1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-group.h" 6 #include "space-info.h" 7 #include "disk-io.h" 8 #include "free-space-cache.h" 9 #include "free-space-tree.h" 10 #include "disk-io.h" 11 #include "volumes.h" 12 #include "transaction.h" 13 #include "ref-verify.h" 14 #include "sysfs.h" 15 #include "tree-log.h" 16 #include "delalloc-space.h" 17 #include "discard.h" 18 #include "raid56.h" 19 20 /* 21 * Return target flags in extended format or 0 if restripe for this chunk_type 22 * is not in progress 23 * 24 * Should be called with balance_lock held 25 */ 26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 27 { 28 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 29 u64 target = 0; 30 31 if (!bctl) 32 return 0; 33 34 if (flags & BTRFS_BLOCK_GROUP_DATA && 35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 43 } 44 45 return target; 46 } 47 48 /* 49 * @flags: available profiles in extended format (see ctree.h) 50 * 51 * Return reduced profile in chunk format. If profile changing is in progress 52 * (either running or paused) picks the target profile (if it's already 53 * available), otherwise falls back to plain reducing. 54 */ 55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 56 { 57 u64 num_devices = fs_info->fs_devices->rw_devices; 58 u64 target; 59 u64 raid_type; 60 u64 allowed = 0; 61 62 /* 63 * See if restripe for this chunk_type is in progress, if so try to 64 * reduce to the target profile 65 */ 66 spin_lock(&fs_info->balance_lock); 67 target = get_restripe_target(fs_info, flags); 68 if (target) { 69 /* Pick target profile only if it's already available */ 70 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 71 spin_unlock(&fs_info->balance_lock); 72 return extended_to_chunk(target); 73 } 74 } 75 spin_unlock(&fs_info->balance_lock); 76 77 /* First, mask out the RAID levels which aren't possible */ 78 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 79 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 80 allowed |= btrfs_raid_array[raid_type].bg_flag; 81 } 82 allowed &= flags; 83 84 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 85 allowed = BTRFS_BLOCK_GROUP_RAID6; 86 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 87 allowed = BTRFS_BLOCK_GROUP_RAID5; 88 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 89 allowed = BTRFS_BLOCK_GROUP_RAID10; 90 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 91 allowed = BTRFS_BLOCK_GROUP_RAID1; 92 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 93 allowed = BTRFS_BLOCK_GROUP_RAID0; 94 95 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 96 97 return extended_to_chunk(flags | allowed); 98 } 99 100 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 101 { 102 unsigned seq; 103 u64 flags; 104 105 do { 106 flags = orig_flags; 107 seq = read_seqbegin(&fs_info->profiles_lock); 108 109 if (flags & BTRFS_BLOCK_GROUP_DATA) 110 flags |= fs_info->avail_data_alloc_bits; 111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 112 flags |= fs_info->avail_system_alloc_bits; 113 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 114 flags |= fs_info->avail_metadata_alloc_bits; 115 } while (read_seqretry(&fs_info->profiles_lock, seq)); 116 117 return btrfs_reduce_alloc_profile(fs_info, flags); 118 } 119 120 void btrfs_get_block_group(struct btrfs_block_group *cache) 121 { 122 atomic_inc(&cache->count); 123 } 124 125 void btrfs_put_block_group(struct btrfs_block_group *cache) 126 { 127 if (atomic_dec_and_test(&cache->count)) { 128 WARN_ON(cache->pinned > 0); 129 WARN_ON(cache->reserved > 0); 130 131 /* 132 * A block_group shouldn't be on the discard_list anymore. 133 * Remove the block_group from the discard_list to prevent us 134 * from causing a panic due to NULL pointer dereference. 135 */ 136 if (WARN_ON(!list_empty(&cache->discard_list))) 137 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 138 cache); 139 140 /* 141 * If not empty, someone is still holding mutex of 142 * full_stripe_lock, which can only be released by caller. 143 * And it will definitely cause use-after-free when caller 144 * tries to release full stripe lock. 145 * 146 * No better way to resolve, but only to warn. 147 */ 148 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 149 kfree(cache->free_space_ctl); 150 kfree(cache); 151 } 152 } 153 154 /* 155 * This adds the block group to the fs_info rb tree for the block group cache 156 */ 157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 158 struct btrfs_block_group *block_group) 159 { 160 struct rb_node **p; 161 struct rb_node *parent = NULL; 162 struct btrfs_block_group *cache; 163 164 spin_lock(&info->block_group_cache_lock); 165 p = &info->block_group_cache_tree.rb_node; 166 167 while (*p) { 168 parent = *p; 169 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 170 if (block_group->start < cache->start) { 171 p = &(*p)->rb_left; 172 } else if (block_group->start > cache->start) { 173 p = &(*p)->rb_right; 174 } else { 175 spin_unlock(&info->block_group_cache_lock); 176 return -EEXIST; 177 } 178 } 179 180 rb_link_node(&block_group->cache_node, parent, p); 181 rb_insert_color(&block_group->cache_node, 182 &info->block_group_cache_tree); 183 184 if (info->first_logical_byte > block_group->start) 185 info->first_logical_byte = block_group->start; 186 187 spin_unlock(&info->block_group_cache_lock); 188 189 return 0; 190 } 191 192 /* 193 * This will return the block group at or after bytenr if contains is 0, else 194 * it will return the block group that contains the bytenr 195 */ 196 static struct btrfs_block_group *block_group_cache_tree_search( 197 struct btrfs_fs_info *info, u64 bytenr, int contains) 198 { 199 struct btrfs_block_group *cache, *ret = NULL; 200 struct rb_node *n; 201 u64 end, start; 202 203 spin_lock(&info->block_group_cache_lock); 204 n = info->block_group_cache_tree.rb_node; 205 206 while (n) { 207 cache = rb_entry(n, struct btrfs_block_group, cache_node); 208 end = cache->start + cache->length - 1; 209 start = cache->start; 210 211 if (bytenr < start) { 212 if (!contains && (!ret || start < ret->start)) 213 ret = cache; 214 n = n->rb_left; 215 } else if (bytenr > start) { 216 if (contains && bytenr <= end) { 217 ret = cache; 218 break; 219 } 220 n = n->rb_right; 221 } else { 222 ret = cache; 223 break; 224 } 225 } 226 if (ret) { 227 btrfs_get_block_group(ret); 228 if (bytenr == 0 && info->first_logical_byte > ret->start) 229 info->first_logical_byte = ret->start; 230 } 231 spin_unlock(&info->block_group_cache_lock); 232 233 return ret; 234 } 235 236 /* 237 * Return the block group that starts at or after bytenr 238 */ 239 struct btrfs_block_group *btrfs_lookup_first_block_group( 240 struct btrfs_fs_info *info, u64 bytenr) 241 { 242 return block_group_cache_tree_search(info, bytenr, 0); 243 } 244 245 /* 246 * Return the block group that contains the given bytenr 247 */ 248 struct btrfs_block_group *btrfs_lookup_block_group( 249 struct btrfs_fs_info *info, u64 bytenr) 250 { 251 return block_group_cache_tree_search(info, bytenr, 1); 252 } 253 254 struct btrfs_block_group *btrfs_next_block_group( 255 struct btrfs_block_group *cache) 256 { 257 struct btrfs_fs_info *fs_info = cache->fs_info; 258 struct rb_node *node; 259 260 spin_lock(&fs_info->block_group_cache_lock); 261 262 /* If our block group was removed, we need a full search. */ 263 if (RB_EMPTY_NODE(&cache->cache_node)) { 264 const u64 next_bytenr = cache->start + cache->length; 265 266 spin_unlock(&fs_info->block_group_cache_lock); 267 btrfs_put_block_group(cache); 268 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 269 } 270 node = rb_next(&cache->cache_node); 271 btrfs_put_block_group(cache); 272 if (node) { 273 cache = rb_entry(node, struct btrfs_block_group, cache_node); 274 btrfs_get_block_group(cache); 275 } else 276 cache = NULL; 277 spin_unlock(&fs_info->block_group_cache_lock); 278 return cache; 279 } 280 281 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 282 { 283 struct btrfs_block_group *bg; 284 bool ret = true; 285 286 bg = btrfs_lookup_block_group(fs_info, bytenr); 287 if (!bg) 288 return false; 289 290 spin_lock(&bg->lock); 291 if (bg->ro) 292 ret = false; 293 else 294 atomic_inc(&bg->nocow_writers); 295 spin_unlock(&bg->lock); 296 297 /* No put on block group, done by btrfs_dec_nocow_writers */ 298 if (!ret) 299 btrfs_put_block_group(bg); 300 301 return ret; 302 } 303 304 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 305 { 306 struct btrfs_block_group *bg; 307 308 bg = btrfs_lookup_block_group(fs_info, bytenr); 309 ASSERT(bg); 310 if (atomic_dec_and_test(&bg->nocow_writers)) 311 wake_up_var(&bg->nocow_writers); 312 /* 313 * Once for our lookup and once for the lookup done by a previous call 314 * to btrfs_inc_nocow_writers() 315 */ 316 btrfs_put_block_group(bg); 317 btrfs_put_block_group(bg); 318 } 319 320 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 321 { 322 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 323 } 324 325 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 326 const u64 start) 327 { 328 struct btrfs_block_group *bg; 329 330 bg = btrfs_lookup_block_group(fs_info, start); 331 ASSERT(bg); 332 if (atomic_dec_and_test(&bg->reservations)) 333 wake_up_var(&bg->reservations); 334 btrfs_put_block_group(bg); 335 } 336 337 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 338 { 339 struct btrfs_space_info *space_info = bg->space_info; 340 341 ASSERT(bg->ro); 342 343 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 344 return; 345 346 /* 347 * Our block group is read only but before we set it to read only, 348 * some task might have had allocated an extent from it already, but it 349 * has not yet created a respective ordered extent (and added it to a 350 * root's list of ordered extents). 351 * Therefore wait for any task currently allocating extents, since the 352 * block group's reservations counter is incremented while a read lock 353 * on the groups' semaphore is held and decremented after releasing 354 * the read access on that semaphore and creating the ordered extent. 355 */ 356 down_write(&space_info->groups_sem); 357 up_write(&space_info->groups_sem); 358 359 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 360 } 361 362 struct btrfs_caching_control *btrfs_get_caching_control( 363 struct btrfs_block_group *cache) 364 { 365 struct btrfs_caching_control *ctl; 366 367 spin_lock(&cache->lock); 368 if (!cache->caching_ctl) { 369 spin_unlock(&cache->lock); 370 return NULL; 371 } 372 373 ctl = cache->caching_ctl; 374 refcount_inc(&ctl->count); 375 spin_unlock(&cache->lock); 376 return ctl; 377 } 378 379 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 380 { 381 if (refcount_dec_and_test(&ctl->count)) 382 kfree(ctl); 383 } 384 385 /* 386 * When we wait for progress in the block group caching, its because our 387 * allocation attempt failed at least once. So, we must sleep and let some 388 * progress happen before we try again. 389 * 390 * This function will sleep at least once waiting for new free space to show 391 * up, and then it will check the block group free space numbers for our min 392 * num_bytes. Another option is to have it go ahead and look in the rbtree for 393 * a free extent of a given size, but this is a good start. 394 * 395 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 396 * any of the information in this block group. 397 */ 398 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 399 u64 num_bytes) 400 { 401 struct btrfs_caching_control *caching_ctl; 402 403 caching_ctl = btrfs_get_caching_control(cache); 404 if (!caching_ctl) 405 return; 406 407 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 408 (cache->free_space_ctl->free_space >= num_bytes)); 409 410 btrfs_put_caching_control(caching_ctl); 411 } 412 413 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 414 { 415 struct btrfs_caching_control *caching_ctl; 416 int ret = 0; 417 418 caching_ctl = btrfs_get_caching_control(cache); 419 if (!caching_ctl) 420 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 421 422 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 423 if (cache->cached == BTRFS_CACHE_ERROR) 424 ret = -EIO; 425 btrfs_put_caching_control(caching_ctl); 426 return ret; 427 } 428 429 #ifdef CONFIG_BTRFS_DEBUG 430 static void fragment_free_space(struct btrfs_block_group *block_group) 431 { 432 struct btrfs_fs_info *fs_info = block_group->fs_info; 433 u64 start = block_group->start; 434 u64 len = block_group->length; 435 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 436 fs_info->nodesize : fs_info->sectorsize; 437 u64 step = chunk << 1; 438 439 while (len > chunk) { 440 btrfs_remove_free_space(block_group, start, chunk); 441 start += step; 442 if (len < step) 443 len = 0; 444 else 445 len -= step; 446 } 447 } 448 #endif 449 450 /* 451 * This is only called by btrfs_cache_block_group, since we could have freed 452 * extents we need to check the pinned_extents for any extents that can't be 453 * used yet since their free space will be released as soon as the transaction 454 * commits. 455 */ 456 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) 457 { 458 struct btrfs_fs_info *info = block_group->fs_info; 459 u64 extent_start, extent_end, size, total_added = 0; 460 int ret; 461 462 while (start < end) { 463 ret = find_first_extent_bit(info->pinned_extents, start, 464 &extent_start, &extent_end, 465 EXTENT_DIRTY | EXTENT_UPTODATE, 466 NULL); 467 if (ret) 468 break; 469 470 if (extent_start <= start) { 471 start = extent_end + 1; 472 } else if (extent_start > start && extent_start < end) { 473 size = extent_start - start; 474 total_added += size; 475 ret = btrfs_add_free_space_async_trimmed(block_group, 476 start, size); 477 BUG_ON(ret); /* -ENOMEM or logic error */ 478 start = extent_end + 1; 479 } else { 480 break; 481 } 482 } 483 484 if (start < end) { 485 size = end - start; 486 total_added += size; 487 ret = btrfs_add_free_space_async_trimmed(block_group, start, 488 size); 489 BUG_ON(ret); /* -ENOMEM or logic error */ 490 } 491 492 return total_added; 493 } 494 495 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 496 { 497 struct btrfs_block_group *block_group = caching_ctl->block_group; 498 struct btrfs_fs_info *fs_info = block_group->fs_info; 499 struct btrfs_root *extent_root = fs_info->extent_root; 500 struct btrfs_path *path; 501 struct extent_buffer *leaf; 502 struct btrfs_key key; 503 u64 total_found = 0; 504 u64 last = 0; 505 u32 nritems; 506 int ret; 507 bool wakeup = true; 508 509 path = btrfs_alloc_path(); 510 if (!path) 511 return -ENOMEM; 512 513 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 514 515 #ifdef CONFIG_BTRFS_DEBUG 516 /* 517 * If we're fragmenting we don't want to make anybody think we can 518 * allocate from this block group until we've had a chance to fragment 519 * the free space. 520 */ 521 if (btrfs_should_fragment_free_space(block_group)) 522 wakeup = false; 523 #endif 524 /* 525 * We don't want to deadlock with somebody trying to allocate a new 526 * extent for the extent root while also trying to search the extent 527 * root to add free space. So we skip locking and search the commit 528 * root, since its read-only 529 */ 530 path->skip_locking = 1; 531 path->search_commit_root = 1; 532 path->reada = READA_FORWARD; 533 534 key.objectid = last; 535 key.offset = 0; 536 key.type = BTRFS_EXTENT_ITEM_KEY; 537 538 next: 539 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 540 if (ret < 0) 541 goto out; 542 543 leaf = path->nodes[0]; 544 nritems = btrfs_header_nritems(leaf); 545 546 while (1) { 547 if (btrfs_fs_closing(fs_info) > 1) { 548 last = (u64)-1; 549 break; 550 } 551 552 if (path->slots[0] < nritems) { 553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 554 } else { 555 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 556 if (ret) 557 break; 558 559 if (need_resched() || 560 rwsem_is_contended(&fs_info->commit_root_sem)) { 561 if (wakeup) 562 caching_ctl->progress = last; 563 btrfs_release_path(path); 564 up_read(&fs_info->commit_root_sem); 565 mutex_unlock(&caching_ctl->mutex); 566 cond_resched(); 567 mutex_lock(&caching_ctl->mutex); 568 down_read(&fs_info->commit_root_sem); 569 goto next; 570 } 571 572 ret = btrfs_next_leaf(extent_root, path); 573 if (ret < 0) 574 goto out; 575 if (ret) 576 break; 577 leaf = path->nodes[0]; 578 nritems = btrfs_header_nritems(leaf); 579 continue; 580 } 581 582 if (key.objectid < last) { 583 key.objectid = last; 584 key.offset = 0; 585 key.type = BTRFS_EXTENT_ITEM_KEY; 586 587 if (wakeup) 588 caching_ctl->progress = last; 589 btrfs_release_path(path); 590 goto next; 591 } 592 593 if (key.objectid < block_group->start) { 594 path->slots[0]++; 595 continue; 596 } 597 598 if (key.objectid >= block_group->start + block_group->length) 599 break; 600 601 if (key.type == BTRFS_EXTENT_ITEM_KEY || 602 key.type == BTRFS_METADATA_ITEM_KEY) { 603 total_found += add_new_free_space(block_group, last, 604 key.objectid); 605 if (key.type == BTRFS_METADATA_ITEM_KEY) 606 last = key.objectid + 607 fs_info->nodesize; 608 else 609 last = key.objectid + key.offset; 610 611 if (total_found > CACHING_CTL_WAKE_UP) { 612 total_found = 0; 613 if (wakeup) 614 wake_up(&caching_ctl->wait); 615 } 616 } 617 path->slots[0]++; 618 } 619 ret = 0; 620 621 total_found += add_new_free_space(block_group, last, 622 block_group->start + block_group->length); 623 caching_ctl->progress = (u64)-1; 624 625 out: 626 btrfs_free_path(path); 627 return ret; 628 } 629 630 static noinline void caching_thread(struct btrfs_work *work) 631 { 632 struct btrfs_block_group *block_group; 633 struct btrfs_fs_info *fs_info; 634 struct btrfs_caching_control *caching_ctl; 635 int ret; 636 637 caching_ctl = container_of(work, struct btrfs_caching_control, work); 638 block_group = caching_ctl->block_group; 639 fs_info = block_group->fs_info; 640 641 mutex_lock(&caching_ctl->mutex); 642 down_read(&fs_info->commit_root_sem); 643 644 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 645 ret = load_free_space_tree(caching_ctl); 646 else 647 ret = load_extent_tree_free(caching_ctl); 648 649 spin_lock(&block_group->lock); 650 block_group->caching_ctl = NULL; 651 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 652 spin_unlock(&block_group->lock); 653 654 #ifdef CONFIG_BTRFS_DEBUG 655 if (btrfs_should_fragment_free_space(block_group)) { 656 u64 bytes_used; 657 658 spin_lock(&block_group->space_info->lock); 659 spin_lock(&block_group->lock); 660 bytes_used = block_group->length - block_group->used; 661 block_group->space_info->bytes_used += bytes_used >> 1; 662 spin_unlock(&block_group->lock); 663 spin_unlock(&block_group->space_info->lock); 664 fragment_free_space(block_group); 665 } 666 #endif 667 668 caching_ctl->progress = (u64)-1; 669 670 up_read(&fs_info->commit_root_sem); 671 btrfs_free_excluded_extents(block_group); 672 mutex_unlock(&caching_ctl->mutex); 673 674 wake_up(&caching_ctl->wait); 675 676 btrfs_put_caching_control(caching_ctl); 677 btrfs_put_block_group(block_group); 678 } 679 680 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) 681 { 682 DEFINE_WAIT(wait); 683 struct btrfs_fs_info *fs_info = cache->fs_info; 684 struct btrfs_caching_control *caching_ctl; 685 int ret = 0; 686 687 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 688 if (!caching_ctl) 689 return -ENOMEM; 690 691 INIT_LIST_HEAD(&caching_ctl->list); 692 mutex_init(&caching_ctl->mutex); 693 init_waitqueue_head(&caching_ctl->wait); 694 caching_ctl->block_group = cache; 695 caching_ctl->progress = cache->start; 696 refcount_set(&caching_ctl->count, 1); 697 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 698 699 spin_lock(&cache->lock); 700 /* 701 * This should be a rare occasion, but this could happen I think in the 702 * case where one thread starts to load the space cache info, and then 703 * some other thread starts a transaction commit which tries to do an 704 * allocation while the other thread is still loading the space cache 705 * info. The previous loop should have kept us from choosing this block 706 * group, but if we've moved to the state where we will wait on caching 707 * block groups we need to first check if we're doing a fast load here, 708 * so we can wait for it to finish, otherwise we could end up allocating 709 * from a block group who's cache gets evicted for one reason or 710 * another. 711 */ 712 while (cache->cached == BTRFS_CACHE_FAST) { 713 struct btrfs_caching_control *ctl; 714 715 ctl = cache->caching_ctl; 716 refcount_inc(&ctl->count); 717 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 718 spin_unlock(&cache->lock); 719 720 schedule(); 721 722 finish_wait(&ctl->wait, &wait); 723 btrfs_put_caching_control(ctl); 724 spin_lock(&cache->lock); 725 } 726 727 if (cache->cached != BTRFS_CACHE_NO) { 728 spin_unlock(&cache->lock); 729 kfree(caching_ctl); 730 return 0; 731 } 732 WARN_ON(cache->caching_ctl); 733 cache->caching_ctl = caching_ctl; 734 cache->cached = BTRFS_CACHE_FAST; 735 spin_unlock(&cache->lock); 736 737 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 738 mutex_lock(&caching_ctl->mutex); 739 ret = load_free_space_cache(cache); 740 741 spin_lock(&cache->lock); 742 if (ret == 1) { 743 cache->caching_ctl = NULL; 744 cache->cached = BTRFS_CACHE_FINISHED; 745 cache->last_byte_to_unpin = (u64)-1; 746 caching_ctl->progress = (u64)-1; 747 } else { 748 if (load_cache_only) { 749 cache->caching_ctl = NULL; 750 cache->cached = BTRFS_CACHE_NO; 751 } else { 752 cache->cached = BTRFS_CACHE_STARTED; 753 cache->has_caching_ctl = 1; 754 } 755 } 756 spin_unlock(&cache->lock); 757 #ifdef CONFIG_BTRFS_DEBUG 758 if (ret == 1 && 759 btrfs_should_fragment_free_space(cache)) { 760 u64 bytes_used; 761 762 spin_lock(&cache->space_info->lock); 763 spin_lock(&cache->lock); 764 bytes_used = cache->length - cache->used; 765 cache->space_info->bytes_used += bytes_used >> 1; 766 spin_unlock(&cache->lock); 767 spin_unlock(&cache->space_info->lock); 768 fragment_free_space(cache); 769 } 770 #endif 771 mutex_unlock(&caching_ctl->mutex); 772 773 wake_up(&caching_ctl->wait); 774 if (ret == 1) { 775 btrfs_put_caching_control(caching_ctl); 776 btrfs_free_excluded_extents(cache); 777 return 0; 778 } 779 } else { 780 /* 781 * We're either using the free space tree or no caching at all. 782 * Set cached to the appropriate value and wakeup any waiters. 783 */ 784 spin_lock(&cache->lock); 785 if (load_cache_only) { 786 cache->caching_ctl = NULL; 787 cache->cached = BTRFS_CACHE_NO; 788 } else { 789 cache->cached = BTRFS_CACHE_STARTED; 790 cache->has_caching_ctl = 1; 791 } 792 spin_unlock(&cache->lock); 793 wake_up(&caching_ctl->wait); 794 } 795 796 if (load_cache_only) { 797 btrfs_put_caching_control(caching_ctl); 798 return 0; 799 } 800 801 down_write(&fs_info->commit_root_sem); 802 refcount_inc(&caching_ctl->count); 803 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 804 up_write(&fs_info->commit_root_sem); 805 806 btrfs_get_block_group(cache); 807 808 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 809 810 return ret; 811 } 812 813 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 814 { 815 u64 extra_flags = chunk_to_extended(flags) & 816 BTRFS_EXTENDED_PROFILE_MASK; 817 818 write_seqlock(&fs_info->profiles_lock); 819 if (flags & BTRFS_BLOCK_GROUP_DATA) 820 fs_info->avail_data_alloc_bits &= ~extra_flags; 821 if (flags & BTRFS_BLOCK_GROUP_METADATA) 822 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 823 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 824 fs_info->avail_system_alloc_bits &= ~extra_flags; 825 write_sequnlock(&fs_info->profiles_lock); 826 } 827 828 /* 829 * Clear incompat bits for the following feature(s): 830 * 831 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 832 * in the whole filesystem 833 * 834 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 835 */ 836 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 837 { 838 bool found_raid56 = false; 839 bool found_raid1c34 = false; 840 841 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 842 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 843 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 844 struct list_head *head = &fs_info->space_info; 845 struct btrfs_space_info *sinfo; 846 847 list_for_each_entry_rcu(sinfo, head, list) { 848 down_read(&sinfo->groups_sem); 849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 850 found_raid56 = true; 851 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 852 found_raid56 = true; 853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 854 found_raid1c34 = true; 855 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 856 found_raid1c34 = true; 857 up_read(&sinfo->groups_sem); 858 } 859 if (found_raid56) 860 btrfs_clear_fs_incompat(fs_info, RAID56); 861 if (found_raid1c34) 862 btrfs_clear_fs_incompat(fs_info, RAID1C34); 863 } 864 } 865 866 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 867 u64 group_start, struct extent_map *em) 868 { 869 struct btrfs_fs_info *fs_info = trans->fs_info; 870 struct btrfs_root *root = fs_info->extent_root; 871 struct btrfs_path *path; 872 struct btrfs_block_group *block_group; 873 struct btrfs_free_cluster *cluster; 874 struct btrfs_root *tree_root = fs_info->tree_root; 875 struct btrfs_key key; 876 struct inode *inode; 877 struct kobject *kobj = NULL; 878 int ret; 879 int index; 880 int factor; 881 struct btrfs_caching_control *caching_ctl = NULL; 882 bool remove_em; 883 bool remove_rsv = false; 884 885 block_group = btrfs_lookup_block_group(fs_info, group_start); 886 BUG_ON(!block_group); 887 BUG_ON(!block_group->ro); 888 889 trace_btrfs_remove_block_group(block_group); 890 /* 891 * Free the reserved super bytes from this block group before 892 * remove it. 893 */ 894 btrfs_free_excluded_extents(block_group); 895 btrfs_free_ref_tree_range(fs_info, block_group->start, 896 block_group->length); 897 898 index = btrfs_bg_flags_to_raid_index(block_group->flags); 899 factor = btrfs_bg_type_to_factor(block_group->flags); 900 901 /* make sure this block group isn't part of an allocation cluster */ 902 cluster = &fs_info->data_alloc_cluster; 903 spin_lock(&cluster->refill_lock); 904 btrfs_return_cluster_to_free_space(block_group, cluster); 905 spin_unlock(&cluster->refill_lock); 906 907 /* 908 * make sure this block group isn't part of a metadata 909 * allocation cluster 910 */ 911 cluster = &fs_info->meta_alloc_cluster; 912 spin_lock(&cluster->refill_lock); 913 btrfs_return_cluster_to_free_space(block_group, cluster); 914 spin_unlock(&cluster->refill_lock); 915 916 path = btrfs_alloc_path(); 917 if (!path) { 918 ret = -ENOMEM; 919 goto out; 920 } 921 922 /* 923 * get the inode first so any iput calls done for the io_list 924 * aren't the final iput (no unlinks allowed now) 925 */ 926 inode = lookup_free_space_inode(block_group, path); 927 928 mutex_lock(&trans->transaction->cache_write_mutex); 929 /* 930 * Make sure our free space cache IO is done before removing the 931 * free space inode 932 */ 933 spin_lock(&trans->transaction->dirty_bgs_lock); 934 if (!list_empty(&block_group->io_list)) { 935 list_del_init(&block_group->io_list); 936 937 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 938 939 spin_unlock(&trans->transaction->dirty_bgs_lock); 940 btrfs_wait_cache_io(trans, block_group, path); 941 btrfs_put_block_group(block_group); 942 spin_lock(&trans->transaction->dirty_bgs_lock); 943 } 944 945 if (!list_empty(&block_group->dirty_list)) { 946 list_del_init(&block_group->dirty_list); 947 remove_rsv = true; 948 btrfs_put_block_group(block_group); 949 } 950 spin_unlock(&trans->transaction->dirty_bgs_lock); 951 mutex_unlock(&trans->transaction->cache_write_mutex); 952 953 if (!IS_ERR(inode)) { 954 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 955 if (ret) { 956 btrfs_add_delayed_iput(inode); 957 goto out; 958 } 959 clear_nlink(inode); 960 /* One for the block groups ref */ 961 spin_lock(&block_group->lock); 962 if (block_group->iref) { 963 block_group->iref = 0; 964 block_group->inode = NULL; 965 spin_unlock(&block_group->lock); 966 iput(inode); 967 } else { 968 spin_unlock(&block_group->lock); 969 } 970 /* One for our lookup ref */ 971 btrfs_add_delayed_iput(inode); 972 } 973 974 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 975 key.type = 0; 976 key.offset = block_group->start; 977 978 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 979 if (ret < 0) 980 goto out; 981 if (ret > 0) 982 btrfs_release_path(path); 983 if (ret == 0) { 984 ret = btrfs_del_item(trans, tree_root, path); 985 if (ret) 986 goto out; 987 btrfs_release_path(path); 988 } 989 990 spin_lock(&fs_info->block_group_cache_lock); 991 rb_erase(&block_group->cache_node, 992 &fs_info->block_group_cache_tree); 993 RB_CLEAR_NODE(&block_group->cache_node); 994 995 if (fs_info->first_logical_byte == block_group->start) 996 fs_info->first_logical_byte = (u64)-1; 997 spin_unlock(&fs_info->block_group_cache_lock); 998 999 down_write(&block_group->space_info->groups_sem); 1000 /* 1001 * we must use list_del_init so people can check to see if they 1002 * are still on the list after taking the semaphore 1003 */ 1004 list_del_init(&block_group->list); 1005 if (list_empty(&block_group->space_info->block_groups[index])) { 1006 kobj = block_group->space_info->block_group_kobjs[index]; 1007 block_group->space_info->block_group_kobjs[index] = NULL; 1008 clear_avail_alloc_bits(fs_info, block_group->flags); 1009 } 1010 up_write(&block_group->space_info->groups_sem); 1011 clear_incompat_bg_bits(fs_info, block_group->flags); 1012 if (kobj) { 1013 kobject_del(kobj); 1014 kobject_put(kobj); 1015 } 1016 1017 if (block_group->has_caching_ctl) 1018 caching_ctl = btrfs_get_caching_control(block_group); 1019 if (block_group->cached == BTRFS_CACHE_STARTED) 1020 btrfs_wait_block_group_cache_done(block_group); 1021 if (block_group->has_caching_ctl) { 1022 down_write(&fs_info->commit_root_sem); 1023 if (!caching_ctl) { 1024 struct btrfs_caching_control *ctl; 1025 1026 list_for_each_entry(ctl, 1027 &fs_info->caching_block_groups, list) 1028 if (ctl->block_group == block_group) { 1029 caching_ctl = ctl; 1030 refcount_inc(&caching_ctl->count); 1031 break; 1032 } 1033 } 1034 if (caching_ctl) 1035 list_del_init(&caching_ctl->list); 1036 up_write(&fs_info->commit_root_sem); 1037 if (caching_ctl) { 1038 /* Once for the caching bgs list and once for us. */ 1039 btrfs_put_caching_control(caching_ctl); 1040 btrfs_put_caching_control(caching_ctl); 1041 } 1042 } 1043 1044 spin_lock(&trans->transaction->dirty_bgs_lock); 1045 WARN_ON(!list_empty(&block_group->dirty_list)); 1046 WARN_ON(!list_empty(&block_group->io_list)); 1047 spin_unlock(&trans->transaction->dirty_bgs_lock); 1048 1049 btrfs_remove_free_space_cache(block_group); 1050 1051 spin_lock(&block_group->space_info->lock); 1052 list_del_init(&block_group->ro_list); 1053 1054 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1055 WARN_ON(block_group->space_info->total_bytes 1056 < block_group->length); 1057 WARN_ON(block_group->space_info->bytes_readonly 1058 < block_group->length); 1059 WARN_ON(block_group->space_info->disk_total 1060 < block_group->length * factor); 1061 } 1062 block_group->space_info->total_bytes -= block_group->length; 1063 block_group->space_info->bytes_readonly -= block_group->length; 1064 block_group->space_info->disk_total -= block_group->length * factor; 1065 1066 spin_unlock(&block_group->space_info->lock); 1067 1068 key.objectid = block_group->start; 1069 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1070 key.offset = block_group->length; 1071 1072 mutex_lock(&fs_info->chunk_mutex); 1073 spin_lock(&block_group->lock); 1074 block_group->removed = 1; 1075 /* 1076 * At this point trimming can't start on this block group, because we 1077 * removed the block group from the tree fs_info->block_group_cache_tree 1078 * so no one can't find it anymore and even if someone already got this 1079 * block group before we removed it from the rbtree, they have already 1080 * incremented block_group->trimming - if they didn't, they won't find 1081 * any free space entries because we already removed them all when we 1082 * called btrfs_remove_free_space_cache(). 1083 * 1084 * And we must not remove the extent map from the fs_info->mapping_tree 1085 * to prevent the same logical address range and physical device space 1086 * ranges from being reused for a new block group. This is because our 1087 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1088 * completely transactionless, so while it is trimming a range the 1089 * currently running transaction might finish and a new one start, 1090 * allowing for new block groups to be created that can reuse the same 1091 * physical device locations unless we take this special care. 1092 * 1093 * There may also be an implicit trim operation if the file system 1094 * is mounted with -odiscard. The same protections must remain 1095 * in place until the extents have been discarded completely when 1096 * the transaction commit has completed. 1097 */ 1098 remove_em = (atomic_read(&block_group->trimming) == 0); 1099 spin_unlock(&block_group->lock); 1100 1101 mutex_unlock(&fs_info->chunk_mutex); 1102 1103 ret = remove_block_group_free_space(trans, block_group); 1104 if (ret) 1105 goto out; 1106 1107 btrfs_put_block_group(block_group); 1108 btrfs_put_block_group(block_group); 1109 1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1111 if (ret > 0) 1112 ret = -EIO; 1113 if (ret < 0) 1114 goto out; 1115 1116 ret = btrfs_del_item(trans, root, path); 1117 if (ret) 1118 goto out; 1119 1120 if (remove_em) { 1121 struct extent_map_tree *em_tree; 1122 1123 em_tree = &fs_info->mapping_tree; 1124 write_lock(&em_tree->lock); 1125 remove_extent_mapping(em_tree, em); 1126 write_unlock(&em_tree->lock); 1127 /* once for the tree */ 1128 free_extent_map(em); 1129 } 1130 out: 1131 if (remove_rsv) 1132 btrfs_delayed_refs_rsv_release(fs_info, 1); 1133 btrfs_free_path(path); 1134 return ret; 1135 } 1136 1137 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1138 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1139 { 1140 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1141 struct extent_map *em; 1142 struct map_lookup *map; 1143 unsigned int num_items; 1144 1145 read_lock(&em_tree->lock); 1146 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1147 read_unlock(&em_tree->lock); 1148 ASSERT(em && em->start == chunk_offset); 1149 1150 /* 1151 * We need to reserve 3 + N units from the metadata space info in order 1152 * to remove a block group (done at btrfs_remove_chunk() and at 1153 * btrfs_remove_block_group()), which are used for: 1154 * 1155 * 1 unit for adding the free space inode's orphan (located in the tree 1156 * of tree roots). 1157 * 1 unit for deleting the block group item (located in the extent 1158 * tree). 1159 * 1 unit for deleting the free space item (located in tree of tree 1160 * roots). 1161 * N units for deleting N device extent items corresponding to each 1162 * stripe (located in the device tree). 1163 * 1164 * In order to remove a block group we also need to reserve units in the 1165 * system space info in order to update the chunk tree (update one or 1166 * more device items and remove one chunk item), but this is done at 1167 * btrfs_remove_chunk() through a call to check_system_chunk(). 1168 */ 1169 map = em->map_lookup; 1170 num_items = 3 + map->num_stripes; 1171 free_extent_map(em); 1172 1173 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 1174 num_items, 1); 1175 } 1176 1177 /* 1178 * Mark block group @cache read-only, so later write won't happen to block 1179 * group @cache. 1180 * 1181 * If @force is not set, this function will only mark the block group readonly 1182 * if we have enough free space (1M) in other metadata/system block groups. 1183 * If @force is not set, this function will mark the block group readonly 1184 * without checking free space. 1185 * 1186 * NOTE: This function doesn't care if other block groups can contain all the 1187 * data in this block group. That check should be done by relocation routine, 1188 * not this function. 1189 */ 1190 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1191 { 1192 struct btrfs_space_info *sinfo = cache->space_info; 1193 u64 num_bytes; 1194 int ret = -ENOSPC; 1195 1196 spin_lock(&sinfo->lock); 1197 spin_lock(&cache->lock); 1198 1199 if (cache->ro) { 1200 cache->ro++; 1201 ret = 0; 1202 goto out; 1203 } 1204 1205 num_bytes = cache->length - cache->reserved - cache->pinned - 1206 cache->bytes_super - cache->used; 1207 1208 /* 1209 * Data never overcommits, even in mixed mode, so do just the straight 1210 * check of left over space in how much we have allocated. 1211 */ 1212 if (force) { 1213 ret = 0; 1214 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1215 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1216 1217 /* 1218 * Here we make sure if we mark this bg RO, we still have enough 1219 * free space as buffer. 1220 */ 1221 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1222 ret = 0; 1223 } else { 1224 /* 1225 * We overcommit metadata, so we need to do the 1226 * btrfs_can_overcommit check here, and we need to pass in 1227 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1228 * leeway to allow us to mark this block group as read only. 1229 */ 1230 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1231 BTRFS_RESERVE_NO_FLUSH)) 1232 ret = 0; 1233 } 1234 1235 if (!ret) { 1236 sinfo->bytes_readonly += num_bytes; 1237 cache->ro++; 1238 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1239 } 1240 out: 1241 spin_unlock(&cache->lock); 1242 spin_unlock(&sinfo->lock); 1243 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1244 btrfs_info(cache->fs_info, 1245 "unable to make block group %llu ro", cache->start); 1246 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1247 } 1248 return ret; 1249 } 1250 1251 /* 1252 * Process the unused_bgs list and remove any that don't have any allocated 1253 * space inside of them. 1254 */ 1255 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1256 { 1257 struct btrfs_block_group *block_group; 1258 struct btrfs_space_info *space_info; 1259 struct btrfs_trans_handle *trans; 1260 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1261 int ret = 0; 1262 1263 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1264 return; 1265 1266 spin_lock(&fs_info->unused_bgs_lock); 1267 while (!list_empty(&fs_info->unused_bgs)) { 1268 u64 start, end; 1269 int trimming; 1270 1271 block_group = list_first_entry(&fs_info->unused_bgs, 1272 struct btrfs_block_group, 1273 bg_list); 1274 list_del_init(&block_group->bg_list); 1275 1276 space_info = block_group->space_info; 1277 1278 if (ret || btrfs_mixed_space_info(space_info)) { 1279 btrfs_put_block_group(block_group); 1280 continue; 1281 } 1282 spin_unlock(&fs_info->unused_bgs_lock); 1283 1284 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1285 1286 mutex_lock(&fs_info->delete_unused_bgs_mutex); 1287 1288 /* Don't want to race with allocators so take the groups_sem */ 1289 down_write(&space_info->groups_sem); 1290 1291 /* 1292 * Async discard moves the final block group discard to be prior 1293 * to the unused_bgs code path. Therefore, if it's not fully 1294 * trimmed, punt it back to the async discard lists. 1295 */ 1296 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1297 !btrfs_is_free_space_trimmed(block_group)) { 1298 trace_btrfs_skip_unused_block_group(block_group); 1299 up_write(&space_info->groups_sem); 1300 /* Requeue if we failed because of async discard */ 1301 btrfs_discard_queue_work(&fs_info->discard_ctl, 1302 block_group); 1303 goto next; 1304 } 1305 1306 spin_lock(&block_group->lock); 1307 if (block_group->reserved || block_group->pinned || 1308 block_group->used || block_group->ro || 1309 list_is_singular(&block_group->list)) { 1310 /* 1311 * We want to bail if we made new allocations or have 1312 * outstanding allocations in this block group. We do 1313 * the ro check in case balance is currently acting on 1314 * this block group. 1315 */ 1316 trace_btrfs_skip_unused_block_group(block_group); 1317 spin_unlock(&block_group->lock); 1318 up_write(&space_info->groups_sem); 1319 goto next; 1320 } 1321 spin_unlock(&block_group->lock); 1322 1323 /* We don't want to force the issue, only flip if it's ok. */ 1324 ret = inc_block_group_ro(block_group, 0); 1325 up_write(&space_info->groups_sem); 1326 if (ret < 0) { 1327 ret = 0; 1328 goto next; 1329 } 1330 1331 /* 1332 * Want to do this before we do anything else so we can recover 1333 * properly if we fail to join the transaction. 1334 */ 1335 trans = btrfs_start_trans_remove_block_group(fs_info, 1336 block_group->start); 1337 if (IS_ERR(trans)) { 1338 btrfs_dec_block_group_ro(block_group); 1339 ret = PTR_ERR(trans); 1340 goto next; 1341 } 1342 1343 /* 1344 * We could have pending pinned extents for this block group, 1345 * just delete them, we don't care about them anymore. 1346 */ 1347 start = block_group->start; 1348 end = start + block_group->length - 1; 1349 /* 1350 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1351 * btrfs_finish_extent_commit(). If we are at transaction N, 1352 * another task might be running finish_extent_commit() for the 1353 * previous transaction N - 1, and have seen a range belonging 1354 * to the block group in freed_extents[] before we were able to 1355 * clear the whole block group range from freed_extents[]. This 1356 * means that task can lookup for the block group after we 1357 * unpinned it from freed_extents[] and removed it, leading to 1358 * a BUG_ON() at btrfs_unpin_extent_range(). 1359 */ 1360 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1361 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 1362 EXTENT_DIRTY); 1363 if (ret) { 1364 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1365 btrfs_dec_block_group_ro(block_group); 1366 goto end_trans; 1367 } 1368 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 1369 EXTENT_DIRTY); 1370 if (ret) { 1371 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1372 btrfs_dec_block_group_ro(block_group); 1373 goto end_trans; 1374 } 1375 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1376 1377 /* 1378 * At this point, the block_group is read only and should fail 1379 * new allocations. However, btrfs_finish_extent_commit() can 1380 * cause this block_group to be placed back on the discard 1381 * lists because now the block_group isn't fully discarded. 1382 * Bail here and try again later after discarding everything. 1383 */ 1384 spin_lock(&fs_info->discard_ctl.lock); 1385 if (!list_empty(&block_group->discard_list)) { 1386 spin_unlock(&fs_info->discard_ctl.lock); 1387 btrfs_dec_block_group_ro(block_group); 1388 btrfs_discard_queue_work(&fs_info->discard_ctl, 1389 block_group); 1390 goto end_trans; 1391 } 1392 spin_unlock(&fs_info->discard_ctl.lock); 1393 1394 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1395 spin_lock(&space_info->lock); 1396 spin_lock(&block_group->lock); 1397 1398 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1399 -block_group->pinned); 1400 space_info->bytes_readonly += block_group->pinned; 1401 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1402 -block_group->pinned, 1403 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1404 block_group->pinned = 0; 1405 1406 spin_unlock(&block_group->lock); 1407 spin_unlock(&space_info->lock); 1408 1409 /* 1410 * The normal path here is an unused block group is passed here, 1411 * then trimming is handled in the transaction commit path. 1412 * Async discard interposes before this to do the trimming 1413 * before coming down the unused block group path as trimming 1414 * will no longer be done later in the transaction commit path. 1415 */ 1416 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1417 goto flip_async; 1418 1419 /* DISCARD can flip during remount */ 1420 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC); 1421 1422 /* Implicit trim during transaction commit. */ 1423 if (trimming) 1424 btrfs_get_block_group_trimming(block_group); 1425 1426 /* 1427 * Btrfs_remove_chunk will abort the transaction if things go 1428 * horribly wrong. 1429 */ 1430 ret = btrfs_remove_chunk(trans, block_group->start); 1431 1432 if (ret) { 1433 if (trimming) 1434 btrfs_put_block_group_trimming(block_group); 1435 goto end_trans; 1436 } 1437 1438 /* 1439 * If we're not mounted with -odiscard, we can just forget 1440 * about this block group. Otherwise we'll need to wait 1441 * until transaction commit to do the actual discard. 1442 */ 1443 if (trimming) { 1444 spin_lock(&fs_info->unused_bgs_lock); 1445 /* 1446 * A concurrent scrub might have added us to the list 1447 * fs_info->unused_bgs, so use a list_move operation 1448 * to add the block group to the deleted_bgs list. 1449 */ 1450 list_move(&block_group->bg_list, 1451 &trans->transaction->deleted_bgs); 1452 spin_unlock(&fs_info->unused_bgs_lock); 1453 btrfs_get_block_group(block_group); 1454 } 1455 end_trans: 1456 btrfs_end_transaction(trans); 1457 next: 1458 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1459 btrfs_put_block_group(block_group); 1460 spin_lock(&fs_info->unused_bgs_lock); 1461 } 1462 spin_unlock(&fs_info->unused_bgs_lock); 1463 return; 1464 1465 flip_async: 1466 btrfs_end_transaction(trans); 1467 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 1468 btrfs_put_block_group(block_group); 1469 btrfs_discard_punt_unused_bgs_list(fs_info); 1470 } 1471 1472 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1473 { 1474 struct btrfs_fs_info *fs_info = bg->fs_info; 1475 1476 spin_lock(&fs_info->unused_bgs_lock); 1477 if (list_empty(&bg->bg_list)) { 1478 btrfs_get_block_group(bg); 1479 trace_btrfs_add_unused_block_group(bg); 1480 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1481 } 1482 spin_unlock(&fs_info->unused_bgs_lock); 1483 } 1484 1485 static int find_first_block_group(struct btrfs_fs_info *fs_info, 1486 struct btrfs_path *path, 1487 struct btrfs_key *key) 1488 { 1489 struct btrfs_root *root = fs_info->extent_root; 1490 int ret = 0; 1491 struct btrfs_key found_key; 1492 struct extent_buffer *leaf; 1493 struct btrfs_block_group_item bg; 1494 u64 flags; 1495 int slot; 1496 1497 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1498 if (ret < 0) 1499 goto out; 1500 1501 while (1) { 1502 slot = path->slots[0]; 1503 leaf = path->nodes[0]; 1504 if (slot >= btrfs_header_nritems(leaf)) { 1505 ret = btrfs_next_leaf(root, path); 1506 if (ret == 0) 1507 continue; 1508 if (ret < 0) 1509 goto out; 1510 break; 1511 } 1512 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1513 1514 if (found_key.objectid >= key->objectid && 1515 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1516 struct extent_map_tree *em_tree; 1517 struct extent_map *em; 1518 1519 em_tree = &root->fs_info->mapping_tree; 1520 read_lock(&em_tree->lock); 1521 em = lookup_extent_mapping(em_tree, found_key.objectid, 1522 found_key.offset); 1523 read_unlock(&em_tree->lock); 1524 if (!em) { 1525 btrfs_err(fs_info, 1526 "logical %llu len %llu found bg but no related chunk", 1527 found_key.objectid, found_key.offset); 1528 ret = -ENOENT; 1529 } else if (em->start != found_key.objectid || 1530 em->len != found_key.offset) { 1531 btrfs_err(fs_info, 1532 "block group %llu len %llu mismatch with chunk %llu len %llu", 1533 found_key.objectid, found_key.offset, 1534 em->start, em->len); 1535 ret = -EUCLEAN; 1536 } else { 1537 read_extent_buffer(leaf, &bg, 1538 btrfs_item_ptr_offset(leaf, slot), 1539 sizeof(bg)); 1540 flags = btrfs_stack_block_group_flags(&bg) & 1541 BTRFS_BLOCK_GROUP_TYPE_MASK; 1542 1543 if (flags != (em->map_lookup->type & 1544 BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1545 btrfs_err(fs_info, 1546 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 1547 found_key.objectid, 1548 found_key.offset, flags, 1549 (BTRFS_BLOCK_GROUP_TYPE_MASK & 1550 em->map_lookup->type)); 1551 ret = -EUCLEAN; 1552 } else { 1553 ret = 0; 1554 } 1555 } 1556 free_extent_map(em); 1557 goto out; 1558 } 1559 path->slots[0]++; 1560 } 1561 out: 1562 return ret; 1563 } 1564 1565 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1566 { 1567 u64 extra_flags = chunk_to_extended(flags) & 1568 BTRFS_EXTENDED_PROFILE_MASK; 1569 1570 write_seqlock(&fs_info->profiles_lock); 1571 if (flags & BTRFS_BLOCK_GROUP_DATA) 1572 fs_info->avail_data_alloc_bits |= extra_flags; 1573 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1574 fs_info->avail_metadata_alloc_bits |= extra_flags; 1575 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1576 fs_info->avail_system_alloc_bits |= extra_flags; 1577 write_sequnlock(&fs_info->profiles_lock); 1578 } 1579 1580 /** 1581 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses 1582 * @chunk_start: logical address of block group 1583 * @physical: physical address to map to logical addresses 1584 * @logical: return array of logical addresses which map to @physical 1585 * @naddrs: length of @logical 1586 * @stripe_len: size of IO stripe for the given block group 1587 * 1588 * Maps a particular @physical disk address to a list of @logical addresses. 1589 * Used primarily to exclude those portions of a block group that contain super 1590 * block copies. 1591 */ 1592 EXPORT_FOR_TESTS 1593 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 1594 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 1595 { 1596 struct extent_map *em; 1597 struct map_lookup *map; 1598 u64 *buf; 1599 u64 bytenr; 1600 u64 data_stripe_length; 1601 u64 io_stripe_size; 1602 int i, nr = 0; 1603 int ret = 0; 1604 1605 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 1606 if (IS_ERR(em)) 1607 return -EIO; 1608 1609 map = em->map_lookup; 1610 data_stripe_length = em->len; 1611 io_stripe_size = map->stripe_len; 1612 1613 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 1614 data_stripe_length = div_u64(data_stripe_length, 1615 map->num_stripes / map->sub_stripes); 1616 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 1617 data_stripe_length = div_u64(data_stripe_length, map->num_stripes); 1618 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1619 data_stripe_length = div_u64(data_stripe_length, 1620 nr_data_stripes(map)); 1621 io_stripe_size = map->stripe_len * nr_data_stripes(map); 1622 } 1623 1624 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 1625 if (!buf) { 1626 ret = -ENOMEM; 1627 goto out; 1628 } 1629 1630 for (i = 0; i < map->num_stripes; i++) { 1631 bool already_inserted = false; 1632 u64 stripe_nr; 1633 int j; 1634 1635 if (!in_range(physical, map->stripes[i].physical, 1636 data_stripe_length)) 1637 continue; 1638 1639 stripe_nr = physical - map->stripes[i].physical; 1640 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 1641 1642 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 1643 stripe_nr = stripe_nr * map->num_stripes + i; 1644 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 1645 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 1646 stripe_nr = stripe_nr * map->num_stripes + i; 1647 } 1648 /* 1649 * The remaining case would be for RAID56, multiply by 1650 * nr_data_stripes(). Alternatively, just use rmap_len below 1651 * instead of map->stripe_len 1652 */ 1653 1654 bytenr = chunk_start + stripe_nr * io_stripe_size; 1655 1656 /* Ensure we don't add duplicate addresses */ 1657 for (j = 0; j < nr; j++) { 1658 if (buf[j] == bytenr) { 1659 already_inserted = true; 1660 break; 1661 } 1662 } 1663 1664 if (!already_inserted) 1665 buf[nr++] = bytenr; 1666 } 1667 1668 *logical = buf; 1669 *naddrs = nr; 1670 *stripe_len = io_stripe_size; 1671 out: 1672 free_extent_map(em); 1673 return ret; 1674 } 1675 1676 static int exclude_super_stripes(struct btrfs_block_group *cache) 1677 { 1678 struct btrfs_fs_info *fs_info = cache->fs_info; 1679 u64 bytenr; 1680 u64 *logical; 1681 int stripe_len; 1682 int i, nr, ret; 1683 1684 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 1685 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 1686 cache->bytes_super += stripe_len; 1687 ret = btrfs_add_excluded_extent(fs_info, cache->start, 1688 stripe_len); 1689 if (ret) 1690 return ret; 1691 } 1692 1693 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1694 bytenr = btrfs_sb_offset(i); 1695 ret = btrfs_rmap_block(fs_info, cache->start, 1696 bytenr, &logical, &nr, &stripe_len); 1697 if (ret) 1698 return ret; 1699 1700 while (nr--) { 1701 u64 start, len; 1702 1703 if (logical[nr] > cache->start + cache->length) 1704 continue; 1705 1706 if (logical[nr] + stripe_len <= cache->start) 1707 continue; 1708 1709 start = logical[nr]; 1710 if (start < cache->start) { 1711 start = cache->start; 1712 len = (logical[nr] + stripe_len) - start; 1713 } else { 1714 len = min_t(u64, stripe_len, 1715 cache->start + cache->length - start); 1716 } 1717 1718 cache->bytes_super += len; 1719 ret = btrfs_add_excluded_extent(fs_info, start, len); 1720 if (ret) { 1721 kfree(logical); 1722 return ret; 1723 } 1724 } 1725 1726 kfree(logical); 1727 } 1728 return 0; 1729 } 1730 1731 static void link_block_group(struct btrfs_block_group *cache) 1732 { 1733 struct btrfs_space_info *space_info = cache->space_info; 1734 int index = btrfs_bg_flags_to_raid_index(cache->flags); 1735 bool first = false; 1736 1737 down_write(&space_info->groups_sem); 1738 if (list_empty(&space_info->block_groups[index])) 1739 first = true; 1740 list_add_tail(&cache->list, &space_info->block_groups[index]); 1741 up_write(&space_info->groups_sem); 1742 1743 if (first) 1744 btrfs_sysfs_add_block_group_type(cache); 1745 } 1746 1747 static struct btrfs_block_group *btrfs_create_block_group_cache( 1748 struct btrfs_fs_info *fs_info, u64 start, u64 size) 1749 { 1750 struct btrfs_block_group *cache; 1751 1752 cache = kzalloc(sizeof(*cache), GFP_NOFS); 1753 if (!cache) 1754 return NULL; 1755 1756 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 1757 GFP_NOFS); 1758 if (!cache->free_space_ctl) { 1759 kfree(cache); 1760 return NULL; 1761 } 1762 1763 cache->start = start; 1764 cache->length = size; 1765 1766 cache->fs_info = fs_info; 1767 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 1768 set_free_space_tree_thresholds(cache); 1769 1770 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 1771 1772 atomic_set(&cache->count, 1); 1773 spin_lock_init(&cache->lock); 1774 init_rwsem(&cache->data_rwsem); 1775 INIT_LIST_HEAD(&cache->list); 1776 INIT_LIST_HEAD(&cache->cluster_list); 1777 INIT_LIST_HEAD(&cache->bg_list); 1778 INIT_LIST_HEAD(&cache->ro_list); 1779 INIT_LIST_HEAD(&cache->discard_list); 1780 INIT_LIST_HEAD(&cache->dirty_list); 1781 INIT_LIST_HEAD(&cache->io_list); 1782 btrfs_init_free_space_ctl(cache); 1783 atomic_set(&cache->trimming, 0); 1784 mutex_init(&cache->free_space_lock); 1785 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 1786 1787 return cache; 1788 } 1789 1790 /* 1791 * Iterate all chunks and verify that each of them has the corresponding block 1792 * group 1793 */ 1794 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 1795 { 1796 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 1797 struct extent_map *em; 1798 struct btrfs_block_group *bg; 1799 u64 start = 0; 1800 int ret = 0; 1801 1802 while (1) { 1803 read_lock(&map_tree->lock); 1804 /* 1805 * lookup_extent_mapping will return the first extent map 1806 * intersecting the range, so setting @len to 1 is enough to 1807 * get the first chunk. 1808 */ 1809 em = lookup_extent_mapping(map_tree, start, 1); 1810 read_unlock(&map_tree->lock); 1811 if (!em) 1812 break; 1813 1814 bg = btrfs_lookup_block_group(fs_info, em->start); 1815 if (!bg) { 1816 btrfs_err(fs_info, 1817 "chunk start=%llu len=%llu doesn't have corresponding block group", 1818 em->start, em->len); 1819 ret = -EUCLEAN; 1820 free_extent_map(em); 1821 break; 1822 } 1823 if (bg->start != em->start || bg->length != em->len || 1824 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 1825 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 1826 btrfs_err(fs_info, 1827 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 1828 em->start, em->len, 1829 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 1830 bg->start, bg->length, 1831 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 1832 ret = -EUCLEAN; 1833 free_extent_map(em); 1834 btrfs_put_block_group(bg); 1835 break; 1836 } 1837 start = em->start + em->len; 1838 free_extent_map(em); 1839 btrfs_put_block_group(bg); 1840 } 1841 return ret; 1842 } 1843 1844 static int read_one_block_group(struct btrfs_fs_info *info, 1845 struct btrfs_path *path, 1846 const struct btrfs_key *key, 1847 int need_clear) 1848 { 1849 struct extent_buffer *leaf = path->nodes[0]; 1850 struct btrfs_block_group *cache; 1851 struct btrfs_space_info *space_info; 1852 struct btrfs_block_group_item bgi; 1853 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 1854 int slot = path->slots[0]; 1855 int ret; 1856 1857 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 1858 1859 cache = btrfs_create_block_group_cache(info, key->objectid, key->offset); 1860 if (!cache) 1861 return -ENOMEM; 1862 1863 if (need_clear) { 1864 /* 1865 * When we mount with old space cache, we need to 1866 * set BTRFS_DC_CLEAR and set dirty flag. 1867 * 1868 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 1869 * truncate the old free space cache inode and 1870 * setup a new one. 1871 * b) Setting 'dirty flag' makes sure that we flush 1872 * the new space cache info onto disk. 1873 */ 1874 if (btrfs_test_opt(info, SPACE_CACHE)) 1875 cache->disk_cache_state = BTRFS_DC_CLEAR; 1876 } 1877 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 1878 sizeof(bgi)); 1879 cache->used = btrfs_stack_block_group_used(&bgi); 1880 cache->flags = btrfs_stack_block_group_flags(&bgi); 1881 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 1882 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 1883 btrfs_err(info, 1884 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 1885 cache->start); 1886 ret = -EINVAL; 1887 goto error; 1888 } 1889 1890 /* 1891 * We need to exclude the super stripes now so that the space info has 1892 * super bytes accounted for, otherwise we'll think we have more space 1893 * than we actually do. 1894 */ 1895 ret = exclude_super_stripes(cache); 1896 if (ret) { 1897 /* We may have excluded something, so call this just in case. */ 1898 btrfs_free_excluded_extents(cache); 1899 goto error; 1900 } 1901 1902 /* 1903 * Check for two cases, either we are full, and therefore don't need 1904 * to bother with the caching work since we won't find any space, or we 1905 * are empty, and we can just add all the space in and be done with it. 1906 * This saves us _a_lot_ of time, particularly in the full case. 1907 */ 1908 if (key->offset == cache->used) { 1909 cache->last_byte_to_unpin = (u64)-1; 1910 cache->cached = BTRFS_CACHE_FINISHED; 1911 btrfs_free_excluded_extents(cache); 1912 } else if (cache->used == 0) { 1913 cache->last_byte_to_unpin = (u64)-1; 1914 cache->cached = BTRFS_CACHE_FINISHED; 1915 add_new_free_space(cache, key->objectid, 1916 key->objectid + key->offset); 1917 btrfs_free_excluded_extents(cache); 1918 } 1919 1920 ret = btrfs_add_block_group_cache(info, cache); 1921 if (ret) { 1922 btrfs_remove_free_space_cache(cache); 1923 goto error; 1924 } 1925 trace_btrfs_add_block_group(info, cache, 0); 1926 btrfs_update_space_info(info, cache->flags, key->offset, 1927 cache->used, cache->bytes_super, &space_info); 1928 1929 cache->space_info = space_info; 1930 1931 link_block_group(cache); 1932 1933 set_avail_alloc_bits(info, cache->flags); 1934 if (btrfs_chunk_readonly(info, cache->start)) { 1935 inc_block_group_ro(cache, 1); 1936 } else if (cache->used == 0) { 1937 ASSERT(list_empty(&cache->bg_list)); 1938 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1939 btrfs_discard_queue_work(&info->discard_ctl, cache); 1940 else 1941 btrfs_mark_bg_unused(cache); 1942 } 1943 return 0; 1944 error: 1945 btrfs_put_block_group(cache); 1946 return ret; 1947 } 1948 1949 int btrfs_read_block_groups(struct btrfs_fs_info *info) 1950 { 1951 struct btrfs_path *path; 1952 int ret; 1953 struct btrfs_block_group *cache; 1954 struct btrfs_space_info *space_info; 1955 struct btrfs_key key; 1956 int need_clear = 0; 1957 u64 cache_gen; 1958 1959 key.objectid = 0; 1960 key.offset = 0; 1961 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1962 path = btrfs_alloc_path(); 1963 if (!path) 1964 return -ENOMEM; 1965 path->reada = READA_FORWARD; 1966 1967 cache_gen = btrfs_super_cache_generation(info->super_copy); 1968 if (btrfs_test_opt(info, SPACE_CACHE) && 1969 btrfs_super_generation(info->super_copy) != cache_gen) 1970 need_clear = 1; 1971 if (btrfs_test_opt(info, CLEAR_CACHE)) 1972 need_clear = 1; 1973 1974 while (1) { 1975 ret = find_first_block_group(info, path, &key); 1976 if (ret > 0) 1977 break; 1978 if (ret != 0) 1979 goto error; 1980 1981 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1982 ret = read_one_block_group(info, path, &key, need_clear); 1983 if (ret < 0) 1984 goto error; 1985 key.objectid += key.offset; 1986 key.offset = 0; 1987 btrfs_release_path(path); 1988 } 1989 1990 list_for_each_entry_rcu(space_info, &info->space_info, list) { 1991 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 1992 (BTRFS_BLOCK_GROUP_RAID10 | 1993 BTRFS_BLOCK_GROUP_RAID1_MASK | 1994 BTRFS_BLOCK_GROUP_RAID56_MASK | 1995 BTRFS_BLOCK_GROUP_DUP))) 1996 continue; 1997 /* 1998 * Avoid allocating from un-mirrored block group if there are 1999 * mirrored block groups. 2000 */ 2001 list_for_each_entry(cache, 2002 &space_info->block_groups[BTRFS_RAID_RAID0], 2003 list) 2004 inc_block_group_ro(cache, 1); 2005 list_for_each_entry(cache, 2006 &space_info->block_groups[BTRFS_RAID_SINGLE], 2007 list) 2008 inc_block_group_ro(cache, 1); 2009 } 2010 2011 btrfs_init_global_block_rsv(info); 2012 ret = check_chunk_block_group_mappings(info); 2013 error: 2014 btrfs_free_path(path); 2015 return ret; 2016 } 2017 2018 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2019 { 2020 struct btrfs_fs_info *fs_info = trans->fs_info; 2021 struct btrfs_block_group *block_group; 2022 struct btrfs_root *extent_root = fs_info->extent_root; 2023 struct btrfs_block_group_item item; 2024 struct btrfs_key key; 2025 int ret = 0; 2026 2027 if (!trans->can_flush_pending_bgs) 2028 return; 2029 2030 while (!list_empty(&trans->new_bgs)) { 2031 block_group = list_first_entry(&trans->new_bgs, 2032 struct btrfs_block_group, 2033 bg_list); 2034 if (ret) 2035 goto next; 2036 2037 spin_lock(&block_group->lock); 2038 btrfs_set_stack_block_group_used(&item, block_group->used); 2039 btrfs_set_stack_block_group_chunk_objectid(&item, 2040 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2041 btrfs_set_stack_block_group_flags(&item, block_group->flags); 2042 key.objectid = block_group->start; 2043 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2044 key.offset = block_group->length; 2045 spin_unlock(&block_group->lock); 2046 2047 ret = btrfs_insert_item(trans, extent_root, &key, &item, 2048 sizeof(item)); 2049 if (ret) 2050 btrfs_abort_transaction(trans, ret); 2051 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); 2052 if (ret) 2053 btrfs_abort_transaction(trans, ret); 2054 add_block_group_free_space(trans, block_group); 2055 /* Already aborted the transaction if it failed. */ 2056 next: 2057 btrfs_delayed_refs_rsv_release(fs_info, 1); 2058 list_del_init(&block_group->bg_list); 2059 } 2060 btrfs_trans_release_chunk_metadata(trans); 2061 } 2062 2063 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 2064 u64 type, u64 chunk_offset, u64 size) 2065 { 2066 struct btrfs_fs_info *fs_info = trans->fs_info; 2067 struct btrfs_block_group *cache; 2068 int ret; 2069 2070 btrfs_set_log_full_commit(trans); 2071 2072 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 2073 if (!cache) 2074 return -ENOMEM; 2075 2076 cache->used = bytes_used; 2077 cache->flags = type; 2078 cache->last_byte_to_unpin = (u64)-1; 2079 cache->cached = BTRFS_CACHE_FINISHED; 2080 cache->needs_free_space = 1; 2081 ret = exclude_super_stripes(cache); 2082 if (ret) { 2083 /* We may have excluded something, so call this just in case */ 2084 btrfs_free_excluded_extents(cache); 2085 btrfs_put_block_group(cache); 2086 return ret; 2087 } 2088 2089 add_new_free_space(cache, chunk_offset, chunk_offset + size); 2090 2091 btrfs_free_excluded_extents(cache); 2092 2093 #ifdef CONFIG_BTRFS_DEBUG 2094 if (btrfs_should_fragment_free_space(cache)) { 2095 u64 new_bytes_used = size - bytes_used; 2096 2097 bytes_used += new_bytes_used >> 1; 2098 fragment_free_space(cache); 2099 } 2100 #endif 2101 /* 2102 * Ensure the corresponding space_info object is created and 2103 * assigned to our block group. We want our bg to be added to the rbtree 2104 * with its ->space_info set. 2105 */ 2106 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2107 ASSERT(cache->space_info); 2108 2109 ret = btrfs_add_block_group_cache(fs_info, cache); 2110 if (ret) { 2111 btrfs_remove_free_space_cache(cache); 2112 btrfs_put_block_group(cache); 2113 return ret; 2114 } 2115 2116 /* 2117 * Now that our block group has its ->space_info set and is inserted in 2118 * the rbtree, update the space info's counters. 2119 */ 2120 trace_btrfs_add_block_group(fs_info, cache, 1); 2121 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, 2122 cache->bytes_super, &cache->space_info); 2123 btrfs_update_global_block_rsv(fs_info); 2124 2125 link_block_group(cache); 2126 2127 list_add_tail(&cache->bg_list, &trans->new_bgs); 2128 trans->delayed_ref_updates++; 2129 btrfs_update_delayed_refs_rsv(trans); 2130 2131 set_avail_alloc_bits(fs_info, type); 2132 return 0; 2133 } 2134 2135 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 2136 { 2137 u64 num_devices; 2138 u64 stripped; 2139 2140 /* 2141 * if restripe for this chunk_type is on pick target profile and 2142 * return, otherwise do the usual balance 2143 */ 2144 stripped = get_restripe_target(fs_info, flags); 2145 if (stripped) 2146 return extended_to_chunk(stripped); 2147 2148 num_devices = fs_info->fs_devices->rw_devices; 2149 2150 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK | 2151 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10; 2152 2153 if (num_devices == 1) { 2154 stripped |= BTRFS_BLOCK_GROUP_DUP; 2155 stripped = flags & ~stripped; 2156 2157 /* turn raid0 into single device chunks */ 2158 if (flags & BTRFS_BLOCK_GROUP_RAID0) 2159 return stripped; 2160 2161 /* turn mirroring into duplication */ 2162 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK | 2163 BTRFS_BLOCK_GROUP_RAID10)) 2164 return stripped | BTRFS_BLOCK_GROUP_DUP; 2165 } else { 2166 /* they already had raid on here, just return */ 2167 if (flags & stripped) 2168 return flags; 2169 2170 stripped |= BTRFS_BLOCK_GROUP_DUP; 2171 stripped = flags & ~stripped; 2172 2173 /* switch duplicated blocks with raid1 */ 2174 if (flags & BTRFS_BLOCK_GROUP_DUP) 2175 return stripped | BTRFS_BLOCK_GROUP_RAID1; 2176 2177 /* this is drive concat, leave it alone */ 2178 } 2179 2180 return flags; 2181 } 2182 2183 /* 2184 * Mark one block group RO, can be called several times for the same block 2185 * group. 2186 * 2187 * @cache: the destination block group 2188 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2189 * ensure we still have some free space after marking this 2190 * block group RO. 2191 */ 2192 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2193 bool do_chunk_alloc) 2194 { 2195 struct btrfs_fs_info *fs_info = cache->fs_info; 2196 struct btrfs_trans_handle *trans; 2197 u64 alloc_flags; 2198 int ret; 2199 2200 again: 2201 trans = btrfs_join_transaction(fs_info->extent_root); 2202 if (IS_ERR(trans)) 2203 return PTR_ERR(trans); 2204 2205 /* 2206 * we're not allowed to set block groups readonly after the dirty 2207 * block groups cache has started writing. If it already started, 2208 * back off and let this transaction commit 2209 */ 2210 mutex_lock(&fs_info->ro_block_group_mutex); 2211 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2212 u64 transid = trans->transid; 2213 2214 mutex_unlock(&fs_info->ro_block_group_mutex); 2215 btrfs_end_transaction(trans); 2216 2217 ret = btrfs_wait_for_commit(fs_info, transid); 2218 if (ret) 2219 return ret; 2220 goto again; 2221 } 2222 2223 if (do_chunk_alloc) { 2224 /* 2225 * If we are changing raid levels, try to allocate a 2226 * corresponding block group with the new raid level. 2227 */ 2228 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2229 if (alloc_flags != cache->flags) { 2230 ret = btrfs_chunk_alloc(trans, alloc_flags, 2231 CHUNK_ALLOC_FORCE); 2232 /* 2233 * ENOSPC is allowed here, we may have enough space 2234 * already allocated at the new raid level to carry on 2235 */ 2236 if (ret == -ENOSPC) 2237 ret = 0; 2238 if (ret < 0) 2239 goto out; 2240 } 2241 } 2242 2243 ret = inc_block_group_ro(cache, 0); 2244 if (!do_chunk_alloc) 2245 goto unlock_out; 2246 if (!ret) 2247 goto out; 2248 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2249 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2250 if (ret < 0) 2251 goto out; 2252 ret = inc_block_group_ro(cache, 0); 2253 out: 2254 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2255 alloc_flags = update_block_group_flags(fs_info, cache->flags); 2256 mutex_lock(&fs_info->chunk_mutex); 2257 check_system_chunk(trans, alloc_flags); 2258 mutex_unlock(&fs_info->chunk_mutex); 2259 } 2260 unlock_out: 2261 mutex_unlock(&fs_info->ro_block_group_mutex); 2262 2263 btrfs_end_transaction(trans); 2264 return ret; 2265 } 2266 2267 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2268 { 2269 struct btrfs_space_info *sinfo = cache->space_info; 2270 u64 num_bytes; 2271 2272 BUG_ON(!cache->ro); 2273 2274 spin_lock(&sinfo->lock); 2275 spin_lock(&cache->lock); 2276 if (!--cache->ro) { 2277 num_bytes = cache->length - cache->reserved - 2278 cache->pinned - cache->bytes_super - cache->used; 2279 sinfo->bytes_readonly -= num_bytes; 2280 list_del_init(&cache->ro_list); 2281 } 2282 spin_unlock(&cache->lock); 2283 spin_unlock(&sinfo->lock); 2284 } 2285 2286 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2287 struct btrfs_path *path, 2288 struct btrfs_block_group *cache) 2289 { 2290 struct btrfs_fs_info *fs_info = trans->fs_info; 2291 int ret; 2292 struct btrfs_root *extent_root = fs_info->extent_root; 2293 unsigned long bi; 2294 struct extent_buffer *leaf; 2295 struct btrfs_block_group_item bgi; 2296 struct btrfs_key key; 2297 2298 key.objectid = cache->start; 2299 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2300 key.offset = cache->length; 2301 2302 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1); 2303 if (ret) { 2304 if (ret > 0) 2305 ret = -ENOENT; 2306 goto fail; 2307 } 2308 2309 leaf = path->nodes[0]; 2310 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2311 btrfs_set_stack_block_group_used(&bgi, cache->used); 2312 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2313 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2314 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 2315 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 2316 btrfs_mark_buffer_dirty(leaf); 2317 fail: 2318 btrfs_release_path(path); 2319 return ret; 2320 2321 } 2322 2323 static int cache_save_setup(struct btrfs_block_group *block_group, 2324 struct btrfs_trans_handle *trans, 2325 struct btrfs_path *path) 2326 { 2327 struct btrfs_fs_info *fs_info = block_group->fs_info; 2328 struct btrfs_root *root = fs_info->tree_root; 2329 struct inode *inode = NULL; 2330 struct extent_changeset *data_reserved = NULL; 2331 u64 alloc_hint = 0; 2332 int dcs = BTRFS_DC_ERROR; 2333 u64 num_pages = 0; 2334 int retries = 0; 2335 int ret = 0; 2336 2337 /* 2338 * If this block group is smaller than 100 megs don't bother caching the 2339 * block group. 2340 */ 2341 if (block_group->length < (100 * SZ_1M)) { 2342 spin_lock(&block_group->lock); 2343 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2344 spin_unlock(&block_group->lock); 2345 return 0; 2346 } 2347 2348 if (trans->aborted) 2349 return 0; 2350 again: 2351 inode = lookup_free_space_inode(block_group, path); 2352 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2353 ret = PTR_ERR(inode); 2354 btrfs_release_path(path); 2355 goto out; 2356 } 2357 2358 if (IS_ERR(inode)) { 2359 BUG_ON(retries); 2360 retries++; 2361 2362 if (block_group->ro) 2363 goto out_free; 2364 2365 ret = create_free_space_inode(trans, block_group, path); 2366 if (ret) 2367 goto out_free; 2368 goto again; 2369 } 2370 2371 /* 2372 * We want to set the generation to 0, that way if anything goes wrong 2373 * from here on out we know not to trust this cache when we load up next 2374 * time. 2375 */ 2376 BTRFS_I(inode)->generation = 0; 2377 ret = btrfs_update_inode(trans, root, inode); 2378 if (ret) { 2379 /* 2380 * So theoretically we could recover from this, simply set the 2381 * super cache generation to 0 so we know to invalidate the 2382 * cache, but then we'd have to keep track of the block groups 2383 * that fail this way so we know we _have_ to reset this cache 2384 * before the next commit or risk reading stale cache. So to 2385 * limit our exposure to horrible edge cases lets just abort the 2386 * transaction, this only happens in really bad situations 2387 * anyway. 2388 */ 2389 btrfs_abort_transaction(trans, ret); 2390 goto out_put; 2391 } 2392 WARN_ON(ret); 2393 2394 /* We've already setup this transaction, go ahead and exit */ 2395 if (block_group->cache_generation == trans->transid && 2396 i_size_read(inode)) { 2397 dcs = BTRFS_DC_SETUP; 2398 goto out_put; 2399 } 2400 2401 if (i_size_read(inode) > 0) { 2402 ret = btrfs_check_trunc_cache_free_space(fs_info, 2403 &fs_info->global_block_rsv); 2404 if (ret) 2405 goto out_put; 2406 2407 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 2408 if (ret) 2409 goto out_put; 2410 } 2411 2412 spin_lock(&block_group->lock); 2413 if (block_group->cached != BTRFS_CACHE_FINISHED || 2414 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 2415 /* 2416 * don't bother trying to write stuff out _if_ 2417 * a) we're not cached, 2418 * b) we're with nospace_cache mount option, 2419 * c) we're with v2 space_cache (FREE_SPACE_TREE). 2420 */ 2421 dcs = BTRFS_DC_WRITTEN; 2422 spin_unlock(&block_group->lock); 2423 goto out_put; 2424 } 2425 spin_unlock(&block_group->lock); 2426 2427 /* 2428 * We hit an ENOSPC when setting up the cache in this transaction, just 2429 * skip doing the setup, we've already cleared the cache so we're safe. 2430 */ 2431 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 2432 ret = -ENOSPC; 2433 goto out_put; 2434 } 2435 2436 /* 2437 * Try to preallocate enough space based on how big the block group is. 2438 * Keep in mind this has to include any pinned space which could end up 2439 * taking up quite a bit since it's not folded into the other space 2440 * cache. 2441 */ 2442 num_pages = div_u64(block_group->length, SZ_256M); 2443 if (!num_pages) 2444 num_pages = 1; 2445 2446 num_pages *= 16; 2447 num_pages *= PAGE_SIZE; 2448 2449 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 2450 if (ret) 2451 goto out_put; 2452 2453 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2454 num_pages, num_pages, 2455 &alloc_hint); 2456 /* 2457 * Our cache requires contiguous chunks so that we don't modify a bunch 2458 * of metadata or split extents when writing the cache out, which means 2459 * we can enospc if we are heavily fragmented in addition to just normal 2460 * out of space conditions. So if we hit this just skip setting up any 2461 * other block groups for this transaction, maybe we'll unpin enough 2462 * space the next time around. 2463 */ 2464 if (!ret) 2465 dcs = BTRFS_DC_SETUP; 2466 else if (ret == -ENOSPC) 2467 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 2468 2469 out_put: 2470 iput(inode); 2471 out_free: 2472 btrfs_release_path(path); 2473 out: 2474 spin_lock(&block_group->lock); 2475 if (!ret && dcs == BTRFS_DC_SETUP) 2476 block_group->cache_generation = trans->transid; 2477 block_group->disk_cache_state = dcs; 2478 spin_unlock(&block_group->lock); 2479 2480 extent_changeset_free(data_reserved); 2481 return ret; 2482 } 2483 2484 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 2485 { 2486 struct btrfs_fs_info *fs_info = trans->fs_info; 2487 struct btrfs_block_group *cache, *tmp; 2488 struct btrfs_transaction *cur_trans = trans->transaction; 2489 struct btrfs_path *path; 2490 2491 if (list_empty(&cur_trans->dirty_bgs) || 2492 !btrfs_test_opt(fs_info, SPACE_CACHE)) 2493 return 0; 2494 2495 path = btrfs_alloc_path(); 2496 if (!path) 2497 return -ENOMEM; 2498 2499 /* Could add new block groups, use _safe just in case */ 2500 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 2501 dirty_list) { 2502 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2503 cache_save_setup(cache, trans, path); 2504 } 2505 2506 btrfs_free_path(path); 2507 return 0; 2508 } 2509 2510 /* 2511 * Transaction commit does final block group cache writeback during a critical 2512 * section where nothing is allowed to change the FS. This is required in 2513 * order for the cache to actually match the block group, but can introduce a 2514 * lot of latency into the commit. 2515 * 2516 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 2517 * There's a chance we'll have to redo some of it if the block group changes 2518 * again during the commit, but it greatly reduces the commit latency by 2519 * getting rid of the easy block groups while we're still allowing others to 2520 * join the commit. 2521 */ 2522 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 2523 { 2524 struct btrfs_fs_info *fs_info = trans->fs_info; 2525 struct btrfs_block_group *cache; 2526 struct btrfs_transaction *cur_trans = trans->transaction; 2527 int ret = 0; 2528 int should_put; 2529 struct btrfs_path *path = NULL; 2530 LIST_HEAD(dirty); 2531 struct list_head *io = &cur_trans->io_bgs; 2532 int num_started = 0; 2533 int loops = 0; 2534 2535 spin_lock(&cur_trans->dirty_bgs_lock); 2536 if (list_empty(&cur_trans->dirty_bgs)) { 2537 spin_unlock(&cur_trans->dirty_bgs_lock); 2538 return 0; 2539 } 2540 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2541 spin_unlock(&cur_trans->dirty_bgs_lock); 2542 2543 again: 2544 /* Make sure all the block groups on our dirty list actually exist */ 2545 btrfs_create_pending_block_groups(trans); 2546 2547 if (!path) { 2548 path = btrfs_alloc_path(); 2549 if (!path) 2550 return -ENOMEM; 2551 } 2552 2553 /* 2554 * cache_write_mutex is here only to save us from balance or automatic 2555 * removal of empty block groups deleting this block group while we are 2556 * writing out the cache 2557 */ 2558 mutex_lock(&trans->transaction->cache_write_mutex); 2559 while (!list_empty(&dirty)) { 2560 bool drop_reserve = true; 2561 2562 cache = list_first_entry(&dirty, struct btrfs_block_group, 2563 dirty_list); 2564 /* 2565 * This can happen if something re-dirties a block group that 2566 * is already under IO. Just wait for it to finish and then do 2567 * it all again 2568 */ 2569 if (!list_empty(&cache->io_list)) { 2570 list_del_init(&cache->io_list); 2571 btrfs_wait_cache_io(trans, cache, path); 2572 btrfs_put_block_group(cache); 2573 } 2574 2575 2576 /* 2577 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 2578 * it should update the cache_state. Don't delete until after 2579 * we wait. 2580 * 2581 * Since we're not running in the commit critical section 2582 * we need the dirty_bgs_lock to protect from update_block_group 2583 */ 2584 spin_lock(&cur_trans->dirty_bgs_lock); 2585 list_del_init(&cache->dirty_list); 2586 spin_unlock(&cur_trans->dirty_bgs_lock); 2587 2588 should_put = 1; 2589 2590 cache_save_setup(cache, trans, path); 2591 2592 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 2593 cache->io_ctl.inode = NULL; 2594 ret = btrfs_write_out_cache(trans, cache, path); 2595 if (ret == 0 && cache->io_ctl.inode) { 2596 num_started++; 2597 should_put = 0; 2598 2599 /* 2600 * The cache_write_mutex is protecting the 2601 * io_list, also refer to the definition of 2602 * btrfs_transaction::io_bgs for more details 2603 */ 2604 list_add_tail(&cache->io_list, io); 2605 } else { 2606 /* 2607 * If we failed to write the cache, the 2608 * generation will be bad and life goes on 2609 */ 2610 ret = 0; 2611 } 2612 } 2613 if (!ret) { 2614 ret = write_one_cache_group(trans, path, cache); 2615 /* 2616 * Our block group might still be attached to the list 2617 * of new block groups in the transaction handle of some 2618 * other task (struct btrfs_trans_handle->new_bgs). This 2619 * means its block group item isn't yet in the extent 2620 * tree. If this happens ignore the error, as we will 2621 * try again later in the critical section of the 2622 * transaction commit. 2623 */ 2624 if (ret == -ENOENT) { 2625 ret = 0; 2626 spin_lock(&cur_trans->dirty_bgs_lock); 2627 if (list_empty(&cache->dirty_list)) { 2628 list_add_tail(&cache->dirty_list, 2629 &cur_trans->dirty_bgs); 2630 btrfs_get_block_group(cache); 2631 drop_reserve = false; 2632 } 2633 spin_unlock(&cur_trans->dirty_bgs_lock); 2634 } else if (ret) { 2635 btrfs_abort_transaction(trans, ret); 2636 } 2637 } 2638 2639 /* If it's not on the io list, we need to put the block group */ 2640 if (should_put) 2641 btrfs_put_block_group(cache); 2642 if (drop_reserve) 2643 btrfs_delayed_refs_rsv_release(fs_info, 1); 2644 2645 if (ret) 2646 break; 2647 2648 /* 2649 * Avoid blocking other tasks for too long. It might even save 2650 * us from writing caches for block groups that are going to be 2651 * removed. 2652 */ 2653 mutex_unlock(&trans->transaction->cache_write_mutex); 2654 mutex_lock(&trans->transaction->cache_write_mutex); 2655 } 2656 mutex_unlock(&trans->transaction->cache_write_mutex); 2657 2658 /* 2659 * Go through delayed refs for all the stuff we've just kicked off 2660 * and then loop back (just once) 2661 */ 2662 ret = btrfs_run_delayed_refs(trans, 0); 2663 if (!ret && loops == 0) { 2664 loops++; 2665 spin_lock(&cur_trans->dirty_bgs_lock); 2666 list_splice_init(&cur_trans->dirty_bgs, &dirty); 2667 /* 2668 * dirty_bgs_lock protects us from concurrent block group 2669 * deletes too (not just cache_write_mutex). 2670 */ 2671 if (!list_empty(&dirty)) { 2672 spin_unlock(&cur_trans->dirty_bgs_lock); 2673 goto again; 2674 } 2675 spin_unlock(&cur_trans->dirty_bgs_lock); 2676 } else if (ret < 0) { 2677 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 2678 } 2679 2680 btrfs_free_path(path); 2681 return ret; 2682 } 2683 2684 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 2685 { 2686 struct btrfs_fs_info *fs_info = trans->fs_info; 2687 struct btrfs_block_group *cache; 2688 struct btrfs_transaction *cur_trans = trans->transaction; 2689 int ret = 0; 2690 int should_put; 2691 struct btrfs_path *path; 2692 struct list_head *io = &cur_trans->io_bgs; 2693 int num_started = 0; 2694 2695 path = btrfs_alloc_path(); 2696 if (!path) 2697 return -ENOMEM; 2698 2699 /* 2700 * Even though we are in the critical section of the transaction commit, 2701 * we can still have concurrent tasks adding elements to this 2702 * transaction's list of dirty block groups. These tasks correspond to 2703 * endio free space workers started when writeback finishes for a 2704 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 2705 * allocate new block groups as a result of COWing nodes of the root 2706 * tree when updating the free space inode. The writeback for the space 2707 * caches is triggered by an earlier call to 2708 * btrfs_start_dirty_block_groups() and iterations of the following 2709 * loop. 2710 * Also we want to do the cache_save_setup first and then run the 2711 * delayed refs to make sure we have the best chance at doing this all 2712 * in one shot. 2713 */ 2714 spin_lock(&cur_trans->dirty_bgs_lock); 2715 while (!list_empty(&cur_trans->dirty_bgs)) { 2716 cache = list_first_entry(&cur_trans->dirty_bgs, 2717 struct btrfs_block_group, 2718 dirty_list); 2719 2720 /* 2721 * This can happen if cache_save_setup re-dirties a block group 2722 * that is already under IO. Just wait for it to finish and 2723 * then do it all again 2724 */ 2725 if (!list_empty(&cache->io_list)) { 2726 spin_unlock(&cur_trans->dirty_bgs_lock); 2727 list_del_init(&cache->io_list); 2728 btrfs_wait_cache_io(trans, cache, path); 2729 btrfs_put_block_group(cache); 2730 spin_lock(&cur_trans->dirty_bgs_lock); 2731 } 2732 2733 /* 2734 * Don't remove from the dirty list until after we've waited on 2735 * any pending IO 2736 */ 2737 list_del_init(&cache->dirty_list); 2738 spin_unlock(&cur_trans->dirty_bgs_lock); 2739 should_put = 1; 2740 2741 cache_save_setup(cache, trans, path); 2742 2743 if (!ret) 2744 ret = btrfs_run_delayed_refs(trans, 2745 (unsigned long) -1); 2746 2747 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 2748 cache->io_ctl.inode = NULL; 2749 ret = btrfs_write_out_cache(trans, cache, path); 2750 if (ret == 0 && cache->io_ctl.inode) { 2751 num_started++; 2752 should_put = 0; 2753 list_add_tail(&cache->io_list, io); 2754 } else { 2755 /* 2756 * If we failed to write the cache, the 2757 * generation will be bad and life goes on 2758 */ 2759 ret = 0; 2760 } 2761 } 2762 if (!ret) { 2763 ret = write_one_cache_group(trans, path, cache); 2764 /* 2765 * One of the free space endio workers might have 2766 * created a new block group while updating a free space 2767 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 2768 * and hasn't released its transaction handle yet, in 2769 * which case the new block group is still attached to 2770 * its transaction handle and its creation has not 2771 * finished yet (no block group item in the extent tree 2772 * yet, etc). If this is the case, wait for all free 2773 * space endio workers to finish and retry. This is a 2774 * a very rare case so no need for a more efficient and 2775 * complex approach. 2776 */ 2777 if (ret == -ENOENT) { 2778 wait_event(cur_trans->writer_wait, 2779 atomic_read(&cur_trans->num_writers) == 1); 2780 ret = write_one_cache_group(trans, path, cache); 2781 } 2782 if (ret) 2783 btrfs_abort_transaction(trans, ret); 2784 } 2785 2786 /* If its not on the io list, we need to put the block group */ 2787 if (should_put) 2788 btrfs_put_block_group(cache); 2789 btrfs_delayed_refs_rsv_release(fs_info, 1); 2790 spin_lock(&cur_trans->dirty_bgs_lock); 2791 } 2792 spin_unlock(&cur_trans->dirty_bgs_lock); 2793 2794 /* 2795 * Refer to the definition of io_bgs member for details why it's safe 2796 * to use it without any locking 2797 */ 2798 while (!list_empty(io)) { 2799 cache = list_first_entry(io, struct btrfs_block_group, 2800 io_list); 2801 list_del_init(&cache->io_list); 2802 btrfs_wait_cache_io(trans, cache, path); 2803 btrfs_put_block_group(cache); 2804 } 2805 2806 btrfs_free_path(path); 2807 return ret; 2808 } 2809 2810 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 2811 u64 bytenr, u64 num_bytes, int alloc) 2812 { 2813 struct btrfs_fs_info *info = trans->fs_info; 2814 struct btrfs_block_group *cache = NULL; 2815 u64 total = num_bytes; 2816 u64 old_val; 2817 u64 byte_in_group; 2818 int factor; 2819 int ret = 0; 2820 2821 /* Block accounting for super block */ 2822 spin_lock(&info->delalloc_root_lock); 2823 old_val = btrfs_super_bytes_used(info->super_copy); 2824 if (alloc) 2825 old_val += num_bytes; 2826 else 2827 old_val -= num_bytes; 2828 btrfs_set_super_bytes_used(info->super_copy, old_val); 2829 spin_unlock(&info->delalloc_root_lock); 2830 2831 while (total) { 2832 cache = btrfs_lookup_block_group(info, bytenr); 2833 if (!cache) { 2834 ret = -ENOENT; 2835 break; 2836 } 2837 factor = btrfs_bg_type_to_factor(cache->flags); 2838 2839 /* 2840 * If this block group has free space cache written out, we 2841 * need to make sure to load it if we are removing space. This 2842 * is because we need the unpinning stage to actually add the 2843 * space back to the block group, otherwise we will leak space. 2844 */ 2845 if (!alloc && !btrfs_block_group_done(cache)) 2846 btrfs_cache_block_group(cache, 1); 2847 2848 byte_in_group = bytenr - cache->start; 2849 WARN_ON(byte_in_group > cache->length); 2850 2851 spin_lock(&cache->space_info->lock); 2852 spin_lock(&cache->lock); 2853 2854 if (btrfs_test_opt(info, SPACE_CACHE) && 2855 cache->disk_cache_state < BTRFS_DC_CLEAR) 2856 cache->disk_cache_state = BTRFS_DC_CLEAR; 2857 2858 old_val = cache->used; 2859 num_bytes = min(total, cache->length - byte_in_group); 2860 if (alloc) { 2861 old_val += num_bytes; 2862 cache->used = old_val; 2863 cache->reserved -= num_bytes; 2864 cache->space_info->bytes_reserved -= num_bytes; 2865 cache->space_info->bytes_used += num_bytes; 2866 cache->space_info->disk_used += num_bytes * factor; 2867 spin_unlock(&cache->lock); 2868 spin_unlock(&cache->space_info->lock); 2869 } else { 2870 old_val -= num_bytes; 2871 cache->used = old_val; 2872 cache->pinned += num_bytes; 2873 btrfs_space_info_update_bytes_pinned(info, 2874 cache->space_info, num_bytes); 2875 cache->space_info->bytes_used -= num_bytes; 2876 cache->space_info->disk_used -= num_bytes * factor; 2877 spin_unlock(&cache->lock); 2878 spin_unlock(&cache->space_info->lock); 2879 2880 percpu_counter_add_batch( 2881 &cache->space_info->total_bytes_pinned, 2882 num_bytes, 2883 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2884 set_extent_dirty(info->pinned_extents, 2885 bytenr, bytenr + num_bytes - 1, 2886 GFP_NOFS | __GFP_NOFAIL); 2887 } 2888 2889 spin_lock(&trans->transaction->dirty_bgs_lock); 2890 if (list_empty(&cache->dirty_list)) { 2891 list_add_tail(&cache->dirty_list, 2892 &trans->transaction->dirty_bgs); 2893 trans->delayed_ref_updates++; 2894 btrfs_get_block_group(cache); 2895 } 2896 spin_unlock(&trans->transaction->dirty_bgs_lock); 2897 2898 /* 2899 * No longer have used bytes in this block group, queue it for 2900 * deletion. We do this after adding the block group to the 2901 * dirty list to avoid races between cleaner kthread and space 2902 * cache writeout. 2903 */ 2904 if (!alloc && old_val == 0) { 2905 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 2906 btrfs_mark_bg_unused(cache); 2907 } 2908 2909 btrfs_put_block_group(cache); 2910 total -= num_bytes; 2911 bytenr += num_bytes; 2912 } 2913 2914 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 2915 btrfs_update_delayed_refs_rsv(trans); 2916 return ret; 2917 } 2918 2919 /** 2920 * btrfs_add_reserved_bytes - update the block_group and space info counters 2921 * @cache: The cache we are manipulating 2922 * @ram_bytes: The number of bytes of file content, and will be same to 2923 * @num_bytes except for the compress path. 2924 * @num_bytes: The number of bytes in question 2925 * @delalloc: The blocks are allocated for the delalloc write 2926 * 2927 * This is called by the allocator when it reserves space. If this is a 2928 * reservation and the block group has become read only we cannot make the 2929 * reservation and return -EAGAIN, otherwise this function always succeeds. 2930 */ 2931 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 2932 u64 ram_bytes, u64 num_bytes, int delalloc) 2933 { 2934 struct btrfs_space_info *space_info = cache->space_info; 2935 int ret = 0; 2936 2937 spin_lock(&space_info->lock); 2938 spin_lock(&cache->lock); 2939 if (cache->ro) { 2940 ret = -EAGAIN; 2941 } else { 2942 cache->reserved += num_bytes; 2943 space_info->bytes_reserved += num_bytes; 2944 trace_btrfs_space_reservation(cache->fs_info, "space_info", 2945 space_info->flags, num_bytes, 1); 2946 btrfs_space_info_update_bytes_may_use(cache->fs_info, 2947 space_info, -ram_bytes); 2948 if (delalloc) 2949 cache->delalloc_bytes += num_bytes; 2950 } 2951 spin_unlock(&cache->lock); 2952 spin_unlock(&space_info->lock); 2953 return ret; 2954 } 2955 2956 /** 2957 * btrfs_free_reserved_bytes - update the block_group and space info counters 2958 * @cache: The cache we are manipulating 2959 * @num_bytes: The number of bytes in question 2960 * @delalloc: The blocks are allocated for the delalloc write 2961 * 2962 * This is called by somebody who is freeing space that was never actually used 2963 * on disk. For example if you reserve some space for a new leaf in transaction 2964 * A and before transaction A commits you free that leaf, you call this with 2965 * reserve set to 0 in order to clear the reservation. 2966 */ 2967 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 2968 u64 num_bytes, int delalloc) 2969 { 2970 struct btrfs_space_info *space_info = cache->space_info; 2971 2972 spin_lock(&space_info->lock); 2973 spin_lock(&cache->lock); 2974 if (cache->ro) 2975 space_info->bytes_readonly += num_bytes; 2976 cache->reserved -= num_bytes; 2977 space_info->bytes_reserved -= num_bytes; 2978 space_info->max_extent_size = 0; 2979 2980 if (delalloc) 2981 cache->delalloc_bytes -= num_bytes; 2982 spin_unlock(&cache->lock); 2983 spin_unlock(&space_info->lock); 2984 } 2985 2986 static void force_metadata_allocation(struct btrfs_fs_info *info) 2987 { 2988 struct list_head *head = &info->space_info; 2989 struct btrfs_space_info *found; 2990 2991 rcu_read_lock(); 2992 list_for_each_entry_rcu(found, head, list) { 2993 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 2994 found->force_alloc = CHUNK_ALLOC_FORCE; 2995 } 2996 rcu_read_unlock(); 2997 } 2998 2999 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3000 struct btrfs_space_info *sinfo, int force) 3001 { 3002 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3003 u64 thresh; 3004 3005 if (force == CHUNK_ALLOC_FORCE) 3006 return 1; 3007 3008 /* 3009 * in limited mode, we want to have some free space up to 3010 * about 1% of the FS size. 3011 */ 3012 if (force == CHUNK_ALLOC_LIMITED) { 3013 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3014 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 3015 3016 if (sinfo->total_bytes - bytes_used < thresh) 3017 return 1; 3018 } 3019 3020 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 3021 return 0; 3022 return 1; 3023 } 3024 3025 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3026 { 3027 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3028 3029 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3030 } 3031 3032 /* 3033 * If force is CHUNK_ALLOC_FORCE: 3034 * - return 1 if it successfully allocates a chunk, 3035 * - return errors including -ENOSPC otherwise. 3036 * If force is NOT CHUNK_ALLOC_FORCE: 3037 * - return 0 if it doesn't need to allocate a new chunk, 3038 * - return 1 if it successfully allocates a chunk, 3039 * - return errors including -ENOSPC otherwise. 3040 */ 3041 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 3042 enum btrfs_chunk_alloc_enum force) 3043 { 3044 struct btrfs_fs_info *fs_info = trans->fs_info; 3045 struct btrfs_space_info *space_info; 3046 bool wait_for_alloc = false; 3047 bool should_alloc = false; 3048 int ret = 0; 3049 3050 /* Don't re-enter if we're already allocating a chunk */ 3051 if (trans->allocating_chunk) 3052 return -ENOSPC; 3053 3054 space_info = btrfs_find_space_info(fs_info, flags); 3055 ASSERT(space_info); 3056 3057 do { 3058 spin_lock(&space_info->lock); 3059 if (force < space_info->force_alloc) 3060 force = space_info->force_alloc; 3061 should_alloc = should_alloc_chunk(fs_info, space_info, force); 3062 if (space_info->full) { 3063 /* No more free physical space */ 3064 if (should_alloc) 3065 ret = -ENOSPC; 3066 else 3067 ret = 0; 3068 spin_unlock(&space_info->lock); 3069 return ret; 3070 } else if (!should_alloc) { 3071 spin_unlock(&space_info->lock); 3072 return 0; 3073 } else if (space_info->chunk_alloc) { 3074 /* 3075 * Someone is already allocating, so we need to block 3076 * until this someone is finished and then loop to 3077 * recheck if we should continue with our allocation 3078 * attempt. 3079 */ 3080 wait_for_alloc = true; 3081 spin_unlock(&space_info->lock); 3082 mutex_lock(&fs_info->chunk_mutex); 3083 mutex_unlock(&fs_info->chunk_mutex); 3084 } else { 3085 /* Proceed with allocation */ 3086 space_info->chunk_alloc = 1; 3087 wait_for_alloc = false; 3088 spin_unlock(&space_info->lock); 3089 } 3090 3091 cond_resched(); 3092 } while (wait_for_alloc); 3093 3094 mutex_lock(&fs_info->chunk_mutex); 3095 trans->allocating_chunk = true; 3096 3097 /* 3098 * If we have mixed data/metadata chunks we want to make sure we keep 3099 * allocating mixed chunks instead of individual chunks. 3100 */ 3101 if (btrfs_mixed_space_info(space_info)) 3102 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3103 3104 /* 3105 * if we're doing a data chunk, go ahead and make sure that 3106 * we keep a reasonable number of metadata chunks allocated in the 3107 * FS as well. 3108 */ 3109 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3110 fs_info->data_chunk_allocations++; 3111 if (!(fs_info->data_chunk_allocations % 3112 fs_info->metadata_ratio)) 3113 force_metadata_allocation(fs_info); 3114 } 3115 3116 /* 3117 * Check if we have enough space in SYSTEM chunk because we may need 3118 * to update devices. 3119 */ 3120 check_system_chunk(trans, flags); 3121 3122 ret = btrfs_alloc_chunk(trans, flags); 3123 trans->allocating_chunk = false; 3124 3125 spin_lock(&space_info->lock); 3126 if (ret < 0) { 3127 if (ret == -ENOSPC) 3128 space_info->full = 1; 3129 else 3130 goto out; 3131 } else { 3132 ret = 1; 3133 space_info->max_extent_size = 0; 3134 } 3135 3136 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3137 out: 3138 space_info->chunk_alloc = 0; 3139 spin_unlock(&space_info->lock); 3140 mutex_unlock(&fs_info->chunk_mutex); 3141 /* 3142 * When we allocate a new chunk we reserve space in the chunk block 3143 * reserve to make sure we can COW nodes/leafs in the chunk tree or 3144 * add new nodes/leafs to it if we end up needing to do it when 3145 * inserting the chunk item and updating device items as part of the 3146 * second phase of chunk allocation, performed by 3147 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 3148 * large number of new block groups to create in our transaction 3149 * handle's new_bgs list to avoid exhausting the chunk block reserve 3150 * in extreme cases - like having a single transaction create many new 3151 * block groups when starting to write out the free space caches of all 3152 * the block groups that were made dirty during the lifetime of the 3153 * transaction. 3154 */ 3155 if (trans->chunk_bytes_reserved >= (u64)SZ_2M) 3156 btrfs_create_pending_block_groups(trans); 3157 3158 return ret; 3159 } 3160 3161 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 3162 { 3163 u64 num_dev; 3164 3165 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 3166 if (!num_dev) 3167 num_dev = fs_info->fs_devices->rw_devices; 3168 3169 return num_dev; 3170 } 3171 3172 /* 3173 * Reserve space in the system space for allocating or removing a chunk 3174 */ 3175 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 3176 { 3177 struct btrfs_fs_info *fs_info = trans->fs_info; 3178 struct btrfs_space_info *info; 3179 u64 left; 3180 u64 thresh; 3181 int ret = 0; 3182 u64 num_devs; 3183 3184 /* 3185 * Needed because we can end up allocating a system chunk and for an 3186 * atomic and race free space reservation in the chunk block reserve. 3187 */ 3188 lockdep_assert_held(&fs_info->chunk_mutex); 3189 3190 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3191 spin_lock(&info->lock); 3192 left = info->total_bytes - btrfs_space_info_used(info, true); 3193 spin_unlock(&info->lock); 3194 3195 num_devs = get_profile_num_devs(fs_info, type); 3196 3197 /* num_devs device items to update and 1 chunk item to add or remove */ 3198 thresh = btrfs_calc_metadata_size(fs_info, num_devs) + 3199 btrfs_calc_insert_metadata_size(fs_info, 1); 3200 3201 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 3202 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 3203 left, thresh, type); 3204 btrfs_dump_space_info(fs_info, info, 0, 0); 3205 } 3206 3207 if (left < thresh) { 3208 u64 flags = btrfs_system_alloc_profile(fs_info); 3209 3210 /* 3211 * Ignore failure to create system chunk. We might end up not 3212 * needing it, as we might not need to COW all nodes/leafs from 3213 * the paths we visit in the chunk tree (they were already COWed 3214 * or created in the current transaction for example). 3215 */ 3216 ret = btrfs_alloc_chunk(trans, flags); 3217 } 3218 3219 if (!ret) { 3220 ret = btrfs_block_rsv_add(fs_info->chunk_root, 3221 &fs_info->chunk_block_rsv, 3222 thresh, BTRFS_RESERVE_NO_FLUSH); 3223 if (!ret) 3224 trans->chunk_bytes_reserved += thresh; 3225 } 3226 } 3227 3228 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 3229 { 3230 struct btrfs_block_group *block_group; 3231 u64 last = 0; 3232 3233 while (1) { 3234 struct inode *inode; 3235 3236 block_group = btrfs_lookup_first_block_group(info, last); 3237 while (block_group) { 3238 btrfs_wait_block_group_cache_done(block_group); 3239 spin_lock(&block_group->lock); 3240 if (block_group->iref) 3241 break; 3242 spin_unlock(&block_group->lock); 3243 block_group = btrfs_next_block_group(block_group); 3244 } 3245 if (!block_group) { 3246 if (last == 0) 3247 break; 3248 last = 0; 3249 continue; 3250 } 3251 3252 inode = block_group->inode; 3253 block_group->iref = 0; 3254 block_group->inode = NULL; 3255 spin_unlock(&block_group->lock); 3256 ASSERT(block_group->io_ctl.inode == NULL); 3257 iput(inode); 3258 last = block_group->start + block_group->length; 3259 btrfs_put_block_group(block_group); 3260 } 3261 } 3262 3263 /* 3264 * Must be called only after stopping all workers, since we could have block 3265 * group caching kthreads running, and therefore they could race with us if we 3266 * freed the block groups before stopping them. 3267 */ 3268 int btrfs_free_block_groups(struct btrfs_fs_info *info) 3269 { 3270 struct btrfs_block_group *block_group; 3271 struct btrfs_space_info *space_info; 3272 struct btrfs_caching_control *caching_ctl; 3273 struct rb_node *n; 3274 3275 down_write(&info->commit_root_sem); 3276 while (!list_empty(&info->caching_block_groups)) { 3277 caching_ctl = list_entry(info->caching_block_groups.next, 3278 struct btrfs_caching_control, list); 3279 list_del(&caching_ctl->list); 3280 btrfs_put_caching_control(caching_ctl); 3281 } 3282 up_write(&info->commit_root_sem); 3283 3284 spin_lock(&info->unused_bgs_lock); 3285 while (!list_empty(&info->unused_bgs)) { 3286 block_group = list_first_entry(&info->unused_bgs, 3287 struct btrfs_block_group, 3288 bg_list); 3289 list_del_init(&block_group->bg_list); 3290 btrfs_put_block_group(block_group); 3291 } 3292 spin_unlock(&info->unused_bgs_lock); 3293 3294 spin_lock(&info->block_group_cache_lock); 3295 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 3296 block_group = rb_entry(n, struct btrfs_block_group, 3297 cache_node); 3298 rb_erase(&block_group->cache_node, 3299 &info->block_group_cache_tree); 3300 RB_CLEAR_NODE(&block_group->cache_node); 3301 spin_unlock(&info->block_group_cache_lock); 3302 3303 down_write(&block_group->space_info->groups_sem); 3304 list_del(&block_group->list); 3305 up_write(&block_group->space_info->groups_sem); 3306 3307 /* 3308 * We haven't cached this block group, which means we could 3309 * possibly have excluded extents on this block group. 3310 */ 3311 if (block_group->cached == BTRFS_CACHE_NO || 3312 block_group->cached == BTRFS_CACHE_ERROR) 3313 btrfs_free_excluded_extents(block_group); 3314 3315 btrfs_remove_free_space_cache(block_group); 3316 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 3317 ASSERT(list_empty(&block_group->dirty_list)); 3318 ASSERT(list_empty(&block_group->io_list)); 3319 ASSERT(list_empty(&block_group->bg_list)); 3320 ASSERT(atomic_read(&block_group->count) == 1); 3321 btrfs_put_block_group(block_group); 3322 3323 spin_lock(&info->block_group_cache_lock); 3324 } 3325 spin_unlock(&info->block_group_cache_lock); 3326 3327 /* 3328 * Now that all the block groups are freed, go through and free all the 3329 * space_info structs. This is only called during the final stages of 3330 * unmount, and so we know nobody is using them. We call 3331 * synchronize_rcu() once before we start, just to be on the safe side. 3332 */ 3333 synchronize_rcu(); 3334 3335 btrfs_release_global_block_rsv(info); 3336 3337 while (!list_empty(&info->space_info)) { 3338 space_info = list_entry(info->space_info.next, 3339 struct btrfs_space_info, 3340 list); 3341 3342 /* 3343 * Do not hide this behind enospc_debug, this is actually 3344 * important and indicates a real bug if this happens. 3345 */ 3346 if (WARN_ON(space_info->bytes_pinned > 0 || 3347 space_info->bytes_reserved > 0 || 3348 space_info->bytes_may_use > 0)) 3349 btrfs_dump_space_info(info, space_info, 0, 0); 3350 list_del(&space_info->list); 3351 btrfs_sysfs_remove_space_info(space_info); 3352 } 3353 return 0; 3354 } 3355