1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "disk-io.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 20 /* 21 * Return target flags in extended format or 0 if restripe for this chunk_type 22 * is not in progress 23 * 24 * Should be called with balance_lock held 25 */ 26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 27 { 28 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 29 u64 target = 0; 30 31 if (!bctl) 32 return 0; 33 34 if (flags & BTRFS_BLOCK_GROUP_DATA && 35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 43 } 44 45 return target; 46 } 47 48 /* 49 * @flags: available profiles in extended format (see ctree.h) 50 * 51 * Return reduced profile in chunk format. If profile changing is in progress 52 * (either running or paused) picks the target profile (if it's already 53 * available), otherwise falls back to plain reducing. 54 */ 55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 56 { 57 u64 num_devices = fs_info->fs_devices->rw_devices; 58 u64 target; 59 u64 raid_type; 60 u64 allowed = 0; 61 62 /* 63 * See if restripe for this chunk_type is in progress, if so try to 64 * reduce to the target profile 65 */ 66 spin_lock(&fs_info->balance_lock); 67 target = get_restripe_target(fs_info, flags); 68 if (target) { 69 /* Pick target profile only if it's already available */ 70 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 71 spin_unlock(&fs_info->balance_lock); 72 return extended_to_chunk(target); 73 } 74 } 75 spin_unlock(&fs_info->balance_lock); 76 77 /* First, mask out the RAID levels which aren't possible */ 78 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 79 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 80 allowed |= btrfs_raid_array[raid_type].bg_flag; 81 } 82 allowed &= flags; 83 84 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 85 allowed = BTRFS_BLOCK_GROUP_RAID6; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 87 allowed = BTRFS_BLOCK_GROUP_RAID5; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 89 allowed = BTRFS_BLOCK_GROUP_RAID10; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 91 allowed = BTRFS_BLOCK_GROUP_RAID1; 92 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 93 allowed = BTRFS_BLOCK_GROUP_RAID0; 94 95 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 96 97 return extended_to_chunk(flags | allowed); 98 } 99 100 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 101 { 102 unsigned seq; 103 u64 flags; 104 105 do { 106 flags = orig_flags; 107 seq = read_seqbegin(&fs_info->profiles_lock); 108 109 if (flags & BTRFS_BLOCK_GROUP_DATA) 110 flags |= fs_info->avail_data_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 112 flags |= fs_info->avail_system_alloc_bits; 113 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 114 flags |= fs_info->avail_metadata_alloc_bits; 115 } while (read_seqretry(&fs_info->profiles_lock, seq)); 116 117 return btrfs_reduce_alloc_profile(fs_info, flags); 118 } 119 120 void btrfs_get_block_group(struct btrfs_block_group *cache) 121 { 122 atomic_inc(&cache->count); 123 } 124 125 void btrfs_put_block_group(struct btrfs_block_group *cache) 126 { 127 if (atomic_dec_and_test(&cache->count)) { 128 WARN_ON(cache->pinned > 0); 129 WARN_ON(cache->reserved > 0); 130 131 /* 132 * A block_group shouldn't be on the discard_list anymore. 133 * Remove the block_group from the discard_list to prevent us 134 * from causing a panic due to NULL pointer dereference. 135 */ 136 if (WARN_ON(!list_empty(&cache->discard_list))) 137 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 138 cache); 139 140 /* 141 * If not empty, someone is still holding mutex of 142 * full_stripe_lock, which can only be released by caller. 143 * And it will definitely cause use-after-free when caller 144 * tries to release full stripe lock. 145 * 146 * No better way to resolve, but only to warn. 147 */ 148 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 149 kfree(cache->free_space_ctl); 150 kfree(cache); 151 } 152 } 153 154 /* 155 * This adds the block group to the fs_info rb tree for the block group cache 156 */ 157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 158 struct btrfs_block_group *block_group) 159 { 160 struct rb_node **p; 161 struct rb_node *parent = NULL; 162 struct btrfs_block_group *cache; 163 164 spin_lock(&info->block_group_cache_lock); 165 p = &info->block_group_cache_tree.rb_node; 166 167 while (*p) { 168 parent = *p; 169 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 170 if (block_group->start < cache->start) { 171 p = &(*p)->rb_left; 172 } else if (block_group->start > cache->start) { 173 p = &(*p)->rb_right; 174 } else { 175 spin_unlock(&info->block_group_cache_lock); 176 return -EEXIST; 177 } 178 } 179 180 rb_link_node(&block_group->cache_node, parent, p); 181 rb_insert_color(&block_group->cache_node, 182 &info->block_group_cache_tree); 183 184 if (info->first_logical_byte > block_group->start) 185 info->first_logical_byte = block_group->start; 186 187 spin_unlock(&info->block_group_cache_lock); 188 189 return 0; 190 } 191 192 /* 193 * This will return the block group at or after bytenr if contains is 0, else 194 * it will return the block group that contains the bytenr 195 */ 196 static struct btrfs_block_group *block_group_cache_tree_search( 197 struct btrfs_fs_info *info, u64 bytenr, int contains) 198 { 199 struct btrfs_block_group *cache, *ret = NULL; 200 struct rb_node *n; 201 u64 end, start; 202 203 spin_lock(&info->block_group_cache_lock); 204 n = info->block_group_cache_tree.rb_node; 205 206 while (n) { 207 cache = rb_entry(n, struct btrfs_block_group, cache_node); 208 end = cache->start + cache->length - 1; 209 start = cache->start; 210 211 if (bytenr < start) { 212 if (!contains && (!ret || start < ret->start)) 213 ret = cache; 214 n = n->rb_left; 215 } else if (bytenr > start) { 216 if (contains && bytenr <= end) { 217 ret = cache; 218 break; 219 } 220 n = n->rb_right; 221 } else { 222 ret = cache; 223 break; 224 } 225 } 226 if (ret) { 227 btrfs_get_block_group(ret); 228 if (bytenr == 0 && info->first_logical_byte > ret->start) 229 info->first_logical_byte = ret->start; 230 } 231 spin_unlock(&info->block_group_cache_lock); 232 233 return ret; 234 } 235 236 /* 237 * Return the block group that starts at or after bytenr 238 */ 239 struct btrfs_block_group *btrfs_lookup_first_block_group( 240 struct btrfs_fs_info *info, u64 bytenr) 241 { 242 return block_group_cache_tree_search(info, bytenr, 0); 243 } 244 245 /* 246 * Return the block group that contains the given bytenr 247 */ 248 struct btrfs_block_group *btrfs_lookup_block_group( 249 struct btrfs_fs_info *info, u64 bytenr) 250 { 251 return block_group_cache_tree_search(info, bytenr, 1); 252 } 253 254 struct btrfs_block_group *btrfs_next_block_group( 255 struct btrfs_block_group *cache) 256 { 257 struct btrfs_fs_info *fs_info = cache->fs_info; 258 struct rb_node *node; 259 260 spin_lock(&fs_info->block_group_cache_lock); 261 262 /* If our block group was removed, we need a full search. */ 263 if (RB_EMPTY_NODE(&cache->cache_node)) { 264 const u64 next_bytenr = cache->start + cache->length; 265 266 spin_unlock(&fs_info->block_group_cache_lock); 267 btrfs_put_block_group(cache); 268 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 269 } 270 node = rb_next(&cache->cache_node); 271 btrfs_put_block_group(cache); 272 if (node) { 273 cache = rb_entry(node, struct btrfs_block_group, cache_node); 274 btrfs_get_block_group(cache); 275 } else 276 cache = NULL; 277 spin_unlock(&fs_info->block_group_cache_lock); 278 return cache; 279 } 280 281 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 282 { 283 struct btrfs_block_group *bg; 284 bool ret = true; 285 286 bg = btrfs_lookup_block_group(fs_info, bytenr); 287 if (!bg) 288 return false; 289 290 spin_lock(&bg->lock); 291 if (bg->ro) 292 ret = false; 293 else 294 atomic_inc(&bg->nocow_writers); 295 spin_unlock(&bg->lock); 296 297 /* No put on block group, done by btrfs_dec_nocow_writers */ 298 if (!ret) 299 btrfs_put_block_group(bg); 300 301 return ret; 302 } 303 304 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 305 { 306 struct btrfs_block_group *bg; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 ASSERT(bg); 310 if (atomic_dec_and_test(&bg->nocow_writers)) 311 wake_up_var(&bg->nocow_writers); 312 /* 313 * Once for our lookup and once for the lookup done by a previous call 314 * to btrfs_inc_nocow_writers() 315 */ 316 btrfs_put_block_group(bg); 317 btrfs_put_block_group(bg); 318 } 319 320 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 321 { 322 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 323 } 324 325 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 326 const u64 start) 327 { 328 struct btrfs_block_group *bg; 329 330 bg = btrfs_lookup_block_group(fs_info, start); 331 ASSERT(bg); 332 if (atomic_dec_and_test(&bg->reservations)) 333 wake_up_var(&bg->reservations); 334 btrfs_put_block_group(bg); 335 } 336 337 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 338 { 339 struct btrfs_space_info *space_info = bg->space_info; 340 341 ASSERT(bg->ro); 342 343 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 344 return; 345 346 /* 347 * Our block group is read only but before we set it to read only, 348 * some task might have had allocated an extent from it already, but it 349 * has not yet created a respective ordered extent (and added it to a 350 * root's list of ordered extents). 351 * Therefore wait for any task currently allocating extents, since the 352 * block group's reservations counter is incremented while a read lock 353 * on the groups' semaphore is held and decremented after releasing 354 * the read access on that semaphore and creating the ordered extent. 355 */ 356 down_write(&space_info->groups_sem); 357 up_write(&space_info->groups_sem); 358 359 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 360 } 361 362 struct btrfs_caching_control *btrfs_get_caching_control( 363 struct btrfs_block_group *cache) 364 { 365 struct btrfs_caching_control *ctl; 366 367 spin_lock(&cache->lock); 368 if (!cache->caching_ctl) { 369 spin_unlock(&cache->lock); 370 return NULL; 371 } 372 373 ctl = cache->caching_ctl; 374 refcount_inc(&ctl->count); 375 spin_unlock(&cache->lock); 376 return ctl; 377 } 378 379 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 380 { 381 if (refcount_dec_and_test(&ctl->count)) 382 kfree(ctl); 383 } 384 385 /* 386 * When we wait for progress in the block group caching, its because our 387 * allocation attempt failed at least once. So, we must sleep and let some 388 * progress happen before we try again. 389 * 390 * This function will sleep at least once waiting for new free space to show 391 * up, and then it will check the block group free space numbers for our min 392 * num_bytes. Another option is to have it go ahead and look in the rbtree for 393 * a free extent of a given size, but this is a good start. 394 * 395 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 396 * any of the information in this block group. 397 */ 398 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 399 u64 num_bytes) 400 { 401 struct btrfs_caching_control *caching_ctl; 402 403 caching_ctl = btrfs_get_caching_control(cache); 404 if (!caching_ctl) 405 return; 406 407 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 408 (cache->free_space_ctl->free_space >= num_bytes)); 409 410 btrfs_put_caching_control(caching_ctl); 411 } 412 413 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 414 { 415 struct btrfs_caching_control *caching_ctl; 416 int ret = 0; 417 418 caching_ctl = btrfs_get_caching_control(cache); 419 if (!caching_ctl) 420 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 421 422 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 423 if (cache->cached == BTRFS_CACHE_ERROR) 424 ret = -EIO; 425 btrfs_put_caching_control(caching_ctl); 426 return ret; 427 } 428 429 #ifdef CONFIG_BTRFS_DEBUG 430 static void fragment_free_space(struct btrfs_block_group *block_group) 431 { 432 struct btrfs_fs_info *fs_info = block_group->fs_info; 433 u64 start = block_group->start; 434 u64 len = block_group->length; 435 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 436 fs_info->nodesize : fs_info->sectorsize; 437 u64 step = chunk << 1; 438 439 while (len > chunk) { 440 btrfs_remove_free_space(block_group, start, chunk); 441 start += step; 442 if (len < step) 443 len = 0; 444 else 445 len -= step; 446 } 447 } 448 #endif 449 450 /* 451 * This is only called by btrfs_cache_block_group, since we could have freed 452 * extents we need to check the pinned_extents for any extents that can't be 453 * used yet since their free space will be released as soon as the transaction 454 * commits. 455 */ 456 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 457 { 458 struct btrfs_fs_info *info = block_group->fs_info; 459 u64 extent_start, extent_end, size, total_added = 0; 460 int ret; 461 462 while (start < end) { 463 ret = find_first_extent_bit(info->pinned_extents, start, 464 &extent_start, &extent_end, 465 EXTENT_DIRTY | EXTENT_UPTODATE, 466 NULL); 467 if (ret) 468 break; 469 470 if (extent_start <= start) { 471 start = extent_end + 1; 472 } else if (extent_start > start && extent_start < end) { 473 size = extent_start - start; 474 total_added += size; 475 ret = btrfs_add_free_space_async_trimmed(block_group, 476 start, size); 477 BUG_ON(ret); /* -ENOMEM or logic error */ 478 start = extent_end + 1; 479 } else { 480 break; 481 } 482 } 483 484 if (start < end) { 485 size = end - start; 486 total_added += size; 487 ret = btrfs_add_free_space_async_trimmed(block_group, start, 488 size); 489 BUG_ON(ret); /* -ENOMEM or logic error */ 490 } 491 492 return total_added; 493 } 494 495 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 496 { 497 struct btrfs_block_group *block_group = caching_ctl->block_group; 498 struct btrfs_fs_info *fs_info = block_group->fs_info; 499 struct btrfs_root *extent_root = fs_info->extent_root; 500 struct btrfs_path *path; 501 struct extent_buffer *leaf; 502 struct btrfs_key key; 503 u64 total_found = 0; 504 u64 last = 0; 505 u32 nritems; 506 int ret; 507 bool wakeup = true; 508 509 path = btrfs_alloc_path(); 510 if (!path) 511 return -ENOMEM; 512 513 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 514 515 #ifdef CONFIG_BTRFS_DEBUG 516 /* 517 * If we're fragmenting we don't want to make anybody think we can 518 * allocate from this block group until we've had a chance to fragment 519 * the free space. 520 */ 521 if (btrfs_should_fragment_free_space(block_group)) 522 wakeup = false; 523 #endif 524 /* 525 * We don't want to deadlock with somebody trying to allocate a new 526 * extent for the extent root while also trying to search the extent 527 * root to add free space. So we skip locking and search the commit 528 * root, since its read-only 529 */ 530 path->skip_locking = 1; 531 path->search_commit_root = 1; 532 path->reada = READA_FORWARD; 533 534 key.objectid = last; 535 key.offset = 0; 536 key.type = BTRFS_EXTENT_ITEM_KEY; 537 538 next: 539 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 540 if (ret < 0) 541 goto out; 542 543 leaf = path->nodes[0]; 544 nritems = btrfs_header_nritems(leaf); 545 546 while (1) { 547 if (btrfs_fs_closing(fs_info) > 1) { 548 last = (u64)-1; 549 break; 550 } 551 552 if (path->slots[0] < nritems) { 553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 554 } else { 555 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 556 if (ret) 557 break; 558 559 if (need_resched() || 560 rwsem_is_contended(&fs_info->commit_root_sem)) { 561 if (wakeup) 562 caching_ctl->progress = last; 563 btrfs_release_path(path); 564 up_read(&fs_info->commit_root_sem); 565 mutex_unlock(&caching_ctl->mutex); 566 cond_resched(); 567 mutex_lock(&caching_ctl->mutex); 568 down_read(&fs_info->commit_root_sem); 569 goto next; 570 } 571 572 ret = btrfs_next_leaf(extent_root, path); 573 if (ret < 0) 574 goto out; 575 if (ret) 576 break; 577 leaf = path->nodes[0]; 578 nritems = btrfs_header_nritems(leaf); 579 continue; 580 } 581 582 if (key.objectid < last) { 583 key.objectid = last; 584 key.offset = 0; 585 key.type = BTRFS_EXTENT_ITEM_KEY; 586 587 if (wakeup) 588 caching_ctl->progress = last; 589 btrfs_release_path(path); 590 goto next; 591 } 592 593 if (key.objectid < block_group->start) { 594 path->slots[0]++; 595 continue; 596 } 597 598 if (key.objectid >= block_group->start + block_group->length) 599 break; 600 601 if (key.type == BTRFS_EXTENT_ITEM_KEY || 602 key.type == BTRFS_METADATA_ITEM_KEY) { 603 total_found += add_new_free_space(block_group, last, 604 key.objectid); 605 if (key.type == BTRFS_METADATA_ITEM_KEY) 606 last = key.objectid + 607 fs_info->nodesize; 608 else 609 last = key.objectid + key.offset; 610 611 if (total_found > CACHING_CTL_WAKE_UP) { 612 total_found = 0; 613 if (wakeup) 614 wake_up(&caching_ctl->wait); 615 } 616 } 617 path->slots[0]++; 618 } 619 ret = 0; 620 621 total_found += add_new_free_space(block_group, last, 622 block_group->start + block_group->length); 623 caching_ctl->progress = (u64)-1; 624 625 out: 626 btrfs_free_path(path); 627 return ret; 628 } 629 630 static noinline void caching_thread(struct btrfs_work *work) 631 { 632 struct btrfs_block_group *block_group; 633 struct btrfs_fs_info *fs_info; 634 struct btrfs_caching_control *caching_ctl; 635 int ret; 636 637 caching_ctl = container_of(work, struct btrfs_caching_control, work); 638 block_group = caching_ctl->block_group; 639 fs_info = block_group->fs_info; 640 641 mutex_lock(&caching_ctl->mutex); 642 down_read(&fs_info->commit_root_sem); 643 644 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 645 ret = load_free_space_tree(caching_ctl); 646 else 647 ret = load_extent_tree_free(caching_ctl); 648 649 spin_lock(&block_group->lock); 650 block_group->caching_ctl = NULL; 651 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 652 spin_unlock(&block_group->lock); 653 654 #ifdef CONFIG_BTRFS_DEBUG 655 if (btrfs_should_fragment_free_space(block_group)) { 656 u64 bytes_used; 657 658 spin_lock(&block_group->space_info->lock); 659 spin_lock(&block_group->lock); 660 bytes_used = block_group->length - block_group->used; 661 block_group->space_info->bytes_used += bytes_used >> 1; 662 spin_unlock(&block_group->lock); 663 spin_unlock(&block_group->space_info->lock); 664 fragment_free_space(block_group); 665 } 666 #endif 667 668 caching_ctl->progress = (u64)-1; 669 670 up_read(&fs_info->commit_root_sem); 671 btrfs_free_excluded_extents(block_group); 672 mutex_unlock(&caching_ctl->mutex); 673 674 wake_up(&caching_ctl->wait); 675 676 btrfs_put_caching_control(caching_ctl); 677 btrfs_put_block_group(block_group); 678 } 679 680 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 681 { 682 DEFINE_WAIT(wait); 683 struct btrfs_fs_info *fs_info = cache->fs_info; 684 struct btrfs_caching_control *caching_ctl; 685 int ret = 0; 686 687 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 688 if (!caching_ctl) 689 return -ENOMEM; 690 691 INIT_LIST_HEAD(&caching_ctl->list); 692 mutex_init(&caching_ctl->mutex); 693 init_waitqueue_head(&caching_ctl->wait); 694 caching_ctl->block_group = cache; 695 caching_ctl->progress = cache->start; 696 refcount_set(&caching_ctl->count, 1); 697 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 698 699 spin_lock(&cache->lock); 700 /* 701 * This should be a rare occasion, but this could happen I think in the 702 * case where one thread starts to load the space cache info, and then 703 * some other thread starts a transaction commit which tries to do an 704 * allocation while the other thread is still loading the space cache 705 * info. The previous loop should have kept us from choosing this block 706 * group, but if we've moved to the state where we will wait on caching 707 * block groups we need to first check if we're doing a fast load here, 708 * so we can wait for it to finish, otherwise we could end up allocating 709 * from a block group who's cache gets evicted for one reason or 710 * another. 711 */ 712 while (cache->cached == BTRFS_CACHE_FAST) { 713 struct btrfs_caching_control *ctl; 714 715 ctl = cache->caching_ctl; 716 refcount_inc(&ctl->count); 717 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 718 spin_unlock(&cache->lock); 719 720 schedule(); 721 722 finish_wait(&ctl->wait, &wait); 723 btrfs_put_caching_control(ctl); 724 spin_lock(&cache->lock); 725 } 726 727 if (cache->cached != BTRFS_CACHE_NO) { 728 spin_unlock(&cache->lock); 729 kfree(caching_ctl); 730 return 0; 731 } 732 WARN_ON(cache->caching_ctl); 733 cache->caching_ctl = caching_ctl; 734 cache->cached = BTRFS_CACHE_FAST; 735 spin_unlock(&cache->lock); 736 737 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 738 mutex_lock(&caching_ctl->mutex); 739 ret = load_free_space_cache(cache); 740 741 spin_lock(&cache->lock); 742 if (ret == 1) { 743 cache->caching_ctl = NULL; 744 cache->cached = BTRFS_CACHE_FINISHED; 745 cache->last_byte_to_unpin = (u64)-1; 746 caching_ctl->progress = (u64)-1; 747 } else { 748 if (load_cache_only) { 749 cache->caching_ctl = NULL; 750 cache->cached = BTRFS_CACHE_NO; 751 } else { 752 cache->cached = BTRFS_CACHE_STARTED; 753 cache->has_caching_ctl = 1; 754 } 755 } 756 spin_unlock(&cache->lock); 757 #ifdef CONFIG_BTRFS_DEBUG 758 if (ret == 1 && 759 btrfs_should_fragment_free_space(cache)) { 760 u64 bytes_used; 761 762 spin_lock(&cache->space_info->lock); 763 spin_lock(&cache->lock); 764 bytes_used = cache->length - cache->used; 765 cache->space_info->bytes_used += bytes_used >> 1; 766 spin_unlock(&cache->lock); 767 spin_unlock(&cache->space_info->lock); 768 fragment_free_space(cache); 769 } 770 #endif 771 mutex_unlock(&caching_ctl->mutex); 772 773 wake_up(&caching_ctl->wait); 774 if (ret == 1) { 775 btrfs_put_caching_control(caching_ctl); 776 btrfs_free_excluded_extents(cache); 777 return 0; 778 } 779 } else { 780 /* 781 * We're either using the free space tree or no caching at all. 782 * Set cached to the appropriate value and wakeup any waiters. 783 */ 784 spin_lock(&cache->lock); 785 if (load_cache_only) { 786 cache->caching_ctl = NULL; 787 cache->cached = BTRFS_CACHE_NO; 788 } else { 789 cache->cached = BTRFS_CACHE_STARTED; 790 cache->has_caching_ctl = 1; 791 } 792 spin_unlock(&cache->lock); 793 wake_up(&caching_ctl->wait); 794 } 795 796 if (load_cache_only) { 797 btrfs_put_caching_control(caching_ctl); 798 return 0; 799 } 800 801 down_write(&fs_info->commit_root_sem); 802 refcount_inc(&caching_ctl->count); 803 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 804 up_write(&fs_info->commit_root_sem); 805 806 btrfs_get_block_group(cache); 807 808 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 809 810 return ret; 811 } 812 813 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 814 { 815 u64 extra_flags = chunk_to_extended(flags) & 816 BTRFS_EXTENDED_PROFILE_MASK; 817 818 write_seqlock(&fs_info->profiles_lock); 819 if (flags & BTRFS_BLOCK_GROUP_DATA) 820 fs_info->avail_data_alloc_bits &= ~extra_flags; 821 if (flags & BTRFS_BLOCK_GROUP_METADATA) 822 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 823 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 824 fs_info->avail_system_alloc_bits &= ~extra_flags; 825 write_sequnlock(&fs_info->profiles_lock); 826 } 827 828 /* 829 * Clear incompat bits for the following feature(s): 830 * 831 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 832 * in the whole filesystem 833 * 834 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 835 */ 836 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 837 { 838 bool found_raid56 = false; 839 bool found_raid1c34 = false; 840 841 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 842 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 843 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 844 struct list_head *head = &fs_info->space_info; 845 struct btrfs_space_info *sinfo; 846 847 list_for_each_entry_rcu(sinfo, head, list) { 848 down_read(&sinfo->groups_sem); 849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 850 found_raid56 = true; 851 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 852 found_raid56 = true; 853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 854 found_raid1c34 = true; 855 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 856 found_raid1c34 = true; 857 up_read(&sinfo->groups_sem); 858 } 859 if (found_raid56) 860 btrfs_clear_fs_incompat(fs_info, RAID56); 861 if (found_raid1c34) 862 btrfs_clear_fs_incompat(fs_info, RAID1C34); 863 } 864 } 865 866 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 867 u64 group_start, struct extent_map *em) 868 { 869 struct btrfs_fs_info *fs_info = trans->fs_info; 870 struct btrfs_root *root = fs_info->extent_root; 871 struct btrfs_path *path; 872 struct btrfs_block_group *block_group; 873 struct btrfs_free_cluster *cluster; 874 struct btrfs_root *tree_root = fs_info->tree_root; 875 struct btrfs_key key; 876 struct inode *inode; 877 struct kobject *kobj = NULL; 878 int ret; 879 int index; 880 int factor; 881 struct btrfs_caching_control *caching_ctl = NULL; 882 bool remove_em; 883 bool remove_rsv = false; 884 885 block_group = btrfs_lookup_block_group(fs_info, group_start); 886 BUG_ON(!block_group); 887 BUG_ON(!block_group->ro); 888 889 trace_btrfs_remove_block_group(block_group); 890 /* 891 * Free the reserved super bytes from this block group before 892 * remove it. 893 */ 894 btrfs_free_excluded_extents(block_group); 895 btrfs_free_ref_tree_range(fs_info, block_group->start, 896 block_group->length); 897 898 index = btrfs_bg_flags_to_raid_index(block_group->flags); 899 factor = btrfs_bg_type_to_factor(block_group->flags); 900 901 /* make sure this block group isn't part of an allocation cluster */ 902 cluster = &fs_info->data_alloc_cluster; 903 spin_lock(&cluster->refill_lock); 904 btrfs_return_cluster_to_free_space(block_group, cluster); 905 spin_unlock(&cluster->refill_lock); 906 907 /* 908 * make sure this block group isn't part of a metadata 909 * allocation cluster 910 */ 911 cluster = &fs_info->meta_alloc_cluster; 912 spin_lock(&cluster->refill_lock); 913 btrfs_return_cluster_to_free_space(block_group, cluster); 914 spin_unlock(&cluster->refill_lock); 915 916 path = btrfs_alloc_path(); 917 if (!path) { 918 ret = -ENOMEM; 919 goto out; 920 } 921 922 /* 923 * get the inode first so any iput calls done for the io_list 924 * aren't the final iput (no unlinks allowed now) 925 */ 926 inode = lookup_free_space_inode(block_group, path); 927 928 mutex_lock(&trans->transaction->cache_write_mutex); 929 /* 930 * Make sure our free space cache IO is done before removing the 931 * free space inode 932 */ 933 spin_lock(&trans->transaction->dirty_bgs_lock); 934 if (!list_empty(&block_group->io_list)) { 935 list_del_init(&block_group->io_list); 936 937 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 938 939 spin_unlock(&trans->transaction->dirty_bgs_lock); 940 btrfs_wait_cache_io(trans, block_group, path); 941 btrfs_put_block_group(block_group); 942 spin_lock(&trans->transaction->dirty_bgs_lock); 943 } 944 945 if (!list_empty(&block_group->dirty_list)) { 946 list_del_init(&block_group->dirty_list); 947 remove_rsv = true; 948 btrfs_put_block_group(block_group); 949 } 950 spin_unlock(&trans->transaction->dirty_bgs_lock); 951 mutex_unlock(&trans->transaction->cache_write_mutex); 952 953 if (!IS_ERR(inode)) { 954 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 955 if (ret) { 956 btrfs_add_delayed_iput(inode); 957 goto out; 958 } 959 clear_nlink(inode); 960 /* One for the block groups ref */ 961 spin_lock(&block_group->lock); 962 if (block_group->iref) { 963 block_group->iref = 0; 964 block_group->inode = NULL; 965 spin_unlock(&block_group->lock); 966 iput(inode); 967 } else { 968 spin_unlock(&block_group->lock); 969 } 970 /* One for our lookup ref */ 971 btrfs_add_delayed_iput(inode); 972 } 973 974 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 975 key.type = 0; 976 key.offset = block_group->start; 977 978 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 979 if (ret < 0) 980 goto out; 981 if (ret > 0) 982 btrfs_release_path(path); 983 if (ret == 0) { 984 ret = btrfs_del_item(trans, tree_root, path); 985 if (ret) 986 goto out; 987 btrfs_release_path(path); 988 } 989 990 spin_lock(&fs_info->block_group_cache_lock); 991 rb_erase(&block_group->cache_node, 992 &fs_info->block_group_cache_tree); 993 RB_CLEAR_NODE(&block_group->cache_node); 994 995 if (fs_info->first_logical_byte == block_group->start) 996 fs_info->first_logical_byte = (u64)-1; 997 spin_unlock(&fs_info->block_group_cache_lock); 998 999 down_write(&block_group->space_info->groups_sem); 1000 /* 1001 * we must use list_del_init so people can check to see if they 1002 * are still on the list after taking the semaphore 1003 */ 1004 list_del_init(&block_group->list); 1005 if (list_empty(&block_group->space_info->block_groups[index])) { 1006 kobj = block_group->space_info->block_group_kobjs[index]; 1007 block_group->space_info->block_group_kobjs[index] = NULL; 1008 clear_avail_alloc_bits(fs_info, block_group->flags); 1009 } 1010 up_write(&block_group->space_info->groups_sem); 1011 clear_incompat_bg_bits(fs_info, block_group->flags); 1012 if (kobj) { 1013 kobject_del(kobj); 1014 kobject_put(kobj); 1015 } 1016 1017 if (block_group->has_caching_ctl) 1018 caching_ctl = btrfs_get_caching_control(block_group); 1019 if (block_group->cached == BTRFS_CACHE_STARTED) 1020 btrfs_wait_block_group_cache_done(block_group); 1021 if (block_group->has_caching_ctl) { 1022 down_write(&fs_info->commit_root_sem); 1023 if (!caching_ctl) { 1024 struct btrfs_caching_control *ctl; 1025 1026 list_for_each_entry(ctl, 1027 &fs_info->caching_block_groups, list) 1028 if (ctl->block_group == block_group) { 1029 caching_ctl = ctl; 1030 refcount_inc(&caching_ctl->count); 1031 break; 1032 } 1033 } 1034 if (caching_ctl) 1035 list_del_init(&caching_ctl->list); 1036 up_write(&fs_info->commit_root_sem); 1037 if (caching_ctl) { 1038 /* Once for the caching bgs list and once for us. */ 1039 btrfs_put_caching_control(caching_ctl); 1040 btrfs_put_caching_control(caching_ctl); 1041 } 1042 } 1043 1044 spin_lock(&trans->transaction->dirty_bgs_lock); 1045 WARN_ON(!list_empty(&block_group->dirty_list)); 1046 WARN_ON(!list_empty(&block_group->io_list)); 1047 spin_unlock(&trans->transaction->dirty_bgs_lock); 1048 1049 btrfs_remove_free_space_cache(block_group); 1050 1051 spin_lock(&block_group->space_info->lock); 1052 list_del_init(&block_group->ro_list); 1053 1054 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1055 WARN_ON(block_group->space_info->total_bytes 1056 < block_group->length); 1057 WARN_ON(block_group->space_info->bytes_readonly 1058 < block_group->length); 1059 WARN_ON(block_group->space_info->disk_total 1060 < block_group->length * factor); 1061 } 1062 block_group->space_info->total_bytes -= block_group->length; 1063 block_group->space_info->bytes_readonly -= block_group->length; 1064 block_group->space_info->disk_total -= block_group->length * factor; 1065 1066 spin_unlock(&block_group->space_info->lock); 1067 1068 key.objectid = block_group->start; 1069 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1070 key.offset = block_group->length; 1071 1072 mutex_lock(&fs_info->chunk_mutex); 1073 spin_lock(&block_group->lock); 1074 block_group->removed = 1; 1075 /* 1076 * At this point trimming can't start on this block group, because we 1077 * removed the block group from the tree fs_info->block_group_cache_tree 1078 * so no one can't find it anymore and even if someone already got this 1079 * block group before we removed it from the rbtree, they have already 1080 * incremented block_group->trimming - if they didn't, they won't find 1081 * any free space entries because we already removed them all when we 1082 * called btrfs_remove_free_space_cache(). 1083 * 1084 * And we must not remove the extent map from the fs_info->mapping_tree 1085 * to prevent the same logical address range and physical device space 1086 * ranges from being reused for a new block group. This is because our 1087 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1088 * completely transactionless, so while it is trimming a range the 1089 * currently running transaction might finish and a new one start, 1090 * allowing for new block groups to be created that can reuse the same 1091 * physical device locations unless we take this special care. 1092 * 1093 * There may also be an implicit trim operation if the file system 1094 * is mounted with -odiscard. The same protections must remain 1095 * in place until the extents have been discarded completely when 1096 * the transaction commit has completed. 1097 */ 1098 remove_em = (atomic_read(&block_group->trimming) == 0); 1099 spin_unlock(&block_group->lock); 1100 1101 mutex_unlock(&fs_info->chunk_mutex); 1102 1103 ret = remove_block_group_free_space(trans, block_group); 1104 if (ret) 1105 goto out; 1106 1107 btrfs_put_block_group(block_group); 1108 btrfs_put_block_group(block_group); 1109 1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1111 if (ret > 0) 1112 ret = -EIO; 1113 if (ret < 0) 1114 goto out; 1115 1116 ret = btrfs_del_item(trans, root, path); 1117 if (ret) 1118 goto out; 1119 1120 if (remove_em) { 1121 struct extent_map_tree *em_tree; 1122 1123 em_tree = &fs_info->mapping_tree; 1124 write_lock(&em_tree->lock); 1125 remove_extent_mapping(em_tree, em); 1126 write_unlock(&em_tree->lock); 1127 /* once for the tree */ 1128 free_extent_map(em); 1129 } 1130 out: 1131 if (remove_rsv) 1132 btrfs_delayed_refs_rsv_release(fs_info, 1); 1133 btrfs_free_path(path); 1134 return ret; 1135 } 1136 1137 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1138 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1139 { 1140 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1141 struct extent_map *em; 1142 struct map_lookup *map; 1143 unsigned int num_items; 1144 1145 read_lock(&em_tree->lock); 1146 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1147 read_unlock(&em_tree->lock); 1148 ASSERT(em && em->start == chunk_offset); 1149 1150 /* 1151 * We need to reserve 3 + N units from the metadata space info in order 1152 * to remove a block group (done at btrfs_remove_chunk() and at 1153 * btrfs_remove_block_group()), which are used for: 1154 * 1155 * 1 unit for adding the free space inode's orphan (located in the tree 1156 * of tree roots). 1157 * 1 unit for deleting the block group item (located in the extent 1158 * tree). 1159 * 1 unit for deleting the free space item (located in tree of tree 1160 * roots). 1161 * N units for deleting N device extent items corresponding to each 1162 * stripe (located in the device tree). 1163 * 1164 * In order to remove a block group we also need to reserve units in the 1165 * system space info in order to update the chunk tree (update one or 1166 * more device items and remove one chunk item), but this is done at 1167 * btrfs_remove_chunk() through a call to check_system_chunk(). 1168 */ 1169 map = em->map_lookup; 1170 num_items = 3 + map->num_stripes; 1171 free_extent_map(em); 1172 1173 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1174 num_items, 1); 1175 } 1176 1177 /* 1178 * Mark block group @cache read-only, so later write won't happen to block 1179 * group @cache. 1180 * 1181 * If @force is not set, this function will only mark the block group readonly 1182 * if we have enough free space (1M) in other metadata/system block groups. 1183 * If @force is not set, this function will mark the block group readonly 1184 * without checking free space. 1185 * 1186 * NOTE: This function doesn't care if other block groups can contain all the 1187 * data in this block group. That check should be done by relocation routine, 1188 * not this function. 1189 */ 1190 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1191 { 1192 struct btrfs_space_info *sinfo = cache->space_info; 1193 u64 num_bytes; 1194 u64 sinfo_used; 1195 int ret = -ENOSPC; 1196 1197 spin_lock(&sinfo->lock); 1198 spin_lock(&cache->lock); 1199 1200 if (cache->ro) { 1201 cache->ro++; 1202 ret = 0; 1203 goto out; 1204 } 1205 1206 num_bytes = cache->length - cache->reserved - cache->pinned - 1207 cache->bytes_super - cache->used; 1208 sinfo_used = btrfs_space_info_used(sinfo, true); 1209 1210 /* 1211 * sinfo_used + num_bytes should always <= sinfo->total_bytes. 1212 * 1213 * Here we make sure if we mark this bg RO, we still have enough 1214 * free space as buffer. 1215 */ 1216 if (sinfo_used + num_bytes <= sinfo->total_bytes) { 1217 sinfo->bytes_readonly += num_bytes; 1218 cache->ro++; 1219 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1220 ret = 0; 1221 } 1222 out: 1223 spin_unlock(&cache->lock); 1224 spin_unlock(&sinfo->lock); 1225 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1226 btrfs_info(cache->fs_info, 1227 "unable to make block group %llu ro", cache->start); 1228 btrfs_info(cache->fs_info, 1229 "sinfo_used=%llu bg_num_bytes=%llu", 1230 sinfo_used, num_bytes); 1231 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1232 } 1233 return ret; 1234 } 1235 1236 /* 1237 * Process the unused_bgs list and remove any that don't have any allocated 1238 * space inside of them. 1239 */ 1240 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1241 { 1242 struct btrfs_block_group *block_group; 1243 struct btrfs_space_info *space_info; 1244 struct btrfs_trans_handle *trans; 1245 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1246 int ret = 0; 1247 1248 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1249 return; 1250 1251 spin_lock(&fs_info->unused_bgs_lock); 1252 while (!list_empty(&fs_info->unused_bgs)) { 1253 u64 start, end; 1254 int trimming; 1255 1256 block_group = list_first_entry(&fs_info->unused_bgs, 1257 struct btrfs_block_group, 1258 bg_list); 1259 list_del_init(&block_group->bg_list); 1260 1261 space_info = block_group->space_info; 1262 1263 if (ret || btrfs_mixed_space_info(space_info)) { 1264 btrfs_put_block_group(block_group); 1265 continue; 1266 } 1267 spin_unlock(&fs_info->unused_bgs_lock); 1268 1269 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1270 1271 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1272 1273 /* Don't want to race with allocators so take the groups_sem */ 1274 down_write(&space_info->groups_sem); 1275 1276 /* 1277 * Async discard moves the final block group discard to be prior 1278 * to the unused_bgs code path. Therefore, if it's not fully 1279 * trimmed, punt it back to the async discard lists. 1280 */ 1281 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1282 !btrfs_is_free_space_trimmed(block_group)) { 1283 trace_btrfs_skip_unused_block_group(block_group); 1284 up_write(&space_info->groups_sem); 1285 /* Requeue if we failed because of async discard */ 1286 btrfs_discard_queue_work(&fs_info->discard_ctl, 1287 block_group); 1288 goto next; 1289 } 1290 1291 spin_lock(&block_group->lock); 1292 if (block_group->reserved || block_group->pinned || 1293 block_group->used || block_group->ro || 1294 list_is_singular(&block_group->list)) { 1295 /* 1296 * We want to bail if we made new allocations or have 1297 * outstanding allocations in this block group. We do 1298 * the ro check in case balance is currently acting on 1299 * this block group. 1300 */ 1301 trace_btrfs_skip_unused_block_group(block_group); 1302 spin_unlock(&block_group->lock); 1303 up_write(&space_info->groups_sem); 1304 goto next; 1305 } 1306 spin_unlock(&block_group->lock); 1307 1308 /* We don't want to force the issue, only flip if it's ok. */ 1309 ret = inc_block_group_ro(block_group, 0); 1310 up_write(&space_info->groups_sem); 1311 if (ret < 0) { 1312 ret = 0; 1313 goto next; 1314 } 1315 1316 /* 1317 * Want to do this before we do anything else so we can recover 1318 * properly if we fail to join the transaction. 1319 */ 1320 trans = btrfs_start_trans_remove_block_group(fs_info, 1321 block_group->start); 1322 if (IS_ERR(trans)) { 1323 btrfs_dec_block_group_ro(block_group); 1324 ret = PTR_ERR(trans); 1325 goto next; 1326 } 1327 1328 /* 1329 * We could have pending pinned extents for this block group, 1330 * just delete them, we don't care about them anymore. 1331 */ 1332 start = block_group->start; 1333 end = start + block_group->length - 1; 1334 /* 1335 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1336 * btrfs_finish_extent_commit(). If we are at transaction N, 1337 * another task might be running finish_extent_commit() for the 1338 * previous transaction N - 1, and have seen a range belonging 1339 * to the block group in freed_extents[] before we were able to 1340 * clear the whole block group range from freed_extents[]. This 1341 * means that task can lookup for the block group after we 1342 * unpinned it from freed_extents[] and removed it, leading to 1343 * a BUG_ON() at btrfs_unpin_extent_range(). 1344 */ 1345 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1346 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 1347 EXTENT_DIRTY); 1348 if (ret) { 1349 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1350 btrfs_dec_block_group_ro(block_group); 1351 goto end_trans; 1352 } 1353 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 1354 EXTENT_DIRTY); 1355 if (ret) { 1356 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1357 btrfs_dec_block_group_ro(block_group); 1358 goto end_trans; 1359 } 1360 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1361 1362 /* 1363 * At this point, the block_group is read only and should fail 1364 * new allocations. However, btrfs_finish_extent_commit() can 1365 * cause this block_group to be placed back on the discard 1366 * lists because now the block_group isn't fully discarded. 1367 * Bail here and try again later after discarding everything. 1368 */ 1369 spin_lock(&fs_info->discard_ctl.lock); 1370 if (!list_empty(&block_group->discard_list)) { 1371 spin_unlock(&fs_info->discard_ctl.lock); 1372 btrfs_dec_block_group_ro(block_group); 1373 btrfs_discard_queue_work(&fs_info->discard_ctl, 1374 block_group); 1375 goto end_trans; 1376 } 1377 spin_unlock(&fs_info->discard_ctl.lock); 1378 1379 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1380 spin_lock(&space_info->lock); 1381 spin_lock(&block_group->lock); 1382 1383 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1384 -block_group->pinned); 1385 space_info->bytes_readonly += block_group->pinned; 1386 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1387 -block_group->pinned, 1388 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1389 block_group->pinned = 0; 1390 1391 spin_unlock(&block_group->lock); 1392 spin_unlock(&space_info->lock); 1393 1394 /* 1395 * The normal path here is an unused block group is passed here, 1396 * then trimming is handled in the transaction commit path. 1397 * Async discard interposes before this to do the trimming 1398 * before coming down the unused block group path as trimming 1399 * will no longer be done later in the transaction commit path. 1400 */ 1401 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1402 goto flip_async; 1403 1404 /* DISCARD can flip during remount */ 1405 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); 1406 1407 /* Implicit trim during transaction commit. */ 1408 if (trimming) 1409 btrfs_get_block_group_trimming(block_group); 1410 1411 /* 1412 * Btrfs_remove_chunk will abort the transaction if things go 1413 * horribly wrong. 1414 */ 1415 ret = btrfs_remove_chunk(trans, block_group->start); 1416 1417 if (ret) { 1418 if (trimming) 1419 btrfs_put_block_group_trimming(block_group); 1420 goto end_trans; 1421 } 1422 1423 /* 1424 * If we're not mounted with -odiscard, we can just forget 1425 * about this block group. Otherwise we'll need to wait 1426 * until transaction commit to do the actual discard. 1427 */ 1428 if (trimming) { 1429 spin_lock(&fs_info->unused_bgs_lock); 1430 /* 1431 * A concurrent scrub might have added us to the list 1432 * fs_info->unused_bgs, so use a list_move operation 1433 * to add the block group to the deleted_bgs list. 1434 */ 1435 list_move(&block_group->bg_list, 1436 &trans->transaction->deleted_bgs); 1437 spin_unlock(&fs_info->unused_bgs_lock); 1438 btrfs_get_block_group(block_group); 1439 } 1440 end_trans: 1441 btrfs_end_transaction(trans); 1442 next: 1443 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1444 btrfs_put_block_group(block_group); 1445 spin_lock(&fs_info->unused_bgs_lock); 1446 } 1447 spin_unlock(&fs_info->unused_bgs_lock); 1448 return; 1449 1450 flip_async: 1451 btrfs_end_transaction(trans); 1452 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1453 btrfs_put_block_group(block_group); 1454 btrfs_discard_punt_unused_bgs_list(fs_info); 1455 } 1456 1457 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1458 { 1459 struct btrfs_fs_info *fs_info = bg->fs_info; 1460 1461 spin_lock(&fs_info->unused_bgs_lock); 1462 if (list_empty(&bg->bg_list)) { 1463 btrfs_get_block_group(bg); 1464 trace_btrfs_add_unused_block_group(bg); 1465 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1466 } 1467 spin_unlock(&fs_info->unused_bgs_lock); 1468 } 1469 1470 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1471 struct btrfs_path *path, 1472 struct btrfs_key *key) 1473 { 1474 struct btrfs_root *root = fs_info->extent_root; 1475 int ret = 0; 1476 struct btrfs_key found_key; 1477 struct extent_buffer *leaf; 1478 struct btrfs_block_group_item bg; 1479 u64 flags; 1480 int slot; 1481 1482 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1483 if (ret < 0) 1484 goto out; 1485 1486 while (1) { 1487 slot = path->slots[0]; 1488 leaf = path->nodes[0]; 1489 if (slot >= btrfs_header_nritems(leaf)) { 1490 ret = btrfs_next_leaf(root, path); 1491 if (ret == 0) 1492 continue; 1493 if (ret < 0) 1494 goto out; 1495 break; 1496 } 1497 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1498 1499 if (found_key.objectid >= key->objectid && 1500 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1501 struct extent_map_tree *em_tree; 1502 struct extent_map *em; 1503 1504 em_tree = &root->fs_info->mapping_tree; 1505 read_lock(&em_tree->lock); 1506 em = lookup_extent_mapping(em_tree, found_key.objectid, 1507 found_key.offset); 1508 read_unlock(&em_tree->lock); 1509 if (!em) { 1510 btrfs_err(fs_info, 1511 "logical %llu len %llu found bg but no related chunk", 1512 found_key.objectid, found_key.offset); 1513 ret = -ENOENT; 1514 } else if (em->start != found_key.objectid || 1515 em->len != found_key.offset) { 1516 btrfs_err(fs_info, 1517 "block group %llu len %llu mismatch with chunk %llu len %llu", 1518 found_key.objectid, found_key.offset, 1519 em->start, em->len); 1520 ret = -EUCLEAN; 1521 } else { 1522 read_extent_buffer(leaf, &bg, 1523 btrfs_item_ptr_offset(leaf, slot), 1524 sizeof(bg)); 1525 flags = btrfs_stack_block_group_flags(&bg) & 1526 BTRFS_BLOCK_GROUP_TYPE_MASK; 1527 1528 if (flags != (em->map_lookup->type & 1529 BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1530 btrfs_err(fs_info, 1531 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1532 found_key.objectid, 1533 found_key.offset, flags, 1534 (BTRFS_BLOCK_GROUP_TYPE_MASK & 1535 em->map_lookup->type)); 1536 ret = -EUCLEAN; 1537 } else { 1538 ret = 0; 1539 } 1540 } 1541 free_extent_map(em); 1542 goto out; 1543 } 1544 path->slots[0]++; 1545 } 1546 out: 1547 return ret; 1548 } 1549 1550 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1551 { 1552 u64 extra_flags = chunk_to_extended(flags) & 1553 BTRFS_EXTENDED_PROFILE_MASK; 1554 1555 write_seqlock(&fs_info->profiles_lock); 1556 if (flags & BTRFS_BLOCK_GROUP_DATA) 1557 fs_info->avail_data_alloc_bits |= extra_flags; 1558 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1559 fs_info->avail_metadata_alloc_bits |= extra_flags; 1560 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1561 fs_info->avail_system_alloc_bits |= extra_flags; 1562 write_sequnlock(&fs_info->profiles_lock); 1563 } 1564 1565 /** 1566 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses 1567 * @chunk_start: logical address of block group 1568 * @physical: physical address to map to logical addresses 1569 * @logical: return array of logical addresses which map to @physical 1570 * @naddrs: length of @logical 1571 * @stripe_len: size of IO stripe for the given block group 1572 * 1573 * Maps a particular @physical disk address to a list of @logical addresses. 1574 * Used primarily to exclude those portions of a block group that contain super 1575 * block copies. 1576 */ 1577 EXPORT_FOR_TESTS 1578 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1579 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1580 { 1581 struct extent_map *em; 1582 struct map_lookup *map; 1583 u64 *buf; 1584 u64 bytenr; 1585 u64 data_stripe_length; 1586 u64 io_stripe_size; 1587 int i, nr = 0; 1588 int ret = 0; 1589 1590 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1591 if (IS_ERR(em)) 1592 return -EIO; 1593 1594 map = em->map_lookup; 1595 data_stripe_length = em->len; 1596 io_stripe_size = map->stripe_len; 1597 1598 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 1599 data_stripe_length = div_u64(data_stripe_length, 1600 map->num_stripes / map->sub_stripes); 1601 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 1602 data_stripe_length = div_u64(data_stripe_length, map->num_stripes); 1603 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1604 data_stripe_length = div_u64(data_stripe_length, 1605 nr_data_stripes(map)); 1606 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1607 } 1608 1609 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1610 if (!buf) { 1611 ret = -ENOMEM; 1612 goto out; 1613 } 1614 1615 for (i = 0; i < map->num_stripes; i++) { 1616 bool already_inserted = false; 1617 u64 stripe_nr; 1618 int j; 1619 1620 if (!in_range(physical, map->stripes[i].physical, 1621 data_stripe_length)) 1622 continue; 1623 1624 stripe_nr = physical - map->stripes[i].physical; 1625 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 1626 1627 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1628 stripe_nr = stripe_nr * map->num_stripes + i; 1629 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1630 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1631 stripe_nr = stripe_nr * map->num_stripes + i; 1632 } 1633 /* 1634 * The remaining case would be for RAID56, multiply by 1635 * nr_data_stripes(). Alternatively, just use rmap_len below 1636 * instead of map->stripe_len 1637 */ 1638 1639 bytenr = chunk_start + stripe_nr * io_stripe_size; 1640 1641 /* Ensure we don't add duplicate addresses */ 1642 for (j = 0; j < nr; j++) { 1643 if (buf[j] == bytenr) { 1644 already_inserted = true; 1645 break; 1646 } 1647 } 1648 1649 if (!already_inserted) 1650 buf[nr++] = bytenr; 1651 } 1652 1653 *logical = buf; 1654 *naddrs = nr; 1655 *stripe_len = io_stripe_size; 1656 out: 1657 free_extent_map(em); 1658 return ret; 1659 } 1660 1661 static int exclude_super_stripes(struct btrfs_block_group *cache) 1662 { 1663 struct btrfs_fs_info *fs_info = cache->fs_info; 1664 u64 bytenr; 1665 u64 *logical; 1666 int stripe_len; 1667 int i, nr, ret; 1668 1669 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1670 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1671 cache->bytes_super += stripe_len; 1672 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1673 stripe_len); 1674 if (ret) 1675 return ret; 1676 } 1677 1678 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1679 bytenr = btrfs_sb_offset(i); 1680 ret = btrfs_rmap_block(fs_info, cache->start, 1681 bytenr, &logical, &nr, &stripe_len); 1682 if (ret) 1683 return ret; 1684 1685 while (nr--) { 1686 u64 start, len; 1687 1688 if (logical[nr] > cache->start + cache->length) 1689 continue; 1690 1691 if (logical[nr] + stripe_len <= cache->start) 1692 continue; 1693 1694 start = logical[nr]; 1695 if (start < cache->start) { 1696 start = cache->start; 1697 len = (logical[nr] + stripe_len) - start; 1698 } else { 1699 len = min_t(u64, stripe_len, 1700 cache->start + cache->length - start); 1701 } 1702 1703 cache->bytes_super += len; 1704 ret = btrfs_add_excluded_extent(fs_info, start, len); 1705 if (ret) { 1706 kfree(logical); 1707 return ret; 1708 } 1709 } 1710 1711 kfree(logical); 1712 } 1713 return 0; 1714 } 1715 1716 static void link_block_group(struct btrfs_block_group *cache) 1717 { 1718 struct btrfs_space_info *space_info = cache->space_info; 1719 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1720 bool first = false; 1721 1722 down_write(&space_info->groups_sem); 1723 if (list_empty(&space_info->block_groups[index])) 1724 first = true; 1725 list_add_tail(&cache->list, &space_info->block_groups[index]); 1726 up_write(&space_info->groups_sem); 1727 1728 if (first) 1729 btrfs_sysfs_add_block_group_type(cache); 1730 } 1731 1732 static struct btrfs_block_group *btrfs_create_block_group_cache( 1733 struct btrfs_fs_info *fs_info, u64 start, u64 size) 1734 { 1735 struct btrfs_block_group *cache; 1736 1737 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1738 if (!cache) 1739 return NULL; 1740 1741 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1742 GFP_NOFS); 1743 if (!cache->free_space_ctl) { 1744 kfree(cache); 1745 return NULL; 1746 } 1747 1748 cache->start = start; 1749 cache->length = size; 1750 1751 cache->fs_info = fs_info; 1752 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1753 set_free_space_tree_thresholds(cache); 1754 1755 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1756 1757 atomic_set(&cache->count, 1); 1758 spin_lock_init(&cache->lock); 1759 init_rwsem(&cache->data_rwsem); 1760 INIT_LIST_HEAD(&cache->list); 1761 INIT_LIST_HEAD(&cache->cluster_list); 1762 INIT_LIST_HEAD(&cache->bg_list); 1763 INIT_LIST_HEAD(&cache->ro_list); 1764 INIT_LIST_HEAD(&cache->discard_list); 1765 INIT_LIST_HEAD(&cache->dirty_list); 1766 INIT_LIST_HEAD(&cache->io_list); 1767 btrfs_init_free_space_ctl(cache); 1768 atomic_set(&cache->trimming, 0); 1769 mutex_init(&cache->free_space_lock); 1770 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1771 1772 return cache; 1773 } 1774 1775 /* 1776 * Iterate all chunks and verify that each of them has the corresponding block 1777 * group 1778 */ 1779 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1780 { 1781 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1782 struct extent_map *em; 1783 struct btrfs_block_group *bg; 1784 u64 start = 0; 1785 int ret = 0; 1786 1787 while (1) { 1788 read_lock(&map_tree->lock); 1789 /* 1790 * lookup_extent_mapping will return the first extent map 1791 * intersecting the range, so setting @len to 1 is enough to 1792 * get the first chunk. 1793 */ 1794 em = lookup_extent_mapping(map_tree, start, 1); 1795 read_unlock(&map_tree->lock); 1796 if (!em) 1797 break; 1798 1799 bg = btrfs_lookup_block_group(fs_info, em->start); 1800 if (!bg) { 1801 btrfs_err(fs_info, 1802 "chunk start=%llu len=%llu doesn't have corresponding block group", 1803 em->start, em->len); 1804 ret = -EUCLEAN; 1805 free_extent_map(em); 1806 break; 1807 } 1808 if (bg->start != em->start || bg->length != em->len || 1809 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1810 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1811 btrfs_err(fs_info, 1812 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1813 em->start, em->len, 1814 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1815 bg->start, bg->length, 1816 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1817 ret = -EUCLEAN; 1818 free_extent_map(em); 1819 btrfs_put_block_group(bg); 1820 break; 1821 } 1822 start = em->start + em->len; 1823 free_extent_map(em); 1824 btrfs_put_block_group(bg); 1825 } 1826 return ret; 1827 } 1828 1829 static int read_one_block_group(struct btrfs_fs_info *info, 1830 struct btrfs_path *path, 1831 const struct btrfs_key *key, 1832 int need_clear) 1833 { 1834 struct extent_buffer *leaf = path->nodes[0]; 1835 struct btrfs_block_group *cache; 1836 struct btrfs_space_info *space_info; 1837 struct btrfs_block_group_item bgi; 1838 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1839 int slot = path->slots[0]; 1840 int ret; 1841 1842 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1843 1844 cache = btrfs_create_block_group_cache(info, key->objectid, key->offset); 1845 if (!cache) 1846 return -ENOMEM; 1847 1848 if (need_clear) { 1849 /* 1850 * When we mount with old space cache, we need to 1851 * set BTRFS_DC_CLEAR and set dirty flag. 1852 * 1853 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1854 * truncate the old free space cache inode and 1855 * setup a new one. 1856 * b) Setting 'dirty flag' makes sure that we flush 1857 * the new space cache info onto disk. 1858 */ 1859 if (btrfs_test_opt(info, SPACE_CACHE)) 1860 cache->disk_cache_state = BTRFS_DC_CLEAR; 1861 } 1862 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 1863 sizeof(bgi)); 1864 cache->used = btrfs_stack_block_group_used(&bgi); 1865 cache->flags = btrfs_stack_block_group_flags(&bgi); 1866 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1867 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1868 btrfs_err(info, 1869 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1870 cache->start); 1871 ret = -EINVAL; 1872 goto error; 1873 } 1874 1875 /* 1876 * We need to exclude the super stripes now so that the space info has 1877 * super bytes accounted for, otherwise we'll think we have more space 1878 * than we actually do. 1879 */ 1880 ret = exclude_super_stripes(cache); 1881 if (ret) { 1882 /* We may have excluded something, so call this just in case. */ 1883 btrfs_free_excluded_extents(cache); 1884 goto error; 1885 } 1886 1887 /* 1888 * Check for two cases, either we are full, and therefore don't need 1889 * to bother with the caching work since we won't find any space, or we 1890 * are empty, and we can just add all the space in and be done with it. 1891 * This saves us _a_lot_ of time, particularly in the full case. 1892 */ 1893 if (key->offset == cache->used) { 1894 cache->last_byte_to_unpin = (u64)-1; 1895 cache->cached = BTRFS_CACHE_FINISHED; 1896 btrfs_free_excluded_extents(cache); 1897 } else if (cache->used == 0) { 1898 cache->last_byte_to_unpin = (u64)-1; 1899 cache->cached = BTRFS_CACHE_FINISHED; 1900 add_new_free_space(cache, key->objectid, 1901 key->objectid + key->offset); 1902 btrfs_free_excluded_extents(cache); 1903 } 1904 1905 ret = btrfs_add_block_group_cache(info, cache); 1906 if (ret) { 1907 btrfs_remove_free_space_cache(cache); 1908 goto error; 1909 } 1910 trace_btrfs_add_block_group(info, cache, 0); 1911 btrfs_update_space_info(info, cache->flags, key->offset, 1912 cache->used, cache->bytes_super, &space_info); 1913 1914 cache->space_info = space_info; 1915 1916 link_block_group(cache); 1917 1918 set_avail_alloc_bits(info, cache->flags); 1919 if (btrfs_chunk_readonly(info, cache->start)) { 1920 inc_block_group_ro(cache, 1); 1921 } else if (cache->used == 0) { 1922 ASSERT(list_empty(&cache->bg_list)); 1923 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1924 btrfs_discard_queue_work(&info->discard_ctl, cache); 1925 else 1926 btrfs_mark_bg_unused(cache); 1927 } 1928 return 0; 1929 error: 1930 btrfs_put_block_group(cache); 1931 return ret; 1932 } 1933 1934 int btrfs_read_block_groups(struct btrfs_fs_info *info) 1935 { 1936 struct btrfs_path *path; 1937 int ret; 1938 struct btrfs_block_group *cache; 1939 struct btrfs_space_info *space_info; 1940 struct btrfs_key key; 1941 int need_clear = 0; 1942 u64 cache_gen; 1943 1944 key.objectid = 0; 1945 key.offset = 0; 1946 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1947 path = btrfs_alloc_path(); 1948 if (!path) 1949 return -ENOMEM; 1950 path->reada = READA_FORWARD; 1951 1952 cache_gen = btrfs_super_cache_generation(info->super_copy); 1953 if (btrfs_test_opt(info, SPACE_CACHE) && 1954 btrfs_super_generation(info->super_copy) != cache_gen) 1955 need_clear = 1; 1956 if (btrfs_test_opt(info, CLEAR_CACHE)) 1957 need_clear = 1; 1958 1959 while (1) { 1960 ret = find_first_block_group(info, path, &key); 1961 if (ret > 0) 1962 break; 1963 if (ret != 0) 1964 goto error; 1965 1966 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1967 ret = read_one_block_group(info, path, &key, need_clear); 1968 if (ret < 0) 1969 goto error; 1970 key.objectid += key.offset; 1971 key.offset = 0; 1972 btrfs_release_path(path); 1973 } 1974 1975 list_for_each_entry_rcu(space_info, &info->space_info, list) { 1976 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 1977 (BTRFS_BLOCK_GROUP_RAID10 | 1978 BTRFS_BLOCK_GROUP_RAID1_MASK | 1979 BTRFS_BLOCK_GROUP_RAID56_MASK | 1980 BTRFS_BLOCK_GROUP_DUP))) 1981 continue; 1982 /* 1983 * Avoid allocating from un-mirrored block group if there are 1984 * mirrored block groups. 1985 */ 1986 list_for_each_entry(cache, 1987 &space_info->block_groups[BTRFS_RAID_RAID0], 1988 list) 1989 inc_block_group_ro(cache, 1); 1990 list_for_each_entry(cache, 1991 &space_info->block_groups[BTRFS_RAID_SINGLE], 1992 list) 1993 inc_block_group_ro(cache, 1); 1994 } 1995 1996 btrfs_init_global_block_rsv(info); 1997 ret = check_chunk_block_group_mappings(info); 1998 error: 1999 btrfs_free_path(path); 2000 return ret; 2001 } 2002 2003 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2004 { 2005 struct btrfs_fs_info *fs_info = trans->fs_info; 2006 struct btrfs_block_group *block_group; 2007 struct btrfs_root *extent_root = fs_info->extent_root; 2008 struct btrfs_block_group_item item; 2009 struct btrfs_key key; 2010 int ret = 0; 2011 2012 if (!trans->can_flush_pending_bgs) 2013 return; 2014 2015 while (!list_empty(&trans->new_bgs)) { 2016 block_group = list_first_entry(&trans->new_bgs, 2017 struct btrfs_block_group, 2018 bg_list); 2019 if (ret) 2020 goto next; 2021 2022 spin_lock(&block_group->lock); 2023 btrfs_set_stack_block_group_used(&item, block_group->used); 2024 btrfs_set_stack_block_group_chunk_objectid(&item, 2025 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2026 btrfs_set_stack_block_group_flags(&item, block_group->flags); 2027 key.objectid = block_group->start; 2028 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2029 key.offset = block_group->length; 2030 spin_unlock(&block_group->lock); 2031 2032 ret = btrfs_insert_item(trans, extent_root, &key, &item, 2033 sizeof(item)); 2034 if (ret) 2035 btrfs_abort_transaction(trans, ret); 2036 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); 2037 if (ret) 2038 btrfs_abort_transaction(trans, ret); 2039 add_block_group_free_space(trans, block_group); 2040 /* Already aborted the transaction if it failed. */ 2041 next: 2042 btrfs_delayed_refs_rsv_release(fs_info, 1); 2043 list_del_init(&block_group->bg_list); 2044 } 2045 btrfs_trans_release_chunk_metadata(trans); 2046 } 2047 2048 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2049 u64 type, u64 chunk_offset, u64 size) 2050 { 2051 struct btrfs_fs_info *fs_info = trans->fs_info; 2052 struct btrfs_block_group *cache; 2053 int ret; 2054 2055 btrfs_set_log_full_commit(trans); 2056 2057 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 2058 if (!cache) 2059 return -ENOMEM; 2060 2061 cache->used = bytes_used; 2062 cache->flags = type; 2063 cache->last_byte_to_unpin = (u64)-1; 2064 cache->cached = BTRFS_CACHE_FINISHED; 2065 cache->needs_free_space = 1; 2066 ret = exclude_super_stripes(cache); 2067 if (ret) { 2068 /* We may have excluded something, so call this just in case */ 2069 btrfs_free_excluded_extents(cache); 2070 btrfs_put_block_group(cache); 2071 return ret; 2072 } 2073 2074 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2075 2076 btrfs_free_excluded_extents(cache); 2077 2078 #ifdef CONFIG_BTRFS_DEBUG 2079 if (btrfs_should_fragment_free_space(cache)) { 2080 u64 new_bytes_used = size - bytes_used; 2081 2082 bytes_used += new_bytes_used >> 1; 2083 fragment_free_space(cache); 2084 } 2085 #endif 2086 /* 2087 * Ensure the corresponding space_info object is created and 2088 * assigned to our block group. We want our bg to be added to the rbtree 2089 * with its ->space_info set. 2090 */ 2091 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2092 ASSERT(cache->space_info); 2093 2094 ret = btrfs_add_block_group_cache(fs_info, cache); 2095 if (ret) { 2096 btrfs_remove_free_space_cache(cache); 2097 btrfs_put_block_group(cache); 2098 return ret; 2099 } 2100 2101 /* 2102 * Now that our block group has its ->space_info set and is inserted in 2103 * the rbtree, update the space info's counters. 2104 */ 2105 trace_btrfs_add_block_group(fs_info, cache, 1); 2106 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2107 cache->bytes_super, &cache->space_info); 2108 btrfs_update_global_block_rsv(fs_info); 2109 2110 link_block_group(cache); 2111 2112 list_add_tail(&cache->bg_list, &trans->new_bgs); 2113 trans->delayed_ref_updates++; 2114 btrfs_update_delayed_refs_rsv(trans); 2115 2116 set_avail_alloc_bits(fs_info, type); 2117 return 0; 2118 } 2119 2120 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 2121 { 2122 u64 num_devices; 2123 u64 stripped; 2124 2125 /* 2126 * if restripe for this chunk_type is on pick target profile and 2127 * return, otherwise do the usual balance 2128 */ 2129 stripped = get_restripe_target(fs_info, flags); 2130 if (stripped) 2131 return extended_to_chunk(stripped); 2132 2133 num_devices = fs_info->fs_devices->rw_devices; 2134 2135 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK | 2136 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10; 2137 2138 if (num_devices == 1) { 2139 stripped |= BTRFS_BLOCK_GROUP_DUP; 2140 stripped = flags & ~stripped; 2141 2142 /* turn raid0 into single device chunks */ 2143 if (flags & BTRFS_BLOCK_GROUP_RAID0) 2144 return stripped; 2145 2146 /* turn mirroring into duplication */ 2147 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK | 2148 BTRFS_BLOCK_GROUP_RAID10)) 2149 return stripped | BTRFS_BLOCK_GROUP_DUP; 2150 } else { 2151 /* they already had raid on here, just return */ 2152 if (flags & stripped) 2153 return flags; 2154 2155 stripped |= BTRFS_BLOCK_GROUP_DUP; 2156 stripped = flags & ~stripped; 2157 2158 /* switch duplicated blocks with raid1 */ 2159 if (flags & BTRFS_BLOCK_GROUP_DUP) 2160 return stripped | BTRFS_BLOCK_GROUP_RAID1; 2161 2162 /* this is drive concat, leave it alone */ 2163 } 2164 2165 return flags; 2166 } 2167 2168 /* 2169 * Mark one block group RO, can be called several times for the same block 2170 * group. 2171 * 2172 * @cache: the destination block group 2173 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2174 * ensure we still have some free space after marking this 2175 * block group RO. 2176 */ 2177 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2178 bool do_chunk_alloc) 2179 { 2180 struct btrfs_fs_info *fs_info = cache->fs_info; 2181 struct btrfs_trans_handle *trans; 2182 u64 alloc_flags; 2183 int ret; 2184 2185 again: 2186 trans = btrfs_join_transaction(fs_info->extent_root); 2187 if (IS_ERR(trans)) 2188 return PTR_ERR(trans); 2189 2190 /* 2191 * we're not allowed to set block groups readonly after the dirty 2192 * block groups cache has started writing. If it already started, 2193 * back off and let this transaction commit 2194 */ 2195 mutex_lock(&fs_info->ro_block_group_mutex); 2196 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2197 u64 transid = trans->transid; 2198 2199 mutex_unlock(&fs_info->ro_block_group_mutex); 2200 btrfs_end_transaction(trans); 2201 2202 ret = btrfs_wait_for_commit(fs_info, transid); 2203 if (ret) 2204 return ret; 2205 goto again; 2206 } 2207 2208 if (do_chunk_alloc) { 2209 /* 2210 * If we are changing raid levels, try to allocate a 2211 * corresponding block group with the new raid level. 2212 */ 2213 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2214 if (alloc_flags != cache->flags) { 2215 ret = btrfs_chunk_alloc(trans, alloc_flags, 2216 CHUNK_ALLOC_FORCE); 2217 /* 2218 * ENOSPC is allowed here, we may have enough space 2219 * already allocated at the new raid level to carry on 2220 */ 2221 if (ret == -ENOSPC) 2222 ret = 0; 2223 if (ret < 0) 2224 goto out; 2225 } 2226 } 2227 2228 ret = inc_block_group_ro(cache, !do_chunk_alloc); 2229 if (!do_chunk_alloc) 2230 goto unlock_out; 2231 if (!ret) 2232 goto out; 2233 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2234 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2235 if (ret < 0) 2236 goto out; 2237 ret = inc_block_group_ro(cache, 0); 2238 out: 2239 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2240 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2241 mutex_lock(&fs_info->chunk_mutex); 2242 check_system_chunk(trans, alloc_flags); 2243 mutex_unlock(&fs_info->chunk_mutex); 2244 } 2245 unlock_out: 2246 mutex_unlock(&fs_info->ro_block_group_mutex); 2247 2248 btrfs_end_transaction(trans); 2249 return ret; 2250 } 2251 2252 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2253 { 2254 struct btrfs_space_info *sinfo = cache->space_info; 2255 u64 num_bytes; 2256 2257 BUG_ON(!cache->ro); 2258 2259 spin_lock(&sinfo->lock); 2260 spin_lock(&cache->lock); 2261 if (!--cache->ro) { 2262 num_bytes = cache->length - cache->reserved - 2263 cache->pinned - cache->bytes_super - cache->used; 2264 sinfo->bytes_readonly -= num_bytes; 2265 list_del_init(&cache->ro_list); 2266 } 2267 spin_unlock(&cache->lock); 2268 spin_unlock(&sinfo->lock); 2269 } 2270 2271 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2272 struct btrfs_path *path, 2273 struct btrfs_block_group *cache) 2274 { 2275 struct btrfs_fs_info *fs_info = trans->fs_info; 2276 int ret; 2277 struct btrfs_root *extent_root = fs_info->extent_root; 2278 unsigned long bi; 2279 struct extent_buffer *leaf; 2280 struct btrfs_block_group_item bgi; 2281 struct btrfs_key key; 2282 2283 key.objectid = cache->start; 2284 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2285 key.offset = cache->length; 2286 2287 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1); 2288 if (ret) { 2289 if (ret > 0) 2290 ret = -ENOENT; 2291 goto fail; 2292 } 2293 2294 leaf = path->nodes[0]; 2295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2296 btrfs_set_stack_block_group_used(&bgi, cache->used); 2297 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2298 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2299 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2300 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2301 btrfs_mark_buffer_dirty(leaf); 2302 fail: 2303 btrfs_release_path(path); 2304 return ret; 2305 2306 } 2307 2308 static int cache_save_setup(struct btrfs_block_group *block_group, 2309 struct btrfs_trans_handle *trans, 2310 struct btrfs_path *path) 2311 { 2312 struct btrfs_fs_info *fs_info = block_group->fs_info; 2313 struct btrfs_root *root = fs_info->tree_root; 2314 struct inode *inode = NULL; 2315 struct extent_changeset *data_reserved = NULL; 2316 u64 alloc_hint = 0; 2317 int dcs = BTRFS_DC_ERROR; 2318 u64 num_pages = 0; 2319 int retries = 0; 2320 int ret = 0; 2321 2322 /* 2323 * If this block group is smaller than 100 megs don't bother caching the 2324 * block group. 2325 */ 2326 if (block_group->length < (100 * SZ_1M)) { 2327 spin_lock(&block_group->lock); 2328 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2329 spin_unlock(&block_group->lock); 2330 return 0; 2331 } 2332 2333 if (trans->aborted) 2334 return 0; 2335 again: 2336 inode = lookup_free_space_inode(block_group, path); 2337 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2338 ret = PTR_ERR(inode); 2339 btrfs_release_path(path); 2340 goto out; 2341 } 2342 2343 if (IS_ERR(inode)) { 2344 BUG_ON(retries); 2345 retries++; 2346 2347 if (block_group->ro) 2348 goto out_free; 2349 2350 ret = create_free_space_inode(trans, block_group, path); 2351 if (ret) 2352 goto out_free; 2353 goto again; 2354 } 2355 2356 /* 2357 * We want to set the generation to 0, that way if anything goes wrong 2358 * from here on out we know not to trust this cache when we load up next 2359 * time. 2360 */ 2361 BTRFS_I(inode)->generation = 0; 2362 ret = btrfs_update_inode(trans, root, inode); 2363 if (ret) { 2364 /* 2365 * So theoretically we could recover from this, simply set the 2366 * super cache generation to 0 so we know to invalidate the 2367 * cache, but then we'd have to keep track of the block groups 2368 * that fail this way so we know we _have_ to reset this cache 2369 * before the next commit or risk reading stale cache. So to 2370 * limit our exposure to horrible edge cases lets just abort the 2371 * transaction, this only happens in really bad situations 2372 * anyway. 2373 */ 2374 btrfs_abort_transaction(trans, ret); 2375 goto out_put; 2376 } 2377 WARN_ON(ret); 2378 2379 /* We've already setup this transaction, go ahead and exit */ 2380 if (block_group->cache_generation == trans->transid && 2381 i_size_read(inode)) { 2382 dcs = BTRFS_DC_SETUP; 2383 goto out_put; 2384 } 2385 2386 if (i_size_read(inode) > 0) { 2387 ret = btrfs_check_trunc_cache_free_space(fs_info, 2388 &fs_info->global_block_rsv); 2389 if (ret) 2390 goto out_put; 2391 2392 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2393 if (ret) 2394 goto out_put; 2395 } 2396 2397 spin_lock(&block_group->lock); 2398 if (block_group->cached != BTRFS_CACHE_FINISHED || 2399 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2400 /* 2401 * don't bother trying to write stuff out _if_ 2402 * a) we're not cached, 2403 * b) we're with nospace_cache mount option, 2404 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2405 */ 2406 dcs = BTRFS_DC_WRITTEN; 2407 spin_unlock(&block_group->lock); 2408 goto out_put; 2409 } 2410 spin_unlock(&block_group->lock); 2411 2412 /* 2413 * We hit an ENOSPC when setting up the cache in this transaction, just 2414 * skip doing the setup, we've already cleared the cache so we're safe. 2415 */ 2416 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2417 ret = -ENOSPC; 2418 goto out_put; 2419 } 2420 2421 /* 2422 * Try to preallocate enough space based on how big the block group is. 2423 * Keep in mind this has to include any pinned space which could end up 2424 * taking up quite a bit since it's not folded into the other space 2425 * cache. 2426 */ 2427 num_pages = div_u64(block_group->length, SZ_256M); 2428 if (!num_pages) 2429 num_pages = 1; 2430 2431 num_pages *= 16; 2432 num_pages *= PAGE_SIZE; 2433 2434 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 2435 if (ret) 2436 goto out_put; 2437 2438 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2439 num_pages, num_pages, 2440 &alloc_hint); 2441 /* 2442 * Our cache requires contiguous chunks so that we don't modify a bunch 2443 * of metadata or split extents when writing the cache out, which means 2444 * we can enospc if we are heavily fragmented in addition to just normal 2445 * out of space conditions. So if we hit this just skip setting up any 2446 * other block groups for this transaction, maybe we'll unpin enough 2447 * space the next time around. 2448 */ 2449 if (!ret) 2450 dcs = BTRFS_DC_SETUP; 2451 else if (ret == -ENOSPC) 2452 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2453 2454 out_put: 2455 iput(inode); 2456 out_free: 2457 btrfs_release_path(path); 2458 out: 2459 spin_lock(&block_group->lock); 2460 if (!ret && dcs == BTRFS_DC_SETUP) 2461 block_group->cache_generation = trans->transid; 2462 block_group->disk_cache_state = dcs; 2463 spin_unlock(&block_group->lock); 2464 2465 extent_changeset_free(data_reserved); 2466 return ret; 2467 } 2468 2469 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2470 { 2471 struct btrfs_fs_info *fs_info = trans->fs_info; 2472 struct btrfs_block_group *cache, *tmp; 2473 struct btrfs_transaction *cur_trans = trans->transaction; 2474 struct btrfs_path *path; 2475 2476 if (list_empty(&cur_trans->dirty_bgs) || 2477 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2478 return 0; 2479 2480 path = btrfs_alloc_path(); 2481 if (!path) 2482 return -ENOMEM; 2483 2484 /* Could add new block groups, use _safe just in case */ 2485 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2486 dirty_list) { 2487 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2488 cache_save_setup(cache, trans, path); 2489 } 2490 2491 btrfs_free_path(path); 2492 return 0; 2493 } 2494 2495 /* 2496 * Transaction commit does final block group cache writeback during a critical 2497 * section where nothing is allowed to change the FS. This is required in 2498 * order for the cache to actually match the block group, but can introduce a 2499 * lot of latency into the commit. 2500 * 2501 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2502 * There's a chance we'll have to redo some of it if the block group changes 2503 * again during the commit, but it greatly reduces the commit latency by 2504 * getting rid of the easy block groups while we're still allowing others to 2505 * join the commit. 2506 */ 2507 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2508 { 2509 struct btrfs_fs_info *fs_info = trans->fs_info; 2510 struct btrfs_block_group *cache; 2511 struct btrfs_transaction *cur_trans = trans->transaction; 2512 int ret = 0; 2513 int should_put; 2514 struct btrfs_path *path = NULL; 2515 LIST_HEAD(dirty); 2516 struct list_head *io = &cur_trans->io_bgs; 2517 int num_started = 0; 2518 int loops = 0; 2519 2520 spin_lock(&cur_trans->dirty_bgs_lock); 2521 if (list_empty(&cur_trans->dirty_bgs)) { 2522 spin_unlock(&cur_trans->dirty_bgs_lock); 2523 return 0; 2524 } 2525 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2526 spin_unlock(&cur_trans->dirty_bgs_lock); 2527 2528 again: 2529 /* Make sure all the block groups on our dirty list actually exist */ 2530 btrfs_create_pending_block_groups(trans); 2531 2532 if (!path) { 2533 path = btrfs_alloc_path(); 2534 if (!path) 2535 return -ENOMEM; 2536 } 2537 2538 /* 2539 * cache_write_mutex is here only to save us from balance or automatic 2540 * removal of empty block groups deleting this block group while we are 2541 * writing out the cache 2542 */ 2543 mutex_lock(&trans->transaction->cache_write_mutex); 2544 while (!list_empty(&dirty)) { 2545 bool drop_reserve = true; 2546 2547 cache = list_first_entry(&dirty, struct btrfs_block_group, 2548 dirty_list); 2549 /* 2550 * This can happen if something re-dirties a block group that 2551 * is already under IO. Just wait for it to finish and then do 2552 * it all again 2553 */ 2554 if (!list_empty(&cache->io_list)) { 2555 list_del_init(&cache->io_list); 2556 btrfs_wait_cache_io(trans, cache, path); 2557 btrfs_put_block_group(cache); 2558 } 2559 2560 2561 /* 2562 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2563 * it should update the cache_state. Don't delete until after 2564 * we wait. 2565 * 2566 * Since we're not running in the commit critical section 2567 * we need the dirty_bgs_lock to protect from update_block_group 2568 */ 2569 spin_lock(&cur_trans->dirty_bgs_lock); 2570 list_del_init(&cache->dirty_list); 2571 spin_unlock(&cur_trans->dirty_bgs_lock); 2572 2573 should_put = 1; 2574 2575 cache_save_setup(cache, trans, path); 2576 2577 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2578 cache->io_ctl.inode = NULL; 2579 ret = btrfs_write_out_cache(trans, cache, path); 2580 if (ret == 0 && cache->io_ctl.inode) { 2581 num_started++; 2582 should_put = 0; 2583 2584 /* 2585 * The cache_write_mutex is protecting the 2586 * io_list, also refer to the definition of 2587 * btrfs_transaction::io_bgs for more details 2588 */ 2589 list_add_tail(&cache->io_list, io); 2590 } else { 2591 /* 2592 * If we failed to write the cache, the 2593 * generation will be bad and life goes on 2594 */ 2595 ret = 0; 2596 } 2597 } 2598 if (!ret) { 2599 ret = write_one_cache_group(trans, path, cache); 2600 /* 2601 * Our block group might still be attached to the list 2602 * of new block groups in the transaction handle of some 2603 * other task (struct btrfs_trans_handle->new_bgs). This 2604 * means its block group item isn't yet in the extent 2605 * tree. If this happens ignore the error, as we will 2606 * try again later in the critical section of the 2607 * transaction commit. 2608 */ 2609 if (ret == -ENOENT) { 2610 ret = 0; 2611 spin_lock(&cur_trans->dirty_bgs_lock); 2612 if (list_empty(&cache->dirty_list)) { 2613 list_add_tail(&cache->dirty_list, 2614 &cur_trans->dirty_bgs); 2615 btrfs_get_block_group(cache); 2616 drop_reserve = false; 2617 } 2618 spin_unlock(&cur_trans->dirty_bgs_lock); 2619 } else if (ret) { 2620 btrfs_abort_transaction(trans, ret); 2621 } 2622 } 2623 2624 /* If it's not on the io list, we need to put the block group */ 2625 if (should_put) 2626 btrfs_put_block_group(cache); 2627 if (drop_reserve) 2628 btrfs_delayed_refs_rsv_release(fs_info, 1); 2629 2630 if (ret) 2631 break; 2632 2633 /* 2634 * Avoid blocking other tasks for too long. It might even save 2635 * us from writing caches for block groups that are going to be 2636 * removed. 2637 */ 2638 mutex_unlock(&trans->transaction->cache_write_mutex); 2639 mutex_lock(&trans->transaction->cache_write_mutex); 2640 } 2641 mutex_unlock(&trans->transaction->cache_write_mutex); 2642 2643 /* 2644 * Go through delayed refs for all the stuff we've just kicked off 2645 * and then loop back (just once) 2646 */ 2647 ret = btrfs_run_delayed_refs(trans, 0); 2648 if (!ret && loops == 0) { 2649 loops++; 2650 spin_lock(&cur_trans->dirty_bgs_lock); 2651 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2652 /* 2653 * dirty_bgs_lock protects us from concurrent block group 2654 * deletes too (not just cache_write_mutex). 2655 */ 2656 if (!list_empty(&dirty)) { 2657 spin_unlock(&cur_trans->dirty_bgs_lock); 2658 goto again; 2659 } 2660 spin_unlock(&cur_trans->dirty_bgs_lock); 2661 } else if (ret < 0) { 2662 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2663 } 2664 2665 btrfs_free_path(path); 2666 return ret; 2667 } 2668 2669 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2670 { 2671 struct btrfs_fs_info *fs_info = trans->fs_info; 2672 struct btrfs_block_group *cache; 2673 struct btrfs_transaction *cur_trans = trans->transaction; 2674 int ret = 0; 2675 int should_put; 2676 struct btrfs_path *path; 2677 struct list_head *io = &cur_trans->io_bgs; 2678 int num_started = 0; 2679 2680 path = btrfs_alloc_path(); 2681 if (!path) 2682 return -ENOMEM; 2683 2684 /* 2685 * Even though we are in the critical section of the transaction commit, 2686 * we can still have concurrent tasks adding elements to this 2687 * transaction's list of dirty block groups. These tasks correspond to 2688 * endio free space workers started when writeback finishes for a 2689 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2690 * allocate new block groups as a result of COWing nodes of the root 2691 * tree when updating the free space inode. The writeback for the space 2692 * caches is triggered by an earlier call to 2693 * btrfs_start_dirty_block_groups() and iterations of the following 2694 * loop. 2695 * Also we want to do the cache_save_setup first and then run the 2696 * delayed refs to make sure we have the best chance at doing this all 2697 * in one shot. 2698 */ 2699 spin_lock(&cur_trans->dirty_bgs_lock); 2700 while (!list_empty(&cur_trans->dirty_bgs)) { 2701 cache = list_first_entry(&cur_trans->dirty_bgs, 2702 struct btrfs_block_group, 2703 dirty_list); 2704 2705 /* 2706 * This can happen if cache_save_setup re-dirties a block group 2707 * that is already under IO. Just wait for it to finish and 2708 * then do it all again 2709 */ 2710 if (!list_empty(&cache->io_list)) { 2711 spin_unlock(&cur_trans->dirty_bgs_lock); 2712 list_del_init(&cache->io_list); 2713 btrfs_wait_cache_io(trans, cache, path); 2714 btrfs_put_block_group(cache); 2715 spin_lock(&cur_trans->dirty_bgs_lock); 2716 } 2717 2718 /* 2719 * Don't remove from the dirty list until after we've waited on 2720 * any pending IO 2721 */ 2722 list_del_init(&cache->dirty_list); 2723 spin_unlock(&cur_trans->dirty_bgs_lock); 2724 should_put = 1; 2725 2726 cache_save_setup(cache, trans, path); 2727 2728 if (!ret) 2729 ret = btrfs_run_delayed_refs(trans, 2730 (unsigned long) -1); 2731 2732 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2733 cache->io_ctl.inode = NULL; 2734 ret = btrfs_write_out_cache(trans, cache, path); 2735 if (ret == 0 && cache->io_ctl.inode) { 2736 num_started++; 2737 should_put = 0; 2738 list_add_tail(&cache->io_list, io); 2739 } else { 2740 /* 2741 * If we failed to write the cache, the 2742 * generation will be bad and life goes on 2743 */ 2744 ret = 0; 2745 } 2746 } 2747 if (!ret) { 2748 ret = write_one_cache_group(trans, path, cache); 2749 /* 2750 * One of the free space endio workers might have 2751 * created a new block group while updating a free space 2752 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2753 * and hasn't released its transaction handle yet, in 2754 * which case the new block group is still attached to 2755 * its transaction handle and its creation has not 2756 * finished yet (no block group item in the extent tree 2757 * yet, etc). If this is the case, wait for all free 2758 * space endio workers to finish and retry. This is a 2759 * a very rare case so no need for a more efficient and 2760 * complex approach. 2761 */ 2762 if (ret == -ENOENT) { 2763 wait_event(cur_trans->writer_wait, 2764 atomic_read(&cur_trans->num_writers) == 1); 2765 ret = write_one_cache_group(trans, path, cache); 2766 } 2767 if (ret) 2768 btrfs_abort_transaction(trans, ret); 2769 } 2770 2771 /* If its not on the io list, we need to put the block group */ 2772 if (should_put) 2773 btrfs_put_block_group(cache); 2774 btrfs_delayed_refs_rsv_release(fs_info, 1); 2775 spin_lock(&cur_trans->dirty_bgs_lock); 2776 } 2777 spin_unlock(&cur_trans->dirty_bgs_lock); 2778 2779 /* 2780 * Refer to the definition of io_bgs member for details why it's safe 2781 * to use it without any locking 2782 */ 2783 while (!list_empty(io)) { 2784 cache = list_first_entry(io, struct btrfs_block_group, 2785 io_list); 2786 list_del_init(&cache->io_list); 2787 btrfs_wait_cache_io(trans, cache, path); 2788 btrfs_put_block_group(cache); 2789 } 2790 2791 btrfs_free_path(path); 2792 return ret; 2793 } 2794 2795 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2796 u64 bytenr, u64 num_bytes, int alloc) 2797 { 2798 struct btrfs_fs_info *info = trans->fs_info; 2799 struct btrfs_block_group *cache = NULL; 2800 u64 total = num_bytes; 2801 u64 old_val; 2802 u64 byte_in_group; 2803 int factor; 2804 int ret = 0; 2805 2806 /* Block accounting for super block */ 2807 spin_lock(&info->delalloc_root_lock); 2808 old_val = btrfs_super_bytes_used(info->super_copy); 2809 if (alloc) 2810 old_val += num_bytes; 2811 else 2812 old_val -= num_bytes; 2813 btrfs_set_super_bytes_used(info->super_copy, old_val); 2814 spin_unlock(&info->delalloc_root_lock); 2815 2816 while (total) { 2817 cache = btrfs_lookup_block_group(info, bytenr); 2818 if (!cache) { 2819 ret = -ENOENT; 2820 break; 2821 } 2822 factor = btrfs_bg_type_to_factor(cache->flags); 2823 2824 /* 2825 * If this block group has free space cache written out, we 2826 * need to make sure to load it if we are removing space. This 2827 * is because we need the unpinning stage to actually add the 2828 * space back to the block group, otherwise we will leak space. 2829 */ 2830 if (!alloc && !btrfs_block_group_done(cache)) 2831 btrfs_cache_block_group(cache, 1); 2832 2833 byte_in_group = bytenr - cache->start; 2834 WARN_ON(byte_in_group > cache->length); 2835 2836 spin_lock(&cache->space_info->lock); 2837 spin_lock(&cache->lock); 2838 2839 if (btrfs_test_opt(info, SPACE_CACHE) && 2840 cache->disk_cache_state < BTRFS_DC_CLEAR) 2841 cache->disk_cache_state = BTRFS_DC_CLEAR; 2842 2843 old_val = cache->used; 2844 num_bytes = min(total, cache->length - byte_in_group); 2845 if (alloc) { 2846 old_val += num_bytes; 2847 cache->used = old_val; 2848 cache->reserved -= num_bytes; 2849 cache->space_info->bytes_reserved -= num_bytes; 2850 cache->space_info->bytes_used += num_bytes; 2851 cache->space_info->disk_used += num_bytes * factor; 2852 spin_unlock(&cache->lock); 2853 spin_unlock(&cache->space_info->lock); 2854 } else { 2855 old_val -= num_bytes; 2856 cache->used = old_val; 2857 cache->pinned += num_bytes; 2858 btrfs_space_info_update_bytes_pinned(info, 2859 cache->space_info, num_bytes); 2860 cache->space_info->bytes_used -= num_bytes; 2861 cache->space_info->disk_used -= num_bytes * factor; 2862 spin_unlock(&cache->lock); 2863 spin_unlock(&cache->space_info->lock); 2864 2865 percpu_counter_add_batch( 2866 &cache->space_info->total_bytes_pinned, 2867 num_bytes, 2868 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2869 set_extent_dirty(info->pinned_extents, 2870 bytenr, bytenr + num_bytes - 1, 2871 GFP_NOFS | __GFP_NOFAIL); 2872 } 2873 2874 spin_lock(&trans->transaction->dirty_bgs_lock); 2875 if (list_empty(&cache->dirty_list)) { 2876 list_add_tail(&cache->dirty_list, 2877 &trans->transaction->dirty_bgs); 2878 trans->delayed_ref_updates++; 2879 btrfs_get_block_group(cache); 2880 } 2881 spin_unlock(&trans->transaction->dirty_bgs_lock); 2882 2883 /* 2884 * No longer have used bytes in this block group, queue it for 2885 * deletion. We do this after adding the block group to the 2886 * dirty list to avoid races between cleaner kthread and space 2887 * cache writeout. 2888 */ 2889 if (!alloc && old_val == 0) { 2890 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2891 btrfs_mark_bg_unused(cache); 2892 } 2893 2894 btrfs_put_block_group(cache); 2895 total -= num_bytes; 2896 bytenr += num_bytes; 2897 } 2898 2899 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2900 btrfs_update_delayed_refs_rsv(trans); 2901 return ret; 2902 } 2903 2904 /** 2905 * btrfs_add_reserved_bytes - update the block_group and space info counters 2906 * @cache: The cache we are manipulating 2907 * @ram_bytes: The number of bytes of file content, and will be same to 2908 * @num_bytes except for the compress path. 2909 * @num_bytes: The number of bytes in question 2910 * @delalloc: The blocks are allocated for the delalloc write 2911 * 2912 * This is called by the allocator when it reserves space. If this is a 2913 * reservation and the block group has become read only we cannot make the 2914 * reservation and return -EAGAIN, otherwise this function always succeeds. 2915 */ 2916 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 2917 u64 ram_bytes, u64 num_bytes, int delalloc) 2918 { 2919 struct btrfs_space_info *space_info = cache->space_info; 2920 int ret = 0; 2921 2922 spin_lock(&space_info->lock); 2923 spin_lock(&cache->lock); 2924 if (cache->ro) { 2925 ret = -EAGAIN; 2926 } else { 2927 cache->reserved += num_bytes; 2928 space_info->bytes_reserved += num_bytes; 2929 trace_btrfs_space_reservation(cache->fs_info, "space_info", 2930 space_info->flags, num_bytes, 1); 2931 btrfs_space_info_update_bytes_may_use(cache->fs_info, 2932 space_info, -ram_bytes); 2933 if (delalloc) 2934 cache->delalloc_bytes += num_bytes; 2935 } 2936 spin_unlock(&cache->lock); 2937 spin_unlock(&space_info->lock); 2938 return ret; 2939 } 2940 2941 /** 2942 * btrfs_free_reserved_bytes - update the block_group and space info counters 2943 * @cache: The cache we are manipulating 2944 * @num_bytes: The number of bytes in question 2945 * @delalloc: The blocks are allocated for the delalloc write 2946 * 2947 * This is called by somebody who is freeing space that was never actually used 2948 * on disk. For example if you reserve some space for a new leaf in transaction 2949 * A and before transaction A commits you free that leaf, you call this with 2950 * reserve set to 0 in order to clear the reservation. 2951 */ 2952 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 2953 u64 num_bytes, int delalloc) 2954 { 2955 struct btrfs_space_info *space_info = cache->space_info; 2956 2957 spin_lock(&space_info->lock); 2958 spin_lock(&cache->lock); 2959 if (cache->ro) 2960 space_info->bytes_readonly += num_bytes; 2961 cache->reserved -= num_bytes; 2962 space_info->bytes_reserved -= num_bytes; 2963 space_info->max_extent_size = 0; 2964 2965 if (delalloc) 2966 cache->delalloc_bytes -= num_bytes; 2967 spin_unlock(&cache->lock); 2968 spin_unlock(&space_info->lock); 2969 } 2970 2971 static void force_metadata_allocation(struct btrfs_fs_info *info) 2972 { 2973 struct list_head *head = &info->space_info; 2974 struct btrfs_space_info *found; 2975 2976 rcu_read_lock(); 2977 list_for_each_entry_rcu(found, head, list) { 2978 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 2979 found->force_alloc = CHUNK_ALLOC_FORCE; 2980 } 2981 rcu_read_unlock(); 2982 } 2983 2984 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 2985 struct btrfs_space_info *sinfo, int force) 2986 { 2987 u64 bytes_used = btrfs_space_info_used(sinfo, false); 2988 u64 thresh; 2989 2990 if (force == CHUNK_ALLOC_FORCE) 2991 return 1; 2992 2993 /* 2994 * in limited mode, we want to have some free space up to 2995 * about 1% of the FS size. 2996 */ 2997 if (force == CHUNK_ALLOC_LIMITED) { 2998 thresh = btrfs_super_total_bytes(fs_info->super_copy); 2999 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3000 3001 if (sinfo->total_bytes - bytes_used < thresh) 3002 return 1; 3003 } 3004 3005 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3006 return 0; 3007 return 1; 3008 } 3009 3010 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3011 { 3012 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3013 3014 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3015 } 3016 3017 /* 3018 * If force is CHUNK_ALLOC_FORCE: 3019 * - return 1 if it successfully allocates a chunk, 3020 * - return errors including -ENOSPC otherwise. 3021 * If force is NOT CHUNK_ALLOC_FORCE: 3022 * - return 0 if it doesn't need to allocate a new chunk, 3023 * - return 1 if it successfully allocates a chunk, 3024 * - return errors including -ENOSPC otherwise. 3025 */ 3026 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3027 enum btrfs_chunk_alloc_enum force) 3028 { 3029 struct btrfs_fs_info *fs_info = trans->fs_info; 3030 struct btrfs_space_info *space_info; 3031 bool wait_for_alloc = false; 3032 bool should_alloc = false; 3033 int ret = 0; 3034 3035 /* Don't re-enter if we're already allocating a chunk */ 3036 if (trans->allocating_chunk) 3037 return -ENOSPC; 3038 3039 space_info = btrfs_find_space_info(fs_info, flags); 3040 ASSERT(space_info); 3041 3042 do { 3043 spin_lock(&space_info->lock); 3044 if (force < space_info->force_alloc) 3045 force = space_info->force_alloc; 3046 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3047 if (space_info->full) { 3048 /* No more free physical space */ 3049 if (should_alloc) 3050 ret = -ENOSPC; 3051 else 3052 ret = 0; 3053 spin_unlock(&space_info->lock); 3054 return ret; 3055 } else if (!should_alloc) { 3056 spin_unlock(&space_info->lock); 3057 return 0; 3058 } else if (space_info->chunk_alloc) { 3059 /* 3060 * Someone is already allocating, so we need to block 3061 * until this someone is finished and then loop to 3062 * recheck if we should continue with our allocation 3063 * attempt. 3064 */ 3065 wait_for_alloc = true; 3066 spin_unlock(&space_info->lock); 3067 mutex_lock(&fs_info->chunk_mutex); 3068 mutex_unlock(&fs_info->chunk_mutex); 3069 } else { 3070 /* Proceed with allocation */ 3071 space_info->chunk_alloc = 1; 3072 wait_for_alloc = false; 3073 spin_unlock(&space_info->lock); 3074 } 3075 3076 cond_resched(); 3077 } while (wait_for_alloc); 3078 3079 mutex_lock(&fs_info->chunk_mutex); 3080 trans->allocating_chunk = true; 3081 3082 /* 3083 * If we have mixed data/metadata chunks we want to make sure we keep 3084 * allocating mixed chunks instead of individual chunks. 3085 */ 3086 if (btrfs_mixed_space_info(space_info)) 3087 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3088 3089 /* 3090 * if we're doing a data chunk, go ahead and make sure that 3091 * we keep a reasonable number of metadata chunks allocated in the 3092 * FS as well. 3093 */ 3094 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3095 fs_info->data_chunk_allocations++; 3096 if (!(fs_info->data_chunk_allocations % 3097 fs_info->metadata_ratio)) 3098 force_metadata_allocation(fs_info); 3099 } 3100 3101 /* 3102 * Check if we have enough space in SYSTEM chunk because we may need 3103 * to update devices. 3104 */ 3105 check_system_chunk(trans, flags); 3106 3107 ret = btrfs_alloc_chunk(trans, flags); 3108 trans->allocating_chunk = false; 3109 3110 spin_lock(&space_info->lock); 3111 if (ret < 0) { 3112 if (ret == -ENOSPC) 3113 space_info->full = 1; 3114 else 3115 goto out; 3116 } else { 3117 ret = 1; 3118 space_info->max_extent_size = 0; 3119 } 3120 3121 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3122 out: 3123 space_info->chunk_alloc = 0; 3124 spin_unlock(&space_info->lock); 3125 mutex_unlock(&fs_info->chunk_mutex); 3126 /* 3127 * When we allocate a new chunk we reserve space in the chunk block 3128 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3129 * add new nodes/leafs to it if we end up needing to do it when 3130 * inserting the chunk item and updating device items as part of the 3131 * second phase of chunk allocation, performed by 3132 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3133 * large number of new block groups to create in our transaction 3134 * handle's new_bgs list to avoid exhausting the chunk block reserve 3135 * in extreme cases - like having a single transaction create many new 3136 * block groups when starting to write out the free space caches of all 3137 * the block groups that were made dirty during the lifetime of the 3138 * transaction. 3139 */ 3140 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3141 btrfs_create_pending_block_groups(trans); 3142 3143 return ret; 3144 } 3145 3146 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3147 { 3148 u64 num_dev; 3149 3150 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3151 if (!num_dev) 3152 num_dev = fs_info->fs_devices->rw_devices; 3153 3154 return num_dev; 3155 } 3156 3157 /* 3158 * Reserve space in the system space for allocating or removing a chunk 3159 */ 3160 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3161 { 3162 struct btrfs_fs_info *fs_info = trans->fs_info; 3163 struct btrfs_space_info *info; 3164 u64 left; 3165 u64 thresh; 3166 int ret = 0; 3167 u64 num_devs; 3168 3169 /* 3170 * Needed because we can end up allocating a system chunk and for an 3171 * atomic and race free space reservation in the chunk block reserve. 3172 */ 3173 lockdep_assert_held(&fs_info->chunk_mutex); 3174 3175 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3176 spin_lock(&info->lock); 3177 left = info->total_bytes - btrfs_space_info_used(info, true); 3178 spin_unlock(&info->lock); 3179 3180 num_devs = get_profile_num_devs(fs_info, type); 3181 3182 /* num_devs device items to update and 1 chunk item to add or remove */ 3183 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3184 btrfs_calc_insert_metadata_size(fs_info, 1); 3185 3186 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3187 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3188 left, thresh, type); 3189 btrfs_dump_space_info(fs_info, info, 0, 0); 3190 } 3191 3192 if (left < thresh) { 3193 u64 flags = btrfs_system_alloc_profile(fs_info); 3194 3195 /* 3196 * Ignore failure to create system chunk. We might end up not 3197 * needing it, as we might not need to COW all nodes/leafs from 3198 * the paths we visit in the chunk tree (they were already COWed 3199 * or created in the current transaction for example). 3200 */ 3201 ret = btrfs_alloc_chunk(trans, flags); 3202 } 3203 3204 if (!ret) { 3205 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3206 &fs_info->chunk_block_rsv, 3207 thresh, BTRFS_RESERVE_NO_FLUSH); 3208 if (!ret) 3209 trans->chunk_bytes_reserved += thresh; 3210 } 3211 } 3212 3213 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3214 { 3215 struct btrfs_block_group *block_group; 3216 u64 last = 0; 3217 3218 while (1) { 3219 struct inode *inode; 3220 3221 block_group = btrfs_lookup_first_block_group(info, last); 3222 while (block_group) { 3223 btrfs_wait_block_group_cache_done(block_group); 3224 spin_lock(&block_group->lock); 3225 if (block_group->iref) 3226 break; 3227 spin_unlock(&block_group->lock); 3228 block_group = btrfs_next_block_group(block_group); 3229 } 3230 if (!block_group) { 3231 if (last == 0) 3232 break; 3233 last = 0; 3234 continue; 3235 } 3236 3237 inode = block_group->inode; 3238 block_group->iref = 0; 3239 block_group->inode = NULL; 3240 spin_unlock(&block_group->lock); 3241 ASSERT(block_group->io_ctl.inode == NULL); 3242 iput(inode); 3243 last = block_group->start + block_group->length; 3244 btrfs_put_block_group(block_group); 3245 } 3246 } 3247 3248 /* 3249 * Must be called only after stopping all workers, since we could have block 3250 * group caching kthreads running, and therefore they could race with us if we 3251 * freed the block groups before stopping them. 3252 */ 3253 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3254 { 3255 struct btrfs_block_group *block_group; 3256 struct btrfs_space_info *space_info; 3257 struct btrfs_caching_control *caching_ctl; 3258 struct rb_node *n; 3259 3260 down_write(&info->commit_root_sem); 3261 while (!list_empty(&info->caching_block_groups)) { 3262 caching_ctl = list_entry(info->caching_block_groups.next, 3263 struct btrfs_caching_control, list); 3264 list_del(&caching_ctl->list); 3265 btrfs_put_caching_control(caching_ctl); 3266 } 3267 up_write(&info->commit_root_sem); 3268 3269 spin_lock(&info->unused_bgs_lock); 3270 while (!list_empty(&info->unused_bgs)) { 3271 block_group = list_first_entry(&info->unused_bgs, 3272 struct btrfs_block_group, 3273 bg_list); 3274 list_del_init(&block_group->bg_list); 3275 btrfs_put_block_group(block_group); 3276 } 3277 spin_unlock(&info->unused_bgs_lock); 3278 3279 spin_lock(&info->block_group_cache_lock); 3280 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3281 block_group = rb_entry(n, struct btrfs_block_group, 3282 cache_node); 3283 rb_erase(&block_group->cache_node, 3284 &info->block_group_cache_tree); 3285 RB_CLEAR_NODE(&block_group->cache_node); 3286 spin_unlock(&info->block_group_cache_lock); 3287 3288 down_write(&block_group->space_info->groups_sem); 3289 list_del(&block_group->list); 3290 up_write(&block_group->space_info->groups_sem); 3291 3292 /* 3293 * We haven't cached this block group, which means we could 3294 * possibly have excluded extents on this block group. 3295 */ 3296 if (block_group->cached == BTRFS_CACHE_NO || 3297 block_group->cached == BTRFS_CACHE_ERROR) 3298 btrfs_free_excluded_extents(block_group); 3299 3300 btrfs_remove_free_space_cache(block_group); 3301 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3302 ASSERT(list_empty(&block_group->dirty_list)); 3303 ASSERT(list_empty(&block_group->io_list)); 3304 ASSERT(list_empty(&block_group->bg_list)); 3305 ASSERT(atomic_read(&block_group->count) == 1); 3306 btrfs_put_block_group(block_group); 3307 3308 spin_lock(&info->block_group_cache_lock); 3309 } 3310 spin_unlock(&info->block_group_cache_lock); 3311 3312 /* 3313 * Now that all the block groups are freed, go through and free all the 3314 * space_info structs. This is only called during the final stages of 3315 * unmount, and so we know nobody is using them. We call 3316 * synchronize_rcu() once before we start, just to be on the safe side. 3317 */ 3318 synchronize_rcu(); 3319 3320 btrfs_release_global_block_rsv(info); 3321 3322 while (!list_empty(&info->space_info)) { 3323 space_info = list_entry(info->space_info.next, 3324 struct btrfs_space_info, 3325 list); 3326 3327 /* 3328 * Do not hide this behind enospc_debug, this is actually 3329 * important and indicates a real bug if this happens. 3330 */ 3331 if (WARN_ON(space_info->bytes_pinned > 0 || 3332 space_info->bytes_reserved > 0 || 3333 space_info->bytes_may_use > 0)) 3334 btrfs_dump_space_info(info, space_info, 0, 0); 3335 list_del(&space_info->list); 3336 btrfs_sysfs_remove_space_info(space_info); 3337 } 3338 return 0; 3339 } 3340