1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "volumes.h" 11 #include "transaction.h" 12 #include "ref-verify.h" 13 #include "sysfs.h" 14 #include "tree-log.h" 15 #include "delalloc-space.h" 16 #include "discard.h" 17 #include "raid56.h" 18 #include "zoned.h" 19 20 /* 21 * Return target flags in extended format or 0 if restripe for this chunk_type 22 * is not in progress 23 * 24 * Should be called with balance_lock held 25 */ 26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 27 { 28 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 29 u64 target = 0; 30 31 if (!bctl) 32 return 0; 33 34 if (flags & BTRFS_BLOCK_GROUP_DATA && 35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 43 } 44 45 return target; 46 } 47 48 /* 49 * @flags: available profiles in extended format (see ctree.h) 50 * 51 * Return reduced profile in chunk format. If profile changing is in progress 52 * (either running or paused) picks the target profile (if it's already 53 * available), otherwise falls back to plain reducing. 54 */ 55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 56 { 57 u64 num_devices = fs_info->fs_devices->rw_devices; 58 u64 target; 59 u64 raid_type; 60 u64 allowed = 0; 61 62 /* 63 * See if restripe for this chunk_type is in progress, if so try to 64 * reduce to the target profile 65 */ 66 spin_lock(&fs_info->balance_lock); 67 target = get_restripe_target(fs_info, flags); 68 if (target) { 69 spin_unlock(&fs_info->balance_lock); 70 return extended_to_chunk(target); 71 } 72 spin_unlock(&fs_info->balance_lock); 73 74 /* First, mask out the RAID levels which aren't possible */ 75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 76 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 77 allowed |= btrfs_raid_array[raid_type].bg_flag; 78 } 79 allowed &= flags; 80 81 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 82 allowed = BTRFS_BLOCK_GROUP_RAID6; 83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 84 allowed = BTRFS_BLOCK_GROUP_RAID5; 85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 86 allowed = BTRFS_BLOCK_GROUP_RAID10; 87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 88 allowed = BTRFS_BLOCK_GROUP_RAID1; 89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 90 allowed = BTRFS_BLOCK_GROUP_RAID0; 91 92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 93 94 return extended_to_chunk(flags | allowed); 95 } 96 97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 98 { 99 unsigned seq; 100 u64 flags; 101 102 do { 103 flags = orig_flags; 104 seq = read_seqbegin(&fs_info->profiles_lock); 105 106 if (flags & BTRFS_BLOCK_GROUP_DATA) 107 flags |= fs_info->avail_data_alloc_bits; 108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 109 flags |= fs_info->avail_system_alloc_bits; 110 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 111 flags |= fs_info->avail_metadata_alloc_bits; 112 } while (read_seqretry(&fs_info->profiles_lock, seq)); 113 114 return btrfs_reduce_alloc_profile(fs_info, flags); 115 } 116 117 void btrfs_get_block_group(struct btrfs_block_group *cache) 118 { 119 refcount_inc(&cache->refs); 120 } 121 122 void btrfs_put_block_group(struct btrfs_block_group *cache) 123 { 124 if (refcount_dec_and_test(&cache->refs)) { 125 WARN_ON(cache->pinned > 0); 126 WARN_ON(cache->reserved > 0); 127 128 /* 129 * A block_group shouldn't be on the discard_list anymore. 130 * Remove the block_group from the discard_list to prevent us 131 * from causing a panic due to NULL pointer dereference. 132 */ 133 if (WARN_ON(!list_empty(&cache->discard_list))) 134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 135 cache); 136 137 /* 138 * If not empty, someone is still holding mutex of 139 * full_stripe_lock, which can only be released by caller. 140 * And it will definitely cause use-after-free when caller 141 * tries to release full stripe lock. 142 * 143 * No better way to resolve, but only to warn. 144 */ 145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 146 kfree(cache->free_space_ctl); 147 kfree(cache); 148 } 149 } 150 151 /* 152 * This adds the block group to the fs_info rb tree for the block group cache 153 */ 154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 155 struct btrfs_block_group *block_group) 156 { 157 struct rb_node **p; 158 struct rb_node *parent = NULL; 159 struct btrfs_block_group *cache; 160 161 ASSERT(block_group->length != 0); 162 163 spin_lock(&info->block_group_cache_lock); 164 p = &info->block_group_cache_tree.rb_node; 165 166 while (*p) { 167 parent = *p; 168 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 169 if (block_group->start < cache->start) { 170 p = &(*p)->rb_left; 171 } else if (block_group->start > cache->start) { 172 p = &(*p)->rb_right; 173 } else { 174 spin_unlock(&info->block_group_cache_lock); 175 return -EEXIST; 176 } 177 } 178 179 rb_link_node(&block_group->cache_node, parent, p); 180 rb_insert_color(&block_group->cache_node, 181 &info->block_group_cache_tree); 182 183 if (info->first_logical_byte > block_group->start) 184 info->first_logical_byte = block_group->start; 185 186 spin_unlock(&info->block_group_cache_lock); 187 188 return 0; 189 } 190 191 /* 192 * This will return the block group at or after bytenr if contains is 0, else 193 * it will return the block group that contains the bytenr 194 */ 195 static struct btrfs_block_group *block_group_cache_tree_search( 196 struct btrfs_fs_info *info, u64 bytenr, int contains) 197 { 198 struct btrfs_block_group *cache, *ret = NULL; 199 struct rb_node *n; 200 u64 end, start; 201 202 spin_lock(&info->block_group_cache_lock); 203 n = info->block_group_cache_tree.rb_node; 204 205 while (n) { 206 cache = rb_entry(n, struct btrfs_block_group, cache_node); 207 end = cache->start + cache->length - 1; 208 start = cache->start; 209 210 if (bytenr < start) { 211 if (!contains && (!ret || start < ret->start)) 212 ret = cache; 213 n = n->rb_left; 214 } else if (bytenr > start) { 215 if (contains && bytenr <= end) { 216 ret = cache; 217 break; 218 } 219 n = n->rb_right; 220 } else { 221 ret = cache; 222 break; 223 } 224 } 225 if (ret) { 226 btrfs_get_block_group(ret); 227 if (bytenr == 0 && info->first_logical_byte > ret->start) 228 info->first_logical_byte = ret->start; 229 } 230 spin_unlock(&info->block_group_cache_lock); 231 232 return ret; 233 } 234 235 /* 236 * Return the block group that starts at or after bytenr 237 */ 238 struct btrfs_block_group *btrfs_lookup_first_block_group( 239 struct btrfs_fs_info *info, u64 bytenr) 240 { 241 return block_group_cache_tree_search(info, bytenr, 0); 242 } 243 244 /* 245 * Return the block group that contains the given bytenr 246 */ 247 struct btrfs_block_group *btrfs_lookup_block_group( 248 struct btrfs_fs_info *info, u64 bytenr) 249 { 250 return block_group_cache_tree_search(info, bytenr, 1); 251 } 252 253 struct btrfs_block_group *btrfs_next_block_group( 254 struct btrfs_block_group *cache) 255 { 256 struct btrfs_fs_info *fs_info = cache->fs_info; 257 struct rb_node *node; 258 259 spin_lock(&fs_info->block_group_cache_lock); 260 261 /* If our block group was removed, we need a full search. */ 262 if (RB_EMPTY_NODE(&cache->cache_node)) { 263 const u64 next_bytenr = cache->start + cache->length; 264 265 spin_unlock(&fs_info->block_group_cache_lock); 266 btrfs_put_block_group(cache); 267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 268 } 269 node = rb_next(&cache->cache_node); 270 btrfs_put_block_group(cache); 271 if (node) { 272 cache = rb_entry(node, struct btrfs_block_group, cache_node); 273 btrfs_get_block_group(cache); 274 } else 275 cache = NULL; 276 spin_unlock(&fs_info->block_group_cache_lock); 277 return cache; 278 } 279 280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 281 { 282 struct btrfs_block_group *bg; 283 bool ret = true; 284 285 bg = btrfs_lookup_block_group(fs_info, bytenr); 286 if (!bg) 287 return false; 288 289 spin_lock(&bg->lock); 290 if (bg->ro) 291 ret = false; 292 else 293 atomic_inc(&bg->nocow_writers); 294 spin_unlock(&bg->lock); 295 296 /* No put on block group, done by btrfs_dec_nocow_writers */ 297 if (!ret) 298 btrfs_put_block_group(bg); 299 300 return ret; 301 } 302 303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 304 { 305 struct btrfs_block_group *bg; 306 307 bg = btrfs_lookup_block_group(fs_info, bytenr); 308 ASSERT(bg); 309 if (atomic_dec_and_test(&bg->nocow_writers)) 310 wake_up_var(&bg->nocow_writers); 311 /* 312 * Once for our lookup and once for the lookup done by a previous call 313 * to btrfs_inc_nocow_writers() 314 */ 315 btrfs_put_block_group(bg); 316 btrfs_put_block_group(bg); 317 } 318 319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 320 { 321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 322 } 323 324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 325 const u64 start) 326 { 327 struct btrfs_block_group *bg; 328 329 bg = btrfs_lookup_block_group(fs_info, start); 330 ASSERT(bg); 331 if (atomic_dec_and_test(&bg->reservations)) 332 wake_up_var(&bg->reservations); 333 btrfs_put_block_group(bg); 334 } 335 336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 337 { 338 struct btrfs_space_info *space_info = bg->space_info; 339 340 ASSERT(bg->ro); 341 342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 343 return; 344 345 /* 346 * Our block group is read only but before we set it to read only, 347 * some task might have had allocated an extent from it already, but it 348 * has not yet created a respective ordered extent (and added it to a 349 * root's list of ordered extents). 350 * Therefore wait for any task currently allocating extents, since the 351 * block group's reservations counter is incremented while a read lock 352 * on the groups' semaphore is held and decremented after releasing 353 * the read access on that semaphore and creating the ordered extent. 354 */ 355 down_write(&space_info->groups_sem); 356 up_write(&space_info->groups_sem); 357 358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 359 } 360 361 struct btrfs_caching_control *btrfs_get_caching_control( 362 struct btrfs_block_group *cache) 363 { 364 struct btrfs_caching_control *ctl; 365 366 spin_lock(&cache->lock); 367 if (!cache->caching_ctl) { 368 spin_unlock(&cache->lock); 369 return NULL; 370 } 371 372 ctl = cache->caching_ctl; 373 refcount_inc(&ctl->count); 374 spin_unlock(&cache->lock); 375 return ctl; 376 } 377 378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 379 { 380 if (refcount_dec_and_test(&ctl->count)) 381 kfree(ctl); 382 } 383 384 /* 385 * When we wait for progress in the block group caching, its because our 386 * allocation attempt failed at least once. So, we must sleep and let some 387 * progress happen before we try again. 388 * 389 * This function will sleep at least once waiting for new free space to show 390 * up, and then it will check the block group free space numbers for our min 391 * num_bytes. Another option is to have it go ahead and look in the rbtree for 392 * a free extent of a given size, but this is a good start. 393 * 394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 395 * any of the information in this block group. 396 */ 397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 398 u64 num_bytes) 399 { 400 struct btrfs_caching_control *caching_ctl; 401 402 caching_ctl = btrfs_get_caching_control(cache); 403 if (!caching_ctl) 404 return; 405 406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 407 (cache->free_space_ctl->free_space >= num_bytes)); 408 409 btrfs_put_caching_control(caching_ctl); 410 } 411 412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 413 { 414 struct btrfs_caching_control *caching_ctl; 415 int ret = 0; 416 417 caching_ctl = btrfs_get_caching_control(cache); 418 if (!caching_ctl) 419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 420 421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 422 if (cache->cached == BTRFS_CACHE_ERROR) 423 ret = -EIO; 424 btrfs_put_caching_control(caching_ctl); 425 return ret; 426 } 427 428 static bool space_cache_v1_done(struct btrfs_block_group *cache) 429 { 430 bool ret; 431 432 spin_lock(&cache->lock); 433 ret = cache->cached != BTRFS_CACHE_FAST; 434 spin_unlock(&cache->lock); 435 436 return ret; 437 } 438 439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, 440 struct btrfs_caching_control *caching_ctl) 441 { 442 wait_event(caching_ctl->wait, space_cache_v1_done(cache)); 443 } 444 445 #ifdef CONFIG_BTRFS_DEBUG 446 static void fragment_free_space(struct btrfs_block_group *block_group) 447 { 448 struct btrfs_fs_info *fs_info = block_group->fs_info; 449 u64 start = block_group->start; 450 u64 len = block_group->length; 451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 452 fs_info->nodesize : fs_info->sectorsize; 453 u64 step = chunk << 1; 454 455 while (len > chunk) { 456 btrfs_remove_free_space(block_group, start, chunk); 457 start += step; 458 if (len < step) 459 len = 0; 460 else 461 len -= step; 462 } 463 } 464 #endif 465 466 /* 467 * This is only called by btrfs_cache_block_group, since we could have freed 468 * extents we need to check the pinned_extents for any extents that can't be 469 * used yet since their free space will be released as soon as the transaction 470 * commits. 471 */ 472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 473 { 474 struct btrfs_fs_info *info = block_group->fs_info; 475 u64 extent_start, extent_end, size, total_added = 0; 476 int ret; 477 478 while (start < end) { 479 ret = find_first_extent_bit(&info->excluded_extents, start, 480 &extent_start, &extent_end, 481 EXTENT_DIRTY | EXTENT_UPTODATE, 482 NULL); 483 if (ret) 484 break; 485 486 if (extent_start <= start) { 487 start = extent_end + 1; 488 } else if (extent_start > start && extent_start < end) { 489 size = extent_start - start; 490 total_added += size; 491 ret = btrfs_add_free_space_async_trimmed(block_group, 492 start, size); 493 BUG_ON(ret); /* -ENOMEM or logic error */ 494 start = extent_end + 1; 495 } else { 496 break; 497 } 498 } 499 500 if (start < end) { 501 size = end - start; 502 total_added += size; 503 ret = btrfs_add_free_space_async_trimmed(block_group, start, 504 size); 505 BUG_ON(ret); /* -ENOMEM or logic error */ 506 } 507 508 return total_added; 509 } 510 511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 512 { 513 struct btrfs_block_group *block_group = caching_ctl->block_group; 514 struct btrfs_fs_info *fs_info = block_group->fs_info; 515 struct btrfs_root *extent_root = fs_info->extent_root; 516 struct btrfs_path *path; 517 struct extent_buffer *leaf; 518 struct btrfs_key key; 519 u64 total_found = 0; 520 u64 last = 0; 521 u32 nritems; 522 int ret; 523 bool wakeup = true; 524 525 path = btrfs_alloc_path(); 526 if (!path) 527 return -ENOMEM; 528 529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 530 531 #ifdef CONFIG_BTRFS_DEBUG 532 /* 533 * If we're fragmenting we don't want to make anybody think we can 534 * allocate from this block group until we've had a chance to fragment 535 * the free space. 536 */ 537 if (btrfs_should_fragment_free_space(block_group)) 538 wakeup = false; 539 #endif 540 /* 541 * We don't want to deadlock with somebody trying to allocate a new 542 * extent for the extent root while also trying to search the extent 543 * root to add free space. So we skip locking and search the commit 544 * root, since its read-only 545 */ 546 path->skip_locking = 1; 547 path->search_commit_root = 1; 548 path->reada = READA_FORWARD; 549 550 key.objectid = last; 551 key.offset = 0; 552 key.type = BTRFS_EXTENT_ITEM_KEY; 553 554 next: 555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 556 if (ret < 0) 557 goto out; 558 559 leaf = path->nodes[0]; 560 nritems = btrfs_header_nritems(leaf); 561 562 while (1) { 563 if (btrfs_fs_closing(fs_info) > 1) { 564 last = (u64)-1; 565 break; 566 } 567 568 if (path->slots[0] < nritems) { 569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 570 } else { 571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 572 if (ret) 573 break; 574 575 if (need_resched() || 576 rwsem_is_contended(&fs_info->commit_root_sem)) { 577 if (wakeup) 578 caching_ctl->progress = last; 579 btrfs_release_path(path); 580 up_read(&fs_info->commit_root_sem); 581 mutex_unlock(&caching_ctl->mutex); 582 cond_resched(); 583 mutex_lock(&caching_ctl->mutex); 584 down_read(&fs_info->commit_root_sem); 585 goto next; 586 } 587 588 ret = btrfs_next_leaf(extent_root, path); 589 if (ret < 0) 590 goto out; 591 if (ret) 592 break; 593 leaf = path->nodes[0]; 594 nritems = btrfs_header_nritems(leaf); 595 continue; 596 } 597 598 if (key.objectid < last) { 599 key.objectid = last; 600 key.offset = 0; 601 key.type = BTRFS_EXTENT_ITEM_KEY; 602 603 if (wakeup) 604 caching_ctl->progress = last; 605 btrfs_release_path(path); 606 goto next; 607 } 608 609 if (key.objectid < block_group->start) { 610 path->slots[0]++; 611 continue; 612 } 613 614 if (key.objectid >= block_group->start + block_group->length) 615 break; 616 617 if (key.type == BTRFS_EXTENT_ITEM_KEY || 618 key.type == BTRFS_METADATA_ITEM_KEY) { 619 total_found += add_new_free_space(block_group, last, 620 key.objectid); 621 if (key.type == BTRFS_METADATA_ITEM_KEY) 622 last = key.objectid + 623 fs_info->nodesize; 624 else 625 last = key.objectid + key.offset; 626 627 if (total_found > CACHING_CTL_WAKE_UP) { 628 total_found = 0; 629 if (wakeup) 630 wake_up(&caching_ctl->wait); 631 } 632 } 633 path->slots[0]++; 634 } 635 ret = 0; 636 637 total_found += add_new_free_space(block_group, last, 638 block_group->start + block_group->length); 639 caching_ctl->progress = (u64)-1; 640 641 out: 642 btrfs_free_path(path); 643 return ret; 644 } 645 646 static noinline void caching_thread(struct btrfs_work *work) 647 { 648 struct btrfs_block_group *block_group; 649 struct btrfs_fs_info *fs_info; 650 struct btrfs_caching_control *caching_ctl; 651 int ret; 652 653 caching_ctl = container_of(work, struct btrfs_caching_control, work); 654 block_group = caching_ctl->block_group; 655 fs_info = block_group->fs_info; 656 657 mutex_lock(&caching_ctl->mutex); 658 down_read(&fs_info->commit_root_sem); 659 660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 661 ret = load_free_space_cache(block_group); 662 if (ret == 1) { 663 ret = 0; 664 goto done; 665 } 666 667 /* 668 * We failed to load the space cache, set ourselves to 669 * CACHE_STARTED and carry on. 670 */ 671 spin_lock(&block_group->lock); 672 block_group->cached = BTRFS_CACHE_STARTED; 673 spin_unlock(&block_group->lock); 674 wake_up(&caching_ctl->wait); 675 } 676 677 /* 678 * If we are in the transaction that populated the free space tree we 679 * can't actually cache from the free space tree as our commit root and 680 * real root are the same, so we could change the contents of the blocks 681 * while caching. Instead do the slow caching in this case, and after 682 * the transaction has committed we will be safe. 683 */ 684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 686 ret = load_free_space_tree(caching_ctl); 687 else 688 ret = load_extent_tree_free(caching_ctl); 689 done: 690 spin_lock(&block_group->lock); 691 block_group->caching_ctl = NULL; 692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 693 spin_unlock(&block_group->lock); 694 695 #ifdef CONFIG_BTRFS_DEBUG 696 if (btrfs_should_fragment_free_space(block_group)) { 697 u64 bytes_used; 698 699 spin_lock(&block_group->space_info->lock); 700 spin_lock(&block_group->lock); 701 bytes_used = block_group->length - block_group->used; 702 block_group->space_info->bytes_used += bytes_used >> 1; 703 spin_unlock(&block_group->lock); 704 spin_unlock(&block_group->space_info->lock); 705 fragment_free_space(block_group); 706 } 707 #endif 708 709 caching_ctl->progress = (u64)-1; 710 711 up_read(&fs_info->commit_root_sem); 712 btrfs_free_excluded_extents(block_group); 713 mutex_unlock(&caching_ctl->mutex); 714 715 wake_up(&caching_ctl->wait); 716 717 btrfs_put_caching_control(caching_ctl); 718 btrfs_put_block_group(block_group); 719 } 720 721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 722 { 723 DEFINE_WAIT(wait); 724 struct btrfs_fs_info *fs_info = cache->fs_info; 725 struct btrfs_caching_control *caching_ctl = NULL; 726 int ret = 0; 727 728 /* Allocator for zoned filesystems does not use the cache at all */ 729 if (btrfs_is_zoned(fs_info)) 730 return 0; 731 732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 733 if (!caching_ctl) 734 return -ENOMEM; 735 736 INIT_LIST_HEAD(&caching_ctl->list); 737 mutex_init(&caching_ctl->mutex); 738 init_waitqueue_head(&caching_ctl->wait); 739 caching_ctl->block_group = cache; 740 caching_ctl->progress = cache->start; 741 refcount_set(&caching_ctl->count, 2); 742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 743 744 spin_lock(&cache->lock); 745 if (cache->cached != BTRFS_CACHE_NO) { 746 kfree(caching_ctl); 747 748 caching_ctl = cache->caching_ctl; 749 if (caching_ctl) 750 refcount_inc(&caching_ctl->count); 751 spin_unlock(&cache->lock); 752 goto out; 753 } 754 WARN_ON(cache->caching_ctl); 755 cache->caching_ctl = caching_ctl; 756 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 757 cache->cached = BTRFS_CACHE_FAST; 758 else 759 cache->cached = BTRFS_CACHE_STARTED; 760 cache->has_caching_ctl = 1; 761 spin_unlock(&cache->lock); 762 763 spin_lock(&fs_info->block_group_cache_lock); 764 refcount_inc(&caching_ctl->count); 765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 766 spin_unlock(&fs_info->block_group_cache_lock); 767 768 btrfs_get_block_group(cache); 769 770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 771 out: 772 if (load_cache_only && caching_ctl) 773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl); 774 if (caching_ctl) 775 btrfs_put_caching_control(caching_ctl); 776 777 return ret; 778 } 779 780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 781 { 782 u64 extra_flags = chunk_to_extended(flags) & 783 BTRFS_EXTENDED_PROFILE_MASK; 784 785 write_seqlock(&fs_info->profiles_lock); 786 if (flags & BTRFS_BLOCK_GROUP_DATA) 787 fs_info->avail_data_alloc_bits &= ~extra_flags; 788 if (flags & BTRFS_BLOCK_GROUP_METADATA) 789 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 791 fs_info->avail_system_alloc_bits &= ~extra_flags; 792 write_sequnlock(&fs_info->profiles_lock); 793 } 794 795 /* 796 * Clear incompat bits for the following feature(s): 797 * 798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 799 * in the whole filesystem 800 * 801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 802 */ 803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 804 { 805 bool found_raid56 = false; 806 bool found_raid1c34 = false; 807 808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 811 struct list_head *head = &fs_info->space_info; 812 struct btrfs_space_info *sinfo; 813 814 list_for_each_entry_rcu(sinfo, head, list) { 815 down_read(&sinfo->groups_sem); 816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 817 found_raid56 = true; 818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 819 found_raid56 = true; 820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 821 found_raid1c34 = true; 822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 823 found_raid1c34 = true; 824 up_read(&sinfo->groups_sem); 825 } 826 if (!found_raid56) 827 btrfs_clear_fs_incompat(fs_info, RAID56); 828 if (!found_raid1c34) 829 btrfs_clear_fs_incompat(fs_info, RAID1C34); 830 } 831 } 832 833 static int remove_block_group_item(struct btrfs_trans_handle *trans, 834 struct btrfs_path *path, 835 struct btrfs_block_group *block_group) 836 { 837 struct btrfs_fs_info *fs_info = trans->fs_info; 838 struct btrfs_root *root; 839 struct btrfs_key key; 840 int ret; 841 842 root = fs_info->extent_root; 843 key.objectid = block_group->start; 844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 845 key.offset = block_group->length; 846 847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 848 if (ret > 0) 849 ret = -ENOENT; 850 if (ret < 0) 851 return ret; 852 853 ret = btrfs_del_item(trans, root, path); 854 return ret; 855 } 856 857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 858 u64 group_start, struct extent_map *em) 859 { 860 struct btrfs_fs_info *fs_info = trans->fs_info; 861 struct btrfs_path *path; 862 struct btrfs_block_group *block_group; 863 struct btrfs_free_cluster *cluster; 864 struct inode *inode; 865 struct kobject *kobj = NULL; 866 int ret; 867 int index; 868 int factor; 869 struct btrfs_caching_control *caching_ctl = NULL; 870 bool remove_em; 871 bool remove_rsv = false; 872 873 block_group = btrfs_lookup_block_group(fs_info, group_start); 874 BUG_ON(!block_group); 875 BUG_ON(!block_group->ro); 876 877 trace_btrfs_remove_block_group(block_group); 878 /* 879 * Free the reserved super bytes from this block group before 880 * remove it. 881 */ 882 btrfs_free_excluded_extents(block_group); 883 btrfs_free_ref_tree_range(fs_info, block_group->start, 884 block_group->length); 885 886 index = btrfs_bg_flags_to_raid_index(block_group->flags); 887 factor = btrfs_bg_type_to_factor(block_group->flags); 888 889 /* make sure this block group isn't part of an allocation cluster */ 890 cluster = &fs_info->data_alloc_cluster; 891 spin_lock(&cluster->refill_lock); 892 btrfs_return_cluster_to_free_space(block_group, cluster); 893 spin_unlock(&cluster->refill_lock); 894 895 /* 896 * make sure this block group isn't part of a metadata 897 * allocation cluster 898 */ 899 cluster = &fs_info->meta_alloc_cluster; 900 spin_lock(&cluster->refill_lock); 901 btrfs_return_cluster_to_free_space(block_group, cluster); 902 spin_unlock(&cluster->refill_lock); 903 904 btrfs_clear_treelog_bg(block_group); 905 906 path = btrfs_alloc_path(); 907 if (!path) { 908 ret = -ENOMEM; 909 goto out; 910 } 911 912 /* 913 * get the inode first so any iput calls done for the io_list 914 * aren't the final iput (no unlinks allowed now) 915 */ 916 inode = lookup_free_space_inode(block_group, path); 917 918 mutex_lock(&trans->transaction->cache_write_mutex); 919 /* 920 * Make sure our free space cache IO is done before removing the 921 * free space inode 922 */ 923 spin_lock(&trans->transaction->dirty_bgs_lock); 924 if (!list_empty(&block_group->io_list)) { 925 list_del_init(&block_group->io_list); 926 927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 928 929 spin_unlock(&trans->transaction->dirty_bgs_lock); 930 btrfs_wait_cache_io(trans, block_group, path); 931 btrfs_put_block_group(block_group); 932 spin_lock(&trans->transaction->dirty_bgs_lock); 933 } 934 935 if (!list_empty(&block_group->dirty_list)) { 936 list_del_init(&block_group->dirty_list); 937 remove_rsv = true; 938 btrfs_put_block_group(block_group); 939 } 940 spin_unlock(&trans->transaction->dirty_bgs_lock); 941 mutex_unlock(&trans->transaction->cache_write_mutex); 942 943 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 944 if (ret) 945 goto out; 946 947 spin_lock(&fs_info->block_group_cache_lock); 948 rb_erase(&block_group->cache_node, 949 &fs_info->block_group_cache_tree); 950 RB_CLEAR_NODE(&block_group->cache_node); 951 952 /* Once for the block groups rbtree */ 953 btrfs_put_block_group(block_group); 954 955 if (fs_info->first_logical_byte == block_group->start) 956 fs_info->first_logical_byte = (u64)-1; 957 spin_unlock(&fs_info->block_group_cache_lock); 958 959 down_write(&block_group->space_info->groups_sem); 960 /* 961 * we must use list_del_init so people can check to see if they 962 * are still on the list after taking the semaphore 963 */ 964 list_del_init(&block_group->list); 965 if (list_empty(&block_group->space_info->block_groups[index])) { 966 kobj = block_group->space_info->block_group_kobjs[index]; 967 block_group->space_info->block_group_kobjs[index] = NULL; 968 clear_avail_alloc_bits(fs_info, block_group->flags); 969 } 970 up_write(&block_group->space_info->groups_sem); 971 clear_incompat_bg_bits(fs_info, block_group->flags); 972 if (kobj) { 973 kobject_del(kobj); 974 kobject_put(kobj); 975 } 976 977 if (block_group->has_caching_ctl) 978 caching_ctl = btrfs_get_caching_control(block_group); 979 if (block_group->cached == BTRFS_CACHE_STARTED) 980 btrfs_wait_block_group_cache_done(block_group); 981 if (block_group->has_caching_ctl) { 982 spin_lock(&fs_info->block_group_cache_lock); 983 if (!caching_ctl) { 984 struct btrfs_caching_control *ctl; 985 986 list_for_each_entry(ctl, 987 &fs_info->caching_block_groups, list) 988 if (ctl->block_group == block_group) { 989 caching_ctl = ctl; 990 refcount_inc(&caching_ctl->count); 991 break; 992 } 993 } 994 if (caching_ctl) 995 list_del_init(&caching_ctl->list); 996 spin_unlock(&fs_info->block_group_cache_lock); 997 if (caching_ctl) { 998 /* Once for the caching bgs list and once for us. */ 999 btrfs_put_caching_control(caching_ctl); 1000 btrfs_put_caching_control(caching_ctl); 1001 } 1002 } 1003 1004 spin_lock(&trans->transaction->dirty_bgs_lock); 1005 WARN_ON(!list_empty(&block_group->dirty_list)); 1006 WARN_ON(!list_empty(&block_group->io_list)); 1007 spin_unlock(&trans->transaction->dirty_bgs_lock); 1008 1009 btrfs_remove_free_space_cache(block_group); 1010 1011 spin_lock(&block_group->space_info->lock); 1012 list_del_init(&block_group->ro_list); 1013 1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1015 WARN_ON(block_group->space_info->total_bytes 1016 < block_group->length); 1017 WARN_ON(block_group->space_info->bytes_readonly 1018 < block_group->length - block_group->zone_unusable); 1019 WARN_ON(block_group->space_info->bytes_zone_unusable 1020 < block_group->zone_unusable); 1021 WARN_ON(block_group->space_info->disk_total 1022 < block_group->length * factor); 1023 } 1024 block_group->space_info->total_bytes -= block_group->length; 1025 block_group->space_info->bytes_readonly -= 1026 (block_group->length - block_group->zone_unusable); 1027 block_group->space_info->bytes_zone_unusable -= 1028 block_group->zone_unusable; 1029 block_group->space_info->disk_total -= block_group->length * factor; 1030 1031 spin_unlock(&block_group->space_info->lock); 1032 1033 /* 1034 * Remove the free space for the block group from the free space tree 1035 * and the block group's item from the extent tree before marking the 1036 * block group as removed. This is to prevent races with tasks that 1037 * freeze and unfreeze a block group, this task and another task 1038 * allocating a new block group - the unfreeze task ends up removing 1039 * the block group's extent map before the task calling this function 1040 * deletes the block group item from the extent tree, allowing for 1041 * another task to attempt to create another block group with the same 1042 * item key (and failing with -EEXIST and a transaction abort). 1043 */ 1044 ret = remove_block_group_free_space(trans, block_group); 1045 if (ret) 1046 goto out; 1047 1048 ret = remove_block_group_item(trans, path, block_group); 1049 if (ret < 0) 1050 goto out; 1051 1052 spin_lock(&block_group->lock); 1053 block_group->removed = 1; 1054 /* 1055 * At this point trimming or scrub can't start on this block group, 1056 * because we removed the block group from the rbtree 1057 * fs_info->block_group_cache_tree so no one can't find it anymore and 1058 * even if someone already got this block group before we removed it 1059 * from the rbtree, they have already incremented block_group->frozen - 1060 * if they didn't, for the trimming case they won't find any free space 1061 * entries because we already removed them all when we called 1062 * btrfs_remove_free_space_cache(). 1063 * 1064 * And we must not remove the extent map from the fs_info->mapping_tree 1065 * to prevent the same logical address range and physical device space 1066 * ranges from being reused for a new block group. This is needed to 1067 * avoid races with trimming and scrub. 1068 * 1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1070 * completely transactionless, so while it is trimming a range the 1071 * currently running transaction might finish and a new one start, 1072 * allowing for new block groups to be created that can reuse the same 1073 * physical device locations unless we take this special care. 1074 * 1075 * There may also be an implicit trim operation if the file system 1076 * is mounted with -odiscard. The same protections must remain 1077 * in place until the extents have been discarded completely when 1078 * the transaction commit has completed. 1079 */ 1080 remove_em = (atomic_read(&block_group->frozen) == 0); 1081 spin_unlock(&block_group->lock); 1082 1083 if (remove_em) { 1084 struct extent_map_tree *em_tree; 1085 1086 em_tree = &fs_info->mapping_tree; 1087 write_lock(&em_tree->lock); 1088 remove_extent_mapping(em_tree, em); 1089 write_unlock(&em_tree->lock); 1090 /* once for the tree */ 1091 free_extent_map(em); 1092 } 1093 1094 out: 1095 /* Once for the lookup reference */ 1096 btrfs_put_block_group(block_group); 1097 if (remove_rsv) 1098 btrfs_delayed_refs_rsv_release(fs_info, 1); 1099 btrfs_free_path(path); 1100 return ret; 1101 } 1102 1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1105 { 1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1107 struct extent_map *em; 1108 struct map_lookup *map; 1109 unsigned int num_items; 1110 1111 read_lock(&em_tree->lock); 1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1113 read_unlock(&em_tree->lock); 1114 ASSERT(em && em->start == chunk_offset); 1115 1116 /* 1117 * We need to reserve 3 + N units from the metadata space info in order 1118 * to remove a block group (done at btrfs_remove_chunk() and at 1119 * btrfs_remove_block_group()), which are used for: 1120 * 1121 * 1 unit for adding the free space inode's orphan (located in the tree 1122 * of tree roots). 1123 * 1 unit for deleting the block group item (located in the extent 1124 * tree). 1125 * 1 unit for deleting the free space item (located in tree of tree 1126 * roots). 1127 * N units for deleting N device extent items corresponding to each 1128 * stripe (located in the device tree). 1129 * 1130 * In order to remove a block group we also need to reserve units in the 1131 * system space info in order to update the chunk tree (update one or 1132 * more device items and remove one chunk item), but this is done at 1133 * btrfs_remove_chunk() through a call to check_system_chunk(). 1134 */ 1135 map = em->map_lookup; 1136 num_items = 3 + map->num_stripes; 1137 free_extent_map(em); 1138 1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1140 num_items); 1141 } 1142 1143 /* 1144 * Mark block group @cache read-only, so later write won't happen to block 1145 * group @cache. 1146 * 1147 * If @force is not set, this function will only mark the block group readonly 1148 * if we have enough free space (1M) in other metadata/system block groups. 1149 * If @force is not set, this function will mark the block group readonly 1150 * without checking free space. 1151 * 1152 * NOTE: This function doesn't care if other block groups can contain all the 1153 * data in this block group. That check should be done by relocation routine, 1154 * not this function. 1155 */ 1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1157 { 1158 struct btrfs_space_info *sinfo = cache->space_info; 1159 u64 num_bytes; 1160 int ret = -ENOSPC; 1161 1162 spin_lock(&sinfo->lock); 1163 spin_lock(&cache->lock); 1164 1165 if (cache->swap_extents) { 1166 ret = -ETXTBSY; 1167 goto out; 1168 } 1169 1170 if (cache->ro) { 1171 cache->ro++; 1172 ret = 0; 1173 goto out; 1174 } 1175 1176 num_bytes = cache->length - cache->reserved - cache->pinned - 1177 cache->bytes_super - cache->zone_unusable - cache->used; 1178 1179 /* 1180 * Data never overcommits, even in mixed mode, so do just the straight 1181 * check of left over space in how much we have allocated. 1182 */ 1183 if (force) { 1184 ret = 0; 1185 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1186 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1187 1188 /* 1189 * Here we make sure if we mark this bg RO, we still have enough 1190 * free space as buffer. 1191 */ 1192 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1193 ret = 0; 1194 } else { 1195 /* 1196 * We overcommit metadata, so we need to do the 1197 * btrfs_can_overcommit check here, and we need to pass in 1198 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1199 * leeway to allow us to mark this block group as read only. 1200 */ 1201 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1202 BTRFS_RESERVE_NO_FLUSH)) 1203 ret = 0; 1204 } 1205 1206 if (!ret) { 1207 sinfo->bytes_readonly += num_bytes; 1208 if (btrfs_is_zoned(cache->fs_info)) { 1209 /* Migrate zone_unusable bytes to readonly */ 1210 sinfo->bytes_readonly += cache->zone_unusable; 1211 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1212 cache->zone_unusable = 0; 1213 } 1214 cache->ro++; 1215 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1216 } 1217 out: 1218 spin_unlock(&cache->lock); 1219 spin_unlock(&sinfo->lock); 1220 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1221 btrfs_info(cache->fs_info, 1222 "unable to make block group %llu ro", cache->start); 1223 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1224 } 1225 return ret; 1226 } 1227 1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1229 struct btrfs_block_group *bg) 1230 { 1231 struct btrfs_fs_info *fs_info = bg->fs_info; 1232 struct btrfs_transaction *prev_trans = NULL; 1233 const u64 start = bg->start; 1234 const u64 end = start + bg->length - 1; 1235 int ret; 1236 1237 spin_lock(&fs_info->trans_lock); 1238 if (trans->transaction->list.prev != &fs_info->trans_list) { 1239 prev_trans = list_last_entry(&trans->transaction->list, 1240 struct btrfs_transaction, list); 1241 refcount_inc(&prev_trans->use_count); 1242 } 1243 spin_unlock(&fs_info->trans_lock); 1244 1245 /* 1246 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1247 * btrfs_finish_extent_commit(). If we are at transaction N, another 1248 * task might be running finish_extent_commit() for the previous 1249 * transaction N - 1, and have seen a range belonging to the block 1250 * group in pinned_extents before we were able to clear the whole block 1251 * group range from pinned_extents. This means that task can lookup for 1252 * the block group after we unpinned it from pinned_extents and removed 1253 * it, leading to a BUG_ON() at unpin_extent_range(). 1254 */ 1255 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1256 if (prev_trans) { 1257 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1258 EXTENT_DIRTY); 1259 if (ret) 1260 goto out; 1261 } 1262 1263 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1264 EXTENT_DIRTY); 1265 out: 1266 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1267 if (prev_trans) 1268 btrfs_put_transaction(prev_trans); 1269 1270 return ret == 0; 1271 } 1272 1273 /* 1274 * Process the unused_bgs list and remove any that don't have any allocated 1275 * space inside of them. 1276 */ 1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1278 { 1279 struct btrfs_block_group *block_group; 1280 struct btrfs_space_info *space_info; 1281 struct btrfs_trans_handle *trans; 1282 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1283 int ret = 0; 1284 1285 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1286 return; 1287 1288 /* 1289 * Long running balances can keep us blocked here for eternity, so 1290 * simply skip deletion if we're unable to get the mutex. 1291 */ 1292 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1293 return; 1294 1295 spin_lock(&fs_info->unused_bgs_lock); 1296 while (!list_empty(&fs_info->unused_bgs)) { 1297 int trimming; 1298 1299 block_group = list_first_entry(&fs_info->unused_bgs, 1300 struct btrfs_block_group, 1301 bg_list); 1302 list_del_init(&block_group->bg_list); 1303 1304 space_info = block_group->space_info; 1305 1306 if (ret || btrfs_mixed_space_info(space_info)) { 1307 btrfs_put_block_group(block_group); 1308 continue; 1309 } 1310 spin_unlock(&fs_info->unused_bgs_lock); 1311 1312 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1313 1314 /* Don't want to race with allocators so take the groups_sem */ 1315 down_write(&space_info->groups_sem); 1316 1317 /* 1318 * Async discard moves the final block group discard to be prior 1319 * to the unused_bgs code path. Therefore, if it's not fully 1320 * trimmed, punt it back to the async discard lists. 1321 */ 1322 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1323 !btrfs_is_free_space_trimmed(block_group)) { 1324 trace_btrfs_skip_unused_block_group(block_group); 1325 up_write(&space_info->groups_sem); 1326 /* Requeue if we failed because of async discard */ 1327 btrfs_discard_queue_work(&fs_info->discard_ctl, 1328 block_group); 1329 goto next; 1330 } 1331 1332 spin_lock(&block_group->lock); 1333 if (block_group->reserved || block_group->pinned || 1334 block_group->used || block_group->ro || 1335 list_is_singular(&block_group->list)) { 1336 /* 1337 * We want to bail if we made new allocations or have 1338 * outstanding allocations in this block group. We do 1339 * the ro check in case balance is currently acting on 1340 * this block group. 1341 */ 1342 trace_btrfs_skip_unused_block_group(block_group); 1343 spin_unlock(&block_group->lock); 1344 up_write(&space_info->groups_sem); 1345 goto next; 1346 } 1347 spin_unlock(&block_group->lock); 1348 1349 /* We don't want to force the issue, only flip if it's ok. */ 1350 ret = inc_block_group_ro(block_group, 0); 1351 up_write(&space_info->groups_sem); 1352 if (ret < 0) { 1353 ret = 0; 1354 goto next; 1355 } 1356 1357 /* 1358 * Want to do this before we do anything else so we can recover 1359 * properly if we fail to join the transaction. 1360 */ 1361 trans = btrfs_start_trans_remove_block_group(fs_info, 1362 block_group->start); 1363 if (IS_ERR(trans)) { 1364 btrfs_dec_block_group_ro(block_group); 1365 ret = PTR_ERR(trans); 1366 goto next; 1367 } 1368 1369 /* 1370 * We could have pending pinned extents for this block group, 1371 * just delete them, we don't care about them anymore. 1372 */ 1373 if (!clean_pinned_extents(trans, block_group)) { 1374 btrfs_dec_block_group_ro(block_group); 1375 goto end_trans; 1376 } 1377 1378 /* 1379 * At this point, the block_group is read only and should fail 1380 * new allocations. However, btrfs_finish_extent_commit() can 1381 * cause this block_group to be placed back on the discard 1382 * lists because now the block_group isn't fully discarded. 1383 * Bail here and try again later after discarding everything. 1384 */ 1385 spin_lock(&fs_info->discard_ctl.lock); 1386 if (!list_empty(&block_group->discard_list)) { 1387 spin_unlock(&fs_info->discard_ctl.lock); 1388 btrfs_dec_block_group_ro(block_group); 1389 btrfs_discard_queue_work(&fs_info->discard_ctl, 1390 block_group); 1391 goto end_trans; 1392 } 1393 spin_unlock(&fs_info->discard_ctl.lock); 1394 1395 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1396 spin_lock(&space_info->lock); 1397 spin_lock(&block_group->lock); 1398 1399 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1400 -block_group->pinned); 1401 space_info->bytes_readonly += block_group->pinned; 1402 block_group->pinned = 0; 1403 1404 spin_unlock(&block_group->lock); 1405 spin_unlock(&space_info->lock); 1406 1407 /* 1408 * The normal path here is an unused block group is passed here, 1409 * then trimming is handled in the transaction commit path. 1410 * Async discard interposes before this to do the trimming 1411 * before coming down the unused block group path as trimming 1412 * will no longer be done later in the transaction commit path. 1413 */ 1414 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1415 goto flip_async; 1416 1417 /* 1418 * DISCARD can flip during remount. On zoned filesystems, we 1419 * need to reset sequential-required zones. 1420 */ 1421 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1422 btrfs_is_zoned(fs_info); 1423 1424 /* Implicit trim during transaction commit. */ 1425 if (trimming) 1426 btrfs_freeze_block_group(block_group); 1427 1428 /* 1429 * Btrfs_remove_chunk will abort the transaction if things go 1430 * horribly wrong. 1431 */ 1432 ret = btrfs_remove_chunk(trans, block_group->start); 1433 1434 if (ret) { 1435 if (trimming) 1436 btrfs_unfreeze_block_group(block_group); 1437 goto end_trans; 1438 } 1439 1440 /* 1441 * If we're not mounted with -odiscard, we can just forget 1442 * about this block group. Otherwise we'll need to wait 1443 * until transaction commit to do the actual discard. 1444 */ 1445 if (trimming) { 1446 spin_lock(&fs_info->unused_bgs_lock); 1447 /* 1448 * A concurrent scrub might have added us to the list 1449 * fs_info->unused_bgs, so use a list_move operation 1450 * to add the block group to the deleted_bgs list. 1451 */ 1452 list_move(&block_group->bg_list, 1453 &trans->transaction->deleted_bgs); 1454 spin_unlock(&fs_info->unused_bgs_lock); 1455 btrfs_get_block_group(block_group); 1456 } 1457 end_trans: 1458 btrfs_end_transaction(trans); 1459 next: 1460 btrfs_put_block_group(block_group); 1461 spin_lock(&fs_info->unused_bgs_lock); 1462 } 1463 spin_unlock(&fs_info->unused_bgs_lock); 1464 mutex_unlock(&fs_info->reclaim_bgs_lock); 1465 return; 1466 1467 flip_async: 1468 btrfs_end_transaction(trans); 1469 mutex_unlock(&fs_info->reclaim_bgs_lock); 1470 btrfs_put_block_group(block_group); 1471 btrfs_discard_punt_unused_bgs_list(fs_info); 1472 } 1473 1474 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1475 { 1476 struct btrfs_fs_info *fs_info = bg->fs_info; 1477 1478 spin_lock(&fs_info->unused_bgs_lock); 1479 if (list_empty(&bg->bg_list)) { 1480 btrfs_get_block_group(bg); 1481 trace_btrfs_add_unused_block_group(bg); 1482 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1483 } 1484 spin_unlock(&fs_info->unused_bgs_lock); 1485 } 1486 1487 void btrfs_reclaim_bgs_work(struct work_struct *work) 1488 { 1489 struct btrfs_fs_info *fs_info = 1490 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1491 struct btrfs_block_group *bg; 1492 struct btrfs_space_info *space_info; 1493 LIST_HEAD(again_list); 1494 1495 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1496 return; 1497 1498 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 1499 return; 1500 1501 mutex_lock(&fs_info->reclaim_bgs_lock); 1502 spin_lock(&fs_info->unused_bgs_lock); 1503 while (!list_empty(&fs_info->reclaim_bgs)) { 1504 int ret = 0; 1505 1506 bg = list_first_entry(&fs_info->reclaim_bgs, 1507 struct btrfs_block_group, 1508 bg_list); 1509 list_del_init(&bg->bg_list); 1510 1511 space_info = bg->space_info; 1512 spin_unlock(&fs_info->unused_bgs_lock); 1513 1514 /* Don't race with allocators so take the groups_sem */ 1515 down_write(&space_info->groups_sem); 1516 1517 spin_lock(&bg->lock); 1518 if (bg->reserved || bg->pinned || bg->ro) { 1519 /* 1520 * We want to bail if we made new allocations or have 1521 * outstanding allocations in this block group. We do 1522 * the ro check in case balance is currently acting on 1523 * this block group. 1524 */ 1525 spin_unlock(&bg->lock); 1526 up_write(&space_info->groups_sem); 1527 goto next; 1528 } 1529 spin_unlock(&bg->lock); 1530 1531 /* Get out fast, in case we're unmounting the filesystem */ 1532 if (btrfs_fs_closing(fs_info)) { 1533 up_write(&space_info->groups_sem); 1534 goto next; 1535 } 1536 1537 ret = inc_block_group_ro(bg, 0); 1538 up_write(&space_info->groups_sem); 1539 if (ret < 0) 1540 goto next; 1541 1542 btrfs_info(fs_info, "reclaiming chunk %llu with %llu%% used", 1543 bg->start, div_u64(bg->used * 100, bg->length)); 1544 trace_btrfs_reclaim_block_group(bg); 1545 ret = btrfs_relocate_chunk(fs_info, bg->start); 1546 if (ret) 1547 btrfs_err(fs_info, "error relocating chunk %llu", 1548 bg->start); 1549 1550 next: 1551 spin_lock(&fs_info->unused_bgs_lock); 1552 if (ret == -EAGAIN && list_empty(&bg->bg_list)) 1553 list_add_tail(&bg->bg_list, &again_list); 1554 else 1555 btrfs_put_block_group(bg); 1556 } 1557 list_splice_tail(&again_list, &fs_info->reclaim_bgs); 1558 spin_unlock(&fs_info->unused_bgs_lock); 1559 mutex_unlock(&fs_info->reclaim_bgs_lock); 1560 btrfs_exclop_finish(fs_info); 1561 } 1562 1563 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1564 { 1565 spin_lock(&fs_info->unused_bgs_lock); 1566 if (!list_empty(&fs_info->reclaim_bgs)) 1567 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1568 spin_unlock(&fs_info->unused_bgs_lock); 1569 } 1570 1571 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1572 { 1573 struct btrfs_fs_info *fs_info = bg->fs_info; 1574 1575 spin_lock(&fs_info->unused_bgs_lock); 1576 if (list_empty(&bg->bg_list)) { 1577 btrfs_get_block_group(bg); 1578 trace_btrfs_add_reclaim_block_group(bg); 1579 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1580 } 1581 spin_unlock(&fs_info->unused_bgs_lock); 1582 } 1583 1584 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1585 struct btrfs_path *path) 1586 { 1587 struct extent_map_tree *em_tree; 1588 struct extent_map *em; 1589 struct btrfs_block_group_item bg; 1590 struct extent_buffer *leaf; 1591 int slot; 1592 u64 flags; 1593 int ret = 0; 1594 1595 slot = path->slots[0]; 1596 leaf = path->nodes[0]; 1597 1598 em_tree = &fs_info->mapping_tree; 1599 read_lock(&em_tree->lock); 1600 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1601 read_unlock(&em_tree->lock); 1602 if (!em) { 1603 btrfs_err(fs_info, 1604 "logical %llu len %llu found bg but no related chunk", 1605 key->objectid, key->offset); 1606 return -ENOENT; 1607 } 1608 1609 if (em->start != key->objectid || em->len != key->offset) { 1610 btrfs_err(fs_info, 1611 "block group %llu len %llu mismatch with chunk %llu len %llu", 1612 key->objectid, key->offset, em->start, em->len); 1613 ret = -EUCLEAN; 1614 goto out_free_em; 1615 } 1616 1617 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 1618 sizeof(bg)); 1619 flags = btrfs_stack_block_group_flags(&bg) & 1620 BTRFS_BLOCK_GROUP_TYPE_MASK; 1621 1622 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1623 btrfs_err(fs_info, 1624 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1625 key->objectid, key->offset, flags, 1626 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 1627 ret = -EUCLEAN; 1628 } 1629 1630 out_free_em: 1631 free_extent_map(em); 1632 return ret; 1633 } 1634 1635 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1636 struct btrfs_path *path, 1637 struct btrfs_key *key) 1638 { 1639 struct btrfs_root *root = fs_info->extent_root; 1640 int ret; 1641 struct btrfs_key found_key; 1642 struct extent_buffer *leaf; 1643 int slot; 1644 1645 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1646 if (ret < 0) 1647 return ret; 1648 1649 while (1) { 1650 slot = path->slots[0]; 1651 leaf = path->nodes[0]; 1652 if (slot >= btrfs_header_nritems(leaf)) { 1653 ret = btrfs_next_leaf(root, path); 1654 if (ret == 0) 1655 continue; 1656 if (ret < 0) 1657 goto out; 1658 break; 1659 } 1660 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1661 1662 if (found_key.objectid >= key->objectid && 1663 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1664 ret = read_bg_from_eb(fs_info, &found_key, path); 1665 break; 1666 } 1667 1668 path->slots[0]++; 1669 } 1670 out: 1671 return ret; 1672 } 1673 1674 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1675 { 1676 u64 extra_flags = chunk_to_extended(flags) & 1677 BTRFS_EXTENDED_PROFILE_MASK; 1678 1679 write_seqlock(&fs_info->profiles_lock); 1680 if (flags & BTRFS_BLOCK_GROUP_DATA) 1681 fs_info->avail_data_alloc_bits |= extra_flags; 1682 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1683 fs_info->avail_metadata_alloc_bits |= extra_flags; 1684 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1685 fs_info->avail_system_alloc_bits |= extra_flags; 1686 write_sequnlock(&fs_info->profiles_lock); 1687 } 1688 1689 /** 1690 * Map a physical disk address to a list of logical addresses 1691 * 1692 * @fs_info: the filesystem 1693 * @chunk_start: logical address of block group 1694 * @bdev: physical device to resolve, can be NULL to indicate any device 1695 * @physical: physical address to map to logical addresses 1696 * @logical: return array of logical addresses which map to @physical 1697 * @naddrs: length of @logical 1698 * @stripe_len: size of IO stripe for the given block group 1699 * 1700 * Maps a particular @physical disk address to a list of @logical addresses. 1701 * Used primarily to exclude those portions of a block group that contain super 1702 * block copies. 1703 */ 1704 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1705 struct block_device *bdev, u64 physical, u64 **logical, 1706 int *naddrs, int *stripe_len) 1707 { 1708 struct extent_map *em; 1709 struct map_lookup *map; 1710 u64 *buf; 1711 u64 bytenr; 1712 u64 data_stripe_length; 1713 u64 io_stripe_size; 1714 int i, nr = 0; 1715 int ret = 0; 1716 1717 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1718 if (IS_ERR(em)) 1719 return -EIO; 1720 1721 map = em->map_lookup; 1722 data_stripe_length = em->orig_block_len; 1723 io_stripe_size = map->stripe_len; 1724 chunk_start = em->start; 1725 1726 /* For RAID5/6 adjust to a full IO stripe length */ 1727 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1728 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1729 1730 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1731 if (!buf) { 1732 ret = -ENOMEM; 1733 goto out; 1734 } 1735 1736 for (i = 0; i < map->num_stripes; i++) { 1737 bool already_inserted = false; 1738 u64 stripe_nr; 1739 u64 offset; 1740 int j; 1741 1742 if (!in_range(physical, map->stripes[i].physical, 1743 data_stripe_length)) 1744 continue; 1745 1746 if (bdev && map->stripes[i].dev->bdev != bdev) 1747 continue; 1748 1749 stripe_nr = physical - map->stripes[i].physical; 1750 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset); 1751 1752 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1753 stripe_nr = stripe_nr * map->num_stripes + i; 1754 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1755 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1756 stripe_nr = stripe_nr * map->num_stripes + i; 1757 } 1758 /* 1759 * The remaining case would be for RAID56, multiply by 1760 * nr_data_stripes(). Alternatively, just use rmap_len below 1761 * instead of map->stripe_len 1762 */ 1763 1764 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 1765 1766 /* Ensure we don't add duplicate addresses */ 1767 for (j = 0; j < nr; j++) { 1768 if (buf[j] == bytenr) { 1769 already_inserted = true; 1770 break; 1771 } 1772 } 1773 1774 if (!already_inserted) 1775 buf[nr++] = bytenr; 1776 } 1777 1778 *logical = buf; 1779 *naddrs = nr; 1780 *stripe_len = io_stripe_size; 1781 out: 1782 free_extent_map(em); 1783 return ret; 1784 } 1785 1786 static int exclude_super_stripes(struct btrfs_block_group *cache) 1787 { 1788 struct btrfs_fs_info *fs_info = cache->fs_info; 1789 const bool zoned = btrfs_is_zoned(fs_info); 1790 u64 bytenr; 1791 u64 *logical; 1792 int stripe_len; 1793 int i, nr, ret; 1794 1795 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1796 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1797 cache->bytes_super += stripe_len; 1798 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1799 stripe_len); 1800 if (ret) 1801 return ret; 1802 } 1803 1804 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1805 bytenr = btrfs_sb_offset(i); 1806 ret = btrfs_rmap_block(fs_info, cache->start, NULL, 1807 bytenr, &logical, &nr, &stripe_len); 1808 if (ret) 1809 return ret; 1810 1811 /* Shouldn't have super stripes in sequential zones */ 1812 if (zoned && nr) { 1813 btrfs_err(fs_info, 1814 "zoned: block group %llu must not contain super block", 1815 cache->start); 1816 return -EUCLEAN; 1817 } 1818 1819 while (nr--) { 1820 u64 len = min_t(u64, stripe_len, 1821 cache->start + cache->length - logical[nr]); 1822 1823 cache->bytes_super += len; 1824 ret = btrfs_add_excluded_extent(fs_info, logical[nr], 1825 len); 1826 if (ret) { 1827 kfree(logical); 1828 return ret; 1829 } 1830 } 1831 1832 kfree(logical); 1833 } 1834 return 0; 1835 } 1836 1837 static void link_block_group(struct btrfs_block_group *cache) 1838 { 1839 struct btrfs_space_info *space_info = cache->space_info; 1840 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1841 1842 down_write(&space_info->groups_sem); 1843 list_add_tail(&cache->list, &space_info->block_groups[index]); 1844 up_write(&space_info->groups_sem); 1845 } 1846 1847 static struct btrfs_block_group *btrfs_create_block_group_cache( 1848 struct btrfs_fs_info *fs_info, u64 start) 1849 { 1850 struct btrfs_block_group *cache; 1851 1852 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1853 if (!cache) 1854 return NULL; 1855 1856 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1857 GFP_NOFS); 1858 if (!cache->free_space_ctl) { 1859 kfree(cache); 1860 return NULL; 1861 } 1862 1863 cache->start = start; 1864 1865 cache->fs_info = fs_info; 1866 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1867 1868 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1869 1870 refcount_set(&cache->refs, 1); 1871 spin_lock_init(&cache->lock); 1872 init_rwsem(&cache->data_rwsem); 1873 INIT_LIST_HEAD(&cache->list); 1874 INIT_LIST_HEAD(&cache->cluster_list); 1875 INIT_LIST_HEAD(&cache->bg_list); 1876 INIT_LIST_HEAD(&cache->ro_list); 1877 INIT_LIST_HEAD(&cache->discard_list); 1878 INIT_LIST_HEAD(&cache->dirty_list); 1879 INIT_LIST_HEAD(&cache->io_list); 1880 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 1881 atomic_set(&cache->frozen, 0); 1882 mutex_init(&cache->free_space_lock); 1883 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1884 1885 return cache; 1886 } 1887 1888 /* 1889 * Iterate all chunks and verify that each of them has the corresponding block 1890 * group 1891 */ 1892 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1893 { 1894 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1895 struct extent_map *em; 1896 struct btrfs_block_group *bg; 1897 u64 start = 0; 1898 int ret = 0; 1899 1900 while (1) { 1901 read_lock(&map_tree->lock); 1902 /* 1903 * lookup_extent_mapping will return the first extent map 1904 * intersecting the range, so setting @len to 1 is enough to 1905 * get the first chunk. 1906 */ 1907 em = lookup_extent_mapping(map_tree, start, 1); 1908 read_unlock(&map_tree->lock); 1909 if (!em) 1910 break; 1911 1912 bg = btrfs_lookup_block_group(fs_info, em->start); 1913 if (!bg) { 1914 btrfs_err(fs_info, 1915 "chunk start=%llu len=%llu doesn't have corresponding block group", 1916 em->start, em->len); 1917 ret = -EUCLEAN; 1918 free_extent_map(em); 1919 break; 1920 } 1921 if (bg->start != em->start || bg->length != em->len || 1922 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1923 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1924 btrfs_err(fs_info, 1925 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1926 em->start, em->len, 1927 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1928 bg->start, bg->length, 1929 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1930 ret = -EUCLEAN; 1931 free_extent_map(em); 1932 btrfs_put_block_group(bg); 1933 break; 1934 } 1935 start = em->start + em->len; 1936 free_extent_map(em); 1937 btrfs_put_block_group(bg); 1938 } 1939 return ret; 1940 } 1941 1942 static int read_one_block_group(struct btrfs_fs_info *info, 1943 struct btrfs_block_group_item *bgi, 1944 const struct btrfs_key *key, 1945 int need_clear) 1946 { 1947 struct btrfs_block_group *cache; 1948 struct btrfs_space_info *space_info; 1949 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1950 int ret; 1951 1952 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1953 1954 cache = btrfs_create_block_group_cache(info, key->objectid); 1955 if (!cache) 1956 return -ENOMEM; 1957 1958 cache->length = key->offset; 1959 cache->used = btrfs_stack_block_group_used(bgi); 1960 cache->flags = btrfs_stack_block_group_flags(bgi); 1961 1962 set_free_space_tree_thresholds(cache); 1963 1964 if (need_clear) { 1965 /* 1966 * When we mount with old space cache, we need to 1967 * set BTRFS_DC_CLEAR and set dirty flag. 1968 * 1969 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1970 * truncate the old free space cache inode and 1971 * setup a new one. 1972 * b) Setting 'dirty flag' makes sure that we flush 1973 * the new space cache info onto disk. 1974 */ 1975 if (btrfs_test_opt(info, SPACE_CACHE)) 1976 cache->disk_cache_state = BTRFS_DC_CLEAR; 1977 } 1978 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1979 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1980 btrfs_err(info, 1981 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1982 cache->start); 1983 ret = -EINVAL; 1984 goto error; 1985 } 1986 1987 ret = btrfs_load_block_group_zone_info(cache, false); 1988 if (ret) { 1989 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 1990 cache->start); 1991 goto error; 1992 } 1993 1994 /* 1995 * We need to exclude the super stripes now so that the space info has 1996 * super bytes accounted for, otherwise we'll think we have more space 1997 * than we actually do. 1998 */ 1999 ret = exclude_super_stripes(cache); 2000 if (ret) { 2001 /* We may have excluded something, so call this just in case. */ 2002 btrfs_free_excluded_extents(cache); 2003 goto error; 2004 } 2005 2006 /* 2007 * For zoned filesystem, space after the allocation offset is the only 2008 * free space for a block group. So, we don't need any caching work. 2009 * btrfs_calc_zone_unusable() will set the amount of free space and 2010 * zone_unusable space. 2011 * 2012 * For regular filesystem, check for two cases, either we are full, and 2013 * therefore don't need to bother with the caching work since we won't 2014 * find any space, or we are empty, and we can just add all the space 2015 * in and be done with it. This saves us _a_lot_ of time, particularly 2016 * in the full case. 2017 */ 2018 if (btrfs_is_zoned(info)) { 2019 btrfs_calc_zone_unusable(cache); 2020 } else if (cache->length == cache->used) { 2021 cache->last_byte_to_unpin = (u64)-1; 2022 cache->cached = BTRFS_CACHE_FINISHED; 2023 btrfs_free_excluded_extents(cache); 2024 } else if (cache->used == 0) { 2025 cache->last_byte_to_unpin = (u64)-1; 2026 cache->cached = BTRFS_CACHE_FINISHED; 2027 add_new_free_space(cache, cache->start, 2028 cache->start + cache->length); 2029 btrfs_free_excluded_extents(cache); 2030 } 2031 2032 ret = btrfs_add_block_group_cache(info, cache); 2033 if (ret) { 2034 btrfs_remove_free_space_cache(cache); 2035 goto error; 2036 } 2037 trace_btrfs_add_block_group(info, cache, 0); 2038 btrfs_update_space_info(info, cache->flags, cache->length, 2039 cache->used, cache->bytes_super, 2040 cache->zone_unusable, &space_info); 2041 2042 cache->space_info = space_info; 2043 2044 link_block_group(cache); 2045 2046 set_avail_alloc_bits(info, cache->flags); 2047 if (btrfs_chunk_readonly(info, cache->start)) { 2048 inc_block_group_ro(cache, 1); 2049 } else if (cache->used == 0) { 2050 ASSERT(list_empty(&cache->bg_list)); 2051 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2052 btrfs_discard_queue_work(&info->discard_ctl, cache); 2053 else 2054 btrfs_mark_bg_unused(cache); 2055 } 2056 return 0; 2057 error: 2058 btrfs_put_block_group(cache); 2059 return ret; 2060 } 2061 2062 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2063 { 2064 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2065 struct btrfs_space_info *space_info; 2066 struct rb_node *node; 2067 int ret = 0; 2068 2069 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2070 struct extent_map *em; 2071 struct map_lookup *map; 2072 struct btrfs_block_group *bg; 2073 2074 em = rb_entry(node, struct extent_map, rb_node); 2075 map = em->map_lookup; 2076 bg = btrfs_create_block_group_cache(fs_info, em->start); 2077 if (!bg) { 2078 ret = -ENOMEM; 2079 break; 2080 } 2081 2082 /* Fill dummy cache as FULL */ 2083 bg->length = em->len; 2084 bg->flags = map->type; 2085 bg->last_byte_to_unpin = (u64)-1; 2086 bg->cached = BTRFS_CACHE_FINISHED; 2087 bg->used = em->len; 2088 bg->flags = map->type; 2089 ret = btrfs_add_block_group_cache(fs_info, bg); 2090 if (ret) { 2091 btrfs_remove_free_space_cache(bg); 2092 btrfs_put_block_group(bg); 2093 break; 2094 } 2095 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len, 2096 0, 0, &space_info); 2097 bg->space_info = space_info; 2098 link_block_group(bg); 2099 2100 set_avail_alloc_bits(fs_info, bg->flags); 2101 } 2102 if (!ret) 2103 btrfs_init_global_block_rsv(fs_info); 2104 return ret; 2105 } 2106 2107 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2108 { 2109 struct btrfs_path *path; 2110 int ret; 2111 struct btrfs_block_group *cache; 2112 struct btrfs_space_info *space_info; 2113 struct btrfs_key key; 2114 int need_clear = 0; 2115 u64 cache_gen; 2116 2117 if (!info->extent_root) 2118 return fill_dummy_bgs(info); 2119 2120 key.objectid = 0; 2121 key.offset = 0; 2122 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2123 path = btrfs_alloc_path(); 2124 if (!path) 2125 return -ENOMEM; 2126 2127 cache_gen = btrfs_super_cache_generation(info->super_copy); 2128 if (btrfs_test_opt(info, SPACE_CACHE) && 2129 btrfs_super_generation(info->super_copy) != cache_gen) 2130 need_clear = 1; 2131 if (btrfs_test_opt(info, CLEAR_CACHE)) 2132 need_clear = 1; 2133 2134 while (1) { 2135 struct btrfs_block_group_item bgi; 2136 struct extent_buffer *leaf; 2137 int slot; 2138 2139 ret = find_first_block_group(info, path, &key); 2140 if (ret > 0) 2141 break; 2142 if (ret != 0) 2143 goto error; 2144 2145 leaf = path->nodes[0]; 2146 slot = path->slots[0]; 2147 2148 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2149 sizeof(bgi)); 2150 2151 btrfs_item_key_to_cpu(leaf, &key, slot); 2152 btrfs_release_path(path); 2153 ret = read_one_block_group(info, &bgi, &key, need_clear); 2154 if (ret < 0) 2155 goto error; 2156 key.objectid += key.offset; 2157 key.offset = 0; 2158 } 2159 btrfs_release_path(path); 2160 2161 list_for_each_entry(space_info, &info->space_info, list) { 2162 int i; 2163 2164 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2165 if (list_empty(&space_info->block_groups[i])) 2166 continue; 2167 cache = list_first_entry(&space_info->block_groups[i], 2168 struct btrfs_block_group, 2169 list); 2170 btrfs_sysfs_add_block_group_type(cache); 2171 } 2172 2173 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2174 (BTRFS_BLOCK_GROUP_RAID10 | 2175 BTRFS_BLOCK_GROUP_RAID1_MASK | 2176 BTRFS_BLOCK_GROUP_RAID56_MASK | 2177 BTRFS_BLOCK_GROUP_DUP))) 2178 continue; 2179 /* 2180 * Avoid allocating from un-mirrored block group if there are 2181 * mirrored block groups. 2182 */ 2183 list_for_each_entry(cache, 2184 &space_info->block_groups[BTRFS_RAID_RAID0], 2185 list) 2186 inc_block_group_ro(cache, 1); 2187 list_for_each_entry(cache, 2188 &space_info->block_groups[BTRFS_RAID_SINGLE], 2189 list) 2190 inc_block_group_ro(cache, 1); 2191 } 2192 2193 btrfs_init_global_block_rsv(info); 2194 ret = check_chunk_block_group_mappings(info); 2195 error: 2196 btrfs_free_path(path); 2197 return ret; 2198 } 2199 2200 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2201 struct btrfs_block_group *block_group) 2202 { 2203 struct btrfs_fs_info *fs_info = trans->fs_info; 2204 struct btrfs_block_group_item bgi; 2205 struct btrfs_root *root; 2206 struct btrfs_key key; 2207 2208 spin_lock(&block_group->lock); 2209 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2210 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2211 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2212 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2213 key.objectid = block_group->start; 2214 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2215 key.offset = block_group->length; 2216 spin_unlock(&block_group->lock); 2217 2218 root = fs_info->extent_root; 2219 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2220 } 2221 2222 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2223 { 2224 struct btrfs_fs_info *fs_info = trans->fs_info; 2225 struct btrfs_block_group *block_group; 2226 int ret = 0; 2227 2228 if (!trans->can_flush_pending_bgs) 2229 return; 2230 2231 while (!list_empty(&trans->new_bgs)) { 2232 int index; 2233 2234 block_group = list_first_entry(&trans->new_bgs, 2235 struct btrfs_block_group, 2236 bg_list); 2237 if (ret) 2238 goto next; 2239 2240 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2241 2242 ret = insert_block_group_item(trans, block_group); 2243 if (ret) 2244 btrfs_abort_transaction(trans, ret); 2245 ret = btrfs_finish_chunk_alloc(trans, block_group->start, 2246 block_group->length); 2247 if (ret) 2248 btrfs_abort_transaction(trans, ret); 2249 add_block_group_free_space(trans, block_group); 2250 2251 /* 2252 * If we restriped during balance, we may have added a new raid 2253 * type, so now add the sysfs entries when it is safe to do so. 2254 * We don't have to worry about locking here as it's handled in 2255 * btrfs_sysfs_add_block_group_type. 2256 */ 2257 if (block_group->space_info->block_group_kobjs[index] == NULL) 2258 btrfs_sysfs_add_block_group_type(block_group); 2259 2260 /* Already aborted the transaction if it failed. */ 2261 next: 2262 btrfs_delayed_refs_rsv_release(fs_info, 1); 2263 list_del_init(&block_group->bg_list); 2264 } 2265 btrfs_trans_release_chunk_metadata(trans); 2266 } 2267 2268 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2269 u64 type, u64 chunk_offset, u64 size) 2270 { 2271 struct btrfs_fs_info *fs_info = trans->fs_info; 2272 struct btrfs_block_group *cache; 2273 int ret; 2274 2275 btrfs_set_log_full_commit(trans); 2276 2277 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2278 if (!cache) 2279 return -ENOMEM; 2280 2281 cache->length = size; 2282 set_free_space_tree_thresholds(cache); 2283 cache->used = bytes_used; 2284 cache->flags = type; 2285 cache->last_byte_to_unpin = (u64)-1; 2286 cache->cached = BTRFS_CACHE_FINISHED; 2287 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2288 cache->needs_free_space = 1; 2289 2290 ret = btrfs_load_block_group_zone_info(cache, true); 2291 if (ret) { 2292 btrfs_put_block_group(cache); 2293 return ret; 2294 } 2295 2296 ret = exclude_super_stripes(cache); 2297 if (ret) { 2298 /* We may have excluded something, so call this just in case */ 2299 btrfs_free_excluded_extents(cache); 2300 btrfs_put_block_group(cache); 2301 return ret; 2302 } 2303 2304 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2305 2306 btrfs_free_excluded_extents(cache); 2307 2308 #ifdef CONFIG_BTRFS_DEBUG 2309 if (btrfs_should_fragment_free_space(cache)) { 2310 u64 new_bytes_used = size - bytes_used; 2311 2312 bytes_used += new_bytes_used >> 1; 2313 fragment_free_space(cache); 2314 } 2315 #endif 2316 /* 2317 * Ensure the corresponding space_info object is created and 2318 * assigned to our block group. We want our bg to be added to the rbtree 2319 * with its ->space_info set. 2320 */ 2321 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2322 ASSERT(cache->space_info); 2323 2324 ret = btrfs_add_block_group_cache(fs_info, cache); 2325 if (ret) { 2326 btrfs_remove_free_space_cache(cache); 2327 btrfs_put_block_group(cache); 2328 return ret; 2329 } 2330 2331 /* 2332 * Now that our block group has its ->space_info set and is inserted in 2333 * the rbtree, update the space info's counters. 2334 */ 2335 trace_btrfs_add_block_group(fs_info, cache, 1); 2336 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2337 cache->bytes_super, 0, &cache->space_info); 2338 btrfs_update_global_block_rsv(fs_info); 2339 2340 link_block_group(cache); 2341 2342 list_add_tail(&cache->bg_list, &trans->new_bgs); 2343 trans->delayed_ref_updates++; 2344 btrfs_update_delayed_refs_rsv(trans); 2345 2346 set_avail_alloc_bits(fs_info, type); 2347 return 0; 2348 } 2349 2350 /* 2351 * Mark one block group RO, can be called several times for the same block 2352 * group. 2353 * 2354 * @cache: the destination block group 2355 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2356 * ensure we still have some free space after marking this 2357 * block group RO. 2358 */ 2359 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2360 bool do_chunk_alloc) 2361 { 2362 struct btrfs_fs_info *fs_info = cache->fs_info; 2363 struct btrfs_trans_handle *trans; 2364 u64 alloc_flags; 2365 int ret; 2366 bool dirty_bg_running; 2367 2368 do { 2369 trans = btrfs_join_transaction(fs_info->extent_root); 2370 if (IS_ERR(trans)) 2371 return PTR_ERR(trans); 2372 2373 dirty_bg_running = false; 2374 2375 /* 2376 * We're not allowed to set block groups readonly after the dirty 2377 * block group cache has started writing. If it already started, 2378 * back off and let this transaction commit. 2379 */ 2380 mutex_lock(&fs_info->ro_block_group_mutex); 2381 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2382 u64 transid = trans->transid; 2383 2384 mutex_unlock(&fs_info->ro_block_group_mutex); 2385 btrfs_end_transaction(trans); 2386 2387 ret = btrfs_wait_for_commit(fs_info, transid); 2388 if (ret) 2389 return ret; 2390 dirty_bg_running = true; 2391 } 2392 } while (dirty_bg_running); 2393 2394 if (do_chunk_alloc) { 2395 /* 2396 * If we are changing raid levels, try to allocate a 2397 * corresponding block group with the new raid level. 2398 */ 2399 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2400 if (alloc_flags != cache->flags) { 2401 ret = btrfs_chunk_alloc(trans, alloc_flags, 2402 CHUNK_ALLOC_FORCE); 2403 /* 2404 * ENOSPC is allowed here, we may have enough space 2405 * already allocated at the new raid level to carry on 2406 */ 2407 if (ret == -ENOSPC) 2408 ret = 0; 2409 if (ret < 0) 2410 goto out; 2411 } 2412 } 2413 2414 ret = inc_block_group_ro(cache, 0); 2415 if (!do_chunk_alloc || ret == -ETXTBSY) 2416 goto unlock_out; 2417 if (!ret) 2418 goto out; 2419 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2420 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2421 if (ret < 0) 2422 goto out; 2423 ret = inc_block_group_ro(cache, 0); 2424 if (ret == -ETXTBSY) 2425 goto unlock_out; 2426 out: 2427 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2428 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2429 mutex_lock(&fs_info->chunk_mutex); 2430 check_system_chunk(trans, alloc_flags); 2431 mutex_unlock(&fs_info->chunk_mutex); 2432 } 2433 unlock_out: 2434 mutex_unlock(&fs_info->ro_block_group_mutex); 2435 2436 btrfs_end_transaction(trans); 2437 return ret; 2438 } 2439 2440 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2441 { 2442 struct btrfs_space_info *sinfo = cache->space_info; 2443 u64 num_bytes; 2444 2445 BUG_ON(!cache->ro); 2446 2447 spin_lock(&sinfo->lock); 2448 spin_lock(&cache->lock); 2449 if (!--cache->ro) { 2450 if (btrfs_is_zoned(cache->fs_info)) { 2451 /* Migrate zone_unusable bytes back */ 2452 cache->zone_unusable = cache->alloc_offset - cache->used; 2453 sinfo->bytes_zone_unusable += cache->zone_unusable; 2454 sinfo->bytes_readonly -= cache->zone_unusable; 2455 } 2456 num_bytes = cache->length - cache->reserved - 2457 cache->pinned - cache->bytes_super - 2458 cache->zone_unusable - cache->used; 2459 sinfo->bytes_readonly -= num_bytes; 2460 list_del_init(&cache->ro_list); 2461 } 2462 spin_unlock(&cache->lock); 2463 spin_unlock(&sinfo->lock); 2464 } 2465 2466 static int update_block_group_item(struct btrfs_trans_handle *trans, 2467 struct btrfs_path *path, 2468 struct btrfs_block_group *cache) 2469 { 2470 struct btrfs_fs_info *fs_info = trans->fs_info; 2471 int ret; 2472 struct btrfs_root *root = fs_info->extent_root; 2473 unsigned long bi; 2474 struct extent_buffer *leaf; 2475 struct btrfs_block_group_item bgi; 2476 struct btrfs_key key; 2477 2478 key.objectid = cache->start; 2479 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2480 key.offset = cache->length; 2481 2482 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2483 if (ret) { 2484 if (ret > 0) 2485 ret = -ENOENT; 2486 goto fail; 2487 } 2488 2489 leaf = path->nodes[0]; 2490 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2491 btrfs_set_stack_block_group_used(&bgi, cache->used); 2492 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2493 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2494 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2495 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2496 btrfs_mark_buffer_dirty(leaf); 2497 fail: 2498 btrfs_release_path(path); 2499 return ret; 2500 2501 } 2502 2503 static int cache_save_setup(struct btrfs_block_group *block_group, 2504 struct btrfs_trans_handle *trans, 2505 struct btrfs_path *path) 2506 { 2507 struct btrfs_fs_info *fs_info = block_group->fs_info; 2508 struct btrfs_root *root = fs_info->tree_root; 2509 struct inode *inode = NULL; 2510 struct extent_changeset *data_reserved = NULL; 2511 u64 alloc_hint = 0; 2512 int dcs = BTRFS_DC_ERROR; 2513 u64 cache_size = 0; 2514 int retries = 0; 2515 int ret = 0; 2516 2517 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 2518 return 0; 2519 2520 /* 2521 * If this block group is smaller than 100 megs don't bother caching the 2522 * block group. 2523 */ 2524 if (block_group->length < (100 * SZ_1M)) { 2525 spin_lock(&block_group->lock); 2526 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2527 spin_unlock(&block_group->lock); 2528 return 0; 2529 } 2530 2531 if (TRANS_ABORTED(trans)) 2532 return 0; 2533 again: 2534 inode = lookup_free_space_inode(block_group, path); 2535 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2536 ret = PTR_ERR(inode); 2537 btrfs_release_path(path); 2538 goto out; 2539 } 2540 2541 if (IS_ERR(inode)) { 2542 BUG_ON(retries); 2543 retries++; 2544 2545 if (block_group->ro) 2546 goto out_free; 2547 2548 ret = create_free_space_inode(trans, block_group, path); 2549 if (ret) 2550 goto out_free; 2551 goto again; 2552 } 2553 2554 /* 2555 * We want to set the generation to 0, that way if anything goes wrong 2556 * from here on out we know not to trust this cache when we load up next 2557 * time. 2558 */ 2559 BTRFS_I(inode)->generation = 0; 2560 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2561 if (ret) { 2562 /* 2563 * So theoretically we could recover from this, simply set the 2564 * super cache generation to 0 so we know to invalidate the 2565 * cache, but then we'd have to keep track of the block groups 2566 * that fail this way so we know we _have_ to reset this cache 2567 * before the next commit or risk reading stale cache. So to 2568 * limit our exposure to horrible edge cases lets just abort the 2569 * transaction, this only happens in really bad situations 2570 * anyway. 2571 */ 2572 btrfs_abort_transaction(trans, ret); 2573 goto out_put; 2574 } 2575 WARN_ON(ret); 2576 2577 /* We've already setup this transaction, go ahead and exit */ 2578 if (block_group->cache_generation == trans->transid && 2579 i_size_read(inode)) { 2580 dcs = BTRFS_DC_SETUP; 2581 goto out_put; 2582 } 2583 2584 if (i_size_read(inode) > 0) { 2585 ret = btrfs_check_trunc_cache_free_space(fs_info, 2586 &fs_info->global_block_rsv); 2587 if (ret) 2588 goto out_put; 2589 2590 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2591 if (ret) 2592 goto out_put; 2593 } 2594 2595 spin_lock(&block_group->lock); 2596 if (block_group->cached != BTRFS_CACHE_FINISHED || 2597 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2598 /* 2599 * don't bother trying to write stuff out _if_ 2600 * a) we're not cached, 2601 * b) we're with nospace_cache mount option, 2602 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2603 */ 2604 dcs = BTRFS_DC_WRITTEN; 2605 spin_unlock(&block_group->lock); 2606 goto out_put; 2607 } 2608 spin_unlock(&block_group->lock); 2609 2610 /* 2611 * We hit an ENOSPC when setting up the cache in this transaction, just 2612 * skip doing the setup, we've already cleared the cache so we're safe. 2613 */ 2614 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2615 ret = -ENOSPC; 2616 goto out_put; 2617 } 2618 2619 /* 2620 * Try to preallocate enough space based on how big the block group is. 2621 * Keep in mind this has to include any pinned space which could end up 2622 * taking up quite a bit since it's not folded into the other space 2623 * cache. 2624 */ 2625 cache_size = div_u64(block_group->length, SZ_256M); 2626 if (!cache_size) 2627 cache_size = 1; 2628 2629 cache_size *= 16; 2630 cache_size *= fs_info->sectorsize; 2631 2632 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 2633 cache_size); 2634 if (ret) 2635 goto out_put; 2636 2637 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 2638 cache_size, cache_size, 2639 &alloc_hint); 2640 /* 2641 * Our cache requires contiguous chunks so that we don't modify a bunch 2642 * of metadata or split extents when writing the cache out, which means 2643 * we can enospc if we are heavily fragmented in addition to just normal 2644 * out of space conditions. So if we hit this just skip setting up any 2645 * other block groups for this transaction, maybe we'll unpin enough 2646 * space the next time around. 2647 */ 2648 if (!ret) 2649 dcs = BTRFS_DC_SETUP; 2650 else if (ret == -ENOSPC) 2651 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2652 2653 out_put: 2654 iput(inode); 2655 out_free: 2656 btrfs_release_path(path); 2657 out: 2658 spin_lock(&block_group->lock); 2659 if (!ret && dcs == BTRFS_DC_SETUP) 2660 block_group->cache_generation = trans->transid; 2661 block_group->disk_cache_state = dcs; 2662 spin_unlock(&block_group->lock); 2663 2664 extent_changeset_free(data_reserved); 2665 return ret; 2666 } 2667 2668 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2669 { 2670 struct btrfs_fs_info *fs_info = trans->fs_info; 2671 struct btrfs_block_group *cache, *tmp; 2672 struct btrfs_transaction *cur_trans = trans->transaction; 2673 struct btrfs_path *path; 2674 2675 if (list_empty(&cur_trans->dirty_bgs) || 2676 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2677 return 0; 2678 2679 path = btrfs_alloc_path(); 2680 if (!path) 2681 return -ENOMEM; 2682 2683 /* Could add new block groups, use _safe just in case */ 2684 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2685 dirty_list) { 2686 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2687 cache_save_setup(cache, trans, path); 2688 } 2689 2690 btrfs_free_path(path); 2691 return 0; 2692 } 2693 2694 /* 2695 * Transaction commit does final block group cache writeback during a critical 2696 * section where nothing is allowed to change the FS. This is required in 2697 * order for the cache to actually match the block group, but can introduce a 2698 * lot of latency into the commit. 2699 * 2700 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2701 * There's a chance we'll have to redo some of it if the block group changes 2702 * again during the commit, but it greatly reduces the commit latency by 2703 * getting rid of the easy block groups while we're still allowing others to 2704 * join the commit. 2705 */ 2706 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2707 { 2708 struct btrfs_fs_info *fs_info = trans->fs_info; 2709 struct btrfs_block_group *cache; 2710 struct btrfs_transaction *cur_trans = trans->transaction; 2711 int ret = 0; 2712 int should_put; 2713 struct btrfs_path *path = NULL; 2714 LIST_HEAD(dirty); 2715 struct list_head *io = &cur_trans->io_bgs; 2716 int num_started = 0; 2717 int loops = 0; 2718 2719 spin_lock(&cur_trans->dirty_bgs_lock); 2720 if (list_empty(&cur_trans->dirty_bgs)) { 2721 spin_unlock(&cur_trans->dirty_bgs_lock); 2722 return 0; 2723 } 2724 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2725 spin_unlock(&cur_trans->dirty_bgs_lock); 2726 2727 again: 2728 /* Make sure all the block groups on our dirty list actually exist */ 2729 btrfs_create_pending_block_groups(trans); 2730 2731 if (!path) { 2732 path = btrfs_alloc_path(); 2733 if (!path) { 2734 ret = -ENOMEM; 2735 goto out; 2736 } 2737 } 2738 2739 /* 2740 * cache_write_mutex is here only to save us from balance or automatic 2741 * removal of empty block groups deleting this block group while we are 2742 * writing out the cache 2743 */ 2744 mutex_lock(&trans->transaction->cache_write_mutex); 2745 while (!list_empty(&dirty)) { 2746 bool drop_reserve = true; 2747 2748 cache = list_first_entry(&dirty, struct btrfs_block_group, 2749 dirty_list); 2750 /* 2751 * This can happen if something re-dirties a block group that 2752 * is already under IO. Just wait for it to finish and then do 2753 * it all again 2754 */ 2755 if (!list_empty(&cache->io_list)) { 2756 list_del_init(&cache->io_list); 2757 btrfs_wait_cache_io(trans, cache, path); 2758 btrfs_put_block_group(cache); 2759 } 2760 2761 2762 /* 2763 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2764 * it should update the cache_state. Don't delete until after 2765 * we wait. 2766 * 2767 * Since we're not running in the commit critical section 2768 * we need the dirty_bgs_lock to protect from update_block_group 2769 */ 2770 spin_lock(&cur_trans->dirty_bgs_lock); 2771 list_del_init(&cache->dirty_list); 2772 spin_unlock(&cur_trans->dirty_bgs_lock); 2773 2774 should_put = 1; 2775 2776 cache_save_setup(cache, trans, path); 2777 2778 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2779 cache->io_ctl.inode = NULL; 2780 ret = btrfs_write_out_cache(trans, cache, path); 2781 if (ret == 0 && cache->io_ctl.inode) { 2782 num_started++; 2783 should_put = 0; 2784 2785 /* 2786 * The cache_write_mutex is protecting the 2787 * io_list, also refer to the definition of 2788 * btrfs_transaction::io_bgs for more details 2789 */ 2790 list_add_tail(&cache->io_list, io); 2791 } else { 2792 /* 2793 * If we failed to write the cache, the 2794 * generation will be bad and life goes on 2795 */ 2796 ret = 0; 2797 } 2798 } 2799 if (!ret) { 2800 ret = update_block_group_item(trans, path, cache); 2801 /* 2802 * Our block group might still be attached to the list 2803 * of new block groups in the transaction handle of some 2804 * other task (struct btrfs_trans_handle->new_bgs). This 2805 * means its block group item isn't yet in the extent 2806 * tree. If this happens ignore the error, as we will 2807 * try again later in the critical section of the 2808 * transaction commit. 2809 */ 2810 if (ret == -ENOENT) { 2811 ret = 0; 2812 spin_lock(&cur_trans->dirty_bgs_lock); 2813 if (list_empty(&cache->dirty_list)) { 2814 list_add_tail(&cache->dirty_list, 2815 &cur_trans->dirty_bgs); 2816 btrfs_get_block_group(cache); 2817 drop_reserve = false; 2818 } 2819 spin_unlock(&cur_trans->dirty_bgs_lock); 2820 } else if (ret) { 2821 btrfs_abort_transaction(trans, ret); 2822 } 2823 } 2824 2825 /* If it's not on the io list, we need to put the block group */ 2826 if (should_put) 2827 btrfs_put_block_group(cache); 2828 if (drop_reserve) 2829 btrfs_delayed_refs_rsv_release(fs_info, 1); 2830 /* 2831 * Avoid blocking other tasks for too long. It might even save 2832 * us from writing caches for block groups that are going to be 2833 * removed. 2834 */ 2835 mutex_unlock(&trans->transaction->cache_write_mutex); 2836 if (ret) 2837 goto out; 2838 mutex_lock(&trans->transaction->cache_write_mutex); 2839 } 2840 mutex_unlock(&trans->transaction->cache_write_mutex); 2841 2842 /* 2843 * Go through delayed refs for all the stuff we've just kicked off 2844 * and then loop back (just once) 2845 */ 2846 if (!ret) 2847 ret = btrfs_run_delayed_refs(trans, 0); 2848 if (!ret && loops == 0) { 2849 loops++; 2850 spin_lock(&cur_trans->dirty_bgs_lock); 2851 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2852 /* 2853 * dirty_bgs_lock protects us from concurrent block group 2854 * deletes too (not just cache_write_mutex). 2855 */ 2856 if (!list_empty(&dirty)) { 2857 spin_unlock(&cur_trans->dirty_bgs_lock); 2858 goto again; 2859 } 2860 spin_unlock(&cur_trans->dirty_bgs_lock); 2861 } 2862 out: 2863 if (ret < 0) { 2864 spin_lock(&cur_trans->dirty_bgs_lock); 2865 list_splice_init(&dirty, &cur_trans->dirty_bgs); 2866 spin_unlock(&cur_trans->dirty_bgs_lock); 2867 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2868 } 2869 2870 btrfs_free_path(path); 2871 return ret; 2872 } 2873 2874 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2875 { 2876 struct btrfs_fs_info *fs_info = trans->fs_info; 2877 struct btrfs_block_group *cache; 2878 struct btrfs_transaction *cur_trans = trans->transaction; 2879 int ret = 0; 2880 int should_put; 2881 struct btrfs_path *path; 2882 struct list_head *io = &cur_trans->io_bgs; 2883 int num_started = 0; 2884 2885 path = btrfs_alloc_path(); 2886 if (!path) 2887 return -ENOMEM; 2888 2889 /* 2890 * Even though we are in the critical section of the transaction commit, 2891 * we can still have concurrent tasks adding elements to this 2892 * transaction's list of dirty block groups. These tasks correspond to 2893 * endio free space workers started when writeback finishes for a 2894 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2895 * allocate new block groups as a result of COWing nodes of the root 2896 * tree when updating the free space inode. The writeback for the space 2897 * caches is triggered by an earlier call to 2898 * btrfs_start_dirty_block_groups() and iterations of the following 2899 * loop. 2900 * Also we want to do the cache_save_setup first and then run the 2901 * delayed refs to make sure we have the best chance at doing this all 2902 * in one shot. 2903 */ 2904 spin_lock(&cur_trans->dirty_bgs_lock); 2905 while (!list_empty(&cur_trans->dirty_bgs)) { 2906 cache = list_first_entry(&cur_trans->dirty_bgs, 2907 struct btrfs_block_group, 2908 dirty_list); 2909 2910 /* 2911 * This can happen if cache_save_setup re-dirties a block group 2912 * that is already under IO. Just wait for it to finish and 2913 * then do it all again 2914 */ 2915 if (!list_empty(&cache->io_list)) { 2916 spin_unlock(&cur_trans->dirty_bgs_lock); 2917 list_del_init(&cache->io_list); 2918 btrfs_wait_cache_io(trans, cache, path); 2919 btrfs_put_block_group(cache); 2920 spin_lock(&cur_trans->dirty_bgs_lock); 2921 } 2922 2923 /* 2924 * Don't remove from the dirty list until after we've waited on 2925 * any pending IO 2926 */ 2927 list_del_init(&cache->dirty_list); 2928 spin_unlock(&cur_trans->dirty_bgs_lock); 2929 should_put = 1; 2930 2931 cache_save_setup(cache, trans, path); 2932 2933 if (!ret) 2934 ret = btrfs_run_delayed_refs(trans, 2935 (unsigned long) -1); 2936 2937 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2938 cache->io_ctl.inode = NULL; 2939 ret = btrfs_write_out_cache(trans, cache, path); 2940 if (ret == 0 && cache->io_ctl.inode) { 2941 num_started++; 2942 should_put = 0; 2943 list_add_tail(&cache->io_list, io); 2944 } else { 2945 /* 2946 * If we failed to write the cache, the 2947 * generation will be bad and life goes on 2948 */ 2949 ret = 0; 2950 } 2951 } 2952 if (!ret) { 2953 ret = update_block_group_item(trans, path, cache); 2954 /* 2955 * One of the free space endio workers might have 2956 * created a new block group while updating a free space 2957 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2958 * and hasn't released its transaction handle yet, in 2959 * which case the new block group is still attached to 2960 * its transaction handle and its creation has not 2961 * finished yet (no block group item in the extent tree 2962 * yet, etc). If this is the case, wait for all free 2963 * space endio workers to finish and retry. This is a 2964 * very rare case so no need for a more efficient and 2965 * complex approach. 2966 */ 2967 if (ret == -ENOENT) { 2968 wait_event(cur_trans->writer_wait, 2969 atomic_read(&cur_trans->num_writers) == 1); 2970 ret = update_block_group_item(trans, path, cache); 2971 } 2972 if (ret) 2973 btrfs_abort_transaction(trans, ret); 2974 } 2975 2976 /* If its not on the io list, we need to put the block group */ 2977 if (should_put) 2978 btrfs_put_block_group(cache); 2979 btrfs_delayed_refs_rsv_release(fs_info, 1); 2980 spin_lock(&cur_trans->dirty_bgs_lock); 2981 } 2982 spin_unlock(&cur_trans->dirty_bgs_lock); 2983 2984 /* 2985 * Refer to the definition of io_bgs member for details why it's safe 2986 * to use it without any locking 2987 */ 2988 while (!list_empty(io)) { 2989 cache = list_first_entry(io, struct btrfs_block_group, 2990 io_list); 2991 list_del_init(&cache->io_list); 2992 btrfs_wait_cache_io(trans, cache, path); 2993 btrfs_put_block_group(cache); 2994 } 2995 2996 btrfs_free_path(path); 2997 return ret; 2998 } 2999 3000 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3001 u64 bytenr, u64 num_bytes, int alloc) 3002 { 3003 struct btrfs_fs_info *info = trans->fs_info; 3004 struct btrfs_block_group *cache = NULL; 3005 u64 total = num_bytes; 3006 u64 old_val; 3007 u64 byte_in_group; 3008 int factor; 3009 int ret = 0; 3010 3011 /* Block accounting for super block */ 3012 spin_lock(&info->delalloc_root_lock); 3013 old_val = btrfs_super_bytes_used(info->super_copy); 3014 if (alloc) 3015 old_val += num_bytes; 3016 else 3017 old_val -= num_bytes; 3018 btrfs_set_super_bytes_used(info->super_copy, old_val); 3019 spin_unlock(&info->delalloc_root_lock); 3020 3021 while (total) { 3022 cache = btrfs_lookup_block_group(info, bytenr); 3023 if (!cache) { 3024 ret = -ENOENT; 3025 break; 3026 } 3027 factor = btrfs_bg_type_to_factor(cache->flags); 3028 3029 /* 3030 * If this block group has free space cache written out, we 3031 * need to make sure to load it if we are removing space. This 3032 * is because we need the unpinning stage to actually add the 3033 * space back to the block group, otherwise we will leak space. 3034 */ 3035 if (!alloc && !btrfs_block_group_done(cache)) 3036 btrfs_cache_block_group(cache, 1); 3037 3038 byte_in_group = bytenr - cache->start; 3039 WARN_ON(byte_in_group > cache->length); 3040 3041 spin_lock(&cache->space_info->lock); 3042 spin_lock(&cache->lock); 3043 3044 if (btrfs_test_opt(info, SPACE_CACHE) && 3045 cache->disk_cache_state < BTRFS_DC_CLEAR) 3046 cache->disk_cache_state = BTRFS_DC_CLEAR; 3047 3048 old_val = cache->used; 3049 num_bytes = min(total, cache->length - byte_in_group); 3050 if (alloc) { 3051 old_val += num_bytes; 3052 cache->used = old_val; 3053 cache->reserved -= num_bytes; 3054 cache->space_info->bytes_reserved -= num_bytes; 3055 cache->space_info->bytes_used += num_bytes; 3056 cache->space_info->disk_used += num_bytes * factor; 3057 spin_unlock(&cache->lock); 3058 spin_unlock(&cache->space_info->lock); 3059 } else { 3060 old_val -= num_bytes; 3061 cache->used = old_val; 3062 cache->pinned += num_bytes; 3063 btrfs_space_info_update_bytes_pinned(info, 3064 cache->space_info, num_bytes); 3065 cache->space_info->bytes_used -= num_bytes; 3066 cache->space_info->disk_used -= num_bytes * factor; 3067 spin_unlock(&cache->lock); 3068 spin_unlock(&cache->space_info->lock); 3069 3070 set_extent_dirty(&trans->transaction->pinned_extents, 3071 bytenr, bytenr + num_bytes - 1, 3072 GFP_NOFS | __GFP_NOFAIL); 3073 } 3074 3075 spin_lock(&trans->transaction->dirty_bgs_lock); 3076 if (list_empty(&cache->dirty_list)) { 3077 list_add_tail(&cache->dirty_list, 3078 &trans->transaction->dirty_bgs); 3079 trans->delayed_ref_updates++; 3080 btrfs_get_block_group(cache); 3081 } 3082 spin_unlock(&trans->transaction->dirty_bgs_lock); 3083 3084 /* 3085 * No longer have used bytes in this block group, queue it for 3086 * deletion. We do this after adding the block group to the 3087 * dirty list to avoid races between cleaner kthread and space 3088 * cache writeout. 3089 */ 3090 if (!alloc && old_val == 0) { 3091 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3092 btrfs_mark_bg_unused(cache); 3093 } 3094 3095 btrfs_put_block_group(cache); 3096 total -= num_bytes; 3097 bytenr += num_bytes; 3098 } 3099 3100 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3101 btrfs_update_delayed_refs_rsv(trans); 3102 return ret; 3103 } 3104 3105 /** 3106 * btrfs_add_reserved_bytes - update the block_group and space info counters 3107 * @cache: The cache we are manipulating 3108 * @ram_bytes: The number of bytes of file content, and will be same to 3109 * @num_bytes except for the compress path. 3110 * @num_bytes: The number of bytes in question 3111 * @delalloc: The blocks are allocated for the delalloc write 3112 * 3113 * This is called by the allocator when it reserves space. If this is a 3114 * reservation and the block group has become read only we cannot make the 3115 * reservation and return -EAGAIN, otherwise this function always succeeds. 3116 */ 3117 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3118 u64 ram_bytes, u64 num_bytes, int delalloc) 3119 { 3120 struct btrfs_space_info *space_info = cache->space_info; 3121 int ret = 0; 3122 3123 spin_lock(&space_info->lock); 3124 spin_lock(&cache->lock); 3125 if (cache->ro) { 3126 ret = -EAGAIN; 3127 } else { 3128 cache->reserved += num_bytes; 3129 space_info->bytes_reserved += num_bytes; 3130 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3131 space_info->flags, num_bytes, 1); 3132 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3133 space_info, -ram_bytes); 3134 if (delalloc) 3135 cache->delalloc_bytes += num_bytes; 3136 3137 /* 3138 * Compression can use less space than we reserved, so wake 3139 * tickets if that happens 3140 */ 3141 if (num_bytes < ram_bytes) 3142 btrfs_try_granting_tickets(cache->fs_info, space_info); 3143 } 3144 spin_unlock(&cache->lock); 3145 spin_unlock(&space_info->lock); 3146 return ret; 3147 } 3148 3149 /** 3150 * btrfs_free_reserved_bytes - update the block_group and space info counters 3151 * @cache: The cache we are manipulating 3152 * @num_bytes: The number of bytes in question 3153 * @delalloc: The blocks are allocated for the delalloc write 3154 * 3155 * This is called by somebody who is freeing space that was never actually used 3156 * on disk. For example if you reserve some space for a new leaf in transaction 3157 * A and before transaction A commits you free that leaf, you call this with 3158 * reserve set to 0 in order to clear the reservation. 3159 */ 3160 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3161 u64 num_bytes, int delalloc) 3162 { 3163 struct btrfs_space_info *space_info = cache->space_info; 3164 3165 spin_lock(&space_info->lock); 3166 spin_lock(&cache->lock); 3167 if (cache->ro) 3168 space_info->bytes_readonly += num_bytes; 3169 cache->reserved -= num_bytes; 3170 space_info->bytes_reserved -= num_bytes; 3171 space_info->max_extent_size = 0; 3172 3173 if (delalloc) 3174 cache->delalloc_bytes -= num_bytes; 3175 spin_unlock(&cache->lock); 3176 3177 btrfs_try_granting_tickets(cache->fs_info, space_info); 3178 spin_unlock(&space_info->lock); 3179 } 3180 3181 static void force_metadata_allocation(struct btrfs_fs_info *info) 3182 { 3183 struct list_head *head = &info->space_info; 3184 struct btrfs_space_info *found; 3185 3186 list_for_each_entry(found, head, list) { 3187 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3188 found->force_alloc = CHUNK_ALLOC_FORCE; 3189 } 3190 } 3191 3192 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3193 struct btrfs_space_info *sinfo, int force) 3194 { 3195 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3196 u64 thresh; 3197 3198 if (force == CHUNK_ALLOC_FORCE) 3199 return 1; 3200 3201 /* 3202 * in limited mode, we want to have some free space up to 3203 * about 1% of the FS size. 3204 */ 3205 if (force == CHUNK_ALLOC_LIMITED) { 3206 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3207 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3208 3209 if (sinfo->total_bytes - bytes_used < thresh) 3210 return 1; 3211 } 3212 3213 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3214 return 0; 3215 return 1; 3216 } 3217 3218 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3219 { 3220 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3221 3222 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3223 } 3224 3225 /* 3226 * If force is CHUNK_ALLOC_FORCE: 3227 * - return 1 if it successfully allocates a chunk, 3228 * - return errors including -ENOSPC otherwise. 3229 * If force is NOT CHUNK_ALLOC_FORCE: 3230 * - return 0 if it doesn't need to allocate a new chunk, 3231 * - return 1 if it successfully allocates a chunk, 3232 * - return errors including -ENOSPC otherwise. 3233 */ 3234 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3235 enum btrfs_chunk_alloc_enum force) 3236 { 3237 struct btrfs_fs_info *fs_info = trans->fs_info; 3238 struct btrfs_space_info *space_info; 3239 bool wait_for_alloc = false; 3240 bool should_alloc = false; 3241 int ret = 0; 3242 3243 /* Don't re-enter if we're already allocating a chunk */ 3244 if (trans->allocating_chunk) 3245 return -ENOSPC; 3246 3247 space_info = btrfs_find_space_info(fs_info, flags); 3248 ASSERT(space_info); 3249 3250 do { 3251 spin_lock(&space_info->lock); 3252 if (force < space_info->force_alloc) 3253 force = space_info->force_alloc; 3254 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3255 if (space_info->full) { 3256 /* No more free physical space */ 3257 if (should_alloc) 3258 ret = -ENOSPC; 3259 else 3260 ret = 0; 3261 spin_unlock(&space_info->lock); 3262 return ret; 3263 } else if (!should_alloc) { 3264 spin_unlock(&space_info->lock); 3265 return 0; 3266 } else if (space_info->chunk_alloc) { 3267 /* 3268 * Someone is already allocating, so we need to block 3269 * until this someone is finished and then loop to 3270 * recheck if we should continue with our allocation 3271 * attempt. 3272 */ 3273 wait_for_alloc = true; 3274 spin_unlock(&space_info->lock); 3275 mutex_lock(&fs_info->chunk_mutex); 3276 mutex_unlock(&fs_info->chunk_mutex); 3277 } else { 3278 /* Proceed with allocation */ 3279 space_info->chunk_alloc = 1; 3280 wait_for_alloc = false; 3281 spin_unlock(&space_info->lock); 3282 } 3283 3284 cond_resched(); 3285 } while (wait_for_alloc); 3286 3287 mutex_lock(&fs_info->chunk_mutex); 3288 trans->allocating_chunk = true; 3289 3290 /* 3291 * If we have mixed data/metadata chunks we want to make sure we keep 3292 * allocating mixed chunks instead of individual chunks. 3293 */ 3294 if (btrfs_mixed_space_info(space_info)) 3295 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3296 3297 /* 3298 * if we're doing a data chunk, go ahead and make sure that 3299 * we keep a reasonable number of metadata chunks allocated in the 3300 * FS as well. 3301 */ 3302 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3303 fs_info->data_chunk_allocations++; 3304 if (!(fs_info->data_chunk_allocations % 3305 fs_info->metadata_ratio)) 3306 force_metadata_allocation(fs_info); 3307 } 3308 3309 /* 3310 * Check if we have enough space in SYSTEM chunk because we may need 3311 * to update devices. 3312 */ 3313 check_system_chunk(trans, flags); 3314 3315 ret = btrfs_alloc_chunk(trans, flags); 3316 trans->allocating_chunk = false; 3317 3318 spin_lock(&space_info->lock); 3319 if (ret < 0) { 3320 if (ret == -ENOSPC) 3321 space_info->full = 1; 3322 else 3323 goto out; 3324 } else { 3325 ret = 1; 3326 space_info->max_extent_size = 0; 3327 } 3328 3329 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3330 out: 3331 space_info->chunk_alloc = 0; 3332 spin_unlock(&space_info->lock); 3333 mutex_unlock(&fs_info->chunk_mutex); 3334 /* 3335 * When we allocate a new chunk we reserve space in the chunk block 3336 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3337 * add new nodes/leafs to it if we end up needing to do it when 3338 * inserting the chunk item and updating device items as part of the 3339 * second phase of chunk allocation, performed by 3340 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3341 * large number of new block groups to create in our transaction 3342 * handle's new_bgs list to avoid exhausting the chunk block reserve 3343 * in extreme cases - like having a single transaction create many new 3344 * block groups when starting to write out the free space caches of all 3345 * the block groups that were made dirty during the lifetime of the 3346 * transaction. 3347 */ 3348 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3349 btrfs_create_pending_block_groups(trans); 3350 3351 return ret; 3352 } 3353 3354 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3355 { 3356 u64 num_dev; 3357 3358 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3359 if (!num_dev) 3360 num_dev = fs_info->fs_devices->rw_devices; 3361 3362 return num_dev; 3363 } 3364 3365 /* 3366 * Reserve space in the system space for allocating or removing a chunk 3367 */ 3368 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3369 { 3370 struct btrfs_transaction *cur_trans = trans->transaction; 3371 struct btrfs_fs_info *fs_info = trans->fs_info; 3372 struct btrfs_space_info *info; 3373 u64 left; 3374 u64 thresh; 3375 int ret = 0; 3376 u64 num_devs; 3377 3378 /* 3379 * Needed because we can end up allocating a system chunk and for an 3380 * atomic and race free space reservation in the chunk block reserve. 3381 */ 3382 lockdep_assert_held(&fs_info->chunk_mutex); 3383 3384 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3385 again: 3386 spin_lock(&info->lock); 3387 left = info->total_bytes - btrfs_space_info_used(info, true); 3388 spin_unlock(&info->lock); 3389 3390 num_devs = get_profile_num_devs(fs_info, type); 3391 3392 /* num_devs device items to update and 1 chunk item to add or remove */ 3393 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3394 btrfs_calc_insert_metadata_size(fs_info, 1); 3395 3396 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3397 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3398 left, thresh, type); 3399 btrfs_dump_space_info(fs_info, info, 0, 0); 3400 } 3401 3402 if (left < thresh) { 3403 u64 flags = btrfs_system_alloc_profile(fs_info); 3404 u64 reserved = atomic64_read(&cur_trans->chunk_bytes_reserved); 3405 3406 /* 3407 * If there's not available space for the chunk tree (system 3408 * space) and there are other tasks that reserved space for 3409 * creating a new system block group, wait for them to complete 3410 * the creation of their system block group and release excess 3411 * reserved space. We do this because: 3412 * 3413 * *) We can end up allocating more system chunks than necessary 3414 * when there are multiple tasks that are concurrently 3415 * allocating block groups, which can lead to exhaustion of 3416 * the system array in the superblock; 3417 * 3418 * *) If we allocate extra and unnecessary system block groups, 3419 * despite being empty for a long time, and possibly forever, 3420 * they end not being added to the list of unused block groups 3421 * because that typically happens only when deallocating the 3422 * last extent from a block group - which never happens since 3423 * we never allocate from them in the first place. The few 3424 * exceptions are when mounting a filesystem or running scrub, 3425 * which add unused block groups to the list of unused block 3426 * groups, to be deleted by the cleaner kthread. 3427 * And even when they are added to the list of unused block 3428 * groups, it can take a long time until they get deleted, 3429 * since the cleaner kthread might be sleeping or busy with 3430 * other work (deleting subvolumes, running delayed iputs, 3431 * defrag scheduling, etc); 3432 * 3433 * This is rare in practice, but can happen when too many tasks 3434 * are allocating blocks groups in parallel (via fallocate()) 3435 * and before the one that reserved space for a new system block 3436 * group finishes the block group creation and releases the space 3437 * reserved in excess (at btrfs_create_pending_block_groups()), 3438 * other tasks end up here and see free system space temporarily 3439 * not enough for updating the chunk tree. 3440 * 3441 * We unlock the chunk mutex before waiting for such tasks and 3442 * lock it again after the wait, otherwise we would deadlock. 3443 * It is safe to do so because allocating a system chunk is the 3444 * first thing done while allocating a new block group. 3445 */ 3446 if (reserved > trans->chunk_bytes_reserved) { 3447 const u64 min_needed = reserved - thresh; 3448 3449 mutex_unlock(&fs_info->chunk_mutex); 3450 wait_event(cur_trans->chunk_reserve_wait, 3451 atomic64_read(&cur_trans->chunk_bytes_reserved) <= 3452 min_needed); 3453 mutex_lock(&fs_info->chunk_mutex); 3454 goto again; 3455 } 3456 3457 /* 3458 * Ignore failure to create system chunk. We might end up not 3459 * needing it, as we might not need to COW all nodes/leafs from 3460 * the paths we visit in the chunk tree (they were already COWed 3461 * or created in the current transaction for example). 3462 */ 3463 ret = btrfs_alloc_chunk(trans, flags); 3464 } 3465 3466 if (!ret) { 3467 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3468 &fs_info->chunk_block_rsv, 3469 thresh, BTRFS_RESERVE_NO_FLUSH); 3470 if (!ret) { 3471 atomic64_add(thresh, &cur_trans->chunk_bytes_reserved); 3472 trans->chunk_bytes_reserved += thresh; 3473 } 3474 } 3475 } 3476 3477 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3478 { 3479 struct btrfs_block_group *block_group; 3480 u64 last = 0; 3481 3482 while (1) { 3483 struct inode *inode; 3484 3485 block_group = btrfs_lookup_first_block_group(info, last); 3486 while (block_group) { 3487 btrfs_wait_block_group_cache_done(block_group); 3488 spin_lock(&block_group->lock); 3489 if (block_group->iref) 3490 break; 3491 spin_unlock(&block_group->lock); 3492 block_group = btrfs_next_block_group(block_group); 3493 } 3494 if (!block_group) { 3495 if (last == 0) 3496 break; 3497 last = 0; 3498 continue; 3499 } 3500 3501 inode = block_group->inode; 3502 block_group->iref = 0; 3503 block_group->inode = NULL; 3504 spin_unlock(&block_group->lock); 3505 ASSERT(block_group->io_ctl.inode == NULL); 3506 iput(inode); 3507 last = block_group->start + block_group->length; 3508 btrfs_put_block_group(block_group); 3509 } 3510 } 3511 3512 /* 3513 * Must be called only after stopping all workers, since we could have block 3514 * group caching kthreads running, and therefore they could race with us if we 3515 * freed the block groups before stopping them. 3516 */ 3517 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3518 { 3519 struct btrfs_block_group *block_group; 3520 struct btrfs_space_info *space_info; 3521 struct btrfs_caching_control *caching_ctl; 3522 struct rb_node *n; 3523 3524 spin_lock(&info->block_group_cache_lock); 3525 while (!list_empty(&info->caching_block_groups)) { 3526 caching_ctl = list_entry(info->caching_block_groups.next, 3527 struct btrfs_caching_control, list); 3528 list_del(&caching_ctl->list); 3529 btrfs_put_caching_control(caching_ctl); 3530 } 3531 spin_unlock(&info->block_group_cache_lock); 3532 3533 spin_lock(&info->unused_bgs_lock); 3534 while (!list_empty(&info->unused_bgs)) { 3535 block_group = list_first_entry(&info->unused_bgs, 3536 struct btrfs_block_group, 3537 bg_list); 3538 list_del_init(&block_group->bg_list); 3539 btrfs_put_block_group(block_group); 3540 } 3541 spin_unlock(&info->unused_bgs_lock); 3542 3543 spin_lock(&info->unused_bgs_lock); 3544 while (!list_empty(&info->reclaim_bgs)) { 3545 block_group = list_first_entry(&info->reclaim_bgs, 3546 struct btrfs_block_group, 3547 bg_list); 3548 list_del_init(&block_group->bg_list); 3549 btrfs_put_block_group(block_group); 3550 } 3551 spin_unlock(&info->unused_bgs_lock); 3552 3553 spin_lock(&info->block_group_cache_lock); 3554 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3555 block_group = rb_entry(n, struct btrfs_block_group, 3556 cache_node); 3557 rb_erase(&block_group->cache_node, 3558 &info->block_group_cache_tree); 3559 RB_CLEAR_NODE(&block_group->cache_node); 3560 spin_unlock(&info->block_group_cache_lock); 3561 3562 down_write(&block_group->space_info->groups_sem); 3563 list_del(&block_group->list); 3564 up_write(&block_group->space_info->groups_sem); 3565 3566 /* 3567 * We haven't cached this block group, which means we could 3568 * possibly have excluded extents on this block group. 3569 */ 3570 if (block_group->cached == BTRFS_CACHE_NO || 3571 block_group->cached == BTRFS_CACHE_ERROR) 3572 btrfs_free_excluded_extents(block_group); 3573 3574 btrfs_remove_free_space_cache(block_group); 3575 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3576 ASSERT(list_empty(&block_group->dirty_list)); 3577 ASSERT(list_empty(&block_group->io_list)); 3578 ASSERT(list_empty(&block_group->bg_list)); 3579 ASSERT(refcount_read(&block_group->refs) == 1); 3580 ASSERT(block_group->swap_extents == 0); 3581 btrfs_put_block_group(block_group); 3582 3583 spin_lock(&info->block_group_cache_lock); 3584 } 3585 spin_unlock(&info->block_group_cache_lock); 3586 3587 btrfs_release_global_block_rsv(info); 3588 3589 while (!list_empty(&info->space_info)) { 3590 space_info = list_entry(info->space_info.next, 3591 struct btrfs_space_info, 3592 list); 3593 3594 /* 3595 * Do not hide this behind enospc_debug, this is actually 3596 * important and indicates a real bug if this happens. 3597 */ 3598 if (WARN_ON(space_info->bytes_pinned > 0 || 3599 space_info->bytes_reserved > 0 || 3600 space_info->bytes_may_use > 0)) 3601 btrfs_dump_space_info(info, space_info, 0, 0); 3602 WARN_ON(space_info->reclaim_size > 0); 3603 list_del(&space_info->list); 3604 btrfs_sysfs_remove_space_info(space_info); 3605 } 3606 return 0; 3607 } 3608 3609 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 3610 { 3611 atomic_inc(&cache->frozen); 3612 } 3613 3614 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 3615 { 3616 struct btrfs_fs_info *fs_info = block_group->fs_info; 3617 struct extent_map_tree *em_tree; 3618 struct extent_map *em; 3619 bool cleanup; 3620 3621 spin_lock(&block_group->lock); 3622 cleanup = (atomic_dec_and_test(&block_group->frozen) && 3623 block_group->removed); 3624 spin_unlock(&block_group->lock); 3625 3626 if (cleanup) { 3627 em_tree = &fs_info->mapping_tree; 3628 write_lock(&em_tree->lock); 3629 em = lookup_extent_mapping(em_tree, block_group->start, 3630 1); 3631 BUG_ON(!em); /* logic error, can't happen */ 3632 remove_extent_mapping(em_tree, em); 3633 write_unlock(&em_tree->lock); 3634 3635 /* once for us and once for the tree */ 3636 free_extent_map(em); 3637 free_extent_map(em); 3638 3639 /* 3640 * We may have left one free space entry and other possible 3641 * tasks trimming this block group have left 1 entry each one. 3642 * Free them if any. 3643 */ 3644 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3645 } 3646 } 3647 3648 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 3649 { 3650 bool ret = true; 3651 3652 spin_lock(&bg->lock); 3653 if (bg->ro) 3654 ret = false; 3655 else 3656 bg->swap_extents++; 3657 spin_unlock(&bg->lock); 3658 3659 return ret; 3660 } 3661 3662 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 3663 { 3664 spin_lock(&bg->lock); 3665 ASSERT(!bg->ro); 3666 ASSERT(bg->swap_extents >= amount); 3667 bg->swap_extents -= amount; 3668 spin_unlock(&bg->lock); 3669 } 3670