xref: /openbmc/linux/fs/btrfs/block-group.c (revision a9ca9f9c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 	struct btrfs_fs_info *fs_info = block_group->fs_info;
29 
30 	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36 
37 /*
38  * Return target flags in extended format or 0 if restripe for this chunk_type
39  * is not in progress
40  *
41  * Should be called with balance_lock held
42  */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 	u64 target = 0;
47 
48 	if (!bctl)
49 		return 0;
50 
51 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 	}
61 
62 	return target;
63 }
64 
65 /*
66  * @flags: available profiles in extended format (see ctree.h)
67  *
68  * Return reduced profile in chunk format.  If profile changing is in progress
69  * (either running or paused) picks the target profile (if it's already
70  * available), otherwise falls back to plain reducing.
71  */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 	u64 num_devices = fs_info->fs_devices->rw_devices;
75 	u64 target;
76 	u64 raid_type;
77 	u64 allowed = 0;
78 
79 	/*
80 	 * See if restripe for this chunk_type is in progress, if so try to
81 	 * reduce to the target profile
82 	 */
83 	spin_lock(&fs_info->balance_lock);
84 	target = get_restripe_target(fs_info, flags);
85 	if (target) {
86 		spin_unlock(&fs_info->balance_lock);
87 		return extended_to_chunk(target);
88 	}
89 	spin_unlock(&fs_info->balance_lock);
90 
91 	/* First, mask out the RAID levels which aren't possible */
92 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 			allowed |= btrfs_raid_array[raid_type].bg_flag;
95 	}
96 	allowed &= flags;
97 
98 	/* Select the highest-redundancy RAID level. */
99 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 		allowed = BTRFS_BLOCK_GROUP_RAID6;
103 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 		allowed = BTRFS_BLOCK_GROUP_RAID5;
107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 		allowed = BTRFS_BLOCK_GROUP_RAID10;
109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 		allowed = BTRFS_BLOCK_GROUP_RAID1;
111 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 		allowed = BTRFS_BLOCK_GROUP_DUP;
113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118 	return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 	unsigned seq;
124 	u64 flags;
125 
126 	do {
127 		flags = orig_flags;
128 		seq = read_seqbegin(&fs_info->profiles_lock);
129 
130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
131 			flags |= fs_info->avail_data_alloc_bits;
132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 			flags |= fs_info->avail_system_alloc_bits;
134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 			flags |= fs_info->avail_metadata_alloc_bits;
136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138 	return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 	refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 	if (refcount_dec_and_test(&cache->refs)) {
149 		WARN_ON(cache->pinned > 0);
150 		/*
151 		 * If there was a failure to cleanup a log tree, very likely due
152 		 * to an IO failure on a writeback attempt of one or more of its
153 		 * extent buffers, we could not do proper (and cheap) unaccounting
154 		 * of their reserved space, so don't warn on reserved > 0 in that
155 		 * case.
156 		 */
157 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 			WARN_ON(cache->reserved > 0);
160 
161 		/*
162 		 * A block_group shouldn't be on the discard_list anymore.
163 		 * Remove the block_group from the discard_list to prevent us
164 		 * from causing a panic due to NULL pointer dereference.
165 		 */
166 		if (WARN_ON(!list_empty(&cache->discard_list)))
167 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 						  cache);
169 
170 		kfree(cache->free_space_ctl);
171 		kfree(cache->physical_map);
172 		kfree(cache);
173 	}
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 				       struct btrfs_block_group *block_group)
181 {
182 	struct rb_node **p;
183 	struct rb_node *parent = NULL;
184 	struct btrfs_block_group *cache;
185 	bool leftmost = true;
186 
187 	ASSERT(block_group->length != 0);
188 
189 	write_lock(&info->block_group_cache_lock);
190 	p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192 	while (*p) {
193 		parent = *p;
194 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 		if (block_group->start < cache->start) {
196 			p = &(*p)->rb_left;
197 		} else if (block_group->start > cache->start) {
198 			p = &(*p)->rb_right;
199 			leftmost = false;
200 		} else {
201 			write_unlock(&info->block_group_cache_lock);
202 			return -EEXIST;
203 		}
204 	}
205 
206 	rb_link_node(&block_group->cache_node, parent, p);
207 	rb_insert_color_cached(&block_group->cache_node,
208 			       &info->block_group_cache_tree, leftmost);
209 
210 	write_unlock(&info->block_group_cache_lock);
211 
212 	return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 		struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 	struct btrfs_block_group *cache, *ret = NULL;
223 	struct rb_node *n;
224 	u64 end, start;
225 
226 	read_lock(&info->block_group_cache_lock);
227 	n = info->block_group_cache_tree.rb_root.rb_node;
228 
229 	while (n) {
230 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 		end = cache->start + cache->length - 1;
232 		start = cache->start;
233 
234 		if (bytenr < start) {
235 			if (!contains && (!ret || start < ret->start))
236 				ret = cache;
237 			n = n->rb_left;
238 		} else if (bytenr > start) {
239 			if (contains && bytenr <= end) {
240 				ret = cache;
241 				break;
242 			}
243 			n = n->rb_right;
244 		} else {
245 			ret = cache;
246 			break;
247 		}
248 	}
249 	if (ret)
250 		btrfs_get_block_group(ret);
251 	read_unlock(&info->block_group_cache_lock);
252 
253 	return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 		struct btrfs_fs_info *info, u64 bytenr)
261 {
262 	return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 		struct btrfs_fs_info *info, u64 bytenr)
270 {
271 	return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275 		struct btrfs_block_group *cache)
276 {
277 	struct btrfs_fs_info *fs_info = cache->fs_info;
278 	struct rb_node *node;
279 
280 	read_lock(&fs_info->block_group_cache_lock);
281 
282 	/* If our block group was removed, we need a full search. */
283 	if (RB_EMPTY_NODE(&cache->cache_node)) {
284 		const u64 next_bytenr = cache->start + cache->length;
285 
286 		read_unlock(&fs_info->block_group_cache_lock);
287 		btrfs_put_block_group(cache);
288 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 	}
290 	node = rb_next(&cache->cache_node);
291 	btrfs_put_block_group(cache);
292 	if (node) {
293 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 		btrfs_get_block_group(cache);
295 	} else
296 		cache = NULL;
297 	read_unlock(&fs_info->block_group_cache_lock);
298 	return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 						  u64 bytenr)
318 {
319 	struct btrfs_block_group *bg;
320 	bool can_nocow = true;
321 
322 	bg = btrfs_lookup_block_group(fs_info, bytenr);
323 	if (!bg)
324 		return NULL;
325 
326 	spin_lock(&bg->lock);
327 	if (bg->ro)
328 		can_nocow = false;
329 	else
330 		atomic_inc(&bg->nocow_writers);
331 	spin_unlock(&bg->lock);
332 
333 	if (!can_nocow) {
334 		btrfs_put_block_group(bg);
335 		return NULL;
336 	}
337 
338 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
339 	return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 	if (atomic_dec_and_test(&bg->nocow_writers))
356 		wake_up_var(&bg->nocow_writers);
357 
358 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 	btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 					const u64 start)
369 {
370 	struct btrfs_block_group *bg;
371 
372 	bg = btrfs_lookup_block_group(fs_info, start);
373 	ASSERT(bg);
374 	if (atomic_dec_and_test(&bg->reservations))
375 		wake_up_var(&bg->reservations);
376 	btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 	struct btrfs_space_info *space_info = bg->space_info;
382 
383 	ASSERT(bg->ro);
384 
385 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return;
387 
388 	/*
389 	 * Our block group is read only but before we set it to read only,
390 	 * some task might have had allocated an extent from it already, but it
391 	 * has not yet created a respective ordered extent (and added it to a
392 	 * root's list of ordered extents).
393 	 * Therefore wait for any task currently allocating extents, since the
394 	 * block group's reservations counter is incremented while a read lock
395 	 * on the groups' semaphore is held and decremented after releasing
396 	 * the read access on that semaphore and creating the ordered extent.
397 	 */
398 	down_write(&space_info->groups_sem);
399 	up_write(&space_info->groups_sem);
400 
401 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 		struct btrfs_block_group *cache)
406 {
407 	struct btrfs_caching_control *ctl;
408 
409 	spin_lock(&cache->lock);
410 	if (!cache->caching_ctl) {
411 		spin_unlock(&cache->lock);
412 		return NULL;
413 	}
414 
415 	ctl = cache->caching_ctl;
416 	refcount_inc(&ctl->count);
417 	spin_unlock(&cache->lock);
418 	return ctl;
419 }
420 
421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 	if (refcount_dec_and_test(&ctl->count))
424 		kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 					   u64 num_bytes)
442 {
443 	struct btrfs_caching_control *caching_ctl;
444 
445 	caching_ctl = btrfs_get_caching_control(cache);
446 	if (!caching_ctl)
447 		return;
448 
449 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
450 		   (cache->free_space_ctl->free_space >= num_bytes));
451 
452 	btrfs_put_caching_control(caching_ctl);
453 }
454 
455 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
456 				       struct btrfs_caching_control *caching_ctl)
457 {
458 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
459 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
460 }
461 
462 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
463 {
464 	struct btrfs_caching_control *caching_ctl;
465 	int ret;
466 
467 	caching_ctl = btrfs_get_caching_control(cache);
468 	if (!caching_ctl)
469 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
470 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
471 	btrfs_put_caching_control(caching_ctl);
472 	return ret;
473 }
474 
475 #ifdef CONFIG_BTRFS_DEBUG
476 static void fragment_free_space(struct btrfs_block_group *block_group)
477 {
478 	struct btrfs_fs_info *fs_info = block_group->fs_info;
479 	u64 start = block_group->start;
480 	u64 len = block_group->length;
481 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
482 		fs_info->nodesize : fs_info->sectorsize;
483 	u64 step = chunk << 1;
484 
485 	while (len > chunk) {
486 		btrfs_remove_free_space(block_group, start, chunk);
487 		start += step;
488 		if (len < step)
489 			len = 0;
490 		else
491 			len -= step;
492 	}
493 }
494 #endif
495 
496 /*
497  * This is only called by btrfs_cache_block_group, since we could have freed
498  * extents we need to check the pinned_extents for any extents that can't be
499  * used yet since their free space will be released as soon as the transaction
500  * commits.
501  */
502 int add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end,
503 		       u64 *total_added_ret)
504 {
505 	struct btrfs_fs_info *info = block_group->fs_info;
506 	u64 extent_start, extent_end, size;
507 	int ret;
508 
509 	if (total_added_ret)
510 		*total_added_ret = 0;
511 
512 	while (start < end) {
513 		ret = find_first_extent_bit(&info->excluded_extents, start,
514 					    &extent_start, &extent_end,
515 					    EXTENT_DIRTY | EXTENT_UPTODATE,
516 					    NULL);
517 		if (ret)
518 			break;
519 
520 		if (extent_start <= start) {
521 			start = extent_end + 1;
522 		} else if (extent_start > start && extent_start < end) {
523 			size = extent_start - start;
524 			ret = btrfs_add_free_space_async_trimmed(block_group,
525 								 start, size);
526 			if (ret)
527 				return ret;
528 			if (total_added_ret)
529 				*total_added_ret += size;
530 			start = extent_end + 1;
531 		} else {
532 			break;
533 		}
534 	}
535 
536 	if (start < end) {
537 		size = end - start;
538 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
539 							 size);
540 		if (ret)
541 			return ret;
542 		if (total_added_ret)
543 			*total_added_ret += size;
544 	}
545 
546 	return 0;
547 }
548 
549 /*
550  * Get an arbitrary extent item index / max_index through the block group
551  *
552  * @block_group   the block group to sample from
553  * @index:        the integral step through the block group to grab from
554  * @max_index:    the granularity of the sampling
555  * @key:          return value parameter for the item we find
556  *
557  * Pre-conditions on indices:
558  * 0 <= index <= max_index
559  * 0 < max_index
560  *
561  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
562  * error code on error.
563  */
564 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
565 					  struct btrfs_block_group *block_group,
566 					  int index, int max_index,
567 					  struct btrfs_key *found_key)
568 {
569 	struct btrfs_fs_info *fs_info = block_group->fs_info;
570 	struct btrfs_root *extent_root;
571 	u64 search_offset;
572 	u64 search_end = block_group->start + block_group->length;
573 	struct btrfs_path *path;
574 	struct btrfs_key search_key;
575 	int ret = 0;
576 
577 	ASSERT(index >= 0);
578 	ASSERT(index <= max_index);
579 	ASSERT(max_index > 0);
580 	lockdep_assert_held(&caching_ctl->mutex);
581 	lockdep_assert_held_read(&fs_info->commit_root_sem);
582 
583 	path = btrfs_alloc_path();
584 	if (!path)
585 		return -ENOMEM;
586 
587 	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
588 						       BTRFS_SUPER_INFO_OFFSET));
589 
590 	path->skip_locking = 1;
591 	path->search_commit_root = 1;
592 	path->reada = READA_FORWARD;
593 
594 	search_offset = index * div_u64(block_group->length, max_index);
595 	search_key.objectid = block_group->start + search_offset;
596 	search_key.type = BTRFS_EXTENT_ITEM_KEY;
597 	search_key.offset = 0;
598 
599 	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
600 		/* Success; sampled an extent item in the block group */
601 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
602 		    found_key->objectid >= block_group->start &&
603 		    found_key->objectid + found_key->offset <= search_end)
604 			break;
605 
606 		/* We can't possibly find a valid extent item anymore */
607 		if (found_key->objectid >= search_end) {
608 			ret = 1;
609 			break;
610 		}
611 	}
612 
613 	lockdep_assert_held(&caching_ctl->mutex);
614 	lockdep_assert_held_read(&fs_info->commit_root_sem);
615 	btrfs_free_path(path);
616 	return ret;
617 }
618 
619 /*
620  * Best effort attempt to compute a block group's size class while caching it.
621  *
622  * @block_group: the block group we are caching
623  *
624  * We cannot infer the size class while adding free space extents, because that
625  * logic doesn't care about contiguous file extents (it doesn't differentiate
626  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
627  * file extent items. Reading all of them is quite wasteful, because usually
628  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
629  * them at even steps through the block group and pick the smallest size class
630  * we see. Since size class is best effort, and not guaranteed in general,
631  * inaccuracy is acceptable.
632  *
633  * To be more explicit about why this algorithm makes sense:
634  *
635  * If we are caching in a block group from disk, then there are three major cases
636  * to consider:
637  * 1. the block group is well behaved and all extents in it are the same size
638  *    class.
639  * 2. the block group is mostly one size class with rare exceptions for last
640  *    ditch allocations
641  * 3. the block group was populated before size classes and can have a totally
642  *    arbitrary mix of size classes.
643  *
644  * In case 1, looking at any extent in the block group will yield the correct
645  * result. For the mixed cases, taking the minimum size class seems like a good
646  * approximation, since gaps from frees will be usable to the size class. For
647  * 2., a small handful of file extents is likely to yield the right answer. For
648  * 3, we can either read every file extent, or admit that this is best effort
649  * anyway and try to stay fast.
650  *
651  * Returns: 0 on success, negative error code on error.
652  */
653 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
654 				       struct btrfs_block_group *block_group)
655 {
656 	struct btrfs_fs_info *fs_info = block_group->fs_info;
657 	struct btrfs_key key;
658 	int i;
659 	u64 min_size = block_group->length;
660 	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
661 	int ret;
662 
663 	if (!btrfs_block_group_should_use_size_class(block_group))
664 		return 0;
665 
666 	lockdep_assert_held(&caching_ctl->mutex);
667 	lockdep_assert_held_read(&fs_info->commit_root_sem);
668 	for (i = 0; i < 5; ++i) {
669 		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
670 		if (ret < 0)
671 			goto out;
672 		if (ret > 0)
673 			continue;
674 		min_size = min_t(u64, min_size, key.offset);
675 		size_class = btrfs_calc_block_group_size_class(min_size);
676 	}
677 	if (size_class != BTRFS_BG_SZ_NONE) {
678 		spin_lock(&block_group->lock);
679 		block_group->size_class = size_class;
680 		spin_unlock(&block_group->lock);
681 	}
682 out:
683 	return ret;
684 }
685 
686 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
687 {
688 	struct btrfs_block_group *block_group = caching_ctl->block_group;
689 	struct btrfs_fs_info *fs_info = block_group->fs_info;
690 	struct btrfs_root *extent_root;
691 	struct btrfs_path *path;
692 	struct extent_buffer *leaf;
693 	struct btrfs_key key;
694 	u64 total_found = 0;
695 	u64 last = 0;
696 	u32 nritems;
697 	int ret;
698 	bool wakeup = true;
699 
700 	path = btrfs_alloc_path();
701 	if (!path)
702 		return -ENOMEM;
703 
704 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
705 	extent_root = btrfs_extent_root(fs_info, last);
706 
707 #ifdef CONFIG_BTRFS_DEBUG
708 	/*
709 	 * If we're fragmenting we don't want to make anybody think we can
710 	 * allocate from this block group until we've had a chance to fragment
711 	 * the free space.
712 	 */
713 	if (btrfs_should_fragment_free_space(block_group))
714 		wakeup = false;
715 #endif
716 	/*
717 	 * We don't want to deadlock with somebody trying to allocate a new
718 	 * extent for the extent root while also trying to search the extent
719 	 * root to add free space.  So we skip locking and search the commit
720 	 * root, since its read-only
721 	 */
722 	path->skip_locking = 1;
723 	path->search_commit_root = 1;
724 	path->reada = READA_FORWARD;
725 
726 	key.objectid = last;
727 	key.offset = 0;
728 	key.type = BTRFS_EXTENT_ITEM_KEY;
729 
730 next:
731 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
732 	if (ret < 0)
733 		goto out;
734 
735 	leaf = path->nodes[0];
736 	nritems = btrfs_header_nritems(leaf);
737 
738 	while (1) {
739 		if (btrfs_fs_closing(fs_info) > 1) {
740 			last = (u64)-1;
741 			break;
742 		}
743 
744 		if (path->slots[0] < nritems) {
745 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
746 		} else {
747 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
748 			if (ret)
749 				break;
750 
751 			if (need_resched() ||
752 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
753 				btrfs_release_path(path);
754 				up_read(&fs_info->commit_root_sem);
755 				mutex_unlock(&caching_ctl->mutex);
756 				cond_resched();
757 				mutex_lock(&caching_ctl->mutex);
758 				down_read(&fs_info->commit_root_sem);
759 				goto next;
760 			}
761 
762 			ret = btrfs_next_leaf(extent_root, path);
763 			if (ret < 0)
764 				goto out;
765 			if (ret)
766 				break;
767 			leaf = path->nodes[0];
768 			nritems = btrfs_header_nritems(leaf);
769 			continue;
770 		}
771 
772 		if (key.objectid < last) {
773 			key.objectid = last;
774 			key.offset = 0;
775 			key.type = BTRFS_EXTENT_ITEM_KEY;
776 			btrfs_release_path(path);
777 			goto next;
778 		}
779 
780 		if (key.objectid < block_group->start) {
781 			path->slots[0]++;
782 			continue;
783 		}
784 
785 		if (key.objectid >= block_group->start + block_group->length)
786 			break;
787 
788 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
789 		    key.type == BTRFS_METADATA_ITEM_KEY) {
790 			u64 space_added;
791 
792 			ret = add_new_free_space(block_group, last, key.objectid,
793 						 &space_added);
794 			if (ret)
795 				goto out;
796 			total_found += space_added;
797 			if (key.type == BTRFS_METADATA_ITEM_KEY)
798 				last = key.objectid +
799 					fs_info->nodesize;
800 			else
801 				last = key.objectid + key.offset;
802 
803 			if (total_found > CACHING_CTL_WAKE_UP) {
804 				total_found = 0;
805 				if (wakeup)
806 					wake_up(&caching_ctl->wait);
807 			}
808 		}
809 		path->slots[0]++;
810 	}
811 
812 	ret = add_new_free_space(block_group, last,
813 				 block_group->start + block_group->length,
814 				 NULL);
815 out:
816 	btrfs_free_path(path);
817 	return ret;
818 }
819 
820 static noinline void caching_thread(struct btrfs_work *work)
821 {
822 	struct btrfs_block_group *block_group;
823 	struct btrfs_fs_info *fs_info;
824 	struct btrfs_caching_control *caching_ctl;
825 	int ret;
826 
827 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
828 	block_group = caching_ctl->block_group;
829 	fs_info = block_group->fs_info;
830 
831 	mutex_lock(&caching_ctl->mutex);
832 	down_read(&fs_info->commit_root_sem);
833 
834 	load_block_group_size_class(caching_ctl, block_group);
835 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
836 		ret = load_free_space_cache(block_group);
837 		if (ret == 1) {
838 			ret = 0;
839 			goto done;
840 		}
841 
842 		/*
843 		 * We failed to load the space cache, set ourselves to
844 		 * CACHE_STARTED and carry on.
845 		 */
846 		spin_lock(&block_group->lock);
847 		block_group->cached = BTRFS_CACHE_STARTED;
848 		spin_unlock(&block_group->lock);
849 		wake_up(&caching_ctl->wait);
850 	}
851 
852 	/*
853 	 * If we are in the transaction that populated the free space tree we
854 	 * can't actually cache from the free space tree as our commit root and
855 	 * real root are the same, so we could change the contents of the blocks
856 	 * while caching.  Instead do the slow caching in this case, and after
857 	 * the transaction has committed we will be safe.
858 	 */
859 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
860 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
861 		ret = load_free_space_tree(caching_ctl);
862 	else
863 		ret = load_extent_tree_free(caching_ctl);
864 done:
865 	spin_lock(&block_group->lock);
866 	block_group->caching_ctl = NULL;
867 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
868 	spin_unlock(&block_group->lock);
869 
870 #ifdef CONFIG_BTRFS_DEBUG
871 	if (btrfs_should_fragment_free_space(block_group)) {
872 		u64 bytes_used;
873 
874 		spin_lock(&block_group->space_info->lock);
875 		spin_lock(&block_group->lock);
876 		bytes_used = block_group->length - block_group->used;
877 		block_group->space_info->bytes_used += bytes_used >> 1;
878 		spin_unlock(&block_group->lock);
879 		spin_unlock(&block_group->space_info->lock);
880 		fragment_free_space(block_group);
881 	}
882 #endif
883 
884 	up_read(&fs_info->commit_root_sem);
885 	btrfs_free_excluded_extents(block_group);
886 	mutex_unlock(&caching_ctl->mutex);
887 
888 	wake_up(&caching_ctl->wait);
889 
890 	btrfs_put_caching_control(caching_ctl);
891 	btrfs_put_block_group(block_group);
892 }
893 
894 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
895 {
896 	struct btrfs_fs_info *fs_info = cache->fs_info;
897 	struct btrfs_caching_control *caching_ctl = NULL;
898 	int ret = 0;
899 
900 	/* Allocator for zoned filesystems does not use the cache at all */
901 	if (btrfs_is_zoned(fs_info))
902 		return 0;
903 
904 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
905 	if (!caching_ctl)
906 		return -ENOMEM;
907 
908 	INIT_LIST_HEAD(&caching_ctl->list);
909 	mutex_init(&caching_ctl->mutex);
910 	init_waitqueue_head(&caching_ctl->wait);
911 	caching_ctl->block_group = cache;
912 	refcount_set(&caching_ctl->count, 2);
913 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
914 
915 	spin_lock(&cache->lock);
916 	if (cache->cached != BTRFS_CACHE_NO) {
917 		kfree(caching_ctl);
918 
919 		caching_ctl = cache->caching_ctl;
920 		if (caching_ctl)
921 			refcount_inc(&caching_ctl->count);
922 		spin_unlock(&cache->lock);
923 		goto out;
924 	}
925 	WARN_ON(cache->caching_ctl);
926 	cache->caching_ctl = caching_ctl;
927 	cache->cached = BTRFS_CACHE_STARTED;
928 	spin_unlock(&cache->lock);
929 
930 	write_lock(&fs_info->block_group_cache_lock);
931 	refcount_inc(&caching_ctl->count);
932 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
933 	write_unlock(&fs_info->block_group_cache_lock);
934 
935 	btrfs_get_block_group(cache);
936 
937 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
938 out:
939 	if (wait && caching_ctl)
940 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
941 	if (caching_ctl)
942 		btrfs_put_caching_control(caching_ctl);
943 
944 	return ret;
945 }
946 
947 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
948 {
949 	u64 extra_flags = chunk_to_extended(flags) &
950 				BTRFS_EXTENDED_PROFILE_MASK;
951 
952 	write_seqlock(&fs_info->profiles_lock);
953 	if (flags & BTRFS_BLOCK_GROUP_DATA)
954 		fs_info->avail_data_alloc_bits &= ~extra_flags;
955 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
956 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
957 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
958 		fs_info->avail_system_alloc_bits &= ~extra_flags;
959 	write_sequnlock(&fs_info->profiles_lock);
960 }
961 
962 /*
963  * Clear incompat bits for the following feature(s):
964  *
965  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
966  *            in the whole filesystem
967  *
968  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
969  */
970 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
971 {
972 	bool found_raid56 = false;
973 	bool found_raid1c34 = false;
974 
975 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
976 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
977 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
978 		struct list_head *head = &fs_info->space_info;
979 		struct btrfs_space_info *sinfo;
980 
981 		list_for_each_entry_rcu(sinfo, head, list) {
982 			down_read(&sinfo->groups_sem);
983 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
984 				found_raid56 = true;
985 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
986 				found_raid56 = true;
987 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
988 				found_raid1c34 = true;
989 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
990 				found_raid1c34 = true;
991 			up_read(&sinfo->groups_sem);
992 		}
993 		if (!found_raid56)
994 			btrfs_clear_fs_incompat(fs_info, RAID56);
995 		if (!found_raid1c34)
996 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
997 	}
998 }
999 
1000 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1001 				   struct btrfs_path *path,
1002 				   struct btrfs_block_group *block_group)
1003 {
1004 	struct btrfs_fs_info *fs_info = trans->fs_info;
1005 	struct btrfs_root *root;
1006 	struct btrfs_key key;
1007 	int ret;
1008 
1009 	root = btrfs_block_group_root(fs_info);
1010 	key.objectid = block_group->start;
1011 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1012 	key.offset = block_group->length;
1013 
1014 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1015 	if (ret > 0)
1016 		ret = -ENOENT;
1017 	if (ret < 0)
1018 		return ret;
1019 
1020 	ret = btrfs_del_item(trans, root, path);
1021 	return ret;
1022 }
1023 
1024 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1025 			     u64 group_start, struct extent_map *em)
1026 {
1027 	struct btrfs_fs_info *fs_info = trans->fs_info;
1028 	struct btrfs_path *path;
1029 	struct btrfs_block_group *block_group;
1030 	struct btrfs_free_cluster *cluster;
1031 	struct inode *inode;
1032 	struct kobject *kobj = NULL;
1033 	int ret;
1034 	int index;
1035 	int factor;
1036 	struct btrfs_caching_control *caching_ctl = NULL;
1037 	bool remove_em;
1038 	bool remove_rsv = false;
1039 
1040 	block_group = btrfs_lookup_block_group(fs_info, group_start);
1041 	BUG_ON(!block_group);
1042 	BUG_ON(!block_group->ro);
1043 
1044 	trace_btrfs_remove_block_group(block_group);
1045 	/*
1046 	 * Free the reserved super bytes from this block group before
1047 	 * remove it.
1048 	 */
1049 	btrfs_free_excluded_extents(block_group);
1050 	btrfs_free_ref_tree_range(fs_info, block_group->start,
1051 				  block_group->length);
1052 
1053 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1054 	factor = btrfs_bg_type_to_factor(block_group->flags);
1055 
1056 	/* make sure this block group isn't part of an allocation cluster */
1057 	cluster = &fs_info->data_alloc_cluster;
1058 	spin_lock(&cluster->refill_lock);
1059 	btrfs_return_cluster_to_free_space(block_group, cluster);
1060 	spin_unlock(&cluster->refill_lock);
1061 
1062 	/*
1063 	 * make sure this block group isn't part of a metadata
1064 	 * allocation cluster
1065 	 */
1066 	cluster = &fs_info->meta_alloc_cluster;
1067 	spin_lock(&cluster->refill_lock);
1068 	btrfs_return_cluster_to_free_space(block_group, cluster);
1069 	spin_unlock(&cluster->refill_lock);
1070 
1071 	btrfs_clear_treelog_bg(block_group);
1072 	btrfs_clear_data_reloc_bg(block_group);
1073 
1074 	path = btrfs_alloc_path();
1075 	if (!path) {
1076 		ret = -ENOMEM;
1077 		goto out;
1078 	}
1079 
1080 	/*
1081 	 * get the inode first so any iput calls done for the io_list
1082 	 * aren't the final iput (no unlinks allowed now)
1083 	 */
1084 	inode = lookup_free_space_inode(block_group, path);
1085 
1086 	mutex_lock(&trans->transaction->cache_write_mutex);
1087 	/*
1088 	 * Make sure our free space cache IO is done before removing the
1089 	 * free space inode
1090 	 */
1091 	spin_lock(&trans->transaction->dirty_bgs_lock);
1092 	if (!list_empty(&block_group->io_list)) {
1093 		list_del_init(&block_group->io_list);
1094 
1095 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1096 
1097 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1098 		btrfs_wait_cache_io(trans, block_group, path);
1099 		btrfs_put_block_group(block_group);
1100 		spin_lock(&trans->transaction->dirty_bgs_lock);
1101 	}
1102 
1103 	if (!list_empty(&block_group->dirty_list)) {
1104 		list_del_init(&block_group->dirty_list);
1105 		remove_rsv = true;
1106 		btrfs_put_block_group(block_group);
1107 	}
1108 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1109 	mutex_unlock(&trans->transaction->cache_write_mutex);
1110 
1111 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1112 	if (ret)
1113 		goto out;
1114 
1115 	write_lock(&fs_info->block_group_cache_lock);
1116 	rb_erase_cached(&block_group->cache_node,
1117 			&fs_info->block_group_cache_tree);
1118 	RB_CLEAR_NODE(&block_group->cache_node);
1119 
1120 	/* Once for the block groups rbtree */
1121 	btrfs_put_block_group(block_group);
1122 
1123 	write_unlock(&fs_info->block_group_cache_lock);
1124 
1125 	down_write(&block_group->space_info->groups_sem);
1126 	/*
1127 	 * we must use list_del_init so people can check to see if they
1128 	 * are still on the list after taking the semaphore
1129 	 */
1130 	list_del_init(&block_group->list);
1131 	if (list_empty(&block_group->space_info->block_groups[index])) {
1132 		kobj = block_group->space_info->block_group_kobjs[index];
1133 		block_group->space_info->block_group_kobjs[index] = NULL;
1134 		clear_avail_alloc_bits(fs_info, block_group->flags);
1135 	}
1136 	up_write(&block_group->space_info->groups_sem);
1137 	clear_incompat_bg_bits(fs_info, block_group->flags);
1138 	if (kobj) {
1139 		kobject_del(kobj);
1140 		kobject_put(kobj);
1141 	}
1142 
1143 	if (block_group->cached == BTRFS_CACHE_STARTED)
1144 		btrfs_wait_block_group_cache_done(block_group);
1145 
1146 	write_lock(&fs_info->block_group_cache_lock);
1147 	caching_ctl = btrfs_get_caching_control(block_group);
1148 	if (!caching_ctl) {
1149 		struct btrfs_caching_control *ctl;
1150 
1151 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1152 			if (ctl->block_group == block_group) {
1153 				caching_ctl = ctl;
1154 				refcount_inc(&caching_ctl->count);
1155 				break;
1156 			}
1157 		}
1158 	}
1159 	if (caching_ctl)
1160 		list_del_init(&caching_ctl->list);
1161 	write_unlock(&fs_info->block_group_cache_lock);
1162 
1163 	if (caching_ctl) {
1164 		/* Once for the caching bgs list and once for us. */
1165 		btrfs_put_caching_control(caching_ctl);
1166 		btrfs_put_caching_control(caching_ctl);
1167 	}
1168 
1169 	spin_lock(&trans->transaction->dirty_bgs_lock);
1170 	WARN_ON(!list_empty(&block_group->dirty_list));
1171 	WARN_ON(!list_empty(&block_group->io_list));
1172 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1173 
1174 	btrfs_remove_free_space_cache(block_group);
1175 
1176 	spin_lock(&block_group->space_info->lock);
1177 	list_del_init(&block_group->ro_list);
1178 
1179 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1180 		WARN_ON(block_group->space_info->total_bytes
1181 			< block_group->length);
1182 		WARN_ON(block_group->space_info->bytes_readonly
1183 			< block_group->length - block_group->zone_unusable);
1184 		WARN_ON(block_group->space_info->bytes_zone_unusable
1185 			< block_group->zone_unusable);
1186 		WARN_ON(block_group->space_info->disk_total
1187 			< block_group->length * factor);
1188 	}
1189 	block_group->space_info->total_bytes -= block_group->length;
1190 	block_group->space_info->bytes_readonly -=
1191 		(block_group->length - block_group->zone_unusable);
1192 	block_group->space_info->bytes_zone_unusable -=
1193 		block_group->zone_unusable;
1194 	block_group->space_info->disk_total -= block_group->length * factor;
1195 
1196 	spin_unlock(&block_group->space_info->lock);
1197 
1198 	/*
1199 	 * Remove the free space for the block group from the free space tree
1200 	 * and the block group's item from the extent tree before marking the
1201 	 * block group as removed. This is to prevent races with tasks that
1202 	 * freeze and unfreeze a block group, this task and another task
1203 	 * allocating a new block group - the unfreeze task ends up removing
1204 	 * the block group's extent map before the task calling this function
1205 	 * deletes the block group item from the extent tree, allowing for
1206 	 * another task to attempt to create another block group with the same
1207 	 * item key (and failing with -EEXIST and a transaction abort).
1208 	 */
1209 	ret = remove_block_group_free_space(trans, block_group);
1210 	if (ret)
1211 		goto out;
1212 
1213 	ret = remove_block_group_item(trans, path, block_group);
1214 	if (ret < 0)
1215 		goto out;
1216 
1217 	spin_lock(&block_group->lock);
1218 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1219 
1220 	/*
1221 	 * At this point trimming or scrub can't start on this block group,
1222 	 * because we removed the block group from the rbtree
1223 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1224 	 * even if someone already got this block group before we removed it
1225 	 * from the rbtree, they have already incremented block_group->frozen -
1226 	 * if they didn't, for the trimming case they won't find any free space
1227 	 * entries because we already removed them all when we called
1228 	 * btrfs_remove_free_space_cache().
1229 	 *
1230 	 * And we must not remove the extent map from the fs_info->mapping_tree
1231 	 * to prevent the same logical address range and physical device space
1232 	 * ranges from being reused for a new block group. This is needed to
1233 	 * avoid races with trimming and scrub.
1234 	 *
1235 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1236 	 * completely transactionless, so while it is trimming a range the
1237 	 * currently running transaction might finish and a new one start,
1238 	 * allowing for new block groups to be created that can reuse the same
1239 	 * physical device locations unless we take this special care.
1240 	 *
1241 	 * There may also be an implicit trim operation if the file system
1242 	 * is mounted with -odiscard. The same protections must remain
1243 	 * in place until the extents have been discarded completely when
1244 	 * the transaction commit has completed.
1245 	 */
1246 	remove_em = (atomic_read(&block_group->frozen) == 0);
1247 	spin_unlock(&block_group->lock);
1248 
1249 	if (remove_em) {
1250 		struct extent_map_tree *em_tree;
1251 
1252 		em_tree = &fs_info->mapping_tree;
1253 		write_lock(&em_tree->lock);
1254 		remove_extent_mapping(em_tree, em);
1255 		write_unlock(&em_tree->lock);
1256 		/* once for the tree */
1257 		free_extent_map(em);
1258 	}
1259 
1260 out:
1261 	/* Once for the lookup reference */
1262 	btrfs_put_block_group(block_group);
1263 	if (remove_rsv)
1264 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1265 	btrfs_free_path(path);
1266 	return ret;
1267 }
1268 
1269 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1270 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1271 {
1272 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1273 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1274 	struct extent_map *em;
1275 	struct map_lookup *map;
1276 	unsigned int num_items;
1277 
1278 	read_lock(&em_tree->lock);
1279 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1280 	read_unlock(&em_tree->lock);
1281 	ASSERT(em && em->start == chunk_offset);
1282 
1283 	/*
1284 	 * We need to reserve 3 + N units from the metadata space info in order
1285 	 * to remove a block group (done at btrfs_remove_chunk() and at
1286 	 * btrfs_remove_block_group()), which are used for:
1287 	 *
1288 	 * 1 unit for adding the free space inode's orphan (located in the tree
1289 	 * of tree roots).
1290 	 * 1 unit for deleting the block group item (located in the extent
1291 	 * tree).
1292 	 * 1 unit for deleting the free space item (located in tree of tree
1293 	 * roots).
1294 	 * N units for deleting N device extent items corresponding to each
1295 	 * stripe (located in the device tree).
1296 	 *
1297 	 * In order to remove a block group we also need to reserve units in the
1298 	 * system space info in order to update the chunk tree (update one or
1299 	 * more device items and remove one chunk item), but this is done at
1300 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1301 	 */
1302 	map = em->map_lookup;
1303 	num_items = 3 + map->num_stripes;
1304 	free_extent_map(em);
1305 
1306 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1307 }
1308 
1309 /*
1310  * Mark block group @cache read-only, so later write won't happen to block
1311  * group @cache.
1312  *
1313  * If @force is not set, this function will only mark the block group readonly
1314  * if we have enough free space (1M) in other metadata/system block groups.
1315  * If @force is not set, this function will mark the block group readonly
1316  * without checking free space.
1317  *
1318  * NOTE: This function doesn't care if other block groups can contain all the
1319  * data in this block group. That check should be done by relocation routine,
1320  * not this function.
1321  */
1322 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1323 {
1324 	struct btrfs_space_info *sinfo = cache->space_info;
1325 	u64 num_bytes;
1326 	int ret = -ENOSPC;
1327 
1328 	spin_lock(&sinfo->lock);
1329 	spin_lock(&cache->lock);
1330 
1331 	if (cache->swap_extents) {
1332 		ret = -ETXTBSY;
1333 		goto out;
1334 	}
1335 
1336 	if (cache->ro) {
1337 		cache->ro++;
1338 		ret = 0;
1339 		goto out;
1340 	}
1341 
1342 	num_bytes = cache->length - cache->reserved - cache->pinned -
1343 		    cache->bytes_super - cache->zone_unusable - cache->used;
1344 
1345 	/*
1346 	 * Data never overcommits, even in mixed mode, so do just the straight
1347 	 * check of left over space in how much we have allocated.
1348 	 */
1349 	if (force) {
1350 		ret = 0;
1351 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1352 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1353 
1354 		/*
1355 		 * Here we make sure if we mark this bg RO, we still have enough
1356 		 * free space as buffer.
1357 		 */
1358 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1359 			ret = 0;
1360 	} else {
1361 		/*
1362 		 * We overcommit metadata, so we need to do the
1363 		 * btrfs_can_overcommit check here, and we need to pass in
1364 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1365 		 * leeway to allow us to mark this block group as read only.
1366 		 */
1367 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1368 					 BTRFS_RESERVE_NO_FLUSH))
1369 			ret = 0;
1370 	}
1371 
1372 	if (!ret) {
1373 		sinfo->bytes_readonly += num_bytes;
1374 		if (btrfs_is_zoned(cache->fs_info)) {
1375 			/* Migrate zone_unusable bytes to readonly */
1376 			sinfo->bytes_readonly += cache->zone_unusable;
1377 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1378 			cache->zone_unusable = 0;
1379 		}
1380 		cache->ro++;
1381 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1382 	}
1383 out:
1384 	spin_unlock(&cache->lock);
1385 	spin_unlock(&sinfo->lock);
1386 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1387 		btrfs_info(cache->fs_info,
1388 			"unable to make block group %llu ro", cache->start);
1389 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1390 	}
1391 	return ret;
1392 }
1393 
1394 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1395 				 struct btrfs_block_group *bg)
1396 {
1397 	struct btrfs_fs_info *fs_info = bg->fs_info;
1398 	struct btrfs_transaction *prev_trans = NULL;
1399 	const u64 start = bg->start;
1400 	const u64 end = start + bg->length - 1;
1401 	int ret;
1402 
1403 	spin_lock(&fs_info->trans_lock);
1404 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1405 		prev_trans = list_last_entry(&trans->transaction->list,
1406 					     struct btrfs_transaction, list);
1407 		refcount_inc(&prev_trans->use_count);
1408 	}
1409 	spin_unlock(&fs_info->trans_lock);
1410 
1411 	/*
1412 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1413 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1414 	 * task might be running finish_extent_commit() for the previous
1415 	 * transaction N - 1, and have seen a range belonging to the block
1416 	 * group in pinned_extents before we were able to clear the whole block
1417 	 * group range from pinned_extents. This means that task can lookup for
1418 	 * the block group after we unpinned it from pinned_extents and removed
1419 	 * it, leading to a BUG_ON() at unpin_extent_range().
1420 	 */
1421 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1422 	if (prev_trans) {
1423 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1424 					EXTENT_DIRTY);
1425 		if (ret)
1426 			goto out;
1427 	}
1428 
1429 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1430 				EXTENT_DIRTY);
1431 out:
1432 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1433 	if (prev_trans)
1434 		btrfs_put_transaction(prev_trans);
1435 
1436 	return ret == 0;
1437 }
1438 
1439 /*
1440  * Process the unused_bgs list and remove any that don't have any allocated
1441  * space inside of them.
1442  */
1443 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1444 {
1445 	struct btrfs_block_group *block_group;
1446 	struct btrfs_space_info *space_info;
1447 	struct btrfs_trans_handle *trans;
1448 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1449 	int ret = 0;
1450 
1451 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1452 		return;
1453 
1454 	if (btrfs_fs_closing(fs_info))
1455 		return;
1456 
1457 	/*
1458 	 * Long running balances can keep us blocked here for eternity, so
1459 	 * simply skip deletion if we're unable to get the mutex.
1460 	 */
1461 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1462 		return;
1463 
1464 	spin_lock(&fs_info->unused_bgs_lock);
1465 	while (!list_empty(&fs_info->unused_bgs)) {
1466 		int trimming;
1467 
1468 		block_group = list_first_entry(&fs_info->unused_bgs,
1469 					       struct btrfs_block_group,
1470 					       bg_list);
1471 		list_del_init(&block_group->bg_list);
1472 
1473 		space_info = block_group->space_info;
1474 
1475 		if (ret || btrfs_mixed_space_info(space_info)) {
1476 			btrfs_put_block_group(block_group);
1477 			continue;
1478 		}
1479 		spin_unlock(&fs_info->unused_bgs_lock);
1480 
1481 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1482 
1483 		/* Don't want to race with allocators so take the groups_sem */
1484 		down_write(&space_info->groups_sem);
1485 
1486 		/*
1487 		 * Async discard moves the final block group discard to be prior
1488 		 * to the unused_bgs code path.  Therefore, if it's not fully
1489 		 * trimmed, punt it back to the async discard lists.
1490 		 */
1491 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1492 		    !btrfs_is_free_space_trimmed(block_group)) {
1493 			trace_btrfs_skip_unused_block_group(block_group);
1494 			up_write(&space_info->groups_sem);
1495 			/* Requeue if we failed because of async discard */
1496 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1497 						 block_group);
1498 			goto next;
1499 		}
1500 
1501 		spin_lock(&block_group->lock);
1502 		if (block_group->reserved || block_group->pinned ||
1503 		    block_group->used || block_group->ro ||
1504 		    list_is_singular(&block_group->list)) {
1505 			/*
1506 			 * We want to bail if we made new allocations or have
1507 			 * outstanding allocations in this block group.  We do
1508 			 * the ro check in case balance is currently acting on
1509 			 * this block group.
1510 			 */
1511 			trace_btrfs_skip_unused_block_group(block_group);
1512 			spin_unlock(&block_group->lock);
1513 			up_write(&space_info->groups_sem);
1514 			goto next;
1515 		}
1516 		spin_unlock(&block_group->lock);
1517 
1518 		/* We don't want to force the issue, only flip if it's ok. */
1519 		ret = inc_block_group_ro(block_group, 0);
1520 		up_write(&space_info->groups_sem);
1521 		if (ret < 0) {
1522 			ret = 0;
1523 			goto next;
1524 		}
1525 
1526 		ret = btrfs_zone_finish(block_group);
1527 		if (ret < 0) {
1528 			btrfs_dec_block_group_ro(block_group);
1529 			if (ret == -EAGAIN)
1530 				ret = 0;
1531 			goto next;
1532 		}
1533 
1534 		/*
1535 		 * Want to do this before we do anything else so we can recover
1536 		 * properly if we fail to join the transaction.
1537 		 */
1538 		trans = btrfs_start_trans_remove_block_group(fs_info,
1539 						     block_group->start);
1540 		if (IS_ERR(trans)) {
1541 			btrfs_dec_block_group_ro(block_group);
1542 			ret = PTR_ERR(trans);
1543 			goto next;
1544 		}
1545 
1546 		/*
1547 		 * We could have pending pinned extents for this block group,
1548 		 * just delete them, we don't care about them anymore.
1549 		 */
1550 		if (!clean_pinned_extents(trans, block_group)) {
1551 			btrfs_dec_block_group_ro(block_group);
1552 			goto end_trans;
1553 		}
1554 
1555 		/*
1556 		 * At this point, the block_group is read only and should fail
1557 		 * new allocations.  However, btrfs_finish_extent_commit() can
1558 		 * cause this block_group to be placed back on the discard
1559 		 * lists because now the block_group isn't fully discarded.
1560 		 * Bail here and try again later after discarding everything.
1561 		 */
1562 		spin_lock(&fs_info->discard_ctl.lock);
1563 		if (!list_empty(&block_group->discard_list)) {
1564 			spin_unlock(&fs_info->discard_ctl.lock);
1565 			btrfs_dec_block_group_ro(block_group);
1566 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1567 						 block_group);
1568 			goto end_trans;
1569 		}
1570 		spin_unlock(&fs_info->discard_ctl.lock);
1571 
1572 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1573 		spin_lock(&space_info->lock);
1574 		spin_lock(&block_group->lock);
1575 
1576 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1577 						     -block_group->pinned);
1578 		space_info->bytes_readonly += block_group->pinned;
1579 		block_group->pinned = 0;
1580 
1581 		spin_unlock(&block_group->lock);
1582 		spin_unlock(&space_info->lock);
1583 
1584 		/*
1585 		 * The normal path here is an unused block group is passed here,
1586 		 * then trimming is handled in the transaction commit path.
1587 		 * Async discard interposes before this to do the trimming
1588 		 * before coming down the unused block group path as trimming
1589 		 * will no longer be done later in the transaction commit path.
1590 		 */
1591 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1592 			goto flip_async;
1593 
1594 		/*
1595 		 * DISCARD can flip during remount. On zoned filesystems, we
1596 		 * need to reset sequential-required zones.
1597 		 */
1598 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1599 				btrfs_is_zoned(fs_info);
1600 
1601 		/* Implicit trim during transaction commit. */
1602 		if (trimming)
1603 			btrfs_freeze_block_group(block_group);
1604 
1605 		/*
1606 		 * Btrfs_remove_chunk will abort the transaction if things go
1607 		 * horribly wrong.
1608 		 */
1609 		ret = btrfs_remove_chunk(trans, block_group->start);
1610 
1611 		if (ret) {
1612 			if (trimming)
1613 				btrfs_unfreeze_block_group(block_group);
1614 			goto end_trans;
1615 		}
1616 
1617 		/*
1618 		 * If we're not mounted with -odiscard, we can just forget
1619 		 * about this block group. Otherwise we'll need to wait
1620 		 * until transaction commit to do the actual discard.
1621 		 */
1622 		if (trimming) {
1623 			spin_lock(&fs_info->unused_bgs_lock);
1624 			/*
1625 			 * A concurrent scrub might have added us to the list
1626 			 * fs_info->unused_bgs, so use a list_move operation
1627 			 * to add the block group to the deleted_bgs list.
1628 			 */
1629 			list_move(&block_group->bg_list,
1630 				  &trans->transaction->deleted_bgs);
1631 			spin_unlock(&fs_info->unused_bgs_lock);
1632 			btrfs_get_block_group(block_group);
1633 		}
1634 end_trans:
1635 		btrfs_end_transaction(trans);
1636 next:
1637 		btrfs_put_block_group(block_group);
1638 		spin_lock(&fs_info->unused_bgs_lock);
1639 	}
1640 	spin_unlock(&fs_info->unused_bgs_lock);
1641 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1642 	return;
1643 
1644 flip_async:
1645 	btrfs_end_transaction(trans);
1646 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1647 	btrfs_put_block_group(block_group);
1648 	btrfs_discard_punt_unused_bgs_list(fs_info);
1649 }
1650 
1651 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1652 {
1653 	struct btrfs_fs_info *fs_info = bg->fs_info;
1654 
1655 	spin_lock(&fs_info->unused_bgs_lock);
1656 	if (list_empty(&bg->bg_list)) {
1657 		btrfs_get_block_group(bg);
1658 		trace_btrfs_add_unused_block_group(bg);
1659 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1660 	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1661 		/* Pull out the block group from the reclaim_bgs list. */
1662 		trace_btrfs_add_unused_block_group(bg);
1663 		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1664 	}
1665 	spin_unlock(&fs_info->unused_bgs_lock);
1666 }
1667 
1668 /*
1669  * We want block groups with a low number of used bytes to be in the beginning
1670  * of the list, so they will get reclaimed first.
1671  */
1672 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1673 			   const struct list_head *b)
1674 {
1675 	const struct btrfs_block_group *bg1, *bg2;
1676 
1677 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1678 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1679 
1680 	return bg1->used > bg2->used;
1681 }
1682 
1683 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1684 {
1685 	if (btrfs_is_zoned(fs_info))
1686 		return btrfs_zoned_should_reclaim(fs_info);
1687 	return true;
1688 }
1689 
1690 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1691 {
1692 	const struct btrfs_space_info *space_info = bg->space_info;
1693 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1694 	const u64 new_val = bg->used;
1695 	const u64 old_val = new_val + bytes_freed;
1696 	u64 thresh;
1697 
1698 	if (reclaim_thresh == 0)
1699 		return false;
1700 
1701 	thresh = mult_perc(bg->length, reclaim_thresh);
1702 
1703 	/*
1704 	 * If we were below the threshold before don't reclaim, we are likely a
1705 	 * brand new block group and we don't want to relocate new block groups.
1706 	 */
1707 	if (old_val < thresh)
1708 		return false;
1709 	if (new_val >= thresh)
1710 		return false;
1711 	return true;
1712 }
1713 
1714 void btrfs_reclaim_bgs_work(struct work_struct *work)
1715 {
1716 	struct btrfs_fs_info *fs_info =
1717 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1718 	struct btrfs_block_group *bg;
1719 	struct btrfs_space_info *space_info;
1720 
1721 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1722 		return;
1723 
1724 	if (btrfs_fs_closing(fs_info))
1725 		return;
1726 
1727 	if (!btrfs_should_reclaim(fs_info))
1728 		return;
1729 
1730 	sb_start_write(fs_info->sb);
1731 
1732 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1733 		sb_end_write(fs_info->sb);
1734 		return;
1735 	}
1736 
1737 	/*
1738 	 * Long running balances can keep us blocked here for eternity, so
1739 	 * simply skip reclaim if we're unable to get the mutex.
1740 	 */
1741 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1742 		btrfs_exclop_finish(fs_info);
1743 		sb_end_write(fs_info->sb);
1744 		return;
1745 	}
1746 
1747 	spin_lock(&fs_info->unused_bgs_lock);
1748 	/*
1749 	 * Sort happens under lock because we can't simply splice it and sort.
1750 	 * The block groups might still be in use and reachable via bg_list,
1751 	 * and their presence in the reclaim_bgs list must be preserved.
1752 	 */
1753 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1754 	while (!list_empty(&fs_info->reclaim_bgs)) {
1755 		u64 zone_unusable;
1756 		int ret = 0;
1757 
1758 		bg = list_first_entry(&fs_info->reclaim_bgs,
1759 				      struct btrfs_block_group,
1760 				      bg_list);
1761 		list_del_init(&bg->bg_list);
1762 
1763 		space_info = bg->space_info;
1764 		spin_unlock(&fs_info->unused_bgs_lock);
1765 
1766 		/* Don't race with allocators so take the groups_sem */
1767 		down_write(&space_info->groups_sem);
1768 
1769 		spin_lock(&bg->lock);
1770 		if (bg->reserved || bg->pinned || bg->ro) {
1771 			/*
1772 			 * We want to bail if we made new allocations or have
1773 			 * outstanding allocations in this block group.  We do
1774 			 * the ro check in case balance is currently acting on
1775 			 * this block group.
1776 			 */
1777 			spin_unlock(&bg->lock);
1778 			up_write(&space_info->groups_sem);
1779 			goto next;
1780 		}
1781 		if (bg->used == 0) {
1782 			/*
1783 			 * It is possible that we trigger relocation on a block
1784 			 * group as its extents are deleted and it first goes
1785 			 * below the threshold, then shortly after goes empty.
1786 			 *
1787 			 * In this case, relocating it does delete it, but has
1788 			 * some overhead in relocation specific metadata, looking
1789 			 * for the non-existent extents and running some extra
1790 			 * transactions, which we can avoid by using one of the
1791 			 * other mechanisms for dealing with empty block groups.
1792 			 */
1793 			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1794 				btrfs_mark_bg_unused(bg);
1795 			spin_unlock(&bg->lock);
1796 			up_write(&space_info->groups_sem);
1797 			goto next;
1798 
1799 		}
1800 		/*
1801 		 * The block group might no longer meet the reclaim condition by
1802 		 * the time we get around to reclaiming it, so to avoid
1803 		 * reclaiming overly full block_groups, skip reclaiming them.
1804 		 *
1805 		 * Since the decision making process also depends on the amount
1806 		 * being freed, pass in a fake giant value to skip that extra
1807 		 * check, which is more meaningful when adding to the list in
1808 		 * the first place.
1809 		 */
1810 		if (!should_reclaim_block_group(bg, bg->length)) {
1811 			spin_unlock(&bg->lock);
1812 			up_write(&space_info->groups_sem);
1813 			goto next;
1814 		}
1815 		spin_unlock(&bg->lock);
1816 
1817 		/*
1818 		 * Get out fast, in case we're read-only or unmounting the
1819 		 * filesystem. It is OK to drop block groups from the list even
1820 		 * for the read-only case. As we did sb_start_write(),
1821 		 * "mount -o remount,ro" won't happen and read-only filesystem
1822 		 * means it is forced read-only due to a fatal error. So, it
1823 		 * never gets back to read-write to let us reclaim again.
1824 		 */
1825 		if (btrfs_need_cleaner_sleep(fs_info)) {
1826 			up_write(&space_info->groups_sem);
1827 			goto next;
1828 		}
1829 
1830 		/*
1831 		 * Cache the zone_unusable value before turning the block group
1832 		 * to read only. As soon as the blog group is read only it's
1833 		 * zone_unusable value gets moved to the block group's read-only
1834 		 * bytes and isn't available for calculations anymore.
1835 		 */
1836 		zone_unusable = bg->zone_unusable;
1837 		ret = inc_block_group_ro(bg, 0);
1838 		up_write(&space_info->groups_sem);
1839 		if (ret < 0)
1840 			goto next;
1841 
1842 		btrfs_info(fs_info,
1843 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1844 				bg->start,
1845 				div64_u64(bg->used * 100, bg->length),
1846 				div64_u64(zone_unusable * 100, bg->length));
1847 		trace_btrfs_reclaim_block_group(bg);
1848 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1849 		if (ret) {
1850 			btrfs_dec_block_group_ro(bg);
1851 			btrfs_err(fs_info, "error relocating chunk %llu",
1852 				  bg->start);
1853 		}
1854 
1855 next:
1856 		if (ret)
1857 			btrfs_mark_bg_to_reclaim(bg);
1858 		btrfs_put_block_group(bg);
1859 
1860 		mutex_unlock(&fs_info->reclaim_bgs_lock);
1861 		/*
1862 		 * Reclaiming all the block groups in the list can take really
1863 		 * long.  Prioritize cleaning up unused block groups.
1864 		 */
1865 		btrfs_delete_unused_bgs(fs_info);
1866 		/*
1867 		 * If we are interrupted by a balance, we can just bail out. The
1868 		 * cleaner thread restart again if necessary.
1869 		 */
1870 		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1871 			goto end;
1872 		spin_lock(&fs_info->unused_bgs_lock);
1873 	}
1874 	spin_unlock(&fs_info->unused_bgs_lock);
1875 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1876 end:
1877 	btrfs_exclop_finish(fs_info);
1878 	sb_end_write(fs_info->sb);
1879 }
1880 
1881 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1882 {
1883 	spin_lock(&fs_info->unused_bgs_lock);
1884 	if (!list_empty(&fs_info->reclaim_bgs))
1885 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1886 	spin_unlock(&fs_info->unused_bgs_lock);
1887 }
1888 
1889 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1890 {
1891 	struct btrfs_fs_info *fs_info = bg->fs_info;
1892 
1893 	spin_lock(&fs_info->unused_bgs_lock);
1894 	if (list_empty(&bg->bg_list)) {
1895 		btrfs_get_block_group(bg);
1896 		trace_btrfs_add_reclaim_block_group(bg);
1897 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1898 	}
1899 	spin_unlock(&fs_info->unused_bgs_lock);
1900 }
1901 
1902 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1903 			   struct btrfs_path *path)
1904 {
1905 	struct extent_map_tree *em_tree;
1906 	struct extent_map *em;
1907 	struct btrfs_block_group_item bg;
1908 	struct extent_buffer *leaf;
1909 	int slot;
1910 	u64 flags;
1911 	int ret = 0;
1912 
1913 	slot = path->slots[0];
1914 	leaf = path->nodes[0];
1915 
1916 	em_tree = &fs_info->mapping_tree;
1917 	read_lock(&em_tree->lock);
1918 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1919 	read_unlock(&em_tree->lock);
1920 	if (!em) {
1921 		btrfs_err(fs_info,
1922 			  "logical %llu len %llu found bg but no related chunk",
1923 			  key->objectid, key->offset);
1924 		return -ENOENT;
1925 	}
1926 
1927 	if (em->start != key->objectid || em->len != key->offset) {
1928 		btrfs_err(fs_info,
1929 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1930 			key->objectid, key->offset, em->start, em->len);
1931 		ret = -EUCLEAN;
1932 		goto out_free_em;
1933 	}
1934 
1935 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1936 			   sizeof(bg));
1937 	flags = btrfs_stack_block_group_flags(&bg) &
1938 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1939 
1940 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1941 		btrfs_err(fs_info,
1942 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1943 			  key->objectid, key->offset, flags,
1944 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1945 		ret = -EUCLEAN;
1946 	}
1947 
1948 out_free_em:
1949 	free_extent_map(em);
1950 	return ret;
1951 }
1952 
1953 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1954 				  struct btrfs_path *path,
1955 				  struct btrfs_key *key)
1956 {
1957 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1958 	int ret;
1959 	struct btrfs_key found_key;
1960 
1961 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1962 		if (found_key.objectid >= key->objectid &&
1963 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1964 			return read_bg_from_eb(fs_info, &found_key, path);
1965 		}
1966 	}
1967 	return ret;
1968 }
1969 
1970 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1971 {
1972 	u64 extra_flags = chunk_to_extended(flags) &
1973 				BTRFS_EXTENDED_PROFILE_MASK;
1974 
1975 	write_seqlock(&fs_info->profiles_lock);
1976 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1977 		fs_info->avail_data_alloc_bits |= extra_flags;
1978 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1979 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1980 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1981 		fs_info->avail_system_alloc_bits |= extra_flags;
1982 	write_sequnlock(&fs_info->profiles_lock);
1983 }
1984 
1985 /*
1986  * Map a physical disk address to a list of logical addresses.
1987  *
1988  * @fs_info:       the filesystem
1989  * @chunk_start:   logical address of block group
1990  * @physical:	   physical address to map to logical addresses
1991  * @logical:	   return array of logical addresses which map to @physical
1992  * @naddrs:	   length of @logical
1993  * @stripe_len:    size of IO stripe for the given block group
1994  *
1995  * Maps a particular @physical disk address to a list of @logical addresses.
1996  * Used primarily to exclude those portions of a block group that contain super
1997  * block copies.
1998  */
1999 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2000 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2001 {
2002 	struct extent_map *em;
2003 	struct map_lookup *map;
2004 	u64 *buf;
2005 	u64 bytenr;
2006 	u64 data_stripe_length;
2007 	u64 io_stripe_size;
2008 	int i, nr = 0;
2009 	int ret = 0;
2010 
2011 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2012 	if (IS_ERR(em))
2013 		return -EIO;
2014 
2015 	map = em->map_lookup;
2016 	data_stripe_length = em->orig_block_len;
2017 	io_stripe_size = BTRFS_STRIPE_LEN;
2018 	chunk_start = em->start;
2019 
2020 	/* For RAID5/6 adjust to a full IO stripe length */
2021 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2022 		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2023 
2024 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2025 	if (!buf) {
2026 		ret = -ENOMEM;
2027 		goto out;
2028 	}
2029 
2030 	for (i = 0; i < map->num_stripes; i++) {
2031 		bool already_inserted = false;
2032 		u32 stripe_nr;
2033 		u32 offset;
2034 		int j;
2035 
2036 		if (!in_range(physical, map->stripes[i].physical,
2037 			      data_stripe_length))
2038 			continue;
2039 
2040 		stripe_nr = (physical - map->stripes[i].physical) >>
2041 			    BTRFS_STRIPE_LEN_SHIFT;
2042 		offset = (physical - map->stripes[i].physical) &
2043 			 BTRFS_STRIPE_LEN_MASK;
2044 
2045 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2046 				 BTRFS_BLOCK_GROUP_RAID10))
2047 			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2048 					    map->sub_stripes);
2049 		/*
2050 		 * The remaining case would be for RAID56, multiply by
2051 		 * nr_data_stripes().  Alternatively, just use rmap_len below
2052 		 * instead of map->stripe_len
2053 		 */
2054 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2055 
2056 		/* Ensure we don't add duplicate addresses */
2057 		for (j = 0; j < nr; j++) {
2058 			if (buf[j] == bytenr) {
2059 				already_inserted = true;
2060 				break;
2061 			}
2062 		}
2063 
2064 		if (!already_inserted)
2065 			buf[nr++] = bytenr;
2066 	}
2067 
2068 	*logical = buf;
2069 	*naddrs = nr;
2070 	*stripe_len = io_stripe_size;
2071 out:
2072 	free_extent_map(em);
2073 	return ret;
2074 }
2075 
2076 static int exclude_super_stripes(struct btrfs_block_group *cache)
2077 {
2078 	struct btrfs_fs_info *fs_info = cache->fs_info;
2079 	const bool zoned = btrfs_is_zoned(fs_info);
2080 	u64 bytenr;
2081 	u64 *logical;
2082 	int stripe_len;
2083 	int i, nr, ret;
2084 
2085 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2086 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2087 		cache->bytes_super += stripe_len;
2088 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
2089 						stripe_len);
2090 		if (ret)
2091 			return ret;
2092 	}
2093 
2094 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2095 		bytenr = btrfs_sb_offset(i);
2096 		ret = btrfs_rmap_block(fs_info, cache->start,
2097 				       bytenr, &logical, &nr, &stripe_len);
2098 		if (ret)
2099 			return ret;
2100 
2101 		/* Shouldn't have super stripes in sequential zones */
2102 		if (zoned && nr) {
2103 			kfree(logical);
2104 			btrfs_err(fs_info,
2105 			"zoned: block group %llu must not contain super block",
2106 				  cache->start);
2107 			return -EUCLEAN;
2108 		}
2109 
2110 		while (nr--) {
2111 			u64 len = min_t(u64, stripe_len,
2112 				cache->start + cache->length - logical[nr]);
2113 
2114 			cache->bytes_super += len;
2115 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2116 							len);
2117 			if (ret) {
2118 				kfree(logical);
2119 				return ret;
2120 			}
2121 		}
2122 
2123 		kfree(logical);
2124 	}
2125 	return 0;
2126 }
2127 
2128 static struct btrfs_block_group *btrfs_create_block_group_cache(
2129 		struct btrfs_fs_info *fs_info, u64 start)
2130 {
2131 	struct btrfs_block_group *cache;
2132 
2133 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2134 	if (!cache)
2135 		return NULL;
2136 
2137 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2138 					GFP_NOFS);
2139 	if (!cache->free_space_ctl) {
2140 		kfree(cache);
2141 		return NULL;
2142 	}
2143 
2144 	cache->start = start;
2145 
2146 	cache->fs_info = fs_info;
2147 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2148 
2149 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2150 
2151 	refcount_set(&cache->refs, 1);
2152 	spin_lock_init(&cache->lock);
2153 	init_rwsem(&cache->data_rwsem);
2154 	INIT_LIST_HEAD(&cache->list);
2155 	INIT_LIST_HEAD(&cache->cluster_list);
2156 	INIT_LIST_HEAD(&cache->bg_list);
2157 	INIT_LIST_HEAD(&cache->ro_list);
2158 	INIT_LIST_HEAD(&cache->discard_list);
2159 	INIT_LIST_HEAD(&cache->dirty_list);
2160 	INIT_LIST_HEAD(&cache->io_list);
2161 	INIT_LIST_HEAD(&cache->active_bg_list);
2162 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2163 	atomic_set(&cache->frozen, 0);
2164 	mutex_init(&cache->free_space_lock);
2165 
2166 	return cache;
2167 }
2168 
2169 /*
2170  * Iterate all chunks and verify that each of them has the corresponding block
2171  * group
2172  */
2173 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2174 {
2175 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2176 	struct extent_map *em;
2177 	struct btrfs_block_group *bg;
2178 	u64 start = 0;
2179 	int ret = 0;
2180 
2181 	while (1) {
2182 		read_lock(&map_tree->lock);
2183 		/*
2184 		 * lookup_extent_mapping will return the first extent map
2185 		 * intersecting the range, so setting @len to 1 is enough to
2186 		 * get the first chunk.
2187 		 */
2188 		em = lookup_extent_mapping(map_tree, start, 1);
2189 		read_unlock(&map_tree->lock);
2190 		if (!em)
2191 			break;
2192 
2193 		bg = btrfs_lookup_block_group(fs_info, em->start);
2194 		if (!bg) {
2195 			btrfs_err(fs_info,
2196 	"chunk start=%llu len=%llu doesn't have corresponding block group",
2197 				     em->start, em->len);
2198 			ret = -EUCLEAN;
2199 			free_extent_map(em);
2200 			break;
2201 		}
2202 		if (bg->start != em->start || bg->length != em->len ||
2203 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2204 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2205 			btrfs_err(fs_info,
2206 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2207 				em->start, em->len,
2208 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2209 				bg->start, bg->length,
2210 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2211 			ret = -EUCLEAN;
2212 			free_extent_map(em);
2213 			btrfs_put_block_group(bg);
2214 			break;
2215 		}
2216 		start = em->start + em->len;
2217 		free_extent_map(em);
2218 		btrfs_put_block_group(bg);
2219 	}
2220 	return ret;
2221 }
2222 
2223 static int read_one_block_group(struct btrfs_fs_info *info,
2224 				struct btrfs_block_group_item *bgi,
2225 				const struct btrfs_key *key,
2226 				int need_clear)
2227 {
2228 	struct btrfs_block_group *cache;
2229 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2230 	int ret;
2231 
2232 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2233 
2234 	cache = btrfs_create_block_group_cache(info, key->objectid);
2235 	if (!cache)
2236 		return -ENOMEM;
2237 
2238 	cache->length = key->offset;
2239 	cache->used = btrfs_stack_block_group_used(bgi);
2240 	cache->commit_used = cache->used;
2241 	cache->flags = btrfs_stack_block_group_flags(bgi);
2242 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2243 
2244 	set_free_space_tree_thresholds(cache);
2245 
2246 	if (need_clear) {
2247 		/*
2248 		 * When we mount with old space cache, we need to
2249 		 * set BTRFS_DC_CLEAR and set dirty flag.
2250 		 *
2251 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2252 		 *    truncate the old free space cache inode and
2253 		 *    setup a new one.
2254 		 * b) Setting 'dirty flag' makes sure that we flush
2255 		 *    the new space cache info onto disk.
2256 		 */
2257 		if (btrfs_test_opt(info, SPACE_CACHE))
2258 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2259 	}
2260 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2261 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2262 			btrfs_err(info,
2263 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2264 				  cache->start);
2265 			ret = -EINVAL;
2266 			goto error;
2267 	}
2268 
2269 	ret = btrfs_load_block_group_zone_info(cache, false);
2270 	if (ret) {
2271 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2272 			  cache->start);
2273 		goto error;
2274 	}
2275 
2276 	/*
2277 	 * We need to exclude the super stripes now so that the space info has
2278 	 * super bytes accounted for, otherwise we'll think we have more space
2279 	 * than we actually do.
2280 	 */
2281 	ret = exclude_super_stripes(cache);
2282 	if (ret) {
2283 		/* We may have excluded something, so call this just in case. */
2284 		btrfs_free_excluded_extents(cache);
2285 		goto error;
2286 	}
2287 
2288 	/*
2289 	 * For zoned filesystem, space after the allocation offset is the only
2290 	 * free space for a block group. So, we don't need any caching work.
2291 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2292 	 * zone_unusable space.
2293 	 *
2294 	 * For regular filesystem, check for two cases, either we are full, and
2295 	 * therefore don't need to bother with the caching work since we won't
2296 	 * find any space, or we are empty, and we can just add all the space
2297 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2298 	 * in the full case.
2299 	 */
2300 	if (btrfs_is_zoned(info)) {
2301 		btrfs_calc_zone_unusable(cache);
2302 		/* Should not have any excluded extents. Just in case, though. */
2303 		btrfs_free_excluded_extents(cache);
2304 	} else if (cache->length == cache->used) {
2305 		cache->cached = BTRFS_CACHE_FINISHED;
2306 		btrfs_free_excluded_extents(cache);
2307 	} else if (cache->used == 0) {
2308 		cache->cached = BTRFS_CACHE_FINISHED;
2309 		ret = add_new_free_space(cache, cache->start,
2310 					 cache->start + cache->length, NULL);
2311 		btrfs_free_excluded_extents(cache);
2312 		if (ret)
2313 			goto error;
2314 	}
2315 
2316 	ret = btrfs_add_block_group_cache(info, cache);
2317 	if (ret) {
2318 		btrfs_remove_free_space_cache(cache);
2319 		goto error;
2320 	}
2321 	trace_btrfs_add_block_group(info, cache, 0);
2322 	btrfs_add_bg_to_space_info(info, cache);
2323 
2324 	set_avail_alloc_bits(info, cache->flags);
2325 	if (btrfs_chunk_writeable(info, cache->start)) {
2326 		if (cache->used == 0) {
2327 			ASSERT(list_empty(&cache->bg_list));
2328 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2329 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2330 			else
2331 				btrfs_mark_bg_unused(cache);
2332 		}
2333 	} else {
2334 		inc_block_group_ro(cache, 1);
2335 	}
2336 
2337 	return 0;
2338 error:
2339 	btrfs_put_block_group(cache);
2340 	return ret;
2341 }
2342 
2343 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2344 {
2345 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2346 	struct rb_node *node;
2347 	int ret = 0;
2348 
2349 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2350 		struct extent_map *em;
2351 		struct map_lookup *map;
2352 		struct btrfs_block_group *bg;
2353 
2354 		em = rb_entry(node, struct extent_map, rb_node);
2355 		map = em->map_lookup;
2356 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2357 		if (!bg) {
2358 			ret = -ENOMEM;
2359 			break;
2360 		}
2361 
2362 		/* Fill dummy cache as FULL */
2363 		bg->length = em->len;
2364 		bg->flags = map->type;
2365 		bg->cached = BTRFS_CACHE_FINISHED;
2366 		bg->used = em->len;
2367 		bg->flags = map->type;
2368 		ret = btrfs_add_block_group_cache(fs_info, bg);
2369 		/*
2370 		 * We may have some valid block group cache added already, in
2371 		 * that case we skip to the next one.
2372 		 */
2373 		if (ret == -EEXIST) {
2374 			ret = 0;
2375 			btrfs_put_block_group(bg);
2376 			continue;
2377 		}
2378 
2379 		if (ret) {
2380 			btrfs_remove_free_space_cache(bg);
2381 			btrfs_put_block_group(bg);
2382 			break;
2383 		}
2384 
2385 		btrfs_add_bg_to_space_info(fs_info, bg);
2386 
2387 		set_avail_alloc_bits(fs_info, bg->flags);
2388 	}
2389 	if (!ret)
2390 		btrfs_init_global_block_rsv(fs_info);
2391 	return ret;
2392 }
2393 
2394 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2395 {
2396 	struct btrfs_root *root = btrfs_block_group_root(info);
2397 	struct btrfs_path *path;
2398 	int ret;
2399 	struct btrfs_block_group *cache;
2400 	struct btrfs_space_info *space_info;
2401 	struct btrfs_key key;
2402 	int need_clear = 0;
2403 	u64 cache_gen;
2404 
2405 	/*
2406 	 * Either no extent root (with ibadroots rescue option) or we have
2407 	 * unsupported RO options. The fs can never be mounted read-write, so no
2408 	 * need to waste time searching block group items.
2409 	 *
2410 	 * This also allows new extent tree related changes to be RO compat,
2411 	 * no need for a full incompat flag.
2412 	 */
2413 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2414 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2415 		return fill_dummy_bgs(info);
2416 
2417 	key.objectid = 0;
2418 	key.offset = 0;
2419 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2420 	path = btrfs_alloc_path();
2421 	if (!path)
2422 		return -ENOMEM;
2423 
2424 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2425 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2426 	    btrfs_super_generation(info->super_copy) != cache_gen)
2427 		need_clear = 1;
2428 	if (btrfs_test_opt(info, CLEAR_CACHE))
2429 		need_clear = 1;
2430 
2431 	while (1) {
2432 		struct btrfs_block_group_item bgi;
2433 		struct extent_buffer *leaf;
2434 		int slot;
2435 
2436 		ret = find_first_block_group(info, path, &key);
2437 		if (ret > 0)
2438 			break;
2439 		if (ret != 0)
2440 			goto error;
2441 
2442 		leaf = path->nodes[0];
2443 		slot = path->slots[0];
2444 
2445 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2446 				   sizeof(bgi));
2447 
2448 		btrfs_item_key_to_cpu(leaf, &key, slot);
2449 		btrfs_release_path(path);
2450 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2451 		if (ret < 0)
2452 			goto error;
2453 		key.objectid += key.offset;
2454 		key.offset = 0;
2455 	}
2456 	btrfs_release_path(path);
2457 
2458 	list_for_each_entry(space_info, &info->space_info, list) {
2459 		int i;
2460 
2461 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2462 			if (list_empty(&space_info->block_groups[i]))
2463 				continue;
2464 			cache = list_first_entry(&space_info->block_groups[i],
2465 						 struct btrfs_block_group,
2466 						 list);
2467 			btrfs_sysfs_add_block_group_type(cache);
2468 		}
2469 
2470 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2471 		      (BTRFS_BLOCK_GROUP_RAID10 |
2472 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2473 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2474 		       BTRFS_BLOCK_GROUP_DUP)))
2475 			continue;
2476 		/*
2477 		 * Avoid allocating from un-mirrored block group if there are
2478 		 * mirrored block groups.
2479 		 */
2480 		list_for_each_entry(cache,
2481 				&space_info->block_groups[BTRFS_RAID_RAID0],
2482 				list)
2483 			inc_block_group_ro(cache, 1);
2484 		list_for_each_entry(cache,
2485 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2486 				list)
2487 			inc_block_group_ro(cache, 1);
2488 	}
2489 
2490 	btrfs_init_global_block_rsv(info);
2491 	ret = check_chunk_block_group_mappings(info);
2492 error:
2493 	btrfs_free_path(path);
2494 	/*
2495 	 * We've hit some error while reading the extent tree, and have
2496 	 * rescue=ibadroots mount option.
2497 	 * Try to fill the tree using dummy block groups so that the user can
2498 	 * continue to mount and grab their data.
2499 	 */
2500 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2501 		ret = fill_dummy_bgs(info);
2502 	return ret;
2503 }
2504 
2505 /*
2506  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2507  * allocation.
2508  *
2509  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2510  * phases.
2511  */
2512 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2513 				   struct btrfs_block_group *block_group)
2514 {
2515 	struct btrfs_fs_info *fs_info = trans->fs_info;
2516 	struct btrfs_block_group_item bgi;
2517 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2518 	struct btrfs_key key;
2519 	u64 old_commit_used;
2520 	int ret;
2521 
2522 	spin_lock(&block_group->lock);
2523 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2524 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2525 						   block_group->global_root_id);
2526 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2527 	old_commit_used = block_group->commit_used;
2528 	block_group->commit_used = block_group->used;
2529 	key.objectid = block_group->start;
2530 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2531 	key.offset = block_group->length;
2532 	spin_unlock(&block_group->lock);
2533 
2534 	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2535 	if (ret < 0) {
2536 		spin_lock(&block_group->lock);
2537 		block_group->commit_used = old_commit_used;
2538 		spin_unlock(&block_group->lock);
2539 	}
2540 
2541 	return ret;
2542 }
2543 
2544 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2545 			    struct btrfs_device *device, u64 chunk_offset,
2546 			    u64 start, u64 num_bytes)
2547 {
2548 	struct btrfs_fs_info *fs_info = device->fs_info;
2549 	struct btrfs_root *root = fs_info->dev_root;
2550 	struct btrfs_path *path;
2551 	struct btrfs_dev_extent *extent;
2552 	struct extent_buffer *leaf;
2553 	struct btrfs_key key;
2554 	int ret;
2555 
2556 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2557 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2558 	path = btrfs_alloc_path();
2559 	if (!path)
2560 		return -ENOMEM;
2561 
2562 	key.objectid = device->devid;
2563 	key.type = BTRFS_DEV_EXTENT_KEY;
2564 	key.offset = start;
2565 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2566 	if (ret)
2567 		goto out;
2568 
2569 	leaf = path->nodes[0];
2570 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2571 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2572 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2573 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2574 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2575 
2576 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2577 	btrfs_mark_buffer_dirty(leaf);
2578 out:
2579 	btrfs_free_path(path);
2580 	return ret;
2581 }
2582 
2583 /*
2584  * This function belongs to phase 2.
2585  *
2586  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2587  * phases.
2588  */
2589 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2590 				   u64 chunk_offset, u64 chunk_size)
2591 {
2592 	struct btrfs_fs_info *fs_info = trans->fs_info;
2593 	struct btrfs_device *device;
2594 	struct extent_map *em;
2595 	struct map_lookup *map;
2596 	u64 dev_offset;
2597 	u64 stripe_size;
2598 	int i;
2599 	int ret = 0;
2600 
2601 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2602 	if (IS_ERR(em))
2603 		return PTR_ERR(em);
2604 
2605 	map = em->map_lookup;
2606 	stripe_size = em->orig_block_len;
2607 
2608 	/*
2609 	 * Take the device list mutex to prevent races with the final phase of
2610 	 * a device replace operation that replaces the device object associated
2611 	 * with the map's stripes, because the device object's id can change
2612 	 * at any time during that final phase of the device replace operation
2613 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2614 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2615 	 * resulting in persisting a device extent item with such ID.
2616 	 */
2617 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2618 	for (i = 0; i < map->num_stripes; i++) {
2619 		device = map->stripes[i].dev;
2620 		dev_offset = map->stripes[i].physical;
2621 
2622 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2623 				       stripe_size);
2624 		if (ret)
2625 			break;
2626 	}
2627 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2628 
2629 	free_extent_map(em);
2630 	return ret;
2631 }
2632 
2633 /*
2634  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2635  * chunk allocation.
2636  *
2637  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2638  * phases.
2639  */
2640 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2641 {
2642 	struct btrfs_fs_info *fs_info = trans->fs_info;
2643 	struct btrfs_block_group *block_group;
2644 	int ret = 0;
2645 
2646 	while (!list_empty(&trans->new_bgs)) {
2647 		int index;
2648 
2649 		block_group = list_first_entry(&trans->new_bgs,
2650 					       struct btrfs_block_group,
2651 					       bg_list);
2652 		if (ret)
2653 			goto next;
2654 
2655 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2656 
2657 		ret = insert_block_group_item(trans, block_group);
2658 		if (ret)
2659 			btrfs_abort_transaction(trans, ret);
2660 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2661 			      &block_group->runtime_flags)) {
2662 			mutex_lock(&fs_info->chunk_mutex);
2663 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2664 			mutex_unlock(&fs_info->chunk_mutex);
2665 			if (ret)
2666 				btrfs_abort_transaction(trans, ret);
2667 		}
2668 		ret = insert_dev_extents(trans, block_group->start,
2669 					 block_group->length);
2670 		if (ret)
2671 			btrfs_abort_transaction(trans, ret);
2672 		add_block_group_free_space(trans, block_group);
2673 
2674 		/*
2675 		 * If we restriped during balance, we may have added a new raid
2676 		 * type, so now add the sysfs entries when it is safe to do so.
2677 		 * We don't have to worry about locking here as it's handled in
2678 		 * btrfs_sysfs_add_block_group_type.
2679 		 */
2680 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2681 			btrfs_sysfs_add_block_group_type(block_group);
2682 
2683 		/* Already aborted the transaction if it failed. */
2684 next:
2685 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2686 		list_del_init(&block_group->bg_list);
2687 		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2688 	}
2689 	btrfs_trans_release_chunk_metadata(trans);
2690 }
2691 
2692 /*
2693  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2694  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2695  */
2696 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2697 {
2698 	u64 div = SZ_1G;
2699 	u64 index;
2700 
2701 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2702 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2703 
2704 	/* If we have a smaller fs index based on 128MiB. */
2705 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2706 		div = SZ_128M;
2707 
2708 	offset = div64_u64(offset, div);
2709 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2710 	return index;
2711 }
2712 
2713 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2714 						 u64 type,
2715 						 u64 chunk_offset, u64 size)
2716 {
2717 	struct btrfs_fs_info *fs_info = trans->fs_info;
2718 	struct btrfs_block_group *cache;
2719 	int ret;
2720 
2721 	btrfs_set_log_full_commit(trans);
2722 
2723 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2724 	if (!cache)
2725 		return ERR_PTR(-ENOMEM);
2726 
2727 	/*
2728 	 * Mark it as new before adding it to the rbtree of block groups or any
2729 	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2730 	 * before the new flag is set.
2731 	 */
2732 	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2733 
2734 	cache->length = size;
2735 	set_free_space_tree_thresholds(cache);
2736 	cache->flags = type;
2737 	cache->cached = BTRFS_CACHE_FINISHED;
2738 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2739 
2740 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2741 		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2742 
2743 	ret = btrfs_load_block_group_zone_info(cache, true);
2744 	if (ret) {
2745 		btrfs_put_block_group(cache);
2746 		return ERR_PTR(ret);
2747 	}
2748 
2749 	ret = exclude_super_stripes(cache);
2750 	if (ret) {
2751 		/* We may have excluded something, so call this just in case */
2752 		btrfs_free_excluded_extents(cache);
2753 		btrfs_put_block_group(cache);
2754 		return ERR_PTR(ret);
2755 	}
2756 
2757 	ret = add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2758 	btrfs_free_excluded_extents(cache);
2759 	if (ret) {
2760 		btrfs_put_block_group(cache);
2761 		return ERR_PTR(ret);
2762 	}
2763 
2764 	/*
2765 	 * Ensure the corresponding space_info object is created and
2766 	 * assigned to our block group. We want our bg to be added to the rbtree
2767 	 * with its ->space_info set.
2768 	 */
2769 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2770 	ASSERT(cache->space_info);
2771 
2772 	ret = btrfs_add_block_group_cache(fs_info, cache);
2773 	if (ret) {
2774 		btrfs_remove_free_space_cache(cache);
2775 		btrfs_put_block_group(cache);
2776 		return ERR_PTR(ret);
2777 	}
2778 
2779 	/*
2780 	 * Now that our block group has its ->space_info set and is inserted in
2781 	 * the rbtree, update the space info's counters.
2782 	 */
2783 	trace_btrfs_add_block_group(fs_info, cache, 1);
2784 	btrfs_add_bg_to_space_info(fs_info, cache);
2785 	btrfs_update_global_block_rsv(fs_info);
2786 
2787 #ifdef CONFIG_BTRFS_DEBUG
2788 	if (btrfs_should_fragment_free_space(cache)) {
2789 		cache->space_info->bytes_used += size >> 1;
2790 		fragment_free_space(cache);
2791 	}
2792 #endif
2793 
2794 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2795 	trans->delayed_ref_updates++;
2796 	btrfs_update_delayed_refs_rsv(trans);
2797 
2798 	set_avail_alloc_bits(fs_info, type);
2799 	return cache;
2800 }
2801 
2802 /*
2803  * Mark one block group RO, can be called several times for the same block
2804  * group.
2805  *
2806  * @cache:		the destination block group
2807  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2808  * 			ensure we still have some free space after marking this
2809  * 			block group RO.
2810  */
2811 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2812 			     bool do_chunk_alloc)
2813 {
2814 	struct btrfs_fs_info *fs_info = cache->fs_info;
2815 	struct btrfs_trans_handle *trans;
2816 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2817 	u64 alloc_flags;
2818 	int ret;
2819 	bool dirty_bg_running;
2820 
2821 	/*
2822 	 * This can only happen when we are doing read-only scrub on read-only
2823 	 * mount.
2824 	 * In that case we should not start a new transaction on read-only fs.
2825 	 * Thus here we skip all chunk allocations.
2826 	 */
2827 	if (sb_rdonly(fs_info->sb)) {
2828 		mutex_lock(&fs_info->ro_block_group_mutex);
2829 		ret = inc_block_group_ro(cache, 0);
2830 		mutex_unlock(&fs_info->ro_block_group_mutex);
2831 		return ret;
2832 	}
2833 
2834 	do {
2835 		trans = btrfs_join_transaction(root);
2836 		if (IS_ERR(trans))
2837 			return PTR_ERR(trans);
2838 
2839 		dirty_bg_running = false;
2840 
2841 		/*
2842 		 * We're not allowed to set block groups readonly after the dirty
2843 		 * block group cache has started writing.  If it already started,
2844 		 * back off and let this transaction commit.
2845 		 */
2846 		mutex_lock(&fs_info->ro_block_group_mutex);
2847 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2848 			u64 transid = trans->transid;
2849 
2850 			mutex_unlock(&fs_info->ro_block_group_mutex);
2851 			btrfs_end_transaction(trans);
2852 
2853 			ret = btrfs_wait_for_commit(fs_info, transid);
2854 			if (ret)
2855 				return ret;
2856 			dirty_bg_running = true;
2857 		}
2858 	} while (dirty_bg_running);
2859 
2860 	if (do_chunk_alloc) {
2861 		/*
2862 		 * If we are changing raid levels, try to allocate a
2863 		 * corresponding block group with the new raid level.
2864 		 */
2865 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2866 		if (alloc_flags != cache->flags) {
2867 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2868 						CHUNK_ALLOC_FORCE);
2869 			/*
2870 			 * ENOSPC is allowed here, we may have enough space
2871 			 * already allocated at the new raid level to carry on
2872 			 */
2873 			if (ret == -ENOSPC)
2874 				ret = 0;
2875 			if (ret < 0)
2876 				goto out;
2877 		}
2878 	}
2879 
2880 	ret = inc_block_group_ro(cache, 0);
2881 	if (!ret)
2882 		goto out;
2883 	if (ret == -ETXTBSY)
2884 		goto unlock_out;
2885 
2886 	/*
2887 	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2888 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2889 	 * we still want to try our best to mark the block group read-only.
2890 	 */
2891 	if (!do_chunk_alloc && ret == -ENOSPC &&
2892 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2893 		goto unlock_out;
2894 
2895 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2896 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2897 	if (ret < 0)
2898 		goto out;
2899 	/*
2900 	 * We have allocated a new chunk. We also need to activate that chunk to
2901 	 * grant metadata tickets for zoned filesystem.
2902 	 */
2903 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2904 	if (ret < 0)
2905 		goto out;
2906 
2907 	ret = inc_block_group_ro(cache, 0);
2908 	if (ret == -ETXTBSY)
2909 		goto unlock_out;
2910 out:
2911 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2912 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2913 		mutex_lock(&fs_info->chunk_mutex);
2914 		check_system_chunk(trans, alloc_flags);
2915 		mutex_unlock(&fs_info->chunk_mutex);
2916 	}
2917 unlock_out:
2918 	mutex_unlock(&fs_info->ro_block_group_mutex);
2919 
2920 	btrfs_end_transaction(trans);
2921 	return ret;
2922 }
2923 
2924 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2925 {
2926 	struct btrfs_space_info *sinfo = cache->space_info;
2927 	u64 num_bytes;
2928 
2929 	BUG_ON(!cache->ro);
2930 
2931 	spin_lock(&sinfo->lock);
2932 	spin_lock(&cache->lock);
2933 	if (!--cache->ro) {
2934 		if (btrfs_is_zoned(cache->fs_info)) {
2935 			/* Migrate zone_unusable bytes back */
2936 			cache->zone_unusable =
2937 				(cache->alloc_offset - cache->used) +
2938 				(cache->length - cache->zone_capacity);
2939 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2940 			sinfo->bytes_readonly -= cache->zone_unusable;
2941 		}
2942 		num_bytes = cache->length - cache->reserved -
2943 			    cache->pinned - cache->bytes_super -
2944 			    cache->zone_unusable - cache->used;
2945 		sinfo->bytes_readonly -= num_bytes;
2946 		list_del_init(&cache->ro_list);
2947 	}
2948 	spin_unlock(&cache->lock);
2949 	spin_unlock(&sinfo->lock);
2950 }
2951 
2952 static int update_block_group_item(struct btrfs_trans_handle *trans,
2953 				   struct btrfs_path *path,
2954 				   struct btrfs_block_group *cache)
2955 {
2956 	struct btrfs_fs_info *fs_info = trans->fs_info;
2957 	int ret;
2958 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2959 	unsigned long bi;
2960 	struct extent_buffer *leaf;
2961 	struct btrfs_block_group_item bgi;
2962 	struct btrfs_key key;
2963 	u64 old_commit_used;
2964 	u64 used;
2965 
2966 	/*
2967 	 * Block group items update can be triggered out of commit transaction
2968 	 * critical section, thus we need a consistent view of used bytes.
2969 	 * We cannot use cache->used directly outside of the spin lock, as it
2970 	 * may be changed.
2971 	 */
2972 	spin_lock(&cache->lock);
2973 	old_commit_used = cache->commit_used;
2974 	used = cache->used;
2975 	/* No change in used bytes, can safely skip it. */
2976 	if (cache->commit_used == used) {
2977 		spin_unlock(&cache->lock);
2978 		return 0;
2979 	}
2980 	cache->commit_used = used;
2981 	spin_unlock(&cache->lock);
2982 
2983 	key.objectid = cache->start;
2984 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2985 	key.offset = cache->length;
2986 
2987 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2988 	if (ret) {
2989 		if (ret > 0)
2990 			ret = -ENOENT;
2991 		goto fail;
2992 	}
2993 
2994 	leaf = path->nodes[0];
2995 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2996 	btrfs_set_stack_block_group_used(&bgi, used);
2997 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2998 						   cache->global_root_id);
2999 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3000 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3001 	btrfs_mark_buffer_dirty(leaf);
3002 fail:
3003 	btrfs_release_path(path);
3004 	/* We didn't update the block group item, need to revert @commit_used. */
3005 	if (ret < 0) {
3006 		spin_lock(&cache->lock);
3007 		cache->commit_used = old_commit_used;
3008 		spin_unlock(&cache->lock);
3009 	}
3010 	return ret;
3011 
3012 }
3013 
3014 static int cache_save_setup(struct btrfs_block_group *block_group,
3015 			    struct btrfs_trans_handle *trans,
3016 			    struct btrfs_path *path)
3017 {
3018 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3019 	struct btrfs_root *root = fs_info->tree_root;
3020 	struct inode *inode = NULL;
3021 	struct extent_changeset *data_reserved = NULL;
3022 	u64 alloc_hint = 0;
3023 	int dcs = BTRFS_DC_ERROR;
3024 	u64 cache_size = 0;
3025 	int retries = 0;
3026 	int ret = 0;
3027 
3028 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3029 		return 0;
3030 
3031 	/*
3032 	 * If this block group is smaller than 100 megs don't bother caching the
3033 	 * block group.
3034 	 */
3035 	if (block_group->length < (100 * SZ_1M)) {
3036 		spin_lock(&block_group->lock);
3037 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3038 		spin_unlock(&block_group->lock);
3039 		return 0;
3040 	}
3041 
3042 	if (TRANS_ABORTED(trans))
3043 		return 0;
3044 again:
3045 	inode = lookup_free_space_inode(block_group, path);
3046 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3047 		ret = PTR_ERR(inode);
3048 		btrfs_release_path(path);
3049 		goto out;
3050 	}
3051 
3052 	if (IS_ERR(inode)) {
3053 		BUG_ON(retries);
3054 		retries++;
3055 
3056 		if (block_group->ro)
3057 			goto out_free;
3058 
3059 		ret = create_free_space_inode(trans, block_group, path);
3060 		if (ret)
3061 			goto out_free;
3062 		goto again;
3063 	}
3064 
3065 	/*
3066 	 * We want to set the generation to 0, that way if anything goes wrong
3067 	 * from here on out we know not to trust this cache when we load up next
3068 	 * time.
3069 	 */
3070 	BTRFS_I(inode)->generation = 0;
3071 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3072 	if (ret) {
3073 		/*
3074 		 * So theoretically we could recover from this, simply set the
3075 		 * super cache generation to 0 so we know to invalidate the
3076 		 * cache, but then we'd have to keep track of the block groups
3077 		 * that fail this way so we know we _have_ to reset this cache
3078 		 * before the next commit or risk reading stale cache.  So to
3079 		 * limit our exposure to horrible edge cases lets just abort the
3080 		 * transaction, this only happens in really bad situations
3081 		 * anyway.
3082 		 */
3083 		btrfs_abort_transaction(trans, ret);
3084 		goto out_put;
3085 	}
3086 	WARN_ON(ret);
3087 
3088 	/* We've already setup this transaction, go ahead and exit */
3089 	if (block_group->cache_generation == trans->transid &&
3090 	    i_size_read(inode)) {
3091 		dcs = BTRFS_DC_SETUP;
3092 		goto out_put;
3093 	}
3094 
3095 	if (i_size_read(inode) > 0) {
3096 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3097 					&fs_info->global_block_rsv);
3098 		if (ret)
3099 			goto out_put;
3100 
3101 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3102 		if (ret)
3103 			goto out_put;
3104 	}
3105 
3106 	spin_lock(&block_group->lock);
3107 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3108 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3109 		/*
3110 		 * don't bother trying to write stuff out _if_
3111 		 * a) we're not cached,
3112 		 * b) we're with nospace_cache mount option,
3113 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3114 		 */
3115 		dcs = BTRFS_DC_WRITTEN;
3116 		spin_unlock(&block_group->lock);
3117 		goto out_put;
3118 	}
3119 	spin_unlock(&block_group->lock);
3120 
3121 	/*
3122 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3123 	 * skip doing the setup, we've already cleared the cache so we're safe.
3124 	 */
3125 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3126 		ret = -ENOSPC;
3127 		goto out_put;
3128 	}
3129 
3130 	/*
3131 	 * Try to preallocate enough space based on how big the block group is.
3132 	 * Keep in mind this has to include any pinned space which could end up
3133 	 * taking up quite a bit since it's not folded into the other space
3134 	 * cache.
3135 	 */
3136 	cache_size = div_u64(block_group->length, SZ_256M);
3137 	if (!cache_size)
3138 		cache_size = 1;
3139 
3140 	cache_size *= 16;
3141 	cache_size *= fs_info->sectorsize;
3142 
3143 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3144 					  cache_size, false);
3145 	if (ret)
3146 		goto out_put;
3147 
3148 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3149 					      cache_size, cache_size,
3150 					      &alloc_hint);
3151 	/*
3152 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3153 	 * of metadata or split extents when writing the cache out, which means
3154 	 * we can enospc if we are heavily fragmented in addition to just normal
3155 	 * out of space conditions.  So if we hit this just skip setting up any
3156 	 * other block groups for this transaction, maybe we'll unpin enough
3157 	 * space the next time around.
3158 	 */
3159 	if (!ret)
3160 		dcs = BTRFS_DC_SETUP;
3161 	else if (ret == -ENOSPC)
3162 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3163 
3164 out_put:
3165 	iput(inode);
3166 out_free:
3167 	btrfs_release_path(path);
3168 out:
3169 	spin_lock(&block_group->lock);
3170 	if (!ret && dcs == BTRFS_DC_SETUP)
3171 		block_group->cache_generation = trans->transid;
3172 	block_group->disk_cache_state = dcs;
3173 	spin_unlock(&block_group->lock);
3174 
3175 	extent_changeset_free(data_reserved);
3176 	return ret;
3177 }
3178 
3179 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3180 {
3181 	struct btrfs_fs_info *fs_info = trans->fs_info;
3182 	struct btrfs_block_group *cache, *tmp;
3183 	struct btrfs_transaction *cur_trans = trans->transaction;
3184 	struct btrfs_path *path;
3185 
3186 	if (list_empty(&cur_trans->dirty_bgs) ||
3187 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3188 		return 0;
3189 
3190 	path = btrfs_alloc_path();
3191 	if (!path)
3192 		return -ENOMEM;
3193 
3194 	/* Could add new block groups, use _safe just in case */
3195 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3196 				 dirty_list) {
3197 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3198 			cache_save_setup(cache, trans, path);
3199 	}
3200 
3201 	btrfs_free_path(path);
3202 	return 0;
3203 }
3204 
3205 /*
3206  * Transaction commit does final block group cache writeback during a critical
3207  * section where nothing is allowed to change the FS.  This is required in
3208  * order for the cache to actually match the block group, but can introduce a
3209  * lot of latency into the commit.
3210  *
3211  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3212  * There's a chance we'll have to redo some of it if the block group changes
3213  * again during the commit, but it greatly reduces the commit latency by
3214  * getting rid of the easy block groups while we're still allowing others to
3215  * join the commit.
3216  */
3217 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3218 {
3219 	struct btrfs_fs_info *fs_info = trans->fs_info;
3220 	struct btrfs_block_group *cache;
3221 	struct btrfs_transaction *cur_trans = trans->transaction;
3222 	int ret = 0;
3223 	int should_put;
3224 	struct btrfs_path *path = NULL;
3225 	LIST_HEAD(dirty);
3226 	struct list_head *io = &cur_trans->io_bgs;
3227 	int loops = 0;
3228 
3229 	spin_lock(&cur_trans->dirty_bgs_lock);
3230 	if (list_empty(&cur_trans->dirty_bgs)) {
3231 		spin_unlock(&cur_trans->dirty_bgs_lock);
3232 		return 0;
3233 	}
3234 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3235 	spin_unlock(&cur_trans->dirty_bgs_lock);
3236 
3237 again:
3238 	/* Make sure all the block groups on our dirty list actually exist */
3239 	btrfs_create_pending_block_groups(trans);
3240 
3241 	if (!path) {
3242 		path = btrfs_alloc_path();
3243 		if (!path) {
3244 			ret = -ENOMEM;
3245 			goto out;
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * cache_write_mutex is here only to save us from balance or automatic
3251 	 * removal of empty block groups deleting this block group while we are
3252 	 * writing out the cache
3253 	 */
3254 	mutex_lock(&trans->transaction->cache_write_mutex);
3255 	while (!list_empty(&dirty)) {
3256 		bool drop_reserve = true;
3257 
3258 		cache = list_first_entry(&dirty, struct btrfs_block_group,
3259 					 dirty_list);
3260 		/*
3261 		 * This can happen if something re-dirties a block group that
3262 		 * is already under IO.  Just wait for it to finish and then do
3263 		 * it all again
3264 		 */
3265 		if (!list_empty(&cache->io_list)) {
3266 			list_del_init(&cache->io_list);
3267 			btrfs_wait_cache_io(trans, cache, path);
3268 			btrfs_put_block_group(cache);
3269 		}
3270 
3271 
3272 		/*
3273 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3274 		 * it should update the cache_state.  Don't delete until after
3275 		 * we wait.
3276 		 *
3277 		 * Since we're not running in the commit critical section
3278 		 * we need the dirty_bgs_lock to protect from update_block_group
3279 		 */
3280 		spin_lock(&cur_trans->dirty_bgs_lock);
3281 		list_del_init(&cache->dirty_list);
3282 		spin_unlock(&cur_trans->dirty_bgs_lock);
3283 
3284 		should_put = 1;
3285 
3286 		cache_save_setup(cache, trans, path);
3287 
3288 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3289 			cache->io_ctl.inode = NULL;
3290 			ret = btrfs_write_out_cache(trans, cache, path);
3291 			if (ret == 0 && cache->io_ctl.inode) {
3292 				should_put = 0;
3293 
3294 				/*
3295 				 * The cache_write_mutex is protecting the
3296 				 * io_list, also refer to the definition of
3297 				 * btrfs_transaction::io_bgs for more details
3298 				 */
3299 				list_add_tail(&cache->io_list, io);
3300 			} else {
3301 				/*
3302 				 * If we failed to write the cache, the
3303 				 * generation will be bad and life goes on
3304 				 */
3305 				ret = 0;
3306 			}
3307 		}
3308 		if (!ret) {
3309 			ret = update_block_group_item(trans, path, cache);
3310 			/*
3311 			 * Our block group might still be attached to the list
3312 			 * of new block groups in the transaction handle of some
3313 			 * other task (struct btrfs_trans_handle->new_bgs). This
3314 			 * means its block group item isn't yet in the extent
3315 			 * tree. If this happens ignore the error, as we will
3316 			 * try again later in the critical section of the
3317 			 * transaction commit.
3318 			 */
3319 			if (ret == -ENOENT) {
3320 				ret = 0;
3321 				spin_lock(&cur_trans->dirty_bgs_lock);
3322 				if (list_empty(&cache->dirty_list)) {
3323 					list_add_tail(&cache->dirty_list,
3324 						      &cur_trans->dirty_bgs);
3325 					btrfs_get_block_group(cache);
3326 					drop_reserve = false;
3327 				}
3328 				spin_unlock(&cur_trans->dirty_bgs_lock);
3329 			} else if (ret) {
3330 				btrfs_abort_transaction(trans, ret);
3331 			}
3332 		}
3333 
3334 		/* If it's not on the io list, we need to put the block group */
3335 		if (should_put)
3336 			btrfs_put_block_group(cache);
3337 		if (drop_reserve)
3338 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3339 		/*
3340 		 * Avoid blocking other tasks for too long. It might even save
3341 		 * us from writing caches for block groups that are going to be
3342 		 * removed.
3343 		 */
3344 		mutex_unlock(&trans->transaction->cache_write_mutex);
3345 		if (ret)
3346 			goto out;
3347 		mutex_lock(&trans->transaction->cache_write_mutex);
3348 	}
3349 	mutex_unlock(&trans->transaction->cache_write_mutex);
3350 
3351 	/*
3352 	 * Go through delayed refs for all the stuff we've just kicked off
3353 	 * and then loop back (just once)
3354 	 */
3355 	if (!ret)
3356 		ret = btrfs_run_delayed_refs(trans, 0);
3357 	if (!ret && loops == 0) {
3358 		loops++;
3359 		spin_lock(&cur_trans->dirty_bgs_lock);
3360 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3361 		/*
3362 		 * dirty_bgs_lock protects us from concurrent block group
3363 		 * deletes too (not just cache_write_mutex).
3364 		 */
3365 		if (!list_empty(&dirty)) {
3366 			spin_unlock(&cur_trans->dirty_bgs_lock);
3367 			goto again;
3368 		}
3369 		spin_unlock(&cur_trans->dirty_bgs_lock);
3370 	}
3371 out:
3372 	if (ret < 0) {
3373 		spin_lock(&cur_trans->dirty_bgs_lock);
3374 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3375 		spin_unlock(&cur_trans->dirty_bgs_lock);
3376 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3377 	}
3378 
3379 	btrfs_free_path(path);
3380 	return ret;
3381 }
3382 
3383 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3384 {
3385 	struct btrfs_fs_info *fs_info = trans->fs_info;
3386 	struct btrfs_block_group *cache;
3387 	struct btrfs_transaction *cur_trans = trans->transaction;
3388 	int ret = 0;
3389 	int should_put;
3390 	struct btrfs_path *path;
3391 	struct list_head *io = &cur_trans->io_bgs;
3392 
3393 	path = btrfs_alloc_path();
3394 	if (!path)
3395 		return -ENOMEM;
3396 
3397 	/*
3398 	 * Even though we are in the critical section of the transaction commit,
3399 	 * we can still have concurrent tasks adding elements to this
3400 	 * transaction's list of dirty block groups. These tasks correspond to
3401 	 * endio free space workers started when writeback finishes for a
3402 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3403 	 * allocate new block groups as a result of COWing nodes of the root
3404 	 * tree when updating the free space inode. The writeback for the space
3405 	 * caches is triggered by an earlier call to
3406 	 * btrfs_start_dirty_block_groups() and iterations of the following
3407 	 * loop.
3408 	 * Also we want to do the cache_save_setup first and then run the
3409 	 * delayed refs to make sure we have the best chance at doing this all
3410 	 * in one shot.
3411 	 */
3412 	spin_lock(&cur_trans->dirty_bgs_lock);
3413 	while (!list_empty(&cur_trans->dirty_bgs)) {
3414 		cache = list_first_entry(&cur_trans->dirty_bgs,
3415 					 struct btrfs_block_group,
3416 					 dirty_list);
3417 
3418 		/*
3419 		 * This can happen if cache_save_setup re-dirties a block group
3420 		 * that is already under IO.  Just wait for it to finish and
3421 		 * then do it all again
3422 		 */
3423 		if (!list_empty(&cache->io_list)) {
3424 			spin_unlock(&cur_trans->dirty_bgs_lock);
3425 			list_del_init(&cache->io_list);
3426 			btrfs_wait_cache_io(trans, cache, path);
3427 			btrfs_put_block_group(cache);
3428 			spin_lock(&cur_trans->dirty_bgs_lock);
3429 		}
3430 
3431 		/*
3432 		 * Don't remove from the dirty list until after we've waited on
3433 		 * any pending IO
3434 		 */
3435 		list_del_init(&cache->dirty_list);
3436 		spin_unlock(&cur_trans->dirty_bgs_lock);
3437 		should_put = 1;
3438 
3439 		cache_save_setup(cache, trans, path);
3440 
3441 		if (!ret)
3442 			ret = btrfs_run_delayed_refs(trans,
3443 						     (unsigned long) -1);
3444 
3445 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3446 			cache->io_ctl.inode = NULL;
3447 			ret = btrfs_write_out_cache(trans, cache, path);
3448 			if (ret == 0 && cache->io_ctl.inode) {
3449 				should_put = 0;
3450 				list_add_tail(&cache->io_list, io);
3451 			} else {
3452 				/*
3453 				 * If we failed to write the cache, the
3454 				 * generation will be bad and life goes on
3455 				 */
3456 				ret = 0;
3457 			}
3458 		}
3459 		if (!ret) {
3460 			ret = update_block_group_item(trans, path, cache);
3461 			/*
3462 			 * One of the free space endio workers might have
3463 			 * created a new block group while updating a free space
3464 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3465 			 * and hasn't released its transaction handle yet, in
3466 			 * which case the new block group is still attached to
3467 			 * its transaction handle and its creation has not
3468 			 * finished yet (no block group item in the extent tree
3469 			 * yet, etc). If this is the case, wait for all free
3470 			 * space endio workers to finish and retry. This is a
3471 			 * very rare case so no need for a more efficient and
3472 			 * complex approach.
3473 			 */
3474 			if (ret == -ENOENT) {
3475 				wait_event(cur_trans->writer_wait,
3476 				   atomic_read(&cur_trans->num_writers) == 1);
3477 				ret = update_block_group_item(trans, path, cache);
3478 			}
3479 			if (ret)
3480 				btrfs_abort_transaction(trans, ret);
3481 		}
3482 
3483 		/* If its not on the io list, we need to put the block group */
3484 		if (should_put)
3485 			btrfs_put_block_group(cache);
3486 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3487 		spin_lock(&cur_trans->dirty_bgs_lock);
3488 	}
3489 	spin_unlock(&cur_trans->dirty_bgs_lock);
3490 
3491 	/*
3492 	 * Refer to the definition of io_bgs member for details why it's safe
3493 	 * to use it without any locking
3494 	 */
3495 	while (!list_empty(io)) {
3496 		cache = list_first_entry(io, struct btrfs_block_group,
3497 					 io_list);
3498 		list_del_init(&cache->io_list);
3499 		btrfs_wait_cache_io(trans, cache, path);
3500 		btrfs_put_block_group(cache);
3501 	}
3502 
3503 	btrfs_free_path(path);
3504 	return ret;
3505 }
3506 
3507 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3508 			     u64 bytenr, u64 num_bytes, bool alloc)
3509 {
3510 	struct btrfs_fs_info *info = trans->fs_info;
3511 	struct btrfs_block_group *cache = NULL;
3512 	u64 total = num_bytes;
3513 	u64 old_val;
3514 	u64 byte_in_group;
3515 	int factor;
3516 	int ret = 0;
3517 
3518 	/* Block accounting for super block */
3519 	spin_lock(&info->delalloc_root_lock);
3520 	old_val = btrfs_super_bytes_used(info->super_copy);
3521 	if (alloc)
3522 		old_val += num_bytes;
3523 	else
3524 		old_val -= num_bytes;
3525 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3526 	spin_unlock(&info->delalloc_root_lock);
3527 
3528 	while (total) {
3529 		struct btrfs_space_info *space_info;
3530 		bool reclaim = false;
3531 
3532 		cache = btrfs_lookup_block_group(info, bytenr);
3533 		if (!cache) {
3534 			ret = -ENOENT;
3535 			break;
3536 		}
3537 		space_info = cache->space_info;
3538 		factor = btrfs_bg_type_to_factor(cache->flags);
3539 
3540 		/*
3541 		 * If this block group has free space cache written out, we
3542 		 * need to make sure to load it if we are removing space.  This
3543 		 * is because we need the unpinning stage to actually add the
3544 		 * space back to the block group, otherwise we will leak space.
3545 		 */
3546 		if (!alloc && !btrfs_block_group_done(cache))
3547 			btrfs_cache_block_group(cache, true);
3548 
3549 		byte_in_group = bytenr - cache->start;
3550 		WARN_ON(byte_in_group > cache->length);
3551 
3552 		spin_lock(&space_info->lock);
3553 		spin_lock(&cache->lock);
3554 
3555 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3556 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3557 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3558 
3559 		old_val = cache->used;
3560 		num_bytes = min(total, cache->length - byte_in_group);
3561 		if (alloc) {
3562 			old_val += num_bytes;
3563 			cache->used = old_val;
3564 			cache->reserved -= num_bytes;
3565 			space_info->bytes_reserved -= num_bytes;
3566 			space_info->bytes_used += num_bytes;
3567 			space_info->disk_used += num_bytes * factor;
3568 			spin_unlock(&cache->lock);
3569 			spin_unlock(&space_info->lock);
3570 		} else {
3571 			old_val -= num_bytes;
3572 			cache->used = old_val;
3573 			cache->pinned += num_bytes;
3574 			btrfs_space_info_update_bytes_pinned(info, space_info,
3575 							     num_bytes);
3576 			space_info->bytes_used -= num_bytes;
3577 			space_info->disk_used -= num_bytes * factor;
3578 
3579 			reclaim = should_reclaim_block_group(cache, num_bytes);
3580 
3581 			spin_unlock(&cache->lock);
3582 			spin_unlock(&space_info->lock);
3583 
3584 			set_extent_bit(&trans->transaction->pinned_extents,
3585 				       bytenr, bytenr + num_bytes - 1,
3586 				       EXTENT_DIRTY, NULL);
3587 		}
3588 
3589 		spin_lock(&trans->transaction->dirty_bgs_lock);
3590 		if (list_empty(&cache->dirty_list)) {
3591 			list_add_tail(&cache->dirty_list,
3592 				      &trans->transaction->dirty_bgs);
3593 			trans->delayed_ref_updates++;
3594 			btrfs_get_block_group(cache);
3595 		}
3596 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3597 
3598 		/*
3599 		 * No longer have used bytes in this block group, queue it for
3600 		 * deletion. We do this after adding the block group to the
3601 		 * dirty list to avoid races between cleaner kthread and space
3602 		 * cache writeout.
3603 		 */
3604 		if (!alloc && old_val == 0) {
3605 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3606 				btrfs_mark_bg_unused(cache);
3607 		} else if (!alloc && reclaim) {
3608 			btrfs_mark_bg_to_reclaim(cache);
3609 		}
3610 
3611 		btrfs_put_block_group(cache);
3612 		total -= num_bytes;
3613 		bytenr += num_bytes;
3614 	}
3615 
3616 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3617 	btrfs_update_delayed_refs_rsv(trans);
3618 	return ret;
3619 }
3620 
3621 /*
3622  * Update the block_group and space info counters.
3623  *
3624  * @cache:	The cache we are manipulating
3625  * @ram_bytes:  The number of bytes of file content, and will be same to
3626  *              @num_bytes except for the compress path.
3627  * @num_bytes:	The number of bytes in question
3628  * @delalloc:   The blocks are allocated for the delalloc write
3629  *
3630  * This is called by the allocator when it reserves space. If this is a
3631  * reservation and the block group has become read only we cannot make the
3632  * reservation and return -EAGAIN, otherwise this function always succeeds.
3633  */
3634 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3635 			     u64 ram_bytes, u64 num_bytes, int delalloc,
3636 			     bool force_wrong_size_class)
3637 {
3638 	struct btrfs_space_info *space_info = cache->space_info;
3639 	enum btrfs_block_group_size_class size_class;
3640 	int ret = 0;
3641 
3642 	spin_lock(&space_info->lock);
3643 	spin_lock(&cache->lock);
3644 	if (cache->ro) {
3645 		ret = -EAGAIN;
3646 		goto out;
3647 	}
3648 
3649 	if (btrfs_block_group_should_use_size_class(cache)) {
3650 		size_class = btrfs_calc_block_group_size_class(num_bytes);
3651 		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3652 		if (ret)
3653 			goto out;
3654 	}
3655 	cache->reserved += num_bytes;
3656 	space_info->bytes_reserved += num_bytes;
3657 	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3658 				      space_info->flags, num_bytes, 1);
3659 	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3660 					      space_info, -ram_bytes);
3661 	if (delalloc)
3662 		cache->delalloc_bytes += num_bytes;
3663 
3664 	/*
3665 	 * Compression can use less space than we reserved, so wake tickets if
3666 	 * that happens.
3667 	 */
3668 	if (num_bytes < ram_bytes)
3669 		btrfs_try_granting_tickets(cache->fs_info, space_info);
3670 out:
3671 	spin_unlock(&cache->lock);
3672 	spin_unlock(&space_info->lock);
3673 	return ret;
3674 }
3675 
3676 /*
3677  * Update the block_group and space info counters.
3678  *
3679  * @cache:      The cache we are manipulating
3680  * @num_bytes:  The number of bytes in question
3681  * @delalloc:   The blocks are allocated for the delalloc write
3682  *
3683  * This is called by somebody who is freeing space that was never actually used
3684  * on disk.  For example if you reserve some space for a new leaf in transaction
3685  * A and before transaction A commits you free that leaf, you call this with
3686  * reserve set to 0 in order to clear the reservation.
3687  */
3688 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3689 			       u64 num_bytes, int delalloc)
3690 {
3691 	struct btrfs_space_info *space_info = cache->space_info;
3692 
3693 	spin_lock(&space_info->lock);
3694 	spin_lock(&cache->lock);
3695 	if (cache->ro)
3696 		space_info->bytes_readonly += num_bytes;
3697 	cache->reserved -= num_bytes;
3698 	space_info->bytes_reserved -= num_bytes;
3699 	space_info->max_extent_size = 0;
3700 
3701 	if (delalloc)
3702 		cache->delalloc_bytes -= num_bytes;
3703 	spin_unlock(&cache->lock);
3704 
3705 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3706 	spin_unlock(&space_info->lock);
3707 }
3708 
3709 static void force_metadata_allocation(struct btrfs_fs_info *info)
3710 {
3711 	struct list_head *head = &info->space_info;
3712 	struct btrfs_space_info *found;
3713 
3714 	list_for_each_entry(found, head, list) {
3715 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3716 			found->force_alloc = CHUNK_ALLOC_FORCE;
3717 	}
3718 }
3719 
3720 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3721 			      struct btrfs_space_info *sinfo, int force)
3722 {
3723 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3724 	u64 thresh;
3725 
3726 	if (force == CHUNK_ALLOC_FORCE)
3727 		return 1;
3728 
3729 	/*
3730 	 * in limited mode, we want to have some free space up to
3731 	 * about 1% of the FS size.
3732 	 */
3733 	if (force == CHUNK_ALLOC_LIMITED) {
3734 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3735 		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3736 
3737 		if (sinfo->total_bytes - bytes_used < thresh)
3738 			return 1;
3739 	}
3740 
3741 	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3742 		return 0;
3743 	return 1;
3744 }
3745 
3746 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3747 {
3748 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3749 
3750 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3751 }
3752 
3753 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3754 {
3755 	struct btrfs_block_group *bg;
3756 	int ret;
3757 
3758 	/*
3759 	 * Check if we have enough space in the system space info because we
3760 	 * will need to update device items in the chunk btree and insert a new
3761 	 * chunk item in the chunk btree as well. This will allocate a new
3762 	 * system block group if needed.
3763 	 */
3764 	check_system_chunk(trans, flags);
3765 
3766 	bg = btrfs_create_chunk(trans, flags);
3767 	if (IS_ERR(bg)) {
3768 		ret = PTR_ERR(bg);
3769 		goto out;
3770 	}
3771 
3772 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3773 	/*
3774 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3775 	 * previously reserved space in the system space_info and allocated one
3776 	 * new system chunk if necessary. However there are three exceptions:
3777 	 *
3778 	 * 1) We may have enough free space in the system space_info but all the
3779 	 *    existing system block groups have a profile which can not be used
3780 	 *    for extent allocation.
3781 	 *
3782 	 *    This happens when mounting in degraded mode. For example we have a
3783 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3784 	 *    using the other device in degraded mode. If we then allocate a chunk,
3785 	 *    we may have enough free space in the existing system space_info, but
3786 	 *    none of the block groups can be used for extent allocation since they
3787 	 *    have a RAID1 profile, and because we are in degraded mode with a
3788 	 *    single device, we are forced to allocate a new system chunk with a
3789 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3790 	 *    block groups and check if they have a usable profile and enough space
3791 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3792 	 *    try again after forcing allocation of a new system chunk. Like this
3793 	 *    we avoid paying the cost of that search in normal circumstances, when
3794 	 *    we were not mounted in degraded mode;
3795 	 *
3796 	 * 2) We had enough free space info the system space_info, and one suitable
3797 	 *    block group to allocate from when we called check_system_chunk()
3798 	 *    above. However right after we called it, the only system block group
3799 	 *    with enough free space got turned into RO mode by a running scrub,
3800 	 *    and in this case we have to allocate a new one and retry. We only
3801 	 *    need do this allocate and retry once, since we have a transaction
3802 	 *    handle and scrub uses the commit root to search for block groups;
3803 	 *
3804 	 * 3) We had one system block group with enough free space when we called
3805 	 *    check_system_chunk(), but after that, right before we tried to
3806 	 *    allocate the last extent buffer we needed, a discard operation came
3807 	 *    in and it temporarily removed the last free space entry from the
3808 	 *    block group (discard removes a free space entry, discards it, and
3809 	 *    then adds back the entry to the block group cache).
3810 	 */
3811 	if (ret == -ENOSPC) {
3812 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3813 		struct btrfs_block_group *sys_bg;
3814 
3815 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3816 		if (IS_ERR(sys_bg)) {
3817 			ret = PTR_ERR(sys_bg);
3818 			btrfs_abort_transaction(trans, ret);
3819 			goto out;
3820 		}
3821 
3822 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3823 		if (ret) {
3824 			btrfs_abort_transaction(trans, ret);
3825 			goto out;
3826 		}
3827 
3828 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3829 		if (ret) {
3830 			btrfs_abort_transaction(trans, ret);
3831 			goto out;
3832 		}
3833 	} else if (ret) {
3834 		btrfs_abort_transaction(trans, ret);
3835 		goto out;
3836 	}
3837 out:
3838 	btrfs_trans_release_chunk_metadata(trans);
3839 
3840 	if (ret)
3841 		return ERR_PTR(ret);
3842 
3843 	btrfs_get_block_group(bg);
3844 	return bg;
3845 }
3846 
3847 /*
3848  * Chunk allocation is done in 2 phases:
3849  *
3850  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3851  *    the chunk, the chunk mapping, create its block group and add the items
3852  *    that belong in the chunk btree to it - more specifically, we need to
3853  *    update device items in the chunk btree and add a new chunk item to it.
3854  *
3855  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3856  *    group item to the extent btree and the device extent items to the devices
3857  *    btree.
3858  *
3859  * This is done to prevent deadlocks. For example when COWing a node from the
3860  * extent btree we are holding a write lock on the node's parent and if we
3861  * trigger chunk allocation and attempted to insert the new block group item
3862  * in the extent btree right way, we could deadlock because the path for the
3863  * insertion can include that parent node. At first glance it seems impossible
3864  * to trigger chunk allocation after starting a transaction since tasks should
3865  * reserve enough transaction units (metadata space), however while that is true
3866  * most of the time, chunk allocation may still be triggered for several reasons:
3867  *
3868  * 1) When reserving metadata, we check if there is enough free space in the
3869  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3870  *    However later when the task actually tries to COW an extent buffer from
3871  *    the extent btree or from the device btree for example, it is forced to
3872  *    allocate a new block group (chunk) because the only one that had enough
3873  *    free space was just turned to RO mode by a running scrub for example (or
3874  *    device replace, block group reclaim thread, etc), so we can not use it
3875  *    for allocating an extent and end up being forced to allocate a new one;
3876  *
3877  * 2) Because we only check that the metadata space_info has enough free bytes,
3878  *    we end up not allocating a new metadata chunk in that case. However if
3879  *    the filesystem was mounted in degraded mode, none of the existing block
3880  *    groups might be suitable for extent allocation due to their incompatible
3881  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3882  *    use a RAID1 profile, in degraded mode using a single device). In this case
3883  *    when the task attempts to COW some extent buffer of the extent btree for
3884  *    example, it will trigger allocation of a new metadata block group with a
3885  *    suitable profile (SINGLE profile in the example of the degraded mount of
3886  *    the RAID1 filesystem);
3887  *
3888  * 3) The task has reserved enough transaction units / metadata space, but when
3889  *    it attempts to COW an extent buffer from the extent or device btree for
3890  *    example, it does not find any free extent in any metadata block group,
3891  *    therefore forced to try to allocate a new metadata block group.
3892  *    This is because some other task allocated all available extents in the
3893  *    meanwhile - this typically happens with tasks that don't reserve space
3894  *    properly, either intentionally or as a bug. One example where this is
3895  *    done intentionally is fsync, as it does not reserve any transaction units
3896  *    and ends up allocating a variable number of metadata extents for log
3897  *    tree extent buffers;
3898  *
3899  * 4) The task has reserved enough transaction units / metadata space, but right
3900  *    before it tries to allocate the last extent buffer it needs, a discard
3901  *    operation comes in and, temporarily, removes the last free space entry from
3902  *    the only metadata block group that had free space (discard starts by
3903  *    removing a free space entry from a block group, then does the discard
3904  *    operation and, once it's done, it adds back the free space entry to the
3905  *    block group).
3906  *
3907  * We also need this 2 phases setup when adding a device to a filesystem with
3908  * a seed device - we must create new metadata and system chunks without adding
3909  * any of the block group items to the chunk, extent and device btrees. If we
3910  * did not do it this way, we would get ENOSPC when attempting to update those
3911  * btrees, since all the chunks from the seed device are read-only.
3912  *
3913  * Phase 1 does the updates and insertions to the chunk btree because if we had
3914  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3915  * parallel, we risk having too many system chunks allocated by many tasks if
3916  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3917  * extreme case this leads to exhaustion of the system chunk array in the
3918  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3919  * and with RAID filesystems (so we have more device items in the chunk btree).
3920  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3921  * the system chunk array due to concurrent allocations") provides more details.
3922  *
3923  * Allocation of system chunks does not happen through this function. A task that
3924  * needs to update the chunk btree (the only btree that uses system chunks), must
3925  * preallocate chunk space by calling either check_system_chunk() or
3926  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3927  * metadata chunk or when removing a chunk, while the later is used before doing
3928  * a modification to the chunk btree - use cases for the later are adding,
3929  * removing and resizing a device as well as relocation of a system chunk.
3930  * See the comment below for more details.
3931  *
3932  * The reservation of system space, done through check_system_chunk(), as well
3933  * as all the updates and insertions into the chunk btree must be done while
3934  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3935  * an extent buffer from the chunks btree we never trigger allocation of a new
3936  * system chunk, which would result in a deadlock (trying to lock twice an
3937  * extent buffer of the chunk btree, first time before triggering the chunk
3938  * allocation and the second time during chunk allocation while attempting to
3939  * update the chunks btree). The system chunk array is also updated while holding
3940  * that mutex. The same logic applies to removing chunks - we must reserve system
3941  * space, update the chunk btree and the system chunk array in the superblock
3942  * while holding fs_info->chunk_mutex.
3943  *
3944  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3945  *
3946  * If @force is CHUNK_ALLOC_FORCE:
3947  *    - return 1 if it successfully allocates a chunk,
3948  *    - return errors including -ENOSPC otherwise.
3949  * If @force is NOT CHUNK_ALLOC_FORCE:
3950  *    - return 0 if it doesn't need to allocate a new chunk,
3951  *    - return 1 if it successfully allocates a chunk,
3952  *    - return errors including -ENOSPC otherwise.
3953  */
3954 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3955 		      enum btrfs_chunk_alloc_enum force)
3956 {
3957 	struct btrfs_fs_info *fs_info = trans->fs_info;
3958 	struct btrfs_space_info *space_info;
3959 	struct btrfs_block_group *ret_bg;
3960 	bool wait_for_alloc = false;
3961 	bool should_alloc = false;
3962 	bool from_extent_allocation = false;
3963 	int ret = 0;
3964 
3965 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3966 		from_extent_allocation = true;
3967 		force = CHUNK_ALLOC_FORCE;
3968 	}
3969 
3970 	/* Don't re-enter if we're already allocating a chunk */
3971 	if (trans->allocating_chunk)
3972 		return -ENOSPC;
3973 	/*
3974 	 * Allocation of system chunks can not happen through this path, as we
3975 	 * could end up in a deadlock if we are allocating a data or metadata
3976 	 * chunk and there is another task modifying the chunk btree.
3977 	 *
3978 	 * This is because while we are holding the chunk mutex, we will attempt
3979 	 * to add the new chunk item to the chunk btree or update an existing
3980 	 * device item in the chunk btree, while the other task that is modifying
3981 	 * the chunk btree is attempting to COW an extent buffer while holding a
3982 	 * lock on it and on its parent - if the COW operation triggers a system
3983 	 * chunk allocation, then we can deadlock because we are holding the
3984 	 * chunk mutex and we may need to access that extent buffer or its parent
3985 	 * in order to add the chunk item or update a device item.
3986 	 *
3987 	 * Tasks that want to modify the chunk tree should reserve system space
3988 	 * before updating the chunk btree, by calling either
3989 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3990 	 * It's possible that after a task reserves the space, it still ends up
3991 	 * here - this happens in the cases described above at do_chunk_alloc().
3992 	 * The task will have to either retry or fail.
3993 	 */
3994 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3995 		return -ENOSPC;
3996 
3997 	space_info = btrfs_find_space_info(fs_info, flags);
3998 	ASSERT(space_info);
3999 
4000 	do {
4001 		spin_lock(&space_info->lock);
4002 		if (force < space_info->force_alloc)
4003 			force = space_info->force_alloc;
4004 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4005 		if (space_info->full) {
4006 			/* No more free physical space */
4007 			if (should_alloc)
4008 				ret = -ENOSPC;
4009 			else
4010 				ret = 0;
4011 			spin_unlock(&space_info->lock);
4012 			return ret;
4013 		} else if (!should_alloc) {
4014 			spin_unlock(&space_info->lock);
4015 			return 0;
4016 		} else if (space_info->chunk_alloc) {
4017 			/*
4018 			 * Someone is already allocating, so we need to block
4019 			 * until this someone is finished and then loop to
4020 			 * recheck if we should continue with our allocation
4021 			 * attempt.
4022 			 */
4023 			wait_for_alloc = true;
4024 			force = CHUNK_ALLOC_NO_FORCE;
4025 			spin_unlock(&space_info->lock);
4026 			mutex_lock(&fs_info->chunk_mutex);
4027 			mutex_unlock(&fs_info->chunk_mutex);
4028 		} else {
4029 			/* Proceed with allocation */
4030 			space_info->chunk_alloc = 1;
4031 			wait_for_alloc = false;
4032 			spin_unlock(&space_info->lock);
4033 		}
4034 
4035 		cond_resched();
4036 	} while (wait_for_alloc);
4037 
4038 	mutex_lock(&fs_info->chunk_mutex);
4039 	trans->allocating_chunk = true;
4040 
4041 	/*
4042 	 * If we have mixed data/metadata chunks we want to make sure we keep
4043 	 * allocating mixed chunks instead of individual chunks.
4044 	 */
4045 	if (btrfs_mixed_space_info(space_info))
4046 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4047 
4048 	/*
4049 	 * if we're doing a data chunk, go ahead and make sure that
4050 	 * we keep a reasonable number of metadata chunks allocated in the
4051 	 * FS as well.
4052 	 */
4053 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4054 		fs_info->data_chunk_allocations++;
4055 		if (!(fs_info->data_chunk_allocations %
4056 		      fs_info->metadata_ratio))
4057 			force_metadata_allocation(fs_info);
4058 	}
4059 
4060 	ret_bg = do_chunk_alloc(trans, flags);
4061 	trans->allocating_chunk = false;
4062 
4063 	if (IS_ERR(ret_bg)) {
4064 		ret = PTR_ERR(ret_bg);
4065 	} else if (from_extent_allocation) {
4066 		/*
4067 		 * New block group is likely to be used soon. Try to activate
4068 		 * it now. Failure is OK for now.
4069 		 */
4070 		btrfs_zone_activate(ret_bg);
4071 	}
4072 
4073 	if (!ret)
4074 		btrfs_put_block_group(ret_bg);
4075 
4076 	spin_lock(&space_info->lock);
4077 	if (ret < 0) {
4078 		if (ret == -ENOSPC)
4079 			space_info->full = 1;
4080 		else
4081 			goto out;
4082 	} else {
4083 		ret = 1;
4084 		space_info->max_extent_size = 0;
4085 	}
4086 
4087 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4088 out:
4089 	space_info->chunk_alloc = 0;
4090 	spin_unlock(&space_info->lock);
4091 	mutex_unlock(&fs_info->chunk_mutex);
4092 
4093 	return ret;
4094 }
4095 
4096 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4097 {
4098 	u64 num_dev;
4099 
4100 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4101 	if (!num_dev)
4102 		num_dev = fs_info->fs_devices->rw_devices;
4103 
4104 	return num_dev;
4105 }
4106 
4107 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4108 				u64 bytes,
4109 				u64 type)
4110 {
4111 	struct btrfs_fs_info *fs_info = trans->fs_info;
4112 	struct btrfs_space_info *info;
4113 	u64 left;
4114 	int ret = 0;
4115 
4116 	/*
4117 	 * Needed because we can end up allocating a system chunk and for an
4118 	 * atomic and race free space reservation in the chunk block reserve.
4119 	 */
4120 	lockdep_assert_held(&fs_info->chunk_mutex);
4121 
4122 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4123 	spin_lock(&info->lock);
4124 	left = info->total_bytes - btrfs_space_info_used(info, true);
4125 	spin_unlock(&info->lock);
4126 
4127 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4128 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4129 			   left, bytes, type);
4130 		btrfs_dump_space_info(fs_info, info, 0, 0);
4131 	}
4132 
4133 	if (left < bytes) {
4134 		u64 flags = btrfs_system_alloc_profile(fs_info);
4135 		struct btrfs_block_group *bg;
4136 
4137 		/*
4138 		 * Ignore failure to create system chunk. We might end up not
4139 		 * needing it, as we might not need to COW all nodes/leafs from
4140 		 * the paths we visit in the chunk tree (they were already COWed
4141 		 * or created in the current transaction for example).
4142 		 */
4143 		bg = btrfs_create_chunk(trans, flags);
4144 		if (IS_ERR(bg)) {
4145 			ret = PTR_ERR(bg);
4146 		} else {
4147 			/*
4148 			 * We have a new chunk. We also need to activate it for
4149 			 * zoned filesystem.
4150 			 */
4151 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4152 			if (ret < 0)
4153 				return;
4154 
4155 			/*
4156 			 * If we fail to add the chunk item here, we end up
4157 			 * trying again at phase 2 of chunk allocation, at
4158 			 * btrfs_create_pending_block_groups(). So ignore
4159 			 * any error here. An ENOSPC here could happen, due to
4160 			 * the cases described at do_chunk_alloc() - the system
4161 			 * block group we just created was just turned into RO
4162 			 * mode by a scrub for example, or a running discard
4163 			 * temporarily removed its free space entries, etc.
4164 			 */
4165 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4166 		}
4167 	}
4168 
4169 	if (!ret) {
4170 		ret = btrfs_block_rsv_add(fs_info,
4171 					  &fs_info->chunk_block_rsv,
4172 					  bytes, BTRFS_RESERVE_NO_FLUSH);
4173 		if (!ret)
4174 			trans->chunk_bytes_reserved += bytes;
4175 	}
4176 }
4177 
4178 /*
4179  * Reserve space in the system space for allocating or removing a chunk.
4180  * The caller must be holding fs_info->chunk_mutex.
4181  */
4182 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4183 {
4184 	struct btrfs_fs_info *fs_info = trans->fs_info;
4185 	const u64 num_devs = get_profile_num_devs(fs_info, type);
4186 	u64 bytes;
4187 
4188 	/* num_devs device items to update and 1 chunk item to add or remove. */
4189 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4190 		btrfs_calc_insert_metadata_size(fs_info, 1);
4191 
4192 	reserve_chunk_space(trans, bytes, type);
4193 }
4194 
4195 /*
4196  * Reserve space in the system space, if needed, for doing a modification to the
4197  * chunk btree.
4198  *
4199  * @trans:		A transaction handle.
4200  * @is_item_insertion:	Indicate if the modification is for inserting a new item
4201  *			in the chunk btree or if it's for the deletion or update
4202  *			of an existing item.
4203  *
4204  * This is used in a context where we need to update the chunk btree outside
4205  * block group allocation and removal, to avoid a deadlock with a concurrent
4206  * task that is allocating a metadata or data block group and therefore needs to
4207  * update the chunk btree while holding the chunk mutex. After the update to the
4208  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4209  *
4210  */
4211 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4212 				  bool is_item_insertion)
4213 {
4214 	struct btrfs_fs_info *fs_info = trans->fs_info;
4215 	u64 bytes;
4216 
4217 	if (is_item_insertion)
4218 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4219 	else
4220 		bytes = btrfs_calc_metadata_size(fs_info, 1);
4221 
4222 	mutex_lock(&fs_info->chunk_mutex);
4223 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4224 	mutex_unlock(&fs_info->chunk_mutex);
4225 }
4226 
4227 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4228 {
4229 	struct btrfs_block_group *block_group;
4230 
4231 	block_group = btrfs_lookup_first_block_group(info, 0);
4232 	while (block_group) {
4233 		btrfs_wait_block_group_cache_done(block_group);
4234 		spin_lock(&block_group->lock);
4235 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4236 				       &block_group->runtime_flags)) {
4237 			struct inode *inode = block_group->inode;
4238 
4239 			block_group->inode = NULL;
4240 			spin_unlock(&block_group->lock);
4241 
4242 			ASSERT(block_group->io_ctl.inode == NULL);
4243 			iput(inode);
4244 		} else {
4245 			spin_unlock(&block_group->lock);
4246 		}
4247 		block_group = btrfs_next_block_group(block_group);
4248 	}
4249 }
4250 
4251 /*
4252  * Must be called only after stopping all workers, since we could have block
4253  * group caching kthreads running, and therefore they could race with us if we
4254  * freed the block groups before stopping them.
4255  */
4256 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4257 {
4258 	struct btrfs_block_group *block_group;
4259 	struct btrfs_space_info *space_info;
4260 	struct btrfs_caching_control *caching_ctl;
4261 	struct rb_node *n;
4262 
4263 	write_lock(&info->block_group_cache_lock);
4264 	while (!list_empty(&info->caching_block_groups)) {
4265 		caching_ctl = list_entry(info->caching_block_groups.next,
4266 					 struct btrfs_caching_control, list);
4267 		list_del(&caching_ctl->list);
4268 		btrfs_put_caching_control(caching_ctl);
4269 	}
4270 	write_unlock(&info->block_group_cache_lock);
4271 
4272 	spin_lock(&info->unused_bgs_lock);
4273 	while (!list_empty(&info->unused_bgs)) {
4274 		block_group = list_first_entry(&info->unused_bgs,
4275 					       struct btrfs_block_group,
4276 					       bg_list);
4277 		list_del_init(&block_group->bg_list);
4278 		btrfs_put_block_group(block_group);
4279 	}
4280 
4281 	while (!list_empty(&info->reclaim_bgs)) {
4282 		block_group = list_first_entry(&info->reclaim_bgs,
4283 					       struct btrfs_block_group,
4284 					       bg_list);
4285 		list_del_init(&block_group->bg_list);
4286 		btrfs_put_block_group(block_group);
4287 	}
4288 	spin_unlock(&info->unused_bgs_lock);
4289 
4290 	spin_lock(&info->zone_active_bgs_lock);
4291 	while (!list_empty(&info->zone_active_bgs)) {
4292 		block_group = list_first_entry(&info->zone_active_bgs,
4293 					       struct btrfs_block_group,
4294 					       active_bg_list);
4295 		list_del_init(&block_group->active_bg_list);
4296 		btrfs_put_block_group(block_group);
4297 	}
4298 	spin_unlock(&info->zone_active_bgs_lock);
4299 
4300 	write_lock(&info->block_group_cache_lock);
4301 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4302 		block_group = rb_entry(n, struct btrfs_block_group,
4303 				       cache_node);
4304 		rb_erase_cached(&block_group->cache_node,
4305 				&info->block_group_cache_tree);
4306 		RB_CLEAR_NODE(&block_group->cache_node);
4307 		write_unlock(&info->block_group_cache_lock);
4308 
4309 		down_write(&block_group->space_info->groups_sem);
4310 		list_del(&block_group->list);
4311 		up_write(&block_group->space_info->groups_sem);
4312 
4313 		/*
4314 		 * We haven't cached this block group, which means we could
4315 		 * possibly have excluded extents on this block group.
4316 		 */
4317 		if (block_group->cached == BTRFS_CACHE_NO ||
4318 		    block_group->cached == BTRFS_CACHE_ERROR)
4319 			btrfs_free_excluded_extents(block_group);
4320 
4321 		btrfs_remove_free_space_cache(block_group);
4322 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4323 		ASSERT(list_empty(&block_group->dirty_list));
4324 		ASSERT(list_empty(&block_group->io_list));
4325 		ASSERT(list_empty(&block_group->bg_list));
4326 		ASSERT(refcount_read(&block_group->refs) == 1);
4327 		ASSERT(block_group->swap_extents == 0);
4328 		btrfs_put_block_group(block_group);
4329 
4330 		write_lock(&info->block_group_cache_lock);
4331 	}
4332 	write_unlock(&info->block_group_cache_lock);
4333 
4334 	btrfs_release_global_block_rsv(info);
4335 
4336 	while (!list_empty(&info->space_info)) {
4337 		space_info = list_entry(info->space_info.next,
4338 					struct btrfs_space_info,
4339 					list);
4340 
4341 		/*
4342 		 * Do not hide this behind enospc_debug, this is actually
4343 		 * important and indicates a real bug if this happens.
4344 		 */
4345 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4346 			    space_info->bytes_may_use > 0))
4347 			btrfs_dump_space_info(info, space_info, 0, 0);
4348 
4349 		/*
4350 		 * If there was a failure to cleanup a log tree, very likely due
4351 		 * to an IO failure on a writeback attempt of one or more of its
4352 		 * extent buffers, we could not do proper (and cheap) unaccounting
4353 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4354 		 * that case.
4355 		 */
4356 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4357 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4358 			if (WARN_ON(space_info->bytes_reserved > 0))
4359 				btrfs_dump_space_info(info, space_info, 0, 0);
4360 		}
4361 
4362 		WARN_ON(space_info->reclaim_size > 0);
4363 		list_del(&space_info->list);
4364 		btrfs_sysfs_remove_space_info(space_info);
4365 	}
4366 	return 0;
4367 }
4368 
4369 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4370 {
4371 	atomic_inc(&cache->frozen);
4372 }
4373 
4374 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4375 {
4376 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4377 	struct extent_map_tree *em_tree;
4378 	struct extent_map *em;
4379 	bool cleanup;
4380 
4381 	spin_lock(&block_group->lock);
4382 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4383 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4384 	spin_unlock(&block_group->lock);
4385 
4386 	if (cleanup) {
4387 		em_tree = &fs_info->mapping_tree;
4388 		write_lock(&em_tree->lock);
4389 		em = lookup_extent_mapping(em_tree, block_group->start,
4390 					   1);
4391 		BUG_ON(!em); /* logic error, can't happen */
4392 		remove_extent_mapping(em_tree, em);
4393 		write_unlock(&em_tree->lock);
4394 
4395 		/* once for us and once for the tree */
4396 		free_extent_map(em);
4397 		free_extent_map(em);
4398 
4399 		/*
4400 		 * We may have left one free space entry and other possible
4401 		 * tasks trimming this block group have left 1 entry each one.
4402 		 * Free them if any.
4403 		 */
4404 		btrfs_remove_free_space_cache(block_group);
4405 	}
4406 }
4407 
4408 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4409 {
4410 	bool ret = true;
4411 
4412 	spin_lock(&bg->lock);
4413 	if (bg->ro)
4414 		ret = false;
4415 	else
4416 		bg->swap_extents++;
4417 	spin_unlock(&bg->lock);
4418 
4419 	return ret;
4420 }
4421 
4422 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4423 {
4424 	spin_lock(&bg->lock);
4425 	ASSERT(!bg->ro);
4426 	ASSERT(bg->swap_extents >= amount);
4427 	bg->swap_extents -= amount;
4428 	spin_unlock(&bg->lock);
4429 }
4430 
4431 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4432 {
4433 	if (size <= SZ_128K)
4434 		return BTRFS_BG_SZ_SMALL;
4435 	if (size <= SZ_8M)
4436 		return BTRFS_BG_SZ_MEDIUM;
4437 	return BTRFS_BG_SZ_LARGE;
4438 }
4439 
4440 /*
4441  * Handle a block group allocating an extent in a size class
4442  *
4443  * @bg:				The block group we allocated in.
4444  * @size_class:			The size class of the allocation.
4445  * @force_wrong_size_class:	Whether we are desperate enough to allow
4446  *				mismatched size classes.
4447  *
4448  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4449  * case of a race that leads to the wrong size class without
4450  * force_wrong_size_class set.
4451  *
4452  * find_free_extent will skip block groups with a mismatched size class until
4453  * it really needs to avoid ENOSPC. In that case it will set
4454  * force_wrong_size_class. However, if a block group is newly allocated and
4455  * doesn't yet have a size class, then it is possible for two allocations of
4456  * different sizes to race and both try to use it. The loser is caught here and
4457  * has to retry.
4458  */
4459 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4460 				     enum btrfs_block_group_size_class size_class,
4461 				     bool force_wrong_size_class)
4462 {
4463 	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4464 
4465 	/* The new allocation is in the right size class, do nothing */
4466 	if (bg->size_class == size_class)
4467 		return 0;
4468 	/*
4469 	 * The new allocation is in a mismatched size class.
4470 	 * This means one of two things:
4471 	 *
4472 	 * 1. Two tasks in find_free_extent for different size_classes raced
4473 	 *    and hit the same empty block_group. Make the loser try again.
4474 	 * 2. A call to find_free_extent got desperate enough to set
4475 	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4476 	 *    allocation.
4477 	 */
4478 	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4479 		if (force_wrong_size_class)
4480 			return 0;
4481 		return -EAGAIN;
4482 	}
4483 	/*
4484 	 * The happy new block group case: the new allocation is the first
4485 	 * one in the block_group so we set size_class.
4486 	 */
4487 	bg->size_class = size_class;
4488 
4489 	return 0;
4490 }
4491 
4492 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4493 {
4494 	if (btrfs_is_zoned(bg->fs_info))
4495 		return false;
4496 	if (!btrfs_is_block_group_data_only(bg))
4497 		return false;
4498 	return true;
4499 }
4500