596 		 */
2597 		if (!list_empty(&cache->io_list)) {
2598 			list_del_init(&cache->io_list);
2599 			btrfs_wait_cache_io(trans, cache, path);
2600 			btrfs_put_block_group(cache);
2601 		}
2602 
2603 
2604 		/*
2605 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2606 		 * it should update the cache_state.  Don't delete until after
2607 		 * we wait.
2608 		 *
2609 		 * Since we're not running in the commit critical section
2610 		 * we need the dirty_bgs_lock to protect from update_block_group
2611 		 */
2612 		spin_lock(&cur_trans->dirty_bgs_lock);
2613 		list_del_init(&cache->dirty_list);
2614 		spin_unlock(&cur_trans->dirty_bgs_lock);
2615 
2616 		should_put = 1;
2617 
2618 		cache_save_setup(cache, trans, path);
2619 
2620 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2621 			cache->io_ctl.inode = NULL;
2622 			ret = btrfs_write_out_cache(trans, cache, path);
2623 			if (ret == 0 && cache->io_ctl.inode) {
2624 				num_started++;
2625 				should_put = 0;
2626 
2627 				/*
2628 				 * The cache_write_mutex is protecting the
2629 				 * io_list, also refer to the definition of
2630 				 * btrfs_transaction::io_bgs for more details
2631 				 */
2632 				list_add_tail(&cache->io_list, io);
2633 			} else {
2634 				/*
2635 				 * If we failed to write the cache, the
2636 				 * generation will be bad and life goes on
2637 				 */
2638 				ret = 0;
2639 			}
2640 		}
2641 		if (!ret) {
2642 			ret = update_block_group_item(trans, path, cache);
2643 			/*
2644 			 * Our block group might still be attached to the list
2645 			 * of new block groups in the transaction handle of some
2646 			 * other task (struct btrfs_trans_handle->new_bgs). This
2647 			 * means its block group item isn't yet in the extent
2648 			 * tree. If this happens ignore the error, as we will
2649 			 * try again later in the critical section of the
2650 			 * transaction commit.
2651 			 */
2652 			if (ret == -ENOENT) {
2653 				ret = 0;
2654 				spin_lock(&cur_trans->dirty_bgs_lock);
2655 				if (list_empty(&cache->dirty_list)) {
2656 					list_add_tail(&cache->dirty_list,
2657 						      &cur_trans->dirty_bgs);
2658 					btrfs_get_block_group(cache);
2659 					drop_reserve = false;
2660 				}
2661 				spin_unlock(&cur_trans->dirty_bgs_lock);
2662 			} else if (ret) {
2663 				btrfs_abort_transaction(trans, ret);
2664 			}
2665 		}
2666 
2667 		/* If it's not on the io list, we need to put the block group */
2668 		if (should_put)
2669 			btrfs_put_block_group(cache);
2670 		if (drop_reserve)
2671 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2672 
2673 		if (ret)
2674 			break;
2675 
2676 		/*
2677 		 * Avoid blocking other tasks for too long. It might even save
2678 		 * us from writing caches for block groups that are going to be
2679 		 * removed.
2680 		 */
2681 		mutex_unlock(&trans->transaction->cache_write_mutex);
2682 		mutex_lock(&trans->transaction->cache_write_mutex);
2683 	}
2684 	mutex_unlock(&trans->transaction->cache_write_mutex);
2685 
2686 	/*
2687 	 * Go through delayed refs for all the stuff we've just kicked off
2688 	 * and then loop back (just once)
2689 	 */
2690 	ret = btrfs_run_delayed_refs(trans, 0);
2691 	if (!ret && loops == 0) {
2692 		loops++;
2693 		spin_lock(&cur_trans->dirty_bgs_lock);
2694 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2695 		/*
2696 		 * dirty_bgs_lock protects us from concurrent block group
2697 		 * deletes too (not just cache_write_mutex).
2698 		 */
2699 		if (!list_empty(&dirty)) {
2700 			spin_unlock(&cur_trans->dirty_bgs_lock);
2701 			goto again;
2702 		}
2703 		spin_unlock(&cur_trans->dirty_bgs_lock);
2704 	} else if (ret < 0) {
2705 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2706 	}
2707 
2708 	btrfs_free_path(path);
2709 	return ret;
2710 }
2711 
2712 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2713 {
2714 	struct btrfs_fs_info *fs_info = trans->fs_info;
2715 	struct btrfs_block_group *cache;
2716 	struct btrfs_transaction *cur_trans = trans->transaction;
2717 	int ret = 0;
2718 	int should_put;
2719 	struct btrfs_path *path;
2720 	struct list_head *io = &cur_trans->io_bgs;
2721 	int num_started = 0;
2722 
2723 	path = btrfs_alloc_path();
2724 	if (!path)
2725 		return -ENOMEM;
2726 
2727 	/*
2728 	 * Even though we are in the critical section of the transaction commit,
2729 	 * we can still have concurrent tasks adding elements to this
2730 	 * transaction's list of dirty block groups. These tasks correspond to
2731 	 * endio free space workers started when writeback finishes for a
2732 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2733 	 * allocate new block groups as a result of COWing nodes of the root
2734 	 * tree when updating the free space inode. The writeback for the space
2735 	 * caches is triggered by an earlier call to
2736 	 * btrfs_start_dirty_block_groups() and iterations of the following
2737 	 * loop.
2738 	 * Also we want to do the cache_save_setup first and then run the
2739 	 * delayed refs to make sure we have the best chance at doing this all
2740 	 * in one shot.
2741 	 */
2742 	spin_lock(&cur_trans->dirty_bgs_lock);
2743 	while (!list_empty(&cur_trans->dirty_bgs)) {
2744 		cache = list_first_entry(&cur_trans->dirty_bgs,
2745 					 struct btrfs_block_group,
2746 					 dirty_list);
2747 
2748 		/*
2749 		 * This can happen if cache_save_setup re-dirties a block group
2750 		 * that is already under IO.  Just wait for it to finish and
2751 		 * then do it all again
2752 		 */
2753 		if (!list_empty(&cache->io_list)) {
2754 			spin_unlock(&cur_trans->dirty_bgs_lock);
2755 			list_del_init(&cache->io_list);
2756 			btrfs_wait_cache_io(trans, cache, path);
2757 			btrfs_put_block_group(cache);
2758 			spin_lock(&cur_trans->dirty_bgs_lock);
2759 		}
2760 
2761 		/*
2762 		 * Don't remove from the dirty list until after we've waited on
2763 		 * any pending IO
2764 		 */
2765 		list_del_init(&cache->dirty_list);
2766 		spin_unlock(&cur_trans->dirty_bgs_lock);
2767 		should_put = 1;
2768 
2769 		cache_save_setup(cache, trans, path);
2770 
2771 		if (!ret)
2772 			ret = btrfs_run_delayed_refs(trans,
2773 						     (unsigned long) -1);
2774 
2775 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2776 			cache->io_ctl.inode = NULL;
2777 			ret = btrfs_write_out_cache(trans, cache, path);
2778 			if (ret == 0 && cache->io_ctl.inode) {
2779 				num_started++;
2780 				should_put = 0;
2781 				list_add_tail(&cache->io_list, io);
2782 			} else {
2783 				/*
2784 				 * If we failed to write the cache, the
2785 				 * generation will be bad and life goes on
2786 				 */
2787 				ret = 0;
2788 			}
2789 		}
2790 		if (!ret) {
2791 			ret = update_block_group_item(trans, path, cache);
2792 			/*
2793 			 * One of the free space endio workers might have
2794 			 * created a new block group while updating a free space
2795 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2796 			 * and hasn't released its transaction handle yet, in
2797 			 * which case the new block group is still attached to
2798 			 * its transaction handle and its creation has not
2799 			 * finished yet (no block group item in the extent tree
2800 			 * yet, etc). If this is the case, wait for all free
2801 			 * space endio workers to finish and retry. This is a
2802 			 * very rare case so no need for a more efficient and
2803 			 * complex approach.
2804 			 */
2805 			if (ret == -ENOENT) {
2806 				wait_event(cur_trans->writer_wait,
2807 				   atomic_read(&cur_trans->num_writers) == 1);
2808 				ret = update_block_group_item(trans, path, cache);
2809 			}
2810 			if (ret)
2811 				btrfs_abort_transaction(trans, ret);
2812 		}
2813 
2814 		/* If its not on the io list, we need to put the block group */
2815 		if (should_put)
2816 			btrfs_put_block_group(cache);
2817 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2818 		spin_lock(&cur_trans->dirty_bgs_lock);
2819 	}
2820 	spin_unlock(&cur_trans->dirty_bgs_lock);
2821 
2822 	/*
2823 	 * Refer to the definition of io_bgs member for details why it's safe
2824 	 * to use it without any locking
2825 	 */
2826 	while (!list_empty(io)) {
2827 		cache = list_first_entry(io, struct btrfs_block_group,
2828 					 io_list);
2829 		list_del_init(&cache->io_list);
2830 		btrfs_wait_cache_io(trans, cache, path);
2831 		btrfs_put_block_group(cache);
2832 	}
2833 
2834 	btrfs_free_path(path);
2835 	return ret;
2836 }
2837 
2838 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2839 			     u64 bytenr, u64 num_bytes, int alloc)
2840 {
2841 	struct btrfs_fs_info *info = trans->fs_info;
2842 	struct btrfs_block_group *cache = NULL;
2843 	u64 total = num_bytes;
2844 	u64 old_val;
2845 	u64 byte_in_group;
2846 	int factor;
2847 	int ret = 0;
2848 
2849 	/* Block accounting for super block */
2850 	spin_lock(&info->delalloc_root_lock);
2851 	old_val = btrfs_super_bytes_used(info->super_copy);
2852 	if (alloc)
2853 		old_val += num_bytes;
2854 	else
2855 		old_val -= num_bytes;
2856 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2857 	spin_unlock(&info->delalloc_root_lock);
2858 
2859 	while (total) {
2860 		cache = btrfs_lookup_block_group(info, bytenr);
2861 		if (!cache) {
2862 			ret = -ENOENT;
2863 			break;
2864 		}
2865 		factor = btrfs_bg_type_to_factor(cache->flags);
2866 
2867 		/*
2868 		 * If this block group has free space cache written out, we
2869 		 * need to make sure to load it if we are removing space.  This
2870 		 * is because we need the unpinning stage to actually add the
2871 		 * space back to the block group, otherwise we will leak space.
2872 		 */
2873 		if (!alloc && !btrfs_block_group_done(cache))
2874 			btrfs_cache_block_group(cache, 1);
2875 
2876 		byte_in_group = bytenr - cache->start;
2877 		WARN_ON(byte_in_group > cache->length);
2878 
2879 		spin_lock(&cache->space_info->lock);
2880 		spin_lock(&cache->lock);
2881 
2882 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2883 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2884 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2885 
2886 		old_val = cache->used;
2887 		num_bytes = min(total, cache->length - byte_in_group);
2888 		if (alloc) {
2889 			old_val += num_bytes;
2890 			cache->used = old_val;
2891 			cache->reserved -= num_bytes;
2892 			cache->space_info->bytes_reserved -= num_bytes;
2893 			cache->space_info->bytes_used += num_bytes;
2894 			cache->space_info->disk_used += num_bytes * factor;
2895 			spin_unlock(&cache->lock);
2896 			spin_unlock(&cache->space_info->lock);
2897 		} else {
2898 			old_val -= num_bytes;
2899 			cache->used = old_val;
2900 			cache->pinned += num_bytes;
2901 			btrfs_space_info_update_bytes_pinned(info,
2902 					cache->space_info, num_bytes);
2903 			cache->space_info->bytes_used -= num_bytes;
2904 			cache->space_info->disk_used -= num_bytes * factor;
2905 			spin_unlock(&cache->lock);
2906 			spin_unlock(&cache->space_info->lock);
2907 
2908 			percpu_counter_add_batch(
2909 					&cache->space_info->total_bytes_pinned,
2910 					num_bytes,
2911 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2912 			set_extent_dirty(&trans->transaction->pinned_extents,
2913 					 bytenr, bytenr + num_bytes - 1,
2914 					 GFP_NOFS | __GFP_NOFAIL);
2915 		}
2916 
2917 		spin_lock(&trans->transaction->dirty_bgs_lock);
2918 		if (list_empty(&cache->dirty_list)) {
2919 			list_add_tail(&cache->dirty_list,
2920 				      &trans->transaction->dirty_bgs);
2921 			trans->delayed_ref_updates++;
2922 			btrfs_get_block_group(cache);
2923 		}
2924 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2925 
2926 		/*
2927 		 * No longer have used bytes in this block group, queue it for
2928 		 * deletion. We do this after adding the block group to the
2929 		 * dirty list to avoid races between cleaner kthread and space
2930 		 * cache writeout.
2931 		 */
2932 		if (!alloc && old_val == 0) {
2933 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2934 				btrfs_mark_bg_unused(cache);
2935 		}
2936 
2937 		btrfs_put_block_group(cache);
2938 		total -= num_bytes;
2939 		bytenr += num_bytes;
2940 	}
2941 
2942 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2943 	btrfs_update_delayed_refs_rsv(trans);
2944 	return ret;
2945 }
2946 
2947 /**
2948  * btrfs_add_reserved_bytes - update the block_group and space info counters
2949  * @cache:	The cache we are manipulating
2950  * @ram_bytes:  The number of bytes of file content, and will be same to
2951  *              @num_bytes except for the compress path.
2952  * @num_bytes:	The number of bytes in question
2953  * @delalloc:   The blocks are allocated for the delalloc write
2954  *
2955  * This is called by the allocator when it reserves space. If this is a
2956  * reservation and the block group has become read only we cannot make the
2957  * reservation and return -EAGAIN, otherwise this function always succeeds.
2958  */
2959 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2960 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2961 {
2962 	struct btrfs_space_info *space_info = cache->space_info;
2963 	int ret = 0;
2964 
2965 	spin_lock(&space_info->lock);
2966 	spin_lock(&cache->lock);
2967 	if (cache->ro) {
2968 		ret = -EAGAIN;
2969 	} else {
2970 		cache->reserved += num_bytes;
2971 		space_info->bytes_reserved += num_bytes;
2972 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2973 					      space_info->flags, num_bytes, 1);
2974 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2975 						      space_info, -ram_bytes);
2976 		if (delalloc)
2977 			cache->delalloc_bytes += num_bytes;
2978 
2979 		/*
2980 		 * Compression can use less space than we reserved, so wake
2981 		 * tickets if that happens
2982 		 */
2983 		if (num_bytes < ram_bytes)
2984 			btrfs_try_granting_tickets(cache->fs_info, space_info);
2985 	}
2986 	spin_unlock(&cache->lock);
2987 	spin_unlock(&space_info->lock);
2988 	return ret;
2989 }
2990 
2991 /**
2992  * btrfs_free_reserved_bytes - update the block_group and space info counters
2993  * @cache:      The cache we are manipulating
2994  * @num_bytes:  The number of bytes in question
2995  * @delalloc:   The blocks are allocated for the delalloc write
2996  *
2997  * This is called by somebody who is freeing space that was never actually used
2998  * on disk.  For example if you reserve some space for a new leaf in transaction
2999  * A and before transaction A commits you free that leaf, you call this with
3000  * reserve set to 0 in order to clear the reservation.
3001  */
3002 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3003 			       u64 num_bytes, int delalloc)
3004 {
3005 	struct btrfs_space_info *space_info = cache->space_info;
3006 
3007 	spin_lock(&space_info->lock);
3008 	spin_lock(&cache->lock);
3009 	if (cache->ro)
3010 		space_info->bytes_readonly += num_bytes;
3011 	cache->reserved -= num_bytes;
3012 	space_info->bytes_reserved -= num_bytes;
3013 	space_info->max_extent_size = 0;
3014 
3015 	if (delalloc)
3016 		cache->delalloc_bytes -= num_bytes;
3017 	spin_unlock(&cache->lock);
3018 
3019 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3020 	spin_unlock(&space_info->lock);
3021 }
3022 
3023 static void force_metadata_allocation(struct btrfs_fs_info *info)
3024 {
3025 	struct list_head *head = &info->space_info;
3026 	struct btrfs_space_info *found;
3027 
3028 	list_for_each_entry(found, head, list) {
3029 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3030 			found->force_alloc = CHUNK_ALLOC_FORCE;
3031 	}
3032 }
3033 
3034 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3035 			      struct btrfs_space_info *sinfo, int force)
3036 {
3037 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3038 	u64 thresh;
3039 
3040 	if (force == CHUNK_ALLOC_FORCE)
3041 		return 1;
3042 
3043 	/*
3044 	 * in limited mode, we want to have some free space up to
3045 	 * about 1% of the FS size.
3046 	 */
3047 	if (force == CHUNK_ALLOC_LIMITED) {
3048 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3049 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3050 
3051 		if (sinfo->total_bytes - bytes_used < thresh)
3052 			return 1;
3053 	}
3054 
3055 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3056 		return 0;
3057 	return 1;
3058 }
3059 
3060 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3061 {
3062 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3063 
3064 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3065 }
3066 
3067 /*
3068  * If force is CHUNK_ALLOC_FORCE:
3069  *    - return 1 if it successfully allocates a chunk,
3070  *    - return errors including -ENOSPC otherwise.
3071  * If force is NOT CHUNK_ALLOC_FORCE:
3072  *    - return 0 if it doesn't need to allocate a new chunk,
3073  *    - return 1 if it successfully allocates a chunk,
3074  *    - return errors including -ENOSPC otherwise.
3075  */
3076 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3077 		      enum btrfs_chunk_alloc_enum force)
3078 {
3079 	struct btrfs_fs_info *fs_info = trans->fs_info;
3080 	struct btrfs_space_info *space_info;
3081 	bool wait_for_alloc = false;
3082 	bool should_alloc = false;
3083 	int ret = 0;
3084 
3085 	/* Don't re-enter if we're already allocating a chunk */
3086 	if (trans->allocating_chunk)
3087 		return -ENOSPC;
3088 
3089 	space_info = btrfs_find_space_info(fs_info, flags);
3090 	ASSERT(space_info);
3091 
3092 	do {
3093 		spin_lock(&space_info->lock);
3094 		if (force < space_info->force_alloc)
3095 			force = space_info->force_alloc;
3096 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3097 		if (space_info->full) {
3098 			/* No more free physical space */
3099 			if (should_alloc)
3100 				ret = -ENOSPC;
3101 			else
3102 				ret = 0;
3103 			spin_unlock(&space_info->lock);
3104 			return ret;
3105 		} else if (!should_alloc) {
3106 			spin_unlock(&space_info->lock);
3107 			return 0;
3108 		} else if (space_info->chunk_alloc) {
3109 			/*
3110 			 * Someone is already allocating, so we need to block
3111 			 * until this someone is finished and then loop to
3112 			 * recheck if we should continue with our allocation
3113 			 * attempt.
3114 			 */
3115 			wait_for_alloc = true;
3116 			spin_unlock(&space_info->lock);
3117 			mutex_lock(&fs_info->chunk_mutex);
3118 			mutex_unlock(&fs_info->chunk_mutex);
3119 		} else {
3120 			/* Proceed with allocation */
3121 			space_info->chunk_alloc = 1;
3122 			wait_for_alloc = false;
3123 			spin_unlock(&space_info->lock);
3124 		}
3125 
3126 		cond_resched();
3127 	} while (wait_for_alloc);
3128 
3129 	mutex_lock(&fs_info->chunk_mutex);
3130 	trans->allocating_chunk = true;
3131 
3132 	/*
3133 	 * If we have mixed data/metadata chunks we want to make sure we keep
3134 	 * allocating mixed chunks instead of individual chunks.
3135 	 */
3136 	if (btrfs_mixed_space_info(space_info))
3137 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3138 
3139 	/*
3140 	 * if we're doing a data chunk, go ahead and make sure that
3141 	 * we keep a reasonable number of metadata chunks allocated in the
3142 	 * FS as well.
3143 	 */
3144 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3145 		fs_info->data_chunk_allocations++;
3146 		if (!(fs_info->data_chunk_allocations %
3147 		      fs_info->metadata_ratio))
3148 			force_metadata_allocation(fs_info);
3149 	}
3150 
3151 	/*
3152 	 * Check if we have enough space in SYSTEM chunk because we may need
3153 	 * to update devices.
3154 	 */
3155 	check_system_chunk(trans, flags);
3156 
3157 	ret = btrfs_alloc_chunk(trans, flags);
3158 	trans->allocating_chunk = false;
3159 
3160 	spin_lock(&space_info->lock);
3161 	if (ret < 0) {
3162 		if (ret == -ENOSPC)
3163 			space_info->full = 1;
3164 		else
3165 			goto out;
3166 	} else {
3167 		ret = 1;
3168 		space_info->max_extent_size = 0;
3169 	}
3170 
3171 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3172 out:
3173 	space_info->chunk_alloc = 0;
3174 	spin_unlock(&space_info->lock);
3175 	mutex_unlock(&fs_info->chunk_mutex);
3176 	/*
3177 	 * When we allocate a new chunk we reserve space in the chunk block
3178 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3179 	 * add new nodes/leafs to it if we end up needing to do it when
3180 	 * inserting the chunk item and updating device items as part of the
3181 	 * second phase of chunk allocation, performed by
3182 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3183 	 * large number of new block groups to create in our transaction
3184 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3185 	 * in extreme cases - like having a single transaction create many new
3186 	 * block groups when starting to write out the free space caches of all
3187 	 * the block groups that were made dirty during the lifetime of the
3188 	 * transaction.
3189 	 */
3190 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3191 		btrfs_create_pending_block_groups(trans);
3192 
3193 	return ret;
3194 }
3195 
3196 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3197 {
3198 	u64 num_dev;
3199 
3200 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3201 	if (!num_dev)
3202 		num_dev = fs_info->fs_devices->rw_devices;
3203 
3204 	return num_dev;
3205 }
3206 
3207 /*
3208  * Reserve space in the system space for allocating or removing a chunk
3209  */
3210 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3211 {
3212 	struct btrfs_fs_info *fs_info = trans->fs_info;
3213 	struct btrfs_space_info *info;
3214 	u64 left;
3215 	u64 thresh;
3216 	int ret = 0;
3217 	u64 num_devs;
3218 
3219 	/*
3220 	 * Needed because we can end up allocating a system chunk and for an
3221 	 * atomic and race free space reservation in the chunk block reserve.
3222 	 */
3223 	lockdep_assert_held(&fs_info->chunk_mutex);
3224 
3225 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3226 	spin_lock(&info->lock);
3227 	left = info->total_bytes - btrfs_space_info_used(info, true);
3228 	spin_unlock(&info->lock);
3229 
3230 	num_devs = get_profile_num_devs(fs_info, type);
3231 
3232 	/* num_devs device items to update and 1 chunk item to add or remove */
3233 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3234 		btrfs_calc_insert_metadata_size(fs_info, 1);
3235 
3236 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3237 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3238 			   left, thresh, type);
3239 		btrfs_dump_space_info(fs_info, info, 0, 0);
3240 	}
3241 
3242 	if (left < thresh) {
3243 		u64 flags = btrfs_system_alloc_profile(fs_info);
3244 
3245 		/*
3246 		 * Ignore failure to create system chunk. We might end up not
3247 		 * needing it, as we might not need to COW all nodes/leafs from
3248 		 * the paths we visit in the chunk tree (they were already COWed
3249 		 * or created in the current transaction for example).
3250 		 */
3251 		ret = btrfs_alloc_chunk(trans, flags);
3252 	}
3253 
3254 	if (!ret) {
3255 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3256 					  &fs_info->chunk_block_rsv,
3257 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3258 		if (!ret)
3259 			trans->chunk_bytes_reserved += thresh;
3260 	}
3261 }
3262 
3263 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3264 {
3265 	struct btrfs_block_group *block_group;
3266 	u64 last = 0;
3267 
3268 	while (1) {
3269 		struct inode *inode;
3270 
3271 		block_group = btrfs_lookup_first_block_group(info, last);
3272 		while (block_group) {
3273 			btrfs_wait_block_group_cache_done(block_group);
3274 			spin_lock(&block_group->lock);
3275 			if (block_group->iref)
3276 				break;
3277 			spin_unlock(&block_group->lock);
3278 			block_group = btrfs_next_block_group(block_group);
3279 		}
3280 		if (!block_group) {
3281 			if (last == 0)
3282 				break;
3283 			last = 0;
3284 			continue;
3285 		}
3286 
3287 		inode = block_group->inode;
3288 		block_group->iref = 0;
3289 		block_group->inode = NULL;
3290 		spin_unlock(&block_group->lock);
3291 		ASSERT(block_group->io_ctl.inode == NULL);
3292 		iput(inode);
3293 		last = block_group->start + block_group->length;
3294 		btrfs_put_block_group(block_group);
3295 	}
3296 }
3297 
3298 /*
3299  * Must be called only after stopping all workers, since we could have block
3300  * group caching kthreads running, and therefore they could race with us if we
3301  * freed the block groups before stopping them.
3302  */
3303 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3304 {
3305 	struct btrfs_block_group *block_group;
3306 	struct btrfs_space_info *space_info;
3307 	struct btrfs_caching_control *caching_ctl;
3308 	struct rb_node *n;
3309 
3310 	down_write(&info->commit_root_sem);
3311 	while (!list_empty(&info->caching_block_groups)) {
3312 		caching_ctl = list_entry(info->caching_block_groups.next,
3313 					 struct btrfs_caching_control, list);
3314 		list_del(&caching_ctl->list);
3315 		btrfs_put_caching_control(caching_ctl);
3316 	}
3317 	up_write(&info->commit_root_sem);
3318 
3319 	spin_lock(&info->unused_bgs_lock);
3320 	while (!list_empty(&info->unused_bgs)) {
3321 		block_group = list_first_entry(&info->unused_bgs,
3322 					       struct btrfs_block_group,
3323 					       bg_list);
3324 		list_del_init(&block_group->bg_list);
3325 		btrfs_put_block_group(block_group);
3326 	}
3327 	spin_unlock(&info->unused_bgs_lock);
3328 
3329 	spin_lock(&info->block_group_cache_lock);
3330 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3331 		block_group = rb_entry(n, struct btrfs_block_group,
3332 				       cache_node);
3333 		rb_erase(&block_group->cache_node,
3334 			 &info->block_group_cache_tree);
3335 		RB_CLEAR_NODE(&block_group->cache_node);
3336 		spin_unlock(&info->block_group_cache_lock);
3337 
3338 		down_write(&block_group->space_info->groups_sem);
3339 		list_del(&block_group->list);
3340 		up_write(&block_group->space_info->groups_sem);
3341 
3342 		/*
3343 		 * We haven't cached this block group, which means we could
3344 		 * possibly have excluded extents on this block group.
3345 		 */
3346 		if (block_group->cached == BTRFS_CACHE_NO ||
3347 		    block_group->cached == BTRFS_CACHE_ERROR)
3348 			btrfs_free_excluded_extents(block_group);
3349 
3350 		btrfs_remove_free_space_cache(block_group);
3351 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3352 		ASSERT(list_empty(&block_group->dirty_list));
3353 		ASSERT(list_empty(&block_group->io_list));
3354 		ASSERT(list_empty(&block_group->bg_list));
3355 		ASSERT(refcount_read(&block_group->refs) == 1);
3356 		btrfs_put_block_group(block_group);
3357 
3358 		spin_lock(&info->block_group_cache_lock);
3359 	}
3360 	spin_unlock(&info->block_group_cache_lock);
3361 
3362 	btrfs_release_global_block_rsv(info);
3363 
3364 	while (!list_empty(&info->space_info)) {
3365 		space_info = list_entry(info->space_info.next,
3366 					struct btrfs_space_info,
3367 					list);
3368 
3369 		/*
3370 		 * Do not hide this behind enospc_debug, this is actually
3371 		 * important and indicates a real bug if this happens.
3372 		 */
3373 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3374 			    space_info->bytes_reserved > 0 ||
3375 			    space_info->bytes_may_use > 0))
3376 			btrfs_dump_space_info(info, space_info, 0, 0);
3377 		WARN_ON(space_info->reclaim_size > 0);
3378 		list_del(&space_info->list);
3379 		btrfs_sysfs_remove_space_info(space_info);
3380 	}
3381 	return 0;
3382 }
3383 
3384 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3385 {
3386 	atomic_inc(&cache->frozen);
3387 }
3388 
3389 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3390 {
3391 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3392 	struct extent_map_tree *em_tree;
3393 	struct extent_map *em;
3394 	bool cleanup;
3395 
3396 	spin_lock(&block_group->lock);
3397 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3398 		   block_group->removed);
3399 	spin_unlock(&block_group->lock);
3400 
3401 	if (cleanup) {
3402 		em_tree = &fs_info->mapping_tree;
3403 		write_lock(&em_tree->lock);
3404 		em = lookup_extent_mapping(em_tree, block_group->start,
3405 					   1);
3406 		BUG_ON(!em); /* logic error, can't happen */
3407 		remove_extent_mapping(em_tree, em);
3408 		write_unlock(&em_tree->lock);
3409 
3410 		/* once for us and once for the tree */
3411 		free_extent_map(em);
3412 		free_extent_map(em);
3413 
3414 		/*
3415 		 * We may have left one free space entry and other possible
3416 		 * tasks trimming this block group have left 1 entry each one.
3417 		 * Free them if any.
3418 		 */
3419 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3420 	}
3421 }
3422