xref: /openbmc/linux/fs/btrfs/block-group.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		/*
128 		 * If there was a failure to cleanup a log tree, very likely due
129 		 * to an IO failure on a writeback attempt of one or more of its
130 		 * extent buffers, we could not do proper (and cheap) unaccounting
131 		 * of their reserved space, so don't warn on reserved > 0 in that
132 		 * case.
133 		 */
134 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 			WARN_ON(cache->reserved > 0);
137 
138 		/*
139 		 * A block_group shouldn't be on the discard_list anymore.
140 		 * Remove the block_group from the discard_list to prevent us
141 		 * from causing a panic due to NULL pointer dereference.
142 		 */
143 		if (WARN_ON(!list_empty(&cache->discard_list)))
144 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 						  cache);
146 
147 		/*
148 		 * If not empty, someone is still holding mutex of
149 		 * full_stripe_lock, which can only be released by caller.
150 		 * And it will definitely cause use-after-free when caller
151 		 * tries to release full stripe lock.
152 		 *
153 		 * No better way to resolve, but only to warn.
154 		 */
155 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 		kfree(cache->free_space_ctl);
157 		kfree(cache->physical_map);
158 		kfree(cache);
159 	}
160 }
161 
162 /*
163  * This adds the block group to the fs_info rb tree for the block group cache
164  */
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 				       struct btrfs_block_group *block_group)
167 {
168 	struct rb_node **p;
169 	struct rb_node *parent = NULL;
170 	struct btrfs_block_group *cache;
171 	bool leftmost = true;
172 
173 	ASSERT(block_group->length != 0);
174 
175 	write_lock(&info->block_group_cache_lock);
176 	p = &info->block_group_cache_tree.rb_root.rb_node;
177 
178 	while (*p) {
179 		parent = *p;
180 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
181 		if (block_group->start < cache->start) {
182 			p = &(*p)->rb_left;
183 		} else if (block_group->start > cache->start) {
184 			p = &(*p)->rb_right;
185 			leftmost = false;
186 		} else {
187 			write_unlock(&info->block_group_cache_lock);
188 			return -EEXIST;
189 		}
190 	}
191 
192 	rb_link_node(&block_group->cache_node, parent, p);
193 	rb_insert_color_cached(&block_group->cache_node,
194 			       &info->block_group_cache_tree, leftmost);
195 
196 	write_unlock(&info->block_group_cache_lock);
197 
198 	return 0;
199 }
200 
201 /*
202  * This will return the block group at or after bytenr if contains is 0, else
203  * it will return the block group that contains the bytenr
204  */
205 static struct btrfs_block_group *block_group_cache_tree_search(
206 		struct btrfs_fs_info *info, u64 bytenr, int contains)
207 {
208 	struct btrfs_block_group *cache, *ret = NULL;
209 	struct rb_node *n;
210 	u64 end, start;
211 
212 	read_lock(&info->block_group_cache_lock);
213 	n = info->block_group_cache_tree.rb_root.rb_node;
214 
215 	while (n) {
216 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
217 		end = cache->start + cache->length - 1;
218 		start = cache->start;
219 
220 		if (bytenr < start) {
221 			if (!contains && (!ret || start < ret->start))
222 				ret = cache;
223 			n = n->rb_left;
224 		} else if (bytenr > start) {
225 			if (contains && bytenr <= end) {
226 				ret = cache;
227 				break;
228 			}
229 			n = n->rb_right;
230 		} else {
231 			ret = cache;
232 			break;
233 		}
234 	}
235 	if (ret)
236 		btrfs_get_block_group(ret);
237 	read_unlock(&info->block_group_cache_lock);
238 
239 	return ret;
240 }
241 
242 /*
243  * Return the block group that starts at or after bytenr
244  */
245 struct btrfs_block_group *btrfs_lookup_first_block_group(
246 		struct btrfs_fs_info *info, u64 bytenr)
247 {
248 	return block_group_cache_tree_search(info, bytenr, 0);
249 }
250 
251 /*
252  * Return the block group that contains the given bytenr
253  */
254 struct btrfs_block_group *btrfs_lookup_block_group(
255 		struct btrfs_fs_info *info, u64 bytenr)
256 {
257 	return block_group_cache_tree_search(info, bytenr, 1);
258 }
259 
260 struct btrfs_block_group *btrfs_next_block_group(
261 		struct btrfs_block_group *cache)
262 {
263 	struct btrfs_fs_info *fs_info = cache->fs_info;
264 	struct rb_node *node;
265 
266 	read_lock(&fs_info->block_group_cache_lock);
267 
268 	/* If our block group was removed, we need a full search. */
269 	if (RB_EMPTY_NODE(&cache->cache_node)) {
270 		const u64 next_bytenr = cache->start + cache->length;
271 
272 		read_unlock(&fs_info->block_group_cache_lock);
273 		btrfs_put_block_group(cache);
274 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
275 	}
276 	node = rb_next(&cache->cache_node);
277 	btrfs_put_block_group(cache);
278 	if (node) {
279 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
280 		btrfs_get_block_group(cache);
281 	} else
282 		cache = NULL;
283 	read_unlock(&fs_info->block_group_cache_lock);
284 	return cache;
285 }
286 
287 /**
288  * Check if we can do a NOCOW write for a given extent.
289  *
290  * @fs_info:       The filesystem information object.
291  * @bytenr:        Logical start address of the extent.
292  *
293  * Check if we can do a NOCOW write for the given extent, and increments the
294  * number of NOCOW writers in the block group that contains the extent, as long
295  * as the block group exists and it's currently not in read-only mode.
296  *
297  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298  *          is responsible for calling btrfs_dec_nocow_writers() later.
299  *
300  *          Or NULL if we can not do a NOCOW write
301  */
302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 						  u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 	bool can_nocow = true;
307 
308 	bg = btrfs_lookup_block_group(fs_info, bytenr);
309 	if (!bg)
310 		return NULL;
311 
312 	spin_lock(&bg->lock);
313 	if (bg->ro)
314 		can_nocow = false;
315 	else
316 		atomic_inc(&bg->nocow_writers);
317 	spin_unlock(&bg->lock);
318 
319 	if (!can_nocow) {
320 		btrfs_put_block_group(bg);
321 		return NULL;
322 	}
323 
324 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
325 	return bg;
326 }
327 
328 /**
329  * Decrement the number of NOCOW writers in a block group.
330  *
331  * @bg:       The block group.
332  *
333  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334  * and on the block group returned by that call. Typically this is called after
335  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336  * relocation.
337  *
338  * After this call, the caller should not use the block group anymore. It it wants
339  * to use it, then it should get a reference on it before calling this function.
340  */
341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
342 {
343 	if (atomic_dec_and_test(&bg->nocow_writers))
344 		wake_up_var(&bg->nocow_writers);
345 
346 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
347 	btrfs_put_block_group(bg);
348 }
349 
350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
351 {
352 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353 }
354 
355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 					const u64 start)
357 {
358 	struct btrfs_block_group *bg;
359 
360 	bg = btrfs_lookup_block_group(fs_info, start);
361 	ASSERT(bg);
362 	if (atomic_dec_and_test(&bg->reservations))
363 		wake_up_var(&bg->reservations);
364 	btrfs_put_block_group(bg);
365 }
366 
367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
368 {
369 	struct btrfs_space_info *space_info = bg->space_info;
370 
371 	ASSERT(bg->ro);
372 
373 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 		return;
375 
376 	/*
377 	 * Our block group is read only but before we set it to read only,
378 	 * some task might have had allocated an extent from it already, but it
379 	 * has not yet created a respective ordered extent (and added it to a
380 	 * root's list of ordered extents).
381 	 * Therefore wait for any task currently allocating extents, since the
382 	 * block group's reservations counter is incremented while a read lock
383 	 * on the groups' semaphore is held and decremented after releasing
384 	 * the read access on that semaphore and creating the ordered extent.
385 	 */
386 	down_write(&space_info->groups_sem);
387 	up_write(&space_info->groups_sem);
388 
389 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390 }
391 
392 struct btrfs_caching_control *btrfs_get_caching_control(
393 		struct btrfs_block_group *cache)
394 {
395 	struct btrfs_caching_control *ctl;
396 
397 	spin_lock(&cache->lock);
398 	if (!cache->caching_ctl) {
399 		spin_unlock(&cache->lock);
400 		return NULL;
401 	}
402 
403 	ctl = cache->caching_ctl;
404 	refcount_inc(&ctl->count);
405 	spin_unlock(&cache->lock);
406 	return ctl;
407 }
408 
409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410 {
411 	if (refcount_dec_and_test(&ctl->count))
412 		kfree(ctl);
413 }
414 
415 /*
416  * When we wait for progress in the block group caching, its because our
417  * allocation attempt failed at least once.  So, we must sleep and let some
418  * progress happen before we try again.
419  *
420  * This function will sleep at least once waiting for new free space to show
421  * up, and then it will check the block group free space numbers for our min
422  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
423  * a free extent of a given size, but this is a good start.
424  *
425  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426  * any of the information in this block group.
427  */
428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
429 					   u64 num_bytes)
430 {
431 	struct btrfs_caching_control *caching_ctl;
432 
433 	caching_ctl = btrfs_get_caching_control(cache);
434 	if (!caching_ctl)
435 		return;
436 
437 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
438 		   (cache->free_space_ctl->free_space >= num_bytes));
439 
440 	btrfs_put_caching_control(caching_ctl);
441 }
442 
443 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 				       struct btrfs_caching_control *caching_ctl)
445 {
446 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
448 }
449 
450 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
451 {
452 	struct btrfs_caching_control *caching_ctl;
453 	int ret;
454 
455 	caching_ctl = btrfs_get_caching_control(cache);
456 	if (!caching_ctl)
457 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
458 	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
459 	btrfs_put_caching_control(caching_ctl);
460 	return ret;
461 }
462 
463 #ifdef CONFIG_BTRFS_DEBUG
464 static void fragment_free_space(struct btrfs_block_group *block_group)
465 {
466 	struct btrfs_fs_info *fs_info = block_group->fs_info;
467 	u64 start = block_group->start;
468 	u64 len = block_group->length;
469 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 		fs_info->nodesize : fs_info->sectorsize;
471 	u64 step = chunk << 1;
472 
473 	while (len > chunk) {
474 		btrfs_remove_free_space(block_group, start, chunk);
475 		start += step;
476 		if (len < step)
477 			len = 0;
478 		else
479 			len -= step;
480 	}
481 }
482 #endif
483 
484 /*
485  * This is only called by btrfs_cache_block_group, since we could have freed
486  * extents we need to check the pinned_extents for any extents that can't be
487  * used yet since their free space will be released as soon as the transaction
488  * commits.
489  */
490 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
491 {
492 	struct btrfs_fs_info *info = block_group->fs_info;
493 	u64 extent_start, extent_end, size, total_added = 0;
494 	int ret;
495 
496 	while (start < end) {
497 		ret = find_first_extent_bit(&info->excluded_extents, start,
498 					    &extent_start, &extent_end,
499 					    EXTENT_DIRTY | EXTENT_UPTODATE,
500 					    NULL);
501 		if (ret)
502 			break;
503 
504 		if (extent_start <= start) {
505 			start = extent_end + 1;
506 		} else if (extent_start > start && extent_start < end) {
507 			size = extent_start - start;
508 			total_added += size;
509 			ret = btrfs_add_free_space_async_trimmed(block_group,
510 								 start, size);
511 			BUG_ON(ret); /* -ENOMEM or logic error */
512 			start = extent_end + 1;
513 		} else {
514 			break;
515 		}
516 	}
517 
518 	if (start < end) {
519 		size = end - start;
520 		total_added += size;
521 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
522 							 size);
523 		BUG_ON(ret); /* -ENOMEM or logic error */
524 	}
525 
526 	return total_added;
527 }
528 
529 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
530 {
531 	struct btrfs_block_group *block_group = caching_ctl->block_group;
532 	struct btrfs_fs_info *fs_info = block_group->fs_info;
533 	struct btrfs_root *extent_root;
534 	struct btrfs_path *path;
535 	struct extent_buffer *leaf;
536 	struct btrfs_key key;
537 	u64 total_found = 0;
538 	u64 last = 0;
539 	u32 nritems;
540 	int ret;
541 	bool wakeup = true;
542 
543 	path = btrfs_alloc_path();
544 	if (!path)
545 		return -ENOMEM;
546 
547 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
548 	extent_root = btrfs_extent_root(fs_info, last);
549 
550 #ifdef CONFIG_BTRFS_DEBUG
551 	/*
552 	 * If we're fragmenting we don't want to make anybody think we can
553 	 * allocate from this block group until we've had a chance to fragment
554 	 * the free space.
555 	 */
556 	if (btrfs_should_fragment_free_space(block_group))
557 		wakeup = false;
558 #endif
559 	/*
560 	 * We don't want to deadlock with somebody trying to allocate a new
561 	 * extent for the extent root while also trying to search the extent
562 	 * root to add free space.  So we skip locking and search the commit
563 	 * root, since its read-only
564 	 */
565 	path->skip_locking = 1;
566 	path->search_commit_root = 1;
567 	path->reada = READA_FORWARD;
568 
569 	key.objectid = last;
570 	key.offset = 0;
571 	key.type = BTRFS_EXTENT_ITEM_KEY;
572 
573 next:
574 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
575 	if (ret < 0)
576 		goto out;
577 
578 	leaf = path->nodes[0];
579 	nritems = btrfs_header_nritems(leaf);
580 
581 	while (1) {
582 		if (btrfs_fs_closing(fs_info) > 1) {
583 			last = (u64)-1;
584 			break;
585 		}
586 
587 		if (path->slots[0] < nritems) {
588 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 		} else {
590 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
591 			if (ret)
592 				break;
593 
594 			if (need_resched() ||
595 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
596 				btrfs_release_path(path);
597 				up_read(&fs_info->commit_root_sem);
598 				mutex_unlock(&caching_ctl->mutex);
599 				cond_resched();
600 				mutex_lock(&caching_ctl->mutex);
601 				down_read(&fs_info->commit_root_sem);
602 				goto next;
603 			}
604 
605 			ret = btrfs_next_leaf(extent_root, path);
606 			if (ret < 0)
607 				goto out;
608 			if (ret)
609 				break;
610 			leaf = path->nodes[0];
611 			nritems = btrfs_header_nritems(leaf);
612 			continue;
613 		}
614 
615 		if (key.objectid < last) {
616 			key.objectid = last;
617 			key.offset = 0;
618 			key.type = BTRFS_EXTENT_ITEM_KEY;
619 			btrfs_release_path(path);
620 			goto next;
621 		}
622 
623 		if (key.objectid < block_group->start) {
624 			path->slots[0]++;
625 			continue;
626 		}
627 
628 		if (key.objectid >= block_group->start + block_group->length)
629 			break;
630 
631 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
632 		    key.type == BTRFS_METADATA_ITEM_KEY) {
633 			total_found += add_new_free_space(block_group, last,
634 							  key.objectid);
635 			if (key.type == BTRFS_METADATA_ITEM_KEY)
636 				last = key.objectid +
637 					fs_info->nodesize;
638 			else
639 				last = key.objectid + key.offset;
640 
641 			if (total_found > CACHING_CTL_WAKE_UP) {
642 				total_found = 0;
643 				if (wakeup)
644 					wake_up(&caching_ctl->wait);
645 			}
646 		}
647 		path->slots[0]++;
648 	}
649 	ret = 0;
650 
651 	total_found += add_new_free_space(block_group, last,
652 				block_group->start + block_group->length);
653 
654 out:
655 	btrfs_free_path(path);
656 	return ret;
657 }
658 
659 static noinline void caching_thread(struct btrfs_work *work)
660 {
661 	struct btrfs_block_group *block_group;
662 	struct btrfs_fs_info *fs_info;
663 	struct btrfs_caching_control *caching_ctl;
664 	int ret;
665 
666 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
667 	block_group = caching_ctl->block_group;
668 	fs_info = block_group->fs_info;
669 
670 	mutex_lock(&caching_ctl->mutex);
671 	down_read(&fs_info->commit_root_sem);
672 
673 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
674 		ret = load_free_space_cache(block_group);
675 		if (ret == 1) {
676 			ret = 0;
677 			goto done;
678 		}
679 
680 		/*
681 		 * We failed to load the space cache, set ourselves to
682 		 * CACHE_STARTED and carry on.
683 		 */
684 		spin_lock(&block_group->lock);
685 		block_group->cached = BTRFS_CACHE_STARTED;
686 		spin_unlock(&block_group->lock);
687 		wake_up(&caching_ctl->wait);
688 	}
689 
690 	/*
691 	 * If we are in the transaction that populated the free space tree we
692 	 * can't actually cache from the free space tree as our commit root and
693 	 * real root are the same, so we could change the contents of the blocks
694 	 * while caching.  Instead do the slow caching in this case, and after
695 	 * the transaction has committed we will be safe.
696 	 */
697 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
698 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
699 		ret = load_free_space_tree(caching_ctl);
700 	else
701 		ret = load_extent_tree_free(caching_ctl);
702 done:
703 	spin_lock(&block_group->lock);
704 	block_group->caching_ctl = NULL;
705 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
706 	spin_unlock(&block_group->lock);
707 
708 #ifdef CONFIG_BTRFS_DEBUG
709 	if (btrfs_should_fragment_free_space(block_group)) {
710 		u64 bytes_used;
711 
712 		spin_lock(&block_group->space_info->lock);
713 		spin_lock(&block_group->lock);
714 		bytes_used = block_group->length - block_group->used;
715 		block_group->space_info->bytes_used += bytes_used >> 1;
716 		spin_unlock(&block_group->lock);
717 		spin_unlock(&block_group->space_info->lock);
718 		fragment_free_space(block_group);
719 	}
720 #endif
721 
722 	up_read(&fs_info->commit_root_sem);
723 	btrfs_free_excluded_extents(block_group);
724 	mutex_unlock(&caching_ctl->mutex);
725 
726 	wake_up(&caching_ctl->wait);
727 
728 	btrfs_put_caching_control(caching_ctl);
729 	btrfs_put_block_group(block_group);
730 }
731 
732 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
733 {
734 	struct btrfs_fs_info *fs_info = cache->fs_info;
735 	struct btrfs_caching_control *caching_ctl = NULL;
736 	int ret = 0;
737 
738 	/* Allocator for zoned filesystems does not use the cache at all */
739 	if (btrfs_is_zoned(fs_info))
740 		return 0;
741 
742 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
743 	if (!caching_ctl)
744 		return -ENOMEM;
745 
746 	INIT_LIST_HEAD(&caching_ctl->list);
747 	mutex_init(&caching_ctl->mutex);
748 	init_waitqueue_head(&caching_ctl->wait);
749 	caching_ctl->block_group = cache;
750 	refcount_set(&caching_ctl->count, 2);
751 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
752 
753 	spin_lock(&cache->lock);
754 	if (cache->cached != BTRFS_CACHE_NO) {
755 		kfree(caching_ctl);
756 
757 		caching_ctl = cache->caching_ctl;
758 		if (caching_ctl)
759 			refcount_inc(&caching_ctl->count);
760 		spin_unlock(&cache->lock);
761 		goto out;
762 	}
763 	WARN_ON(cache->caching_ctl);
764 	cache->caching_ctl = caching_ctl;
765 	cache->cached = BTRFS_CACHE_STARTED;
766 	spin_unlock(&cache->lock);
767 
768 	write_lock(&fs_info->block_group_cache_lock);
769 	refcount_inc(&caching_ctl->count);
770 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
771 	write_unlock(&fs_info->block_group_cache_lock);
772 
773 	btrfs_get_block_group(cache);
774 
775 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
776 out:
777 	if (wait && caching_ctl)
778 		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
779 	if (caching_ctl)
780 		btrfs_put_caching_control(caching_ctl);
781 
782 	return ret;
783 }
784 
785 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
786 {
787 	u64 extra_flags = chunk_to_extended(flags) &
788 				BTRFS_EXTENDED_PROFILE_MASK;
789 
790 	write_seqlock(&fs_info->profiles_lock);
791 	if (flags & BTRFS_BLOCK_GROUP_DATA)
792 		fs_info->avail_data_alloc_bits &= ~extra_flags;
793 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
794 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
795 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
796 		fs_info->avail_system_alloc_bits &= ~extra_flags;
797 	write_sequnlock(&fs_info->profiles_lock);
798 }
799 
800 /*
801  * Clear incompat bits for the following feature(s):
802  *
803  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
804  *            in the whole filesystem
805  *
806  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
807  */
808 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
809 {
810 	bool found_raid56 = false;
811 	bool found_raid1c34 = false;
812 
813 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
814 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
815 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
816 		struct list_head *head = &fs_info->space_info;
817 		struct btrfs_space_info *sinfo;
818 
819 		list_for_each_entry_rcu(sinfo, head, list) {
820 			down_read(&sinfo->groups_sem);
821 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
822 				found_raid56 = true;
823 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
824 				found_raid56 = true;
825 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
826 				found_raid1c34 = true;
827 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
828 				found_raid1c34 = true;
829 			up_read(&sinfo->groups_sem);
830 		}
831 		if (!found_raid56)
832 			btrfs_clear_fs_incompat(fs_info, RAID56);
833 		if (!found_raid1c34)
834 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
835 	}
836 }
837 
838 static int remove_block_group_item(struct btrfs_trans_handle *trans,
839 				   struct btrfs_path *path,
840 				   struct btrfs_block_group *block_group)
841 {
842 	struct btrfs_fs_info *fs_info = trans->fs_info;
843 	struct btrfs_root *root;
844 	struct btrfs_key key;
845 	int ret;
846 
847 	root = btrfs_block_group_root(fs_info);
848 	key.objectid = block_group->start;
849 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
850 	key.offset = block_group->length;
851 
852 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
853 	if (ret > 0)
854 		ret = -ENOENT;
855 	if (ret < 0)
856 		return ret;
857 
858 	ret = btrfs_del_item(trans, root, path);
859 	return ret;
860 }
861 
862 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
863 			     u64 group_start, struct extent_map *em)
864 {
865 	struct btrfs_fs_info *fs_info = trans->fs_info;
866 	struct btrfs_path *path;
867 	struct btrfs_block_group *block_group;
868 	struct btrfs_free_cluster *cluster;
869 	struct inode *inode;
870 	struct kobject *kobj = NULL;
871 	int ret;
872 	int index;
873 	int factor;
874 	struct btrfs_caching_control *caching_ctl = NULL;
875 	bool remove_em;
876 	bool remove_rsv = false;
877 
878 	block_group = btrfs_lookup_block_group(fs_info, group_start);
879 	BUG_ON(!block_group);
880 	BUG_ON(!block_group->ro);
881 
882 	trace_btrfs_remove_block_group(block_group);
883 	/*
884 	 * Free the reserved super bytes from this block group before
885 	 * remove it.
886 	 */
887 	btrfs_free_excluded_extents(block_group);
888 	btrfs_free_ref_tree_range(fs_info, block_group->start,
889 				  block_group->length);
890 
891 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
892 	factor = btrfs_bg_type_to_factor(block_group->flags);
893 
894 	/* make sure this block group isn't part of an allocation cluster */
895 	cluster = &fs_info->data_alloc_cluster;
896 	spin_lock(&cluster->refill_lock);
897 	btrfs_return_cluster_to_free_space(block_group, cluster);
898 	spin_unlock(&cluster->refill_lock);
899 
900 	/*
901 	 * make sure this block group isn't part of a metadata
902 	 * allocation cluster
903 	 */
904 	cluster = &fs_info->meta_alloc_cluster;
905 	spin_lock(&cluster->refill_lock);
906 	btrfs_return_cluster_to_free_space(block_group, cluster);
907 	spin_unlock(&cluster->refill_lock);
908 
909 	btrfs_clear_treelog_bg(block_group);
910 	btrfs_clear_data_reloc_bg(block_group);
911 
912 	path = btrfs_alloc_path();
913 	if (!path) {
914 		ret = -ENOMEM;
915 		goto out;
916 	}
917 
918 	/*
919 	 * get the inode first so any iput calls done for the io_list
920 	 * aren't the final iput (no unlinks allowed now)
921 	 */
922 	inode = lookup_free_space_inode(block_group, path);
923 
924 	mutex_lock(&trans->transaction->cache_write_mutex);
925 	/*
926 	 * Make sure our free space cache IO is done before removing the
927 	 * free space inode
928 	 */
929 	spin_lock(&trans->transaction->dirty_bgs_lock);
930 	if (!list_empty(&block_group->io_list)) {
931 		list_del_init(&block_group->io_list);
932 
933 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
934 
935 		spin_unlock(&trans->transaction->dirty_bgs_lock);
936 		btrfs_wait_cache_io(trans, block_group, path);
937 		btrfs_put_block_group(block_group);
938 		spin_lock(&trans->transaction->dirty_bgs_lock);
939 	}
940 
941 	if (!list_empty(&block_group->dirty_list)) {
942 		list_del_init(&block_group->dirty_list);
943 		remove_rsv = true;
944 		btrfs_put_block_group(block_group);
945 	}
946 	spin_unlock(&trans->transaction->dirty_bgs_lock);
947 	mutex_unlock(&trans->transaction->cache_write_mutex);
948 
949 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
950 	if (ret)
951 		goto out;
952 
953 	write_lock(&fs_info->block_group_cache_lock);
954 	rb_erase_cached(&block_group->cache_node,
955 			&fs_info->block_group_cache_tree);
956 	RB_CLEAR_NODE(&block_group->cache_node);
957 
958 	/* Once for the block groups rbtree */
959 	btrfs_put_block_group(block_group);
960 
961 	write_unlock(&fs_info->block_group_cache_lock);
962 
963 	down_write(&block_group->space_info->groups_sem);
964 	/*
965 	 * we must use list_del_init so people can check to see if they
966 	 * are still on the list after taking the semaphore
967 	 */
968 	list_del_init(&block_group->list);
969 	if (list_empty(&block_group->space_info->block_groups[index])) {
970 		kobj = block_group->space_info->block_group_kobjs[index];
971 		block_group->space_info->block_group_kobjs[index] = NULL;
972 		clear_avail_alloc_bits(fs_info, block_group->flags);
973 	}
974 	up_write(&block_group->space_info->groups_sem);
975 	clear_incompat_bg_bits(fs_info, block_group->flags);
976 	if (kobj) {
977 		kobject_del(kobj);
978 		kobject_put(kobj);
979 	}
980 
981 	if (block_group->cached == BTRFS_CACHE_STARTED)
982 		btrfs_wait_block_group_cache_done(block_group);
983 
984 	write_lock(&fs_info->block_group_cache_lock);
985 	caching_ctl = btrfs_get_caching_control(block_group);
986 	if (!caching_ctl) {
987 		struct btrfs_caching_control *ctl;
988 
989 		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
990 			if (ctl->block_group == block_group) {
991 				caching_ctl = ctl;
992 				refcount_inc(&caching_ctl->count);
993 				break;
994 			}
995 		}
996 	}
997 	if (caching_ctl)
998 		list_del_init(&caching_ctl->list);
999 	write_unlock(&fs_info->block_group_cache_lock);
1000 
1001 	if (caching_ctl) {
1002 		/* Once for the caching bgs list and once for us. */
1003 		btrfs_put_caching_control(caching_ctl);
1004 		btrfs_put_caching_control(caching_ctl);
1005 	}
1006 
1007 	spin_lock(&trans->transaction->dirty_bgs_lock);
1008 	WARN_ON(!list_empty(&block_group->dirty_list));
1009 	WARN_ON(!list_empty(&block_group->io_list));
1010 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1011 
1012 	btrfs_remove_free_space_cache(block_group);
1013 
1014 	spin_lock(&block_group->space_info->lock);
1015 	list_del_init(&block_group->ro_list);
1016 
1017 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1018 		WARN_ON(block_group->space_info->total_bytes
1019 			< block_group->length);
1020 		WARN_ON(block_group->space_info->bytes_readonly
1021 			< block_group->length - block_group->zone_unusable);
1022 		WARN_ON(block_group->space_info->bytes_zone_unusable
1023 			< block_group->zone_unusable);
1024 		WARN_ON(block_group->space_info->disk_total
1025 			< block_group->length * factor);
1026 		WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1027 				 &block_group->runtime_flags) &&
1028 			block_group->space_info->active_total_bytes
1029 			< block_group->length);
1030 	}
1031 	block_group->space_info->total_bytes -= block_group->length;
1032 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1033 		block_group->space_info->active_total_bytes -= block_group->length;
1034 	block_group->space_info->bytes_readonly -=
1035 		(block_group->length - block_group->zone_unusable);
1036 	block_group->space_info->bytes_zone_unusable -=
1037 		block_group->zone_unusable;
1038 	block_group->space_info->disk_total -= block_group->length * factor;
1039 
1040 	spin_unlock(&block_group->space_info->lock);
1041 
1042 	/*
1043 	 * Remove the free space for the block group from the free space tree
1044 	 * and the block group's item from the extent tree before marking the
1045 	 * block group as removed. This is to prevent races with tasks that
1046 	 * freeze and unfreeze a block group, this task and another task
1047 	 * allocating a new block group - the unfreeze task ends up removing
1048 	 * the block group's extent map before the task calling this function
1049 	 * deletes the block group item from the extent tree, allowing for
1050 	 * another task to attempt to create another block group with the same
1051 	 * item key (and failing with -EEXIST and a transaction abort).
1052 	 */
1053 	ret = remove_block_group_free_space(trans, block_group);
1054 	if (ret)
1055 		goto out;
1056 
1057 	ret = remove_block_group_item(trans, path, block_group);
1058 	if (ret < 0)
1059 		goto out;
1060 
1061 	spin_lock(&block_group->lock);
1062 	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1063 
1064 	/*
1065 	 * At this point trimming or scrub can't start on this block group,
1066 	 * because we removed the block group from the rbtree
1067 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1068 	 * even if someone already got this block group before we removed it
1069 	 * from the rbtree, they have already incremented block_group->frozen -
1070 	 * if they didn't, for the trimming case they won't find any free space
1071 	 * entries because we already removed them all when we called
1072 	 * btrfs_remove_free_space_cache().
1073 	 *
1074 	 * And we must not remove the extent map from the fs_info->mapping_tree
1075 	 * to prevent the same logical address range and physical device space
1076 	 * ranges from being reused for a new block group. This is needed to
1077 	 * avoid races with trimming and scrub.
1078 	 *
1079 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1080 	 * completely transactionless, so while it is trimming a range the
1081 	 * currently running transaction might finish and a new one start,
1082 	 * allowing for new block groups to be created that can reuse the same
1083 	 * physical device locations unless we take this special care.
1084 	 *
1085 	 * There may also be an implicit trim operation if the file system
1086 	 * is mounted with -odiscard. The same protections must remain
1087 	 * in place until the extents have been discarded completely when
1088 	 * the transaction commit has completed.
1089 	 */
1090 	remove_em = (atomic_read(&block_group->frozen) == 0);
1091 	spin_unlock(&block_group->lock);
1092 
1093 	if (remove_em) {
1094 		struct extent_map_tree *em_tree;
1095 
1096 		em_tree = &fs_info->mapping_tree;
1097 		write_lock(&em_tree->lock);
1098 		remove_extent_mapping(em_tree, em);
1099 		write_unlock(&em_tree->lock);
1100 		/* once for the tree */
1101 		free_extent_map(em);
1102 	}
1103 
1104 out:
1105 	/* Once for the lookup reference */
1106 	btrfs_put_block_group(block_group);
1107 	if (remove_rsv)
1108 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1109 	btrfs_free_path(path);
1110 	return ret;
1111 }
1112 
1113 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1114 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1115 {
1116 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1117 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1118 	struct extent_map *em;
1119 	struct map_lookup *map;
1120 	unsigned int num_items;
1121 
1122 	read_lock(&em_tree->lock);
1123 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1124 	read_unlock(&em_tree->lock);
1125 	ASSERT(em && em->start == chunk_offset);
1126 
1127 	/*
1128 	 * We need to reserve 3 + N units from the metadata space info in order
1129 	 * to remove a block group (done at btrfs_remove_chunk() and at
1130 	 * btrfs_remove_block_group()), which are used for:
1131 	 *
1132 	 * 1 unit for adding the free space inode's orphan (located in the tree
1133 	 * of tree roots).
1134 	 * 1 unit for deleting the block group item (located in the extent
1135 	 * tree).
1136 	 * 1 unit for deleting the free space item (located in tree of tree
1137 	 * roots).
1138 	 * N units for deleting N device extent items corresponding to each
1139 	 * stripe (located in the device tree).
1140 	 *
1141 	 * In order to remove a block group we also need to reserve units in the
1142 	 * system space info in order to update the chunk tree (update one or
1143 	 * more device items and remove one chunk item), but this is done at
1144 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1145 	 */
1146 	map = em->map_lookup;
1147 	num_items = 3 + map->num_stripes;
1148 	free_extent_map(em);
1149 
1150 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1151 }
1152 
1153 /*
1154  * Mark block group @cache read-only, so later write won't happen to block
1155  * group @cache.
1156  *
1157  * If @force is not set, this function will only mark the block group readonly
1158  * if we have enough free space (1M) in other metadata/system block groups.
1159  * If @force is not set, this function will mark the block group readonly
1160  * without checking free space.
1161  *
1162  * NOTE: This function doesn't care if other block groups can contain all the
1163  * data in this block group. That check should be done by relocation routine,
1164  * not this function.
1165  */
1166 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1167 {
1168 	struct btrfs_space_info *sinfo = cache->space_info;
1169 	u64 num_bytes;
1170 	int ret = -ENOSPC;
1171 
1172 	spin_lock(&sinfo->lock);
1173 	spin_lock(&cache->lock);
1174 
1175 	if (cache->swap_extents) {
1176 		ret = -ETXTBSY;
1177 		goto out;
1178 	}
1179 
1180 	if (cache->ro) {
1181 		cache->ro++;
1182 		ret = 0;
1183 		goto out;
1184 	}
1185 
1186 	num_bytes = cache->length - cache->reserved - cache->pinned -
1187 		    cache->bytes_super - cache->zone_unusable - cache->used;
1188 
1189 	/*
1190 	 * Data never overcommits, even in mixed mode, so do just the straight
1191 	 * check of left over space in how much we have allocated.
1192 	 */
1193 	if (force) {
1194 		ret = 0;
1195 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1196 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1197 
1198 		/*
1199 		 * Here we make sure if we mark this bg RO, we still have enough
1200 		 * free space as buffer.
1201 		 */
1202 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1203 			ret = 0;
1204 	} else {
1205 		/*
1206 		 * We overcommit metadata, so we need to do the
1207 		 * btrfs_can_overcommit check here, and we need to pass in
1208 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1209 		 * leeway to allow us to mark this block group as read only.
1210 		 */
1211 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1212 					 BTRFS_RESERVE_NO_FLUSH))
1213 			ret = 0;
1214 	}
1215 
1216 	if (!ret) {
1217 		sinfo->bytes_readonly += num_bytes;
1218 		if (btrfs_is_zoned(cache->fs_info)) {
1219 			/* Migrate zone_unusable bytes to readonly */
1220 			sinfo->bytes_readonly += cache->zone_unusable;
1221 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1222 			cache->zone_unusable = 0;
1223 		}
1224 		cache->ro++;
1225 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1226 	}
1227 out:
1228 	spin_unlock(&cache->lock);
1229 	spin_unlock(&sinfo->lock);
1230 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1231 		btrfs_info(cache->fs_info,
1232 			"unable to make block group %llu ro", cache->start);
1233 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1234 	}
1235 	return ret;
1236 }
1237 
1238 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1239 				 struct btrfs_block_group *bg)
1240 {
1241 	struct btrfs_fs_info *fs_info = bg->fs_info;
1242 	struct btrfs_transaction *prev_trans = NULL;
1243 	const u64 start = bg->start;
1244 	const u64 end = start + bg->length - 1;
1245 	int ret;
1246 
1247 	spin_lock(&fs_info->trans_lock);
1248 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1249 		prev_trans = list_last_entry(&trans->transaction->list,
1250 					     struct btrfs_transaction, list);
1251 		refcount_inc(&prev_trans->use_count);
1252 	}
1253 	spin_unlock(&fs_info->trans_lock);
1254 
1255 	/*
1256 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1257 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1258 	 * task might be running finish_extent_commit() for the previous
1259 	 * transaction N - 1, and have seen a range belonging to the block
1260 	 * group in pinned_extents before we were able to clear the whole block
1261 	 * group range from pinned_extents. This means that task can lookup for
1262 	 * the block group after we unpinned it from pinned_extents and removed
1263 	 * it, leading to a BUG_ON() at unpin_extent_range().
1264 	 */
1265 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1266 	if (prev_trans) {
1267 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1268 					EXTENT_DIRTY);
1269 		if (ret)
1270 			goto out;
1271 	}
1272 
1273 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1274 				EXTENT_DIRTY);
1275 out:
1276 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1277 	if (prev_trans)
1278 		btrfs_put_transaction(prev_trans);
1279 
1280 	return ret == 0;
1281 }
1282 
1283 /*
1284  * Process the unused_bgs list and remove any that don't have any allocated
1285  * space inside of them.
1286  */
1287 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1288 {
1289 	struct btrfs_block_group *block_group;
1290 	struct btrfs_space_info *space_info;
1291 	struct btrfs_trans_handle *trans;
1292 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1293 	int ret = 0;
1294 
1295 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1296 		return;
1297 
1298 	if (btrfs_fs_closing(fs_info))
1299 		return;
1300 
1301 	/*
1302 	 * Long running balances can keep us blocked here for eternity, so
1303 	 * simply skip deletion if we're unable to get the mutex.
1304 	 */
1305 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1306 		return;
1307 
1308 	spin_lock(&fs_info->unused_bgs_lock);
1309 	while (!list_empty(&fs_info->unused_bgs)) {
1310 		int trimming;
1311 
1312 		block_group = list_first_entry(&fs_info->unused_bgs,
1313 					       struct btrfs_block_group,
1314 					       bg_list);
1315 		list_del_init(&block_group->bg_list);
1316 
1317 		space_info = block_group->space_info;
1318 
1319 		if (ret || btrfs_mixed_space_info(space_info)) {
1320 			btrfs_put_block_group(block_group);
1321 			continue;
1322 		}
1323 		spin_unlock(&fs_info->unused_bgs_lock);
1324 
1325 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1326 
1327 		/* Don't want to race with allocators so take the groups_sem */
1328 		down_write(&space_info->groups_sem);
1329 
1330 		/*
1331 		 * Async discard moves the final block group discard to be prior
1332 		 * to the unused_bgs code path.  Therefore, if it's not fully
1333 		 * trimmed, punt it back to the async discard lists.
1334 		 */
1335 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1336 		    !btrfs_is_free_space_trimmed(block_group)) {
1337 			trace_btrfs_skip_unused_block_group(block_group);
1338 			up_write(&space_info->groups_sem);
1339 			/* Requeue if we failed because of async discard */
1340 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1341 						 block_group);
1342 			goto next;
1343 		}
1344 
1345 		spin_lock(&block_group->lock);
1346 		if (block_group->reserved || block_group->pinned ||
1347 		    block_group->used || block_group->ro ||
1348 		    list_is_singular(&block_group->list)) {
1349 			/*
1350 			 * We want to bail if we made new allocations or have
1351 			 * outstanding allocations in this block group.  We do
1352 			 * the ro check in case balance is currently acting on
1353 			 * this block group.
1354 			 */
1355 			trace_btrfs_skip_unused_block_group(block_group);
1356 			spin_unlock(&block_group->lock);
1357 			up_write(&space_info->groups_sem);
1358 			goto next;
1359 		}
1360 		spin_unlock(&block_group->lock);
1361 
1362 		/* We don't want to force the issue, only flip if it's ok. */
1363 		ret = inc_block_group_ro(block_group, 0);
1364 		up_write(&space_info->groups_sem);
1365 		if (ret < 0) {
1366 			ret = 0;
1367 			goto next;
1368 		}
1369 
1370 		ret = btrfs_zone_finish(block_group);
1371 		if (ret < 0) {
1372 			btrfs_dec_block_group_ro(block_group);
1373 			if (ret == -EAGAIN)
1374 				ret = 0;
1375 			goto next;
1376 		}
1377 
1378 		/*
1379 		 * Want to do this before we do anything else so we can recover
1380 		 * properly if we fail to join the transaction.
1381 		 */
1382 		trans = btrfs_start_trans_remove_block_group(fs_info,
1383 						     block_group->start);
1384 		if (IS_ERR(trans)) {
1385 			btrfs_dec_block_group_ro(block_group);
1386 			ret = PTR_ERR(trans);
1387 			goto next;
1388 		}
1389 
1390 		/*
1391 		 * We could have pending pinned extents for this block group,
1392 		 * just delete them, we don't care about them anymore.
1393 		 */
1394 		if (!clean_pinned_extents(trans, block_group)) {
1395 			btrfs_dec_block_group_ro(block_group);
1396 			goto end_trans;
1397 		}
1398 
1399 		/*
1400 		 * At this point, the block_group is read only and should fail
1401 		 * new allocations.  However, btrfs_finish_extent_commit() can
1402 		 * cause this block_group to be placed back on the discard
1403 		 * lists because now the block_group isn't fully discarded.
1404 		 * Bail here and try again later after discarding everything.
1405 		 */
1406 		spin_lock(&fs_info->discard_ctl.lock);
1407 		if (!list_empty(&block_group->discard_list)) {
1408 			spin_unlock(&fs_info->discard_ctl.lock);
1409 			btrfs_dec_block_group_ro(block_group);
1410 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1411 						 block_group);
1412 			goto end_trans;
1413 		}
1414 		spin_unlock(&fs_info->discard_ctl.lock);
1415 
1416 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1417 		spin_lock(&space_info->lock);
1418 		spin_lock(&block_group->lock);
1419 
1420 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1421 						     -block_group->pinned);
1422 		space_info->bytes_readonly += block_group->pinned;
1423 		block_group->pinned = 0;
1424 
1425 		spin_unlock(&block_group->lock);
1426 		spin_unlock(&space_info->lock);
1427 
1428 		/*
1429 		 * The normal path here is an unused block group is passed here,
1430 		 * then trimming is handled in the transaction commit path.
1431 		 * Async discard interposes before this to do the trimming
1432 		 * before coming down the unused block group path as trimming
1433 		 * will no longer be done later in the transaction commit path.
1434 		 */
1435 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1436 			goto flip_async;
1437 
1438 		/*
1439 		 * DISCARD can flip during remount. On zoned filesystems, we
1440 		 * need to reset sequential-required zones.
1441 		 */
1442 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1443 				btrfs_is_zoned(fs_info);
1444 
1445 		/* Implicit trim during transaction commit. */
1446 		if (trimming)
1447 			btrfs_freeze_block_group(block_group);
1448 
1449 		/*
1450 		 * Btrfs_remove_chunk will abort the transaction if things go
1451 		 * horribly wrong.
1452 		 */
1453 		ret = btrfs_remove_chunk(trans, block_group->start);
1454 
1455 		if (ret) {
1456 			if (trimming)
1457 				btrfs_unfreeze_block_group(block_group);
1458 			goto end_trans;
1459 		}
1460 
1461 		/*
1462 		 * If we're not mounted with -odiscard, we can just forget
1463 		 * about this block group. Otherwise we'll need to wait
1464 		 * until transaction commit to do the actual discard.
1465 		 */
1466 		if (trimming) {
1467 			spin_lock(&fs_info->unused_bgs_lock);
1468 			/*
1469 			 * A concurrent scrub might have added us to the list
1470 			 * fs_info->unused_bgs, so use a list_move operation
1471 			 * to add the block group to the deleted_bgs list.
1472 			 */
1473 			list_move(&block_group->bg_list,
1474 				  &trans->transaction->deleted_bgs);
1475 			spin_unlock(&fs_info->unused_bgs_lock);
1476 			btrfs_get_block_group(block_group);
1477 		}
1478 end_trans:
1479 		btrfs_end_transaction(trans);
1480 next:
1481 		btrfs_put_block_group(block_group);
1482 		spin_lock(&fs_info->unused_bgs_lock);
1483 	}
1484 	spin_unlock(&fs_info->unused_bgs_lock);
1485 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1486 	return;
1487 
1488 flip_async:
1489 	btrfs_end_transaction(trans);
1490 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1491 	btrfs_put_block_group(block_group);
1492 	btrfs_discard_punt_unused_bgs_list(fs_info);
1493 }
1494 
1495 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1496 {
1497 	struct btrfs_fs_info *fs_info = bg->fs_info;
1498 
1499 	spin_lock(&fs_info->unused_bgs_lock);
1500 	if (list_empty(&bg->bg_list)) {
1501 		btrfs_get_block_group(bg);
1502 		trace_btrfs_add_unused_block_group(bg);
1503 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1504 	}
1505 	spin_unlock(&fs_info->unused_bgs_lock);
1506 }
1507 
1508 /*
1509  * We want block groups with a low number of used bytes to be in the beginning
1510  * of the list, so they will get reclaimed first.
1511  */
1512 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1513 			   const struct list_head *b)
1514 {
1515 	const struct btrfs_block_group *bg1, *bg2;
1516 
1517 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1518 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1519 
1520 	return bg1->used > bg2->used;
1521 }
1522 
1523 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1524 {
1525 	if (btrfs_is_zoned(fs_info))
1526 		return btrfs_zoned_should_reclaim(fs_info);
1527 	return true;
1528 }
1529 
1530 void btrfs_reclaim_bgs_work(struct work_struct *work)
1531 {
1532 	struct btrfs_fs_info *fs_info =
1533 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1534 	struct btrfs_block_group *bg;
1535 	struct btrfs_space_info *space_info;
1536 
1537 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1538 		return;
1539 
1540 	if (btrfs_fs_closing(fs_info))
1541 		return;
1542 
1543 	if (!btrfs_should_reclaim(fs_info))
1544 		return;
1545 
1546 	sb_start_write(fs_info->sb);
1547 
1548 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1549 		sb_end_write(fs_info->sb);
1550 		return;
1551 	}
1552 
1553 	/*
1554 	 * Long running balances can keep us blocked here for eternity, so
1555 	 * simply skip reclaim if we're unable to get the mutex.
1556 	 */
1557 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1558 		btrfs_exclop_finish(fs_info);
1559 		sb_end_write(fs_info->sb);
1560 		return;
1561 	}
1562 
1563 	spin_lock(&fs_info->unused_bgs_lock);
1564 	/*
1565 	 * Sort happens under lock because we can't simply splice it and sort.
1566 	 * The block groups might still be in use and reachable via bg_list,
1567 	 * and their presence in the reclaim_bgs list must be preserved.
1568 	 */
1569 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1570 	while (!list_empty(&fs_info->reclaim_bgs)) {
1571 		u64 zone_unusable;
1572 		int ret = 0;
1573 
1574 		bg = list_first_entry(&fs_info->reclaim_bgs,
1575 				      struct btrfs_block_group,
1576 				      bg_list);
1577 		list_del_init(&bg->bg_list);
1578 
1579 		space_info = bg->space_info;
1580 		spin_unlock(&fs_info->unused_bgs_lock);
1581 
1582 		/* Don't race with allocators so take the groups_sem */
1583 		down_write(&space_info->groups_sem);
1584 
1585 		spin_lock(&bg->lock);
1586 		if (bg->reserved || bg->pinned || bg->ro) {
1587 			/*
1588 			 * We want to bail if we made new allocations or have
1589 			 * outstanding allocations in this block group.  We do
1590 			 * the ro check in case balance is currently acting on
1591 			 * this block group.
1592 			 */
1593 			spin_unlock(&bg->lock);
1594 			up_write(&space_info->groups_sem);
1595 			goto next;
1596 		}
1597 		spin_unlock(&bg->lock);
1598 
1599 		/* Get out fast, in case we're unmounting the filesystem */
1600 		if (btrfs_fs_closing(fs_info)) {
1601 			up_write(&space_info->groups_sem);
1602 			goto next;
1603 		}
1604 
1605 		/*
1606 		 * Cache the zone_unusable value before turning the block group
1607 		 * to read only. As soon as the blog group is read only it's
1608 		 * zone_unusable value gets moved to the block group's read-only
1609 		 * bytes and isn't available for calculations anymore.
1610 		 */
1611 		zone_unusable = bg->zone_unusable;
1612 		ret = inc_block_group_ro(bg, 0);
1613 		up_write(&space_info->groups_sem);
1614 		if (ret < 0)
1615 			goto next;
1616 
1617 		btrfs_info(fs_info,
1618 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1619 				bg->start, div_u64(bg->used * 100, bg->length),
1620 				div64_u64(zone_unusable * 100, bg->length));
1621 		trace_btrfs_reclaim_block_group(bg);
1622 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1623 		if (ret) {
1624 			btrfs_dec_block_group_ro(bg);
1625 			btrfs_err(fs_info, "error relocating chunk %llu",
1626 				  bg->start);
1627 		}
1628 
1629 next:
1630 		btrfs_put_block_group(bg);
1631 		spin_lock(&fs_info->unused_bgs_lock);
1632 	}
1633 	spin_unlock(&fs_info->unused_bgs_lock);
1634 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1635 	btrfs_exclop_finish(fs_info);
1636 	sb_end_write(fs_info->sb);
1637 }
1638 
1639 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1640 {
1641 	spin_lock(&fs_info->unused_bgs_lock);
1642 	if (!list_empty(&fs_info->reclaim_bgs))
1643 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1644 	spin_unlock(&fs_info->unused_bgs_lock);
1645 }
1646 
1647 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1648 {
1649 	struct btrfs_fs_info *fs_info = bg->fs_info;
1650 
1651 	spin_lock(&fs_info->unused_bgs_lock);
1652 	if (list_empty(&bg->bg_list)) {
1653 		btrfs_get_block_group(bg);
1654 		trace_btrfs_add_reclaim_block_group(bg);
1655 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1656 	}
1657 	spin_unlock(&fs_info->unused_bgs_lock);
1658 }
1659 
1660 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1661 			   struct btrfs_path *path)
1662 {
1663 	struct extent_map_tree *em_tree;
1664 	struct extent_map *em;
1665 	struct btrfs_block_group_item bg;
1666 	struct extent_buffer *leaf;
1667 	int slot;
1668 	u64 flags;
1669 	int ret = 0;
1670 
1671 	slot = path->slots[0];
1672 	leaf = path->nodes[0];
1673 
1674 	em_tree = &fs_info->mapping_tree;
1675 	read_lock(&em_tree->lock);
1676 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1677 	read_unlock(&em_tree->lock);
1678 	if (!em) {
1679 		btrfs_err(fs_info,
1680 			  "logical %llu len %llu found bg but no related chunk",
1681 			  key->objectid, key->offset);
1682 		return -ENOENT;
1683 	}
1684 
1685 	if (em->start != key->objectid || em->len != key->offset) {
1686 		btrfs_err(fs_info,
1687 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1688 			key->objectid, key->offset, em->start, em->len);
1689 		ret = -EUCLEAN;
1690 		goto out_free_em;
1691 	}
1692 
1693 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1694 			   sizeof(bg));
1695 	flags = btrfs_stack_block_group_flags(&bg) &
1696 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1697 
1698 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1699 		btrfs_err(fs_info,
1700 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1701 			  key->objectid, key->offset, flags,
1702 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1703 		ret = -EUCLEAN;
1704 	}
1705 
1706 out_free_em:
1707 	free_extent_map(em);
1708 	return ret;
1709 }
1710 
1711 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1712 				  struct btrfs_path *path,
1713 				  struct btrfs_key *key)
1714 {
1715 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1716 	int ret;
1717 	struct btrfs_key found_key;
1718 
1719 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1720 		if (found_key.objectid >= key->objectid &&
1721 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1722 			return read_bg_from_eb(fs_info, &found_key, path);
1723 		}
1724 	}
1725 	return ret;
1726 }
1727 
1728 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1729 {
1730 	u64 extra_flags = chunk_to_extended(flags) &
1731 				BTRFS_EXTENDED_PROFILE_MASK;
1732 
1733 	write_seqlock(&fs_info->profiles_lock);
1734 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1735 		fs_info->avail_data_alloc_bits |= extra_flags;
1736 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1737 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1738 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1739 		fs_info->avail_system_alloc_bits |= extra_flags;
1740 	write_sequnlock(&fs_info->profiles_lock);
1741 }
1742 
1743 /**
1744  * Map a physical disk address to a list of logical addresses
1745  *
1746  * @fs_info:       the filesystem
1747  * @chunk_start:   logical address of block group
1748  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1749  * @physical:	   physical address to map to logical addresses
1750  * @logical:	   return array of logical addresses which map to @physical
1751  * @naddrs:	   length of @logical
1752  * @stripe_len:    size of IO stripe for the given block group
1753  *
1754  * Maps a particular @physical disk address to a list of @logical addresses.
1755  * Used primarily to exclude those portions of a block group that contain super
1756  * block copies.
1757  */
1758 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1759 		     struct block_device *bdev, u64 physical, u64 **logical,
1760 		     int *naddrs, int *stripe_len)
1761 {
1762 	struct extent_map *em;
1763 	struct map_lookup *map;
1764 	u64 *buf;
1765 	u64 bytenr;
1766 	u64 data_stripe_length;
1767 	u64 io_stripe_size;
1768 	int i, nr = 0;
1769 	int ret = 0;
1770 
1771 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1772 	if (IS_ERR(em))
1773 		return -EIO;
1774 
1775 	map = em->map_lookup;
1776 	data_stripe_length = em->orig_block_len;
1777 	io_stripe_size = map->stripe_len;
1778 	chunk_start = em->start;
1779 
1780 	/* For RAID5/6 adjust to a full IO stripe length */
1781 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1782 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1783 
1784 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1785 	if (!buf) {
1786 		ret = -ENOMEM;
1787 		goto out;
1788 	}
1789 
1790 	for (i = 0; i < map->num_stripes; i++) {
1791 		bool already_inserted = false;
1792 		u64 stripe_nr;
1793 		u64 offset;
1794 		int j;
1795 
1796 		if (!in_range(physical, map->stripes[i].physical,
1797 			      data_stripe_length))
1798 			continue;
1799 
1800 		if (bdev && map->stripes[i].dev->bdev != bdev)
1801 			continue;
1802 
1803 		stripe_nr = physical - map->stripes[i].physical;
1804 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1805 
1806 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1807 				 BTRFS_BLOCK_GROUP_RAID10)) {
1808 			stripe_nr = stripe_nr * map->num_stripes + i;
1809 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1810 		}
1811 		/*
1812 		 * The remaining case would be for RAID56, multiply by
1813 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1814 		 * instead of map->stripe_len
1815 		 */
1816 
1817 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1818 
1819 		/* Ensure we don't add duplicate addresses */
1820 		for (j = 0; j < nr; j++) {
1821 			if (buf[j] == bytenr) {
1822 				already_inserted = true;
1823 				break;
1824 			}
1825 		}
1826 
1827 		if (!already_inserted)
1828 			buf[nr++] = bytenr;
1829 	}
1830 
1831 	*logical = buf;
1832 	*naddrs = nr;
1833 	*stripe_len = io_stripe_size;
1834 out:
1835 	free_extent_map(em);
1836 	return ret;
1837 }
1838 
1839 static int exclude_super_stripes(struct btrfs_block_group *cache)
1840 {
1841 	struct btrfs_fs_info *fs_info = cache->fs_info;
1842 	const bool zoned = btrfs_is_zoned(fs_info);
1843 	u64 bytenr;
1844 	u64 *logical;
1845 	int stripe_len;
1846 	int i, nr, ret;
1847 
1848 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1849 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1850 		cache->bytes_super += stripe_len;
1851 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1852 						stripe_len);
1853 		if (ret)
1854 			return ret;
1855 	}
1856 
1857 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1858 		bytenr = btrfs_sb_offset(i);
1859 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1860 				       bytenr, &logical, &nr, &stripe_len);
1861 		if (ret)
1862 			return ret;
1863 
1864 		/* Shouldn't have super stripes in sequential zones */
1865 		if (zoned && nr) {
1866 			btrfs_err(fs_info,
1867 			"zoned: block group %llu must not contain super block",
1868 				  cache->start);
1869 			return -EUCLEAN;
1870 		}
1871 
1872 		while (nr--) {
1873 			u64 len = min_t(u64, stripe_len,
1874 				cache->start + cache->length - logical[nr]);
1875 
1876 			cache->bytes_super += len;
1877 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1878 							len);
1879 			if (ret) {
1880 				kfree(logical);
1881 				return ret;
1882 			}
1883 		}
1884 
1885 		kfree(logical);
1886 	}
1887 	return 0;
1888 }
1889 
1890 static struct btrfs_block_group *btrfs_create_block_group_cache(
1891 		struct btrfs_fs_info *fs_info, u64 start)
1892 {
1893 	struct btrfs_block_group *cache;
1894 
1895 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1896 	if (!cache)
1897 		return NULL;
1898 
1899 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1900 					GFP_NOFS);
1901 	if (!cache->free_space_ctl) {
1902 		kfree(cache);
1903 		return NULL;
1904 	}
1905 
1906 	cache->start = start;
1907 
1908 	cache->fs_info = fs_info;
1909 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1910 
1911 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1912 
1913 	refcount_set(&cache->refs, 1);
1914 	spin_lock_init(&cache->lock);
1915 	init_rwsem(&cache->data_rwsem);
1916 	INIT_LIST_HEAD(&cache->list);
1917 	INIT_LIST_HEAD(&cache->cluster_list);
1918 	INIT_LIST_HEAD(&cache->bg_list);
1919 	INIT_LIST_HEAD(&cache->ro_list);
1920 	INIT_LIST_HEAD(&cache->discard_list);
1921 	INIT_LIST_HEAD(&cache->dirty_list);
1922 	INIT_LIST_HEAD(&cache->io_list);
1923 	INIT_LIST_HEAD(&cache->active_bg_list);
1924 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1925 	atomic_set(&cache->frozen, 0);
1926 	mutex_init(&cache->free_space_lock);
1927 	cache->full_stripe_locks_root.root = RB_ROOT;
1928 	mutex_init(&cache->full_stripe_locks_root.lock);
1929 
1930 	return cache;
1931 }
1932 
1933 /*
1934  * Iterate all chunks and verify that each of them has the corresponding block
1935  * group
1936  */
1937 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1938 {
1939 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1940 	struct extent_map *em;
1941 	struct btrfs_block_group *bg;
1942 	u64 start = 0;
1943 	int ret = 0;
1944 
1945 	while (1) {
1946 		read_lock(&map_tree->lock);
1947 		/*
1948 		 * lookup_extent_mapping will return the first extent map
1949 		 * intersecting the range, so setting @len to 1 is enough to
1950 		 * get the first chunk.
1951 		 */
1952 		em = lookup_extent_mapping(map_tree, start, 1);
1953 		read_unlock(&map_tree->lock);
1954 		if (!em)
1955 			break;
1956 
1957 		bg = btrfs_lookup_block_group(fs_info, em->start);
1958 		if (!bg) {
1959 			btrfs_err(fs_info,
1960 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1961 				     em->start, em->len);
1962 			ret = -EUCLEAN;
1963 			free_extent_map(em);
1964 			break;
1965 		}
1966 		if (bg->start != em->start || bg->length != em->len ||
1967 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1968 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1969 			btrfs_err(fs_info,
1970 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1971 				em->start, em->len,
1972 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1973 				bg->start, bg->length,
1974 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1975 			ret = -EUCLEAN;
1976 			free_extent_map(em);
1977 			btrfs_put_block_group(bg);
1978 			break;
1979 		}
1980 		start = em->start + em->len;
1981 		free_extent_map(em);
1982 		btrfs_put_block_group(bg);
1983 	}
1984 	return ret;
1985 }
1986 
1987 static int read_one_block_group(struct btrfs_fs_info *info,
1988 				struct btrfs_block_group_item *bgi,
1989 				const struct btrfs_key *key,
1990 				int need_clear)
1991 {
1992 	struct btrfs_block_group *cache;
1993 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1994 	int ret;
1995 
1996 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1997 
1998 	cache = btrfs_create_block_group_cache(info, key->objectid);
1999 	if (!cache)
2000 		return -ENOMEM;
2001 
2002 	cache->length = key->offset;
2003 	cache->used = btrfs_stack_block_group_used(bgi);
2004 	cache->flags = btrfs_stack_block_group_flags(bgi);
2005 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2006 
2007 	set_free_space_tree_thresholds(cache);
2008 
2009 	if (need_clear) {
2010 		/*
2011 		 * When we mount with old space cache, we need to
2012 		 * set BTRFS_DC_CLEAR and set dirty flag.
2013 		 *
2014 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2015 		 *    truncate the old free space cache inode and
2016 		 *    setup a new one.
2017 		 * b) Setting 'dirty flag' makes sure that we flush
2018 		 *    the new space cache info onto disk.
2019 		 */
2020 		if (btrfs_test_opt(info, SPACE_CACHE))
2021 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2022 	}
2023 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2024 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2025 			btrfs_err(info,
2026 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2027 				  cache->start);
2028 			ret = -EINVAL;
2029 			goto error;
2030 	}
2031 
2032 	ret = btrfs_load_block_group_zone_info(cache, false);
2033 	if (ret) {
2034 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2035 			  cache->start);
2036 		goto error;
2037 	}
2038 
2039 	/*
2040 	 * We need to exclude the super stripes now so that the space info has
2041 	 * super bytes accounted for, otherwise we'll think we have more space
2042 	 * than we actually do.
2043 	 */
2044 	ret = exclude_super_stripes(cache);
2045 	if (ret) {
2046 		/* We may have excluded something, so call this just in case. */
2047 		btrfs_free_excluded_extents(cache);
2048 		goto error;
2049 	}
2050 
2051 	/*
2052 	 * For zoned filesystem, space after the allocation offset is the only
2053 	 * free space for a block group. So, we don't need any caching work.
2054 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2055 	 * zone_unusable space.
2056 	 *
2057 	 * For regular filesystem, check for two cases, either we are full, and
2058 	 * therefore don't need to bother with the caching work since we won't
2059 	 * find any space, or we are empty, and we can just add all the space
2060 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2061 	 * in the full case.
2062 	 */
2063 	if (btrfs_is_zoned(info)) {
2064 		btrfs_calc_zone_unusable(cache);
2065 		/* Should not have any excluded extents. Just in case, though. */
2066 		btrfs_free_excluded_extents(cache);
2067 	} else if (cache->length == cache->used) {
2068 		cache->cached = BTRFS_CACHE_FINISHED;
2069 		btrfs_free_excluded_extents(cache);
2070 	} else if (cache->used == 0) {
2071 		cache->cached = BTRFS_CACHE_FINISHED;
2072 		add_new_free_space(cache, cache->start,
2073 				   cache->start + cache->length);
2074 		btrfs_free_excluded_extents(cache);
2075 	}
2076 
2077 	ret = btrfs_add_block_group_cache(info, cache);
2078 	if (ret) {
2079 		btrfs_remove_free_space_cache(cache);
2080 		goto error;
2081 	}
2082 	trace_btrfs_add_block_group(info, cache, 0);
2083 	btrfs_add_bg_to_space_info(info, cache);
2084 
2085 	set_avail_alloc_bits(info, cache->flags);
2086 	if (btrfs_chunk_writeable(info, cache->start)) {
2087 		if (cache->used == 0) {
2088 			ASSERT(list_empty(&cache->bg_list));
2089 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2090 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2091 			else
2092 				btrfs_mark_bg_unused(cache);
2093 		}
2094 	} else {
2095 		inc_block_group_ro(cache, 1);
2096 	}
2097 
2098 	return 0;
2099 error:
2100 	btrfs_put_block_group(cache);
2101 	return ret;
2102 }
2103 
2104 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2105 {
2106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2107 	struct rb_node *node;
2108 	int ret = 0;
2109 
2110 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2111 		struct extent_map *em;
2112 		struct map_lookup *map;
2113 		struct btrfs_block_group *bg;
2114 
2115 		em = rb_entry(node, struct extent_map, rb_node);
2116 		map = em->map_lookup;
2117 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2118 		if (!bg) {
2119 			ret = -ENOMEM;
2120 			break;
2121 		}
2122 
2123 		/* Fill dummy cache as FULL */
2124 		bg->length = em->len;
2125 		bg->flags = map->type;
2126 		bg->cached = BTRFS_CACHE_FINISHED;
2127 		bg->used = em->len;
2128 		bg->flags = map->type;
2129 		ret = btrfs_add_block_group_cache(fs_info, bg);
2130 		/*
2131 		 * We may have some valid block group cache added already, in
2132 		 * that case we skip to the next one.
2133 		 */
2134 		if (ret == -EEXIST) {
2135 			ret = 0;
2136 			btrfs_put_block_group(bg);
2137 			continue;
2138 		}
2139 
2140 		if (ret) {
2141 			btrfs_remove_free_space_cache(bg);
2142 			btrfs_put_block_group(bg);
2143 			break;
2144 		}
2145 
2146 		btrfs_add_bg_to_space_info(fs_info, bg);
2147 
2148 		set_avail_alloc_bits(fs_info, bg->flags);
2149 	}
2150 	if (!ret)
2151 		btrfs_init_global_block_rsv(fs_info);
2152 	return ret;
2153 }
2154 
2155 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2156 {
2157 	struct btrfs_root *root = btrfs_block_group_root(info);
2158 	struct btrfs_path *path;
2159 	int ret;
2160 	struct btrfs_block_group *cache;
2161 	struct btrfs_space_info *space_info;
2162 	struct btrfs_key key;
2163 	int need_clear = 0;
2164 	u64 cache_gen;
2165 
2166 	/*
2167 	 * Either no extent root (with ibadroots rescue option) or we have
2168 	 * unsupported RO options. The fs can never be mounted read-write, so no
2169 	 * need to waste time searching block group items.
2170 	 *
2171 	 * This also allows new extent tree related changes to be RO compat,
2172 	 * no need for a full incompat flag.
2173 	 */
2174 	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2175 		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2176 		return fill_dummy_bgs(info);
2177 
2178 	key.objectid = 0;
2179 	key.offset = 0;
2180 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2181 	path = btrfs_alloc_path();
2182 	if (!path)
2183 		return -ENOMEM;
2184 
2185 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2186 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2187 	    btrfs_super_generation(info->super_copy) != cache_gen)
2188 		need_clear = 1;
2189 	if (btrfs_test_opt(info, CLEAR_CACHE))
2190 		need_clear = 1;
2191 
2192 	while (1) {
2193 		struct btrfs_block_group_item bgi;
2194 		struct extent_buffer *leaf;
2195 		int slot;
2196 
2197 		ret = find_first_block_group(info, path, &key);
2198 		if (ret > 0)
2199 			break;
2200 		if (ret != 0)
2201 			goto error;
2202 
2203 		leaf = path->nodes[0];
2204 		slot = path->slots[0];
2205 
2206 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2207 				   sizeof(bgi));
2208 
2209 		btrfs_item_key_to_cpu(leaf, &key, slot);
2210 		btrfs_release_path(path);
2211 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2212 		if (ret < 0)
2213 			goto error;
2214 		key.objectid += key.offset;
2215 		key.offset = 0;
2216 	}
2217 	btrfs_release_path(path);
2218 
2219 	list_for_each_entry(space_info, &info->space_info, list) {
2220 		int i;
2221 
2222 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2223 			if (list_empty(&space_info->block_groups[i]))
2224 				continue;
2225 			cache = list_first_entry(&space_info->block_groups[i],
2226 						 struct btrfs_block_group,
2227 						 list);
2228 			btrfs_sysfs_add_block_group_type(cache);
2229 		}
2230 
2231 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2232 		      (BTRFS_BLOCK_GROUP_RAID10 |
2233 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2234 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2235 		       BTRFS_BLOCK_GROUP_DUP)))
2236 			continue;
2237 		/*
2238 		 * Avoid allocating from un-mirrored block group if there are
2239 		 * mirrored block groups.
2240 		 */
2241 		list_for_each_entry(cache,
2242 				&space_info->block_groups[BTRFS_RAID_RAID0],
2243 				list)
2244 			inc_block_group_ro(cache, 1);
2245 		list_for_each_entry(cache,
2246 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2247 				list)
2248 			inc_block_group_ro(cache, 1);
2249 	}
2250 
2251 	btrfs_init_global_block_rsv(info);
2252 	ret = check_chunk_block_group_mappings(info);
2253 error:
2254 	btrfs_free_path(path);
2255 	/*
2256 	 * We've hit some error while reading the extent tree, and have
2257 	 * rescue=ibadroots mount option.
2258 	 * Try to fill the tree using dummy block groups so that the user can
2259 	 * continue to mount and grab their data.
2260 	 */
2261 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2262 		ret = fill_dummy_bgs(info);
2263 	return ret;
2264 }
2265 
2266 /*
2267  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2268  * allocation.
2269  *
2270  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2271  * phases.
2272  */
2273 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2274 				   struct btrfs_block_group *block_group)
2275 {
2276 	struct btrfs_fs_info *fs_info = trans->fs_info;
2277 	struct btrfs_block_group_item bgi;
2278 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2279 	struct btrfs_key key;
2280 
2281 	spin_lock(&block_group->lock);
2282 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2283 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2284 						   block_group->global_root_id);
2285 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2286 	key.objectid = block_group->start;
2287 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2288 	key.offset = block_group->length;
2289 	spin_unlock(&block_group->lock);
2290 
2291 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2292 }
2293 
2294 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2295 			    struct btrfs_device *device, u64 chunk_offset,
2296 			    u64 start, u64 num_bytes)
2297 {
2298 	struct btrfs_fs_info *fs_info = device->fs_info;
2299 	struct btrfs_root *root = fs_info->dev_root;
2300 	struct btrfs_path *path;
2301 	struct btrfs_dev_extent *extent;
2302 	struct extent_buffer *leaf;
2303 	struct btrfs_key key;
2304 	int ret;
2305 
2306 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2307 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2308 	path = btrfs_alloc_path();
2309 	if (!path)
2310 		return -ENOMEM;
2311 
2312 	key.objectid = device->devid;
2313 	key.type = BTRFS_DEV_EXTENT_KEY;
2314 	key.offset = start;
2315 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2316 	if (ret)
2317 		goto out;
2318 
2319 	leaf = path->nodes[0];
2320 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2321 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2322 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2323 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2324 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2325 
2326 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2327 	btrfs_mark_buffer_dirty(leaf);
2328 out:
2329 	btrfs_free_path(path);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * This function belongs to phase 2.
2335  *
2336  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2337  * phases.
2338  */
2339 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2340 				   u64 chunk_offset, u64 chunk_size)
2341 {
2342 	struct btrfs_fs_info *fs_info = trans->fs_info;
2343 	struct btrfs_device *device;
2344 	struct extent_map *em;
2345 	struct map_lookup *map;
2346 	u64 dev_offset;
2347 	u64 stripe_size;
2348 	int i;
2349 	int ret = 0;
2350 
2351 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2352 	if (IS_ERR(em))
2353 		return PTR_ERR(em);
2354 
2355 	map = em->map_lookup;
2356 	stripe_size = em->orig_block_len;
2357 
2358 	/*
2359 	 * Take the device list mutex to prevent races with the final phase of
2360 	 * a device replace operation that replaces the device object associated
2361 	 * with the map's stripes, because the device object's id can change
2362 	 * at any time during that final phase of the device replace operation
2363 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2364 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2365 	 * resulting in persisting a device extent item with such ID.
2366 	 */
2367 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2368 	for (i = 0; i < map->num_stripes; i++) {
2369 		device = map->stripes[i].dev;
2370 		dev_offset = map->stripes[i].physical;
2371 
2372 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2373 				       stripe_size);
2374 		if (ret)
2375 			break;
2376 	}
2377 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2378 
2379 	free_extent_map(em);
2380 	return ret;
2381 }
2382 
2383 /*
2384  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2385  * chunk allocation.
2386  *
2387  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2388  * phases.
2389  */
2390 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2391 {
2392 	struct btrfs_fs_info *fs_info = trans->fs_info;
2393 	struct btrfs_block_group *block_group;
2394 	int ret = 0;
2395 
2396 	while (!list_empty(&trans->new_bgs)) {
2397 		int index;
2398 
2399 		block_group = list_first_entry(&trans->new_bgs,
2400 					       struct btrfs_block_group,
2401 					       bg_list);
2402 		if (ret)
2403 			goto next;
2404 
2405 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2406 
2407 		ret = insert_block_group_item(trans, block_group);
2408 		if (ret)
2409 			btrfs_abort_transaction(trans, ret);
2410 		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2411 			      &block_group->runtime_flags)) {
2412 			mutex_lock(&fs_info->chunk_mutex);
2413 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2414 			mutex_unlock(&fs_info->chunk_mutex);
2415 			if (ret)
2416 				btrfs_abort_transaction(trans, ret);
2417 		}
2418 		ret = insert_dev_extents(trans, block_group->start,
2419 					 block_group->length);
2420 		if (ret)
2421 			btrfs_abort_transaction(trans, ret);
2422 		add_block_group_free_space(trans, block_group);
2423 
2424 		/*
2425 		 * If we restriped during balance, we may have added a new raid
2426 		 * type, so now add the sysfs entries when it is safe to do so.
2427 		 * We don't have to worry about locking here as it's handled in
2428 		 * btrfs_sysfs_add_block_group_type.
2429 		 */
2430 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2431 			btrfs_sysfs_add_block_group_type(block_group);
2432 
2433 		/* Already aborted the transaction if it failed. */
2434 next:
2435 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2436 		list_del_init(&block_group->bg_list);
2437 	}
2438 	btrfs_trans_release_chunk_metadata(trans);
2439 }
2440 
2441 /*
2442  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2443  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2444  */
2445 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2446 {
2447 	u64 div = SZ_1G;
2448 	u64 index;
2449 
2450 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2451 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2452 
2453 	/* If we have a smaller fs index based on 128MiB. */
2454 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2455 		div = SZ_128M;
2456 
2457 	offset = div64_u64(offset, div);
2458 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2459 	return index;
2460 }
2461 
2462 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2463 						 u64 bytes_used, u64 type,
2464 						 u64 chunk_offset, u64 size)
2465 {
2466 	struct btrfs_fs_info *fs_info = trans->fs_info;
2467 	struct btrfs_block_group *cache;
2468 	int ret;
2469 
2470 	btrfs_set_log_full_commit(trans);
2471 
2472 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2473 	if (!cache)
2474 		return ERR_PTR(-ENOMEM);
2475 
2476 	cache->length = size;
2477 	set_free_space_tree_thresholds(cache);
2478 	cache->used = bytes_used;
2479 	cache->flags = type;
2480 	cache->cached = BTRFS_CACHE_FINISHED;
2481 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2482 
2483 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2484 		cache->needs_free_space = 1;
2485 
2486 	ret = btrfs_load_block_group_zone_info(cache, true);
2487 	if (ret) {
2488 		btrfs_put_block_group(cache);
2489 		return ERR_PTR(ret);
2490 	}
2491 
2492 	ret = exclude_super_stripes(cache);
2493 	if (ret) {
2494 		/* We may have excluded something, so call this just in case */
2495 		btrfs_free_excluded_extents(cache);
2496 		btrfs_put_block_group(cache);
2497 		return ERR_PTR(ret);
2498 	}
2499 
2500 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2501 
2502 	btrfs_free_excluded_extents(cache);
2503 
2504 	/*
2505 	 * Ensure the corresponding space_info object is created and
2506 	 * assigned to our block group. We want our bg to be added to the rbtree
2507 	 * with its ->space_info set.
2508 	 */
2509 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2510 	ASSERT(cache->space_info);
2511 
2512 	ret = btrfs_add_block_group_cache(fs_info, cache);
2513 	if (ret) {
2514 		btrfs_remove_free_space_cache(cache);
2515 		btrfs_put_block_group(cache);
2516 		return ERR_PTR(ret);
2517 	}
2518 
2519 	/*
2520 	 * Now that our block group has its ->space_info set and is inserted in
2521 	 * the rbtree, update the space info's counters.
2522 	 */
2523 	trace_btrfs_add_block_group(fs_info, cache, 1);
2524 	btrfs_add_bg_to_space_info(fs_info, cache);
2525 	btrfs_update_global_block_rsv(fs_info);
2526 
2527 #ifdef CONFIG_BTRFS_DEBUG
2528 	if (btrfs_should_fragment_free_space(cache)) {
2529 		u64 new_bytes_used = size - bytes_used;
2530 
2531 		cache->space_info->bytes_used += new_bytes_used >> 1;
2532 		fragment_free_space(cache);
2533 	}
2534 #endif
2535 
2536 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2537 	trans->delayed_ref_updates++;
2538 	btrfs_update_delayed_refs_rsv(trans);
2539 
2540 	set_avail_alloc_bits(fs_info, type);
2541 	return cache;
2542 }
2543 
2544 /*
2545  * Mark one block group RO, can be called several times for the same block
2546  * group.
2547  *
2548  * @cache:		the destination block group
2549  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2550  * 			ensure we still have some free space after marking this
2551  * 			block group RO.
2552  */
2553 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2554 			     bool do_chunk_alloc)
2555 {
2556 	struct btrfs_fs_info *fs_info = cache->fs_info;
2557 	struct btrfs_trans_handle *trans;
2558 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2559 	u64 alloc_flags;
2560 	int ret;
2561 	bool dirty_bg_running;
2562 
2563 	/*
2564 	 * This can only happen when we are doing read-only scrub on read-only
2565 	 * mount.
2566 	 * In that case we should not start a new transaction on read-only fs.
2567 	 * Thus here we skip all chunk allocations.
2568 	 */
2569 	if (sb_rdonly(fs_info->sb)) {
2570 		mutex_lock(&fs_info->ro_block_group_mutex);
2571 		ret = inc_block_group_ro(cache, 0);
2572 		mutex_unlock(&fs_info->ro_block_group_mutex);
2573 		return ret;
2574 	}
2575 
2576 	do {
2577 		trans = btrfs_join_transaction(root);
2578 		if (IS_ERR(trans))
2579 			return PTR_ERR(trans);
2580 
2581 		dirty_bg_running = false;
2582 
2583 		/*
2584 		 * We're not allowed to set block groups readonly after the dirty
2585 		 * block group cache has started writing.  If it already started,
2586 		 * back off and let this transaction commit.
2587 		 */
2588 		mutex_lock(&fs_info->ro_block_group_mutex);
2589 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2590 			u64 transid = trans->transid;
2591 
2592 			mutex_unlock(&fs_info->ro_block_group_mutex);
2593 			btrfs_end_transaction(trans);
2594 
2595 			ret = btrfs_wait_for_commit(fs_info, transid);
2596 			if (ret)
2597 				return ret;
2598 			dirty_bg_running = true;
2599 		}
2600 	} while (dirty_bg_running);
2601 
2602 	if (do_chunk_alloc) {
2603 		/*
2604 		 * If we are changing raid levels, try to allocate a
2605 		 * corresponding block group with the new raid level.
2606 		 */
2607 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2608 		if (alloc_flags != cache->flags) {
2609 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2610 						CHUNK_ALLOC_FORCE);
2611 			/*
2612 			 * ENOSPC is allowed here, we may have enough space
2613 			 * already allocated at the new raid level to carry on
2614 			 */
2615 			if (ret == -ENOSPC)
2616 				ret = 0;
2617 			if (ret < 0)
2618 				goto out;
2619 		}
2620 	}
2621 
2622 	ret = inc_block_group_ro(cache, 0);
2623 	if (!do_chunk_alloc || ret == -ETXTBSY)
2624 		goto unlock_out;
2625 	if (!ret)
2626 		goto out;
2627 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2628 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2629 	if (ret < 0)
2630 		goto out;
2631 	/*
2632 	 * We have allocated a new chunk. We also need to activate that chunk to
2633 	 * grant metadata tickets for zoned filesystem.
2634 	 */
2635 	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2636 	if (ret < 0)
2637 		goto out;
2638 
2639 	ret = inc_block_group_ro(cache, 0);
2640 	if (ret == -ETXTBSY)
2641 		goto unlock_out;
2642 out:
2643 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2644 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2645 		mutex_lock(&fs_info->chunk_mutex);
2646 		check_system_chunk(trans, alloc_flags);
2647 		mutex_unlock(&fs_info->chunk_mutex);
2648 	}
2649 unlock_out:
2650 	mutex_unlock(&fs_info->ro_block_group_mutex);
2651 
2652 	btrfs_end_transaction(trans);
2653 	return ret;
2654 }
2655 
2656 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2657 {
2658 	struct btrfs_space_info *sinfo = cache->space_info;
2659 	u64 num_bytes;
2660 
2661 	BUG_ON(!cache->ro);
2662 
2663 	spin_lock(&sinfo->lock);
2664 	spin_lock(&cache->lock);
2665 	if (!--cache->ro) {
2666 		if (btrfs_is_zoned(cache->fs_info)) {
2667 			/* Migrate zone_unusable bytes back */
2668 			cache->zone_unusable =
2669 				(cache->alloc_offset - cache->used) +
2670 				(cache->length - cache->zone_capacity);
2671 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2672 			sinfo->bytes_readonly -= cache->zone_unusable;
2673 		}
2674 		num_bytes = cache->length - cache->reserved -
2675 			    cache->pinned - cache->bytes_super -
2676 			    cache->zone_unusable - cache->used;
2677 		sinfo->bytes_readonly -= num_bytes;
2678 		list_del_init(&cache->ro_list);
2679 	}
2680 	spin_unlock(&cache->lock);
2681 	spin_unlock(&sinfo->lock);
2682 }
2683 
2684 static int update_block_group_item(struct btrfs_trans_handle *trans,
2685 				   struct btrfs_path *path,
2686 				   struct btrfs_block_group *cache)
2687 {
2688 	struct btrfs_fs_info *fs_info = trans->fs_info;
2689 	int ret;
2690 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2691 	unsigned long bi;
2692 	struct extent_buffer *leaf;
2693 	struct btrfs_block_group_item bgi;
2694 	struct btrfs_key key;
2695 
2696 	key.objectid = cache->start;
2697 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2698 	key.offset = cache->length;
2699 
2700 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2701 	if (ret) {
2702 		if (ret > 0)
2703 			ret = -ENOENT;
2704 		goto fail;
2705 	}
2706 
2707 	leaf = path->nodes[0];
2708 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2709 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2710 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2711 						   cache->global_root_id);
2712 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2713 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2714 	btrfs_mark_buffer_dirty(leaf);
2715 fail:
2716 	btrfs_release_path(path);
2717 	return ret;
2718 
2719 }
2720 
2721 static int cache_save_setup(struct btrfs_block_group *block_group,
2722 			    struct btrfs_trans_handle *trans,
2723 			    struct btrfs_path *path)
2724 {
2725 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2726 	struct btrfs_root *root = fs_info->tree_root;
2727 	struct inode *inode = NULL;
2728 	struct extent_changeset *data_reserved = NULL;
2729 	u64 alloc_hint = 0;
2730 	int dcs = BTRFS_DC_ERROR;
2731 	u64 cache_size = 0;
2732 	int retries = 0;
2733 	int ret = 0;
2734 
2735 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2736 		return 0;
2737 
2738 	/*
2739 	 * If this block group is smaller than 100 megs don't bother caching the
2740 	 * block group.
2741 	 */
2742 	if (block_group->length < (100 * SZ_1M)) {
2743 		spin_lock(&block_group->lock);
2744 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2745 		spin_unlock(&block_group->lock);
2746 		return 0;
2747 	}
2748 
2749 	if (TRANS_ABORTED(trans))
2750 		return 0;
2751 again:
2752 	inode = lookup_free_space_inode(block_group, path);
2753 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2754 		ret = PTR_ERR(inode);
2755 		btrfs_release_path(path);
2756 		goto out;
2757 	}
2758 
2759 	if (IS_ERR(inode)) {
2760 		BUG_ON(retries);
2761 		retries++;
2762 
2763 		if (block_group->ro)
2764 			goto out_free;
2765 
2766 		ret = create_free_space_inode(trans, block_group, path);
2767 		if (ret)
2768 			goto out_free;
2769 		goto again;
2770 	}
2771 
2772 	/*
2773 	 * We want to set the generation to 0, that way if anything goes wrong
2774 	 * from here on out we know not to trust this cache when we load up next
2775 	 * time.
2776 	 */
2777 	BTRFS_I(inode)->generation = 0;
2778 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2779 	if (ret) {
2780 		/*
2781 		 * So theoretically we could recover from this, simply set the
2782 		 * super cache generation to 0 so we know to invalidate the
2783 		 * cache, but then we'd have to keep track of the block groups
2784 		 * that fail this way so we know we _have_ to reset this cache
2785 		 * before the next commit or risk reading stale cache.  So to
2786 		 * limit our exposure to horrible edge cases lets just abort the
2787 		 * transaction, this only happens in really bad situations
2788 		 * anyway.
2789 		 */
2790 		btrfs_abort_transaction(trans, ret);
2791 		goto out_put;
2792 	}
2793 	WARN_ON(ret);
2794 
2795 	/* We've already setup this transaction, go ahead and exit */
2796 	if (block_group->cache_generation == trans->transid &&
2797 	    i_size_read(inode)) {
2798 		dcs = BTRFS_DC_SETUP;
2799 		goto out_put;
2800 	}
2801 
2802 	if (i_size_read(inode) > 0) {
2803 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2804 					&fs_info->global_block_rsv);
2805 		if (ret)
2806 			goto out_put;
2807 
2808 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2809 		if (ret)
2810 			goto out_put;
2811 	}
2812 
2813 	spin_lock(&block_group->lock);
2814 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2815 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2816 		/*
2817 		 * don't bother trying to write stuff out _if_
2818 		 * a) we're not cached,
2819 		 * b) we're with nospace_cache mount option,
2820 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2821 		 */
2822 		dcs = BTRFS_DC_WRITTEN;
2823 		spin_unlock(&block_group->lock);
2824 		goto out_put;
2825 	}
2826 	spin_unlock(&block_group->lock);
2827 
2828 	/*
2829 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2830 	 * skip doing the setup, we've already cleared the cache so we're safe.
2831 	 */
2832 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2833 		ret = -ENOSPC;
2834 		goto out_put;
2835 	}
2836 
2837 	/*
2838 	 * Try to preallocate enough space based on how big the block group is.
2839 	 * Keep in mind this has to include any pinned space which could end up
2840 	 * taking up quite a bit since it's not folded into the other space
2841 	 * cache.
2842 	 */
2843 	cache_size = div_u64(block_group->length, SZ_256M);
2844 	if (!cache_size)
2845 		cache_size = 1;
2846 
2847 	cache_size *= 16;
2848 	cache_size *= fs_info->sectorsize;
2849 
2850 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2851 					  cache_size, false);
2852 	if (ret)
2853 		goto out_put;
2854 
2855 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2856 					      cache_size, cache_size,
2857 					      &alloc_hint);
2858 	/*
2859 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2860 	 * of metadata or split extents when writing the cache out, which means
2861 	 * we can enospc if we are heavily fragmented in addition to just normal
2862 	 * out of space conditions.  So if we hit this just skip setting up any
2863 	 * other block groups for this transaction, maybe we'll unpin enough
2864 	 * space the next time around.
2865 	 */
2866 	if (!ret)
2867 		dcs = BTRFS_DC_SETUP;
2868 	else if (ret == -ENOSPC)
2869 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2870 
2871 out_put:
2872 	iput(inode);
2873 out_free:
2874 	btrfs_release_path(path);
2875 out:
2876 	spin_lock(&block_group->lock);
2877 	if (!ret && dcs == BTRFS_DC_SETUP)
2878 		block_group->cache_generation = trans->transid;
2879 	block_group->disk_cache_state = dcs;
2880 	spin_unlock(&block_group->lock);
2881 
2882 	extent_changeset_free(data_reserved);
2883 	return ret;
2884 }
2885 
2886 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2887 {
2888 	struct btrfs_fs_info *fs_info = trans->fs_info;
2889 	struct btrfs_block_group *cache, *tmp;
2890 	struct btrfs_transaction *cur_trans = trans->transaction;
2891 	struct btrfs_path *path;
2892 
2893 	if (list_empty(&cur_trans->dirty_bgs) ||
2894 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2895 		return 0;
2896 
2897 	path = btrfs_alloc_path();
2898 	if (!path)
2899 		return -ENOMEM;
2900 
2901 	/* Could add new block groups, use _safe just in case */
2902 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2903 				 dirty_list) {
2904 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2905 			cache_save_setup(cache, trans, path);
2906 	}
2907 
2908 	btrfs_free_path(path);
2909 	return 0;
2910 }
2911 
2912 /*
2913  * Transaction commit does final block group cache writeback during a critical
2914  * section where nothing is allowed to change the FS.  This is required in
2915  * order for the cache to actually match the block group, but can introduce a
2916  * lot of latency into the commit.
2917  *
2918  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2919  * There's a chance we'll have to redo some of it if the block group changes
2920  * again during the commit, but it greatly reduces the commit latency by
2921  * getting rid of the easy block groups while we're still allowing others to
2922  * join the commit.
2923  */
2924 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2925 {
2926 	struct btrfs_fs_info *fs_info = trans->fs_info;
2927 	struct btrfs_block_group *cache;
2928 	struct btrfs_transaction *cur_trans = trans->transaction;
2929 	int ret = 0;
2930 	int should_put;
2931 	struct btrfs_path *path = NULL;
2932 	LIST_HEAD(dirty);
2933 	struct list_head *io = &cur_trans->io_bgs;
2934 	int loops = 0;
2935 
2936 	spin_lock(&cur_trans->dirty_bgs_lock);
2937 	if (list_empty(&cur_trans->dirty_bgs)) {
2938 		spin_unlock(&cur_trans->dirty_bgs_lock);
2939 		return 0;
2940 	}
2941 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2942 	spin_unlock(&cur_trans->dirty_bgs_lock);
2943 
2944 again:
2945 	/* Make sure all the block groups on our dirty list actually exist */
2946 	btrfs_create_pending_block_groups(trans);
2947 
2948 	if (!path) {
2949 		path = btrfs_alloc_path();
2950 		if (!path) {
2951 			ret = -ENOMEM;
2952 			goto out;
2953 		}
2954 	}
2955 
2956 	/*
2957 	 * cache_write_mutex is here only to save us from balance or automatic
2958 	 * removal of empty block groups deleting this block group while we are
2959 	 * writing out the cache
2960 	 */
2961 	mutex_lock(&trans->transaction->cache_write_mutex);
2962 	while (!list_empty(&dirty)) {
2963 		bool drop_reserve = true;
2964 
2965 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2966 					 dirty_list);
2967 		/*
2968 		 * This can happen if something re-dirties a block group that
2969 		 * is already under IO.  Just wait for it to finish and then do
2970 		 * it all again
2971 		 */
2972 		if (!list_empty(&cache->io_list)) {
2973 			list_del_init(&cache->io_list);
2974 			btrfs_wait_cache_io(trans, cache, path);
2975 			btrfs_put_block_group(cache);
2976 		}
2977 
2978 
2979 		/*
2980 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2981 		 * it should update the cache_state.  Don't delete until after
2982 		 * we wait.
2983 		 *
2984 		 * Since we're not running in the commit critical section
2985 		 * we need the dirty_bgs_lock to protect from update_block_group
2986 		 */
2987 		spin_lock(&cur_trans->dirty_bgs_lock);
2988 		list_del_init(&cache->dirty_list);
2989 		spin_unlock(&cur_trans->dirty_bgs_lock);
2990 
2991 		should_put = 1;
2992 
2993 		cache_save_setup(cache, trans, path);
2994 
2995 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2996 			cache->io_ctl.inode = NULL;
2997 			ret = btrfs_write_out_cache(trans, cache, path);
2998 			if (ret == 0 && cache->io_ctl.inode) {
2999 				should_put = 0;
3000 
3001 				/*
3002 				 * The cache_write_mutex is protecting the
3003 				 * io_list, also refer to the definition of
3004 				 * btrfs_transaction::io_bgs for more details
3005 				 */
3006 				list_add_tail(&cache->io_list, io);
3007 			} else {
3008 				/*
3009 				 * If we failed to write the cache, the
3010 				 * generation will be bad and life goes on
3011 				 */
3012 				ret = 0;
3013 			}
3014 		}
3015 		if (!ret) {
3016 			ret = update_block_group_item(trans, path, cache);
3017 			/*
3018 			 * Our block group might still be attached to the list
3019 			 * of new block groups in the transaction handle of some
3020 			 * other task (struct btrfs_trans_handle->new_bgs). This
3021 			 * means its block group item isn't yet in the extent
3022 			 * tree. If this happens ignore the error, as we will
3023 			 * try again later in the critical section of the
3024 			 * transaction commit.
3025 			 */
3026 			if (ret == -ENOENT) {
3027 				ret = 0;
3028 				spin_lock(&cur_trans->dirty_bgs_lock);
3029 				if (list_empty(&cache->dirty_list)) {
3030 					list_add_tail(&cache->dirty_list,
3031 						      &cur_trans->dirty_bgs);
3032 					btrfs_get_block_group(cache);
3033 					drop_reserve = false;
3034 				}
3035 				spin_unlock(&cur_trans->dirty_bgs_lock);
3036 			} else if (ret) {
3037 				btrfs_abort_transaction(trans, ret);
3038 			}
3039 		}
3040 
3041 		/* If it's not on the io list, we need to put the block group */
3042 		if (should_put)
3043 			btrfs_put_block_group(cache);
3044 		if (drop_reserve)
3045 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3046 		/*
3047 		 * Avoid blocking other tasks for too long. It might even save
3048 		 * us from writing caches for block groups that are going to be
3049 		 * removed.
3050 		 */
3051 		mutex_unlock(&trans->transaction->cache_write_mutex);
3052 		if (ret)
3053 			goto out;
3054 		mutex_lock(&trans->transaction->cache_write_mutex);
3055 	}
3056 	mutex_unlock(&trans->transaction->cache_write_mutex);
3057 
3058 	/*
3059 	 * Go through delayed refs for all the stuff we've just kicked off
3060 	 * and then loop back (just once)
3061 	 */
3062 	if (!ret)
3063 		ret = btrfs_run_delayed_refs(trans, 0);
3064 	if (!ret && loops == 0) {
3065 		loops++;
3066 		spin_lock(&cur_trans->dirty_bgs_lock);
3067 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3068 		/*
3069 		 * dirty_bgs_lock protects us from concurrent block group
3070 		 * deletes too (not just cache_write_mutex).
3071 		 */
3072 		if (!list_empty(&dirty)) {
3073 			spin_unlock(&cur_trans->dirty_bgs_lock);
3074 			goto again;
3075 		}
3076 		spin_unlock(&cur_trans->dirty_bgs_lock);
3077 	}
3078 out:
3079 	if (ret < 0) {
3080 		spin_lock(&cur_trans->dirty_bgs_lock);
3081 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3082 		spin_unlock(&cur_trans->dirty_bgs_lock);
3083 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3084 	}
3085 
3086 	btrfs_free_path(path);
3087 	return ret;
3088 }
3089 
3090 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3091 {
3092 	struct btrfs_fs_info *fs_info = trans->fs_info;
3093 	struct btrfs_block_group *cache;
3094 	struct btrfs_transaction *cur_trans = trans->transaction;
3095 	int ret = 0;
3096 	int should_put;
3097 	struct btrfs_path *path;
3098 	struct list_head *io = &cur_trans->io_bgs;
3099 
3100 	path = btrfs_alloc_path();
3101 	if (!path)
3102 		return -ENOMEM;
3103 
3104 	/*
3105 	 * Even though we are in the critical section of the transaction commit,
3106 	 * we can still have concurrent tasks adding elements to this
3107 	 * transaction's list of dirty block groups. These tasks correspond to
3108 	 * endio free space workers started when writeback finishes for a
3109 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3110 	 * allocate new block groups as a result of COWing nodes of the root
3111 	 * tree when updating the free space inode. The writeback for the space
3112 	 * caches is triggered by an earlier call to
3113 	 * btrfs_start_dirty_block_groups() and iterations of the following
3114 	 * loop.
3115 	 * Also we want to do the cache_save_setup first and then run the
3116 	 * delayed refs to make sure we have the best chance at doing this all
3117 	 * in one shot.
3118 	 */
3119 	spin_lock(&cur_trans->dirty_bgs_lock);
3120 	while (!list_empty(&cur_trans->dirty_bgs)) {
3121 		cache = list_first_entry(&cur_trans->dirty_bgs,
3122 					 struct btrfs_block_group,
3123 					 dirty_list);
3124 
3125 		/*
3126 		 * This can happen if cache_save_setup re-dirties a block group
3127 		 * that is already under IO.  Just wait for it to finish and
3128 		 * then do it all again
3129 		 */
3130 		if (!list_empty(&cache->io_list)) {
3131 			spin_unlock(&cur_trans->dirty_bgs_lock);
3132 			list_del_init(&cache->io_list);
3133 			btrfs_wait_cache_io(trans, cache, path);
3134 			btrfs_put_block_group(cache);
3135 			spin_lock(&cur_trans->dirty_bgs_lock);
3136 		}
3137 
3138 		/*
3139 		 * Don't remove from the dirty list until after we've waited on
3140 		 * any pending IO
3141 		 */
3142 		list_del_init(&cache->dirty_list);
3143 		spin_unlock(&cur_trans->dirty_bgs_lock);
3144 		should_put = 1;
3145 
3146 		cache_save_setup(cache, trans, path);
3147 
3148 		if (!ret)
3149 			ret = btrfs_run_delayed_refs(trans,
3150 						     (unsigned long) -1);
3151 
3152 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3153 			cache->io_ctl.inode = NULL;
3154 			ret = btrfs_write_out_cache(trans, cache, path);
3155 			if (ret == 0 && cache->io_ctl.inode) {
3156 				should_put = 0;
3157 				list_add_tail(&cache->io_list, io);
3158 			} else {
3159 				/*
3160 				 * If we failed to write the cache, the
3161 				 * generation will be bad and life goes on
3162 				 */
3163 				ret = 0;
3164 			}
3165 		}
3166 		if (!ret) {
3167 			ret = update_block_group_item(trans, path, cache);
3168 			/*
3169 			 * One of the free space endio workers might have
3170 			 * created a new block group while updating a free space
3171 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3172 			 * and hasn't released its transaction handle yet, in
3173 			 * which case the new block group is still attached to
3174 			 * its transaction handle and its creation has not
3175 			 * finished yet (no block group item in the extent tree
3176 			 * yet, etc). If this is the case, wait for all free
3177 			 * space endio workers to finish and retry. This is a
3178 			 * very rare case so no need for a more efficient and
3179 			 * complex approach.
3180 			 */
3181 			if (ret == -ENOENT) {
3182 				wait_event(cur_trans->writer_wait,
3183 				   atomic_read(&cur_trans->num_writers) == 1);
3184 				ret = update_block_group_item(trans, path, cache);
3185 			}
3186 			if (ret)
3187 				btrfs_abort_transaction(trans, ret);
3188 		}
3189 
3190 		/* If its not on the io list, we need to put the block group */
3191 		if (should_put)
3192 			btrfs_put_block_group(cache);
3193 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3194 		spin_lock(&cur_trans->dirty_bgs_lock);
3195 	}
3196 	spin_unlock(&cur_trans->dirty_bgs_lock);
3197 
3198 	/*
3199 	 * Refer to the definition of io_bgs member for details why it's safe
3200 	 * to use it without any locking
3201 	 */
3202 	while (!list_empty(io)) {
3203 		cache = list_first_entry(io, struct btrfs_block_group,
3204 					 io_list);
3205 		list_del_init(&cache->io_list);
3206 		btrfs_wait_cache_io(trans, cache, path);
3207 		btrfs_put_block_group(cache);
3208 	}
3209 
3210 	btrfs_free_path(path);
3211 	return ret;
3212 }
3213 
3214 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3215 					      u64 bytes_freed)
3216 {
3217 	const struct btrfs_space_info *space_info = bg->space_info;
3218 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3219 	const u64 new_val = bg->used;
3220 	const u64 old_val = new_val + bytes_freed;
3221 	u64 thresh;
3222 
3223 	if (reclaim_thresh == 0)
3224 		return false;
3225 
3226 	thresh = div_factor_fine(bg->length, reclaim_thresh);
3227 
3228 	/*
3229 	 * If we were below the threshold before don't reclaim, we are likely a
3230 	 * brand new block group and we don't want to relocate new block groups.
3231 	 */
3232 	if (old_val < thresh)
3233 		return false;
3234 	if (new_val >= thresh)
3235 		return false;
3236 	return true;
3237 }
3238 
3239 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3240 			     u64 bytenr, u64 num_bytes, bool alloc)
3241 {
3242 	struct btrfs_fs_info *info = trans->fs_info;
3243 	struct btrfs_block_group *cache = NULL;
3244 	u64 total = num_bytes;
3245 	u64 old_val;
3246 	u64 byte_in_group;
3247 	int factor;
3248 	int ret = 0;
3249 
3250 	/* Block accounting for super block */
3251 	spin_lock(&info->delalloc_root_lock);
3252 	old_val = btrfs_super_bytes_used(info->super_copy);
3253 	if (alloc)
3254 		old_val += num_bytes;
3255 	else
3256 		old_val -= num_bytes;
3257 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3258 	spin_unlock(&info->delalloc_root_lock);
3259 
3260 	while (total) {
3261 		bool reclaim;
3262 
3263 		cache = btrfs_lookup_block_group(info, bytenr);
3264 		if (!cache) {
3265 			ret = -ENOENT;
3266 			break;
3267 		}
3268 		factor = btrfs_bg_type_to_factor(cache->flags);
3269 
3270 		/*
3271 		 * If this block group has free space cache written out, we
3272 		 * need to make sure to load it if we are removing space.  This
3273 		 * is because we need the unpinning stage to actually add the
3274 		 * space back to the block group, otherwise we will leak space.
3275 		 */
3276 		if (!alloc && !btrfs_block_group_done(cache))
3277 			btrfs_cache_block_group(cache, true);
3278 
3279 		byte_in_group = bytenr - cache->start;
3280 		WARN_ON(byte_in_group > cache->length);
3281 
3282 		spin_lock(&cache->space_info->lock);
3283 		spin_lock(&cache->lock);
3284 
3285 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3286 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3287 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3288 
3289 		old_val = cache->used;
3290 		num_bytes = min(total, cache->length - byte_in_group);
3291 		if (alloc) {
3292 			old_val += num_bytes;
3293 			cache->used = old_val;
3294 			cache->reserved -= num_bytes;
3295 			cache->space_info->bytes_reserved -= num_bytes;
3296 			cache->space_info->bytes_used += num_bytes;
3297 			cache->space_info->disk_used += num_bytes * factor;
3298 			spin_unlock(&cache->lock);
3299 			spin_unlock(&cache->space_info->lock);
3300 		} else {
3301 			old_val -= num_bytes;
3302 			cache->used = old_val;
3303 			cache->pinned += num_bytes;
3304 			btrfs_space_info_update_bytes_pinned(info,
3305 					cache->space_info, num_bytes);
3306 			cache->space_info->bytes_used -= num_bytes;
3307 			cache->space_info->disk_used -= num_bytes * factor;
3308 
3309 			reclaim = should_reclaim_block_group(cache, num_bytes);
3310 			spin_unlock(&cache->lock);
3311 			spin_unlock(&cache->space_info->lock);
3312 
3313 			set_extent_dirty(&trans->transaction->pinned_extents,
3314 					 bytenr, bytenr + num_bytes - 1,
3315 					 GFP_NOFS | __GFP_NOFAIL);
3316 		}
3317 
3318 		spin_lock(&trans->transaction->dirty_bgs_lock);
3319 		if (list_empty(&cache->dirty_list)) {
3320 			list_add_tail(&cache->dirty_list,
3321 				      &trans->transaction->dirty_bgs);
3322 			trans->delayed_ref_updates++;
3323 			btrfs_get_block_group(cache);
3324 		}
3325 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3326 
3327 		/*
3328 		 * No longer have used bytes in this block group, queue it for
3329 		 * deletion. We do this after adding the block group to the
3330 		 * dirty list to avoid races between cleaner kthread and space
3331 		 * cache writeout.
3332 		 */
3333 		if (!alloc && old_val == 0) {
3334 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3335 				btrfs_mark_bg_unused(cache);
3336 		} else if (!alloc && reclaim) {
3337 			btrfs_mark_bg_to_reclaim(cache);
3338 		}
3339 
3340 		btrfs_put_block_group(cache);
3341 		total -= num_bytes;
3342 		bytenr += num_bytes;
3343 	}
3344 
3345 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3346 	btrfs_update_delayed_refs_rsv(trans);
3347 	return ret;
3348 }
3349 
3350 /**
3351  * btrfs_add_reserved_bytes - update the block_group and space info counters
3352  * @cache:	The cache we are manipulating
3353  * @ram_bytes:  The number of bytes of file content, and will be same to
3354  *              @num_bytes except for the compress path.
3355  * @num_bytes:	The number of bytes in question
3356  * @delalloc:   The blocks are allocated for the delalloc write
3357  *
3358  * This is called by the allocator when it reserves space. If this is a
3359  * reservation and the block group has become read only we cannot make the
3360  * reservation and return -EAGAIN, otherwise this function always succeeds.
3361  */
3362 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3363 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3364 {
3365 	struct btrfs_space_info *space_info = cache->space_info;
3366 	int ret = 0;
3367 
3368 	spin_lock(&space_info->lock);
3369 	spin_lock(&cache->lock);
3370 	if (cache->ro) {
3371 		ret = -EAGAIN;
3372 	} else {
3373 		cache->reserved += num_bytes;
3374 		space_info->bytes_reserved += num_bytes;
3375 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3376 					      space_info->flags, num_bytes, 1);
3377 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3378 						      space_info, -ram_bytes);
3379 		if (delalloc)
3380 			cache->delalloc_bytes += num_bytes;
3381 
3382 		/*
3383 		 * Compression can use less space than we reserved, so wake
3384 		 * tickets if that happens
3385 		 */
3386 		if (num_bytes < ram_bytes)
3387 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3388 	}
3389 	spin_unlock(&cache->lock);
3390 	spin_unlock(&space_info->lock);
3391 	return ret;
3392 }
3393 
3394 /**
3395  * btrfs_free_reserved_bytes - update the block_group and space info counters
3396  * @cache:      The cache we are manipulating
3397  * @num_bytes:  The number of bytes in question
3398  * @delalloc:   The blocks are allocated for the delalloc write
3399  *
3400  * This is called by somebody who is freeing space that was never actually used
3401  * on disk.  For example if you reserve some space for a new leaf in transaction
3402  * A and before transaction A commits you free that leaf, you call this with
3403  * reserve set to 0 in order to clear the reservation.
3404  */
3405 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3406 			       u64 num_bytes, int delalloc)
3407 {
3408 	struct btrfs_space_info *space_info = cache->space_info;
3409 
3410 	spin_lock(&space_info->lock);
3411 	spin_lock(&cache->lock);
3412 	if (cache->ro)
3413 		space_info->bytes_readonly += num_bytes;
3414 	cache->reserved -= num_bytes;
3415 	space_info->bytes_reserved -= num_bytes;
3416 	space_info->max_extent_size = 0;
3417 
3418 	if (delalloc)
3419 		cache->delalloc_bytes -= num_bytes;
3420 	spin_unlock(&cache->lock);
3421 
3422 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3423 	spin_unlock(&space_info->lock);
3424 }
3425 
3426 static void force_metadata_allocation(struct btrfs_fs_info *info)
3427 {
3428 	struct list_head *head = &info->space_info;
3429 	struct btrfs_space_info *found;
3430 
3431 	list_for_each_entry(found, head, list) {
3432 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3433 			found->force_alloc = CHUNK_ALLOC_FORCE;
3434 	}
3435 }
3436 
3437 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3438 			      struct btrfs_space_info *sinfo, int force)
3439 {
3440 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3441 	u64 thresh;
3442 
3443 	if (force == CHUNK_ALLOC_FORCE)
3444 		return 1;
3445 
3446 	/*
3447 	 * in limited mode, we want to have some free space up to
3448 	 * about 1% of the FS size.
3449 	 */
3450 	if (force == CHUNK_ALLOC_LIMITED) {
3451 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3452 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3453 
3454 		if (sinfo->total_bytes - bytes_used < thresh)
3455 			return 1;
3456 	}
3457 
3458 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3459 		return 0;
3460 	return 1;
3461 }
3462 
3463 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3464 {
3465 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3466 
3467 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3468 }
3469 
3470 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3471 {
3472 	struct btrfs_block_group *bg;
3473 	int ret;
3474 
3475 	/*
3476 	 * Check if we have enough space in the system space info because we
3477 	 * will need to update device items in the chunk btree and insert a new
3478 	 * chunk item in the chunk btree as well. This will allocate a new
3479 	 * system block group if needed.
3480 	 */
3481 	check_system_chunk(trans, flags);
3482 
3483 	bg = btrfs_create_chunk(trans, flags);
3484 	if (IS_ERR(bg)) {
3485 		ret = PTR_ERR(bg);
3486 		goto out;
3487 	}
3488 
3489 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3490 	/*
3491 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3492 	 * previously reserved space in the system space_info and allocated one
3493 	 * new system chunk if necessary. However there are three exceptions:
3494 	 *
3495 	 * 1) We may have enough free space in the system space_info but all the
3496 	 *    existing system block groups have a profile which can not be used
3497 	 *    for extent allocation.
3498 	 *
3499 	 *    This happens when mounting in degraded mode. For example we have a
3500 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3501 	 *    using the other device in degraded mode. If we then allocate a chunk,
3502 	 *    we may have enough free space in the existing system space_info, but
3503 	 *    none of the block groups can be used for extent allocation since they
3504 	 *    have a RAID1 profile, and because we are in degraded mode with a
3505 	 *    single device, we are forced to allocate a new system chunk with a
3506 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3507 	 *    block groups and check if they have a usable profile and enough space
3508 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3509 	 *    try again after forcing allocation of a new system chunk. Like this
3510 	 *    we avoid paying the cost of that search in normal circumstances, when
3511 	 *    we were not mounted in degraded mode;
3512 	 *
3513 	 * 2) We had enough free space info the system space_info, and one suitable
3514 	 *    block group to allocate from when we called check_system_chunk()
3515 	 *    above. However right after we called it, the only system block group
3516 	 *    with enough free space got turned into RO mode by a running scrub,
3517 	 *    and in this case we have to allocate a new one and retry. We only
3518 	 *    need do this allocate and retry once, since we have a transaction
3519 	 *    handle and scrub uses the commit root to search for block groups;
3520 	 *
3521 	 * 3) We had one system block group with enough free space when we called
3522 	 *    check_system_chunk(), but after that, right before we tried to
3523 	 *    allocate the last extent buffer we needed, a discard operation came
3524 	 *    in and it temporarily removed the last free space entry from the
3525 	 *    block group (discard removes a free space entry, discards it, and
3526 	 *    then adds back the entry to the block group cache).
3527 	 */
3528 	if (ret == -ENOSPC) {
3529 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3530 		struct btrfs_block_group *sys_bg;
3531 
3532 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3533 		if (IS_ERR(sys_bg)) {
3534 			ret = PTR_ERR(sys_bg);
3535 			btrfs_abort_transaction(trans, ret);
3536 			goto out;
3537 		}
3538 
3539 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3540 		if (ret) {
3541 			btrfs_abort_transaction(trans, ret);
3542 			goto out;
3543 		}
3544 
3545 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3546 		if (ret) {
3547 			btrfs_abort_transaction(trans, ret);
3548 			goto out;
3549 		}
3550 	} else if (ret) {
3551 		btrfs_abort_transaction(trans, ret);
3552 		goto out;
3553 	}
3554 out:
3555 	btrfs_trans_release_chunk_metadata(trans);
3556 
3557 	if (ret)
3558 		return ERR_PTR(ret);
3559 
3560 	btrfs_get_block_group(bg);
3561 	return bg;
3562 }
3563 
3564 /*
3565  * Chunk allocation is done in 2 phases:
3566  *
3567  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3568  *    the chunk, the chunk mapping, create its block group and add the items
3569  *    that belong in the chunk btree to it - more specifically, we need to
3570  *    update device items in the chunk btree and add a new chunk item to it.
3571  *
3572  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3573  *    group item to the extent btree and the device extent items to the devices
3574  *    btree.
3575  *
3576  * This is done to prevent deadlocks. For example when COWing a node from the
3577  * extent btree we are holding a write lock on the node's parent and if we
3578  * trigger chunk allocation and attempted to insert the new block group item
3579  * in the extent btree right way, we could deadlock because the path for the
3580  * insertion can include that parent node. At first glance it seems impossible
3581  * to trigger chunk allocation after starting a transaction since tasks should
3582  * reserve enough transaction units (metadata space), however while that is true
3583  * most of the time, chunk allocation may still be triggered for several reasons:
3584  *
3585  * 1) When reserving metadata, we check if there is enough free space in the
3586  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3587  *    However later when the task actually tries to COW an extent buffer from
3588  *    the extent btree or from the device btree for example, it is forced to
3589  *    allocate a new block group (chunk) because the only one that had enough
3590  *    free space was just turned to RO mode by a running scrub for example (or
3591  *    device replace, block group reclaim thread, etc), so we can not use it
3592  *    for allocating an extent and end up being forced to allocate a new one;
3593  *
3594  * 2) Because we only check that the metadata space_info has enough free bytes,
3595  *    we end up not allocating a new metadata chunk in that case. However if
3596  *    the filesystem was mounted in degraded mode, none of the existing block
3597  *    groups might be suitable for extent allocation due to their incompatible
3598  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3599  *    use a RAID1 profile, in degraded mode using a single device). In this case
3600  *    when the task attempts to COW some extent buffer of the extent btree for
3601  *    example, it will trigger allocation of a new metadata block group with a
3602  *    suitable profile (SINGLE profile in the example of the degraded mount of
3603  *    the RAID1 filesystem);
3604  *
3605  * 3) The task has reserved enough transaction units / metadata space, but when
3606  *    it attempts to COW an extent buffer from the extent or device btree for
3607  *    example, it does not find any free extent in any metadata block group,
3608  *    therefore forced to try to allocate a new metadata block group.
3609  *    This is because some other task allocated all available extents in the
3610  *    meanwhile - this typically happens with tasks that don't reserve space
3611  *    properly, either intentionally or as a bug. One example where this is
3612  *    done intentionally is fsync, as it does not reserve any transaction units
3613  *    and ends up allocating a variable number of metadata extents for log
3614  *    tree extent buffers;
3615  *
3616  * 4) The task has reserved enough transaction units / metadata space, but right
3617  *    before it tries to allocate the last extent buffer it needs, a discard
3618  *    operation comes in and, temporarily, removes the last free space entry from
3619  *    the only metadata block group that had free space (discard starts by
3620  *    removing a free space entry from a block group, then does the discard
3621  *    operation and, once it's done, it adds back the free space entry to the
3622  *    block group).
3623  *
3624  * We also need this 2 phases setup when adding a device to a filesystem with
3625  * a seed device - we must create new metadata and system chunks without adding
3626  * any of the block group items to the chunk, extent and device btrees. If we
3627  * did not do it this way, we would get ENOSPC when attempting to update those
3628  * btrees, since all the chunks from the seed device are read-only.
3629  *
3630  * Phase 1 does the updates and insertions to the chunk btree because if we had
3631  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3632  * parallel, we risk having too many system chunks allocated by many tasks if
3633  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3634  * extreme case this leads to exhaustion of the system chunk array in the
3635  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3636  * and with RAID filesystems (so we have more device items in the chunk btree).
3637  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3638  * the system chunk array due to concurrent allocations") provides more details.
3639  *
3640  * Allocation of system chunks does not happen through this function. A task that
3641  * needs to update the chunk btree (the only btree that uses system chunks), must
3642  * preallocate chunk space by calling either check_system_chunk() or
3643  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3644  * metadata chunk or when removing a chunk, while the later is used before doing
3645  * a modification to the chunk btree - use cases for the later are adding,
3646  * removing and resizing a device as well as relocation of a system chunk.
3647  * See the comment below for more details.
3648  *
3649  * The reservation of system space, done through check_system_chunk(), as well
3650  * as all the updates and insertions into the chunk btree must be done while
3651  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3652  * an extent buffer from the chunks btree we never trigger allocation of a new
3653  * system chunk, which would result in a deadlock (trying to lock twice an
3654  * extent buffer of the chunk btree, first time before triggering the chunk
3655  * allocation and the second time during chunk allocation while attempting to
3656  * update the chunks btree). The system chunk array is also updated while holding
3657  * that mutex. The same logic applies to removing chunks - we must reserve system
3658  * space, update the chunk btree and the system chunk array in the superblock
3659  * while holding fs_info->chunk_mutex.
3660  *
3661  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3662  *
3663  * If @force is CHUNK_ALLOC_FORCE:
3664  *    - return 1 if it successfully allocates a chunk,
3665  *    - return errors including -ENOSPC otherwise.
3666  * If @force is NOT CHUNK_ALLOC_FORCE:
3667  *    - return 0 if it doesn't need to allocate a new chunk,
3668  *    - return 1 if it successfully allocates a chunk,
3669  *    - return errors including -ENOSPC otherwise.
3670  */
3671 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3672 		      enum btrfs_chunk_alloc_enum force)
3673 {
3674 	struct btrfs_fs_info *fs_info = trans->fs_info;
3675 	struct btrfs_space_info *space_info;
3676 	struct btrfs_block_group *ret_bg;
3677 	bool wait_for_alloc = false;
3678 	bool should_alloc = false;
3679 	bool from_extent_allocation = false;
3680 	int ret = 0;
3681 
3682 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3683 		from_extent_allocation = true;
3684 		force = CHUNK_ALLOC_FORCE;
3685 	}
3686 
3687 	/* Don't re-enter if we're already allocating a chunk */
3688 	if (trans->allocating_chunk)
3689 		return -ENOSPC;
3690 	/*
3691 	 * Allocation of system chunks can not happen through this path, as we
3692 	 * could end up in a deadlock if we are allocating a data or metadata
3693 	 * chunk and there is another task modifying the chunk btree.
3694 	 *
3695 	 * This is because while we are holding the chunk mutex, we will attempt
3696 	 * to add the new chunk item to the chunk btree or update an existing
3697 	 * device item in the chunk btree, while the other task that is modifying
3698 	 * the chunk btree is attempting to COW an extent buffer while holding a
3699 	 * lock on it and on its parent - if the COW operation triggers a system
3700 	 * chunk allocation, then we can deadlock because we are holding the
3701 	 * chunk mutex and we may need to access that extent buffer or its parent
3702 	 * in order to add the chunk item or update a device item.
3703 	 *
3704 	 * Tasks that want to modify the chunk tree should reserve system space
3705 	 * before updating the chunk btree, by calling either
3706 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3707 	 * It's possible that after a task reserves the space, it still ends up
3708 	 * here - this happens in the cases described above at do_chunk_alloc().
3709 	 * The task will have to either retry or fail.
3710 	 */
3711 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3712 		return -ENOSPC;
3713 
3714 	space_info = btrfs_find_space_info(fs_info, flags);
3715 	ASSERT(space_info);
3716 
3717 	do {
3718 		spin_lock(&space_info->lock);
3719 		if (force < space_info->force_alloc)
3720 			force = space_info->force_alloc;
3721 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3722 		if (space_info->full) {
3723 			/* No more free physical space */
3724 			if (should_alloc)
3725 				ret = -ENOSPC;
3726 			else
3727 				ret = 0;
3728 			spin_unlock(&space_info->lock);
3729 			return ret;
3730 		} else if (!should_alloc) {
3731 			spin_unlock(&space_info->lock);
3732 			return 0;
3733 		} else if (space_info->chunk_alloc) {
3734 			/*
3735 			 * Someone is already allocating, so we need to block
3736 			 * until this someone is finished and then loop to
3737 			 * recheck if we should continue with our allocation
3738 			 * attempt.
3739 			 */
3740 			wait_for_alloc = true;
3741 			force = CHUNK_ALLOC_NO_FORCE;
3742 			spin_unlock(&space_info->lock);
3743 			mutex_lock(&fs_info->chunk_mutex);
3744 			mutex_unlock(&fs_info->chunk_mutex);
3745 		} else {
3746 			/* Proceed with allocation */
3747 			space_info->chunk_alloc = 1;
3748 			wait_for_alloc = false;
3749 			spin_unlock(&space_info->lock);
3750 		}
3751 
3752 		cond_resched();
3753 	} while (wait_for_alloc);
3754 
3755 	mutex_lock(&fs_info->chunk_mutex);
3756 	trans->allocating_chunk = true;
3757 
3758 	/*
3759 	 * If we have mixed data/metadata chunks we want to make sure we keep
3760 	 * allocating mixed chunks instead of individual chunks.
3761 	 */
3762 	if (btrfs_mixed_space_info(space_info))
3763 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3764 
3765 	/*
3766 	 * if we're doing a data chunk, go ahead and make sure that
3767 	 * we keep a reasonable number of metadata chunks allocated in the
3768 	 * FS as well.
3769 	 */
3770 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3771 		fs_info->data_chunk_allocations++;
3772 		if (!(fs_info->data_chunk_allocations %
3773 		      fs_info->metadata_ratio))
3774 			force_metadata_allocation(fs_info);
3775 	}
3776 
3777 	ret_bg = do_chunk_alloc(trans, flags);
3778 	trans->allocating_chunk = false;
3779 
3780 	if (IS_ERR(ret_bg)) {
3781 		ret = PTR_ERR(ret_bg);
3782 	} else if (from_extent_allocation) {
3783 		/*
3784 		 * New block group is likely to be used soon. Try to activate
3785 		 * it now. Failure is OK for now.
3786 		 */
3787 		btrfs_zone_activate(ret_bg);
3788 	}
3789 
3790 	if (!ret)
3791 		btrfs_put_block_group(ret_bg);
3792 
3793 	spin_lock(&space_info->lock);
3794 	if (ret < 0) {
3795 		if (ret == -ENOSPC)
3796 			space_info->full = 1;
3797 		else
3798 			goto out;
3799 	} else {
3800 		ret = 1;
3801 		space_info->max_extent_size = 0;
3802 	}
3803 
3804 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3805 out:
3806 	space_info->chunk_alloc = 0;
3807 	spin_unlock(&space_info->lock);
3808 	mutex_unlock(&fs_info->chunk_mutex);
3809 
3810 	return ret;
3811 }
3812 
3813 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3814 {
3815 	u64 num_dev;
3816 
3817 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3818 	if (!num_dev)
3819 		num_dev = fs_info->fs_devices->rw_devices;
3820 
3821 	return num_dev;
3822 }
3823 
3824 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3825 				u64 bytes,
3826 				u64 type)
3827 {
3828 	struct btrfs_fs_info *fs_info = trans->fs_info;
3829 	struct btrfs_space_info *info;
3830 	u64 left;
3831 	int ret = 0;
3832 
3833 	/*
3834 	 * Needed because we can end up allocating a system chunk and for an
3835 	 * atomic and race free space reservation in the chunk block reserve.
3836 	 */
3837 	lockdep_assert_held(&fs_info->chunk_mutex);
3838 
3839 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3840 	spin_lock(&info->lock);
3841 	left = info->total_bytes - btrfs_space_info_used(info, true);
3842 	spin_unlock(&info->lock);
3843 
3844 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3845 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3846 			   left, bytes, type);
3847 		btrfs_dump_space_info(fs_info, info, 0, 0);
3848 	}
3849 
3850 	if (left < bytes) {
3851 		u64 flags = btrfs_system_alloc_profile(fs_info);
3852 		struct btrfs_block_group *bg;
3853 
3854 		/*
3855 		 * Ignore failure to create system chunk. We might end up not
3856 		 * needing it, as we might not need to COW all nodes/leafs from
3857 		 * the paths we visit in the chunk tree (they were already COWed
3858 		 * or created in the current transaction for example).
3859 		 */
3860 		bg = btrfs_create_chunk(trans, flags);
3861 		if (IS_ERR(bg)) {
3862 			ret = PTR_ERR(bg);
3863 		} else {
3864 			/*
3865 			 * We have a new chunk. We also need to activate it for
3866 			 * zoned filesystem.
3867 			 */
3868 			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3869 			if (ret < 0)
3870 				return;
3871 
3872 			/*
3873 			 * If we fail to add the chunk item here, we end up
3874 			 * trying again at phase 2 of chunk allocation, at
3875 			 * btrfs_create_pending_block_groups(). So ignore
3876 			 * any error here. An ENOSPC here could happen, due to
3877 			 * the cases described at do_chunk_alloc() - the system
3878 			 * block group we just created was just turned into RO
3879 			 * mode by a scrub for example, or a running discard
3880 			 * temporarily removed its free space entries, etc.
3881 			 */
3882 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3883 		}
3884 	}
3885 
3886 	if (!ret) {
3887 		ret = btrfs_block_rsv_add(fs_info,
3888 					  &fs_info->chunk_block_rsv,
3889 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3890 		if (!ret)
3891 			trans->chunk_bytes_reserved += bytes;
3892 	}
3893 }
3894 
3895 /*
3896  * Reserve space in the system space for allocating or removing a chunk.
3897  * The caller must be holding fs_info->chunk_mutex.
3898  */
3899 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3900 {
3901 	struct btrfs_fs_info *fs_info = trans->fs_info;
3902 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3903 	u64 bytes;
3904 
3905 	/* num_devs device items to update and 1 chunk item to add or remove. */
3906 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3907 		btrfs_calc_insert_metadata_size(fs_info, 1);
3908 
3909 	reserve_chunk_space(trans, bytes, type);
3910 }
3911 
3912 /*
3913  * Reserve space in the system space, if needed, for doing a modification to the
3914  * chunk btree.
3915  *
3916  * @trans:		A transaction handle.
3917  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3918  *			in the chunk btree or if it's for the deletion or update
3919  *			of an existing item.
3920  *
3921  * This is used in a context where we need to update the chunk btree outside
3922  * block group allocation and removal, to avoid a deadlock with a concurrent
3923  * task that is allocating a metadata or data block group and therefore needs to
3924  * update the chunk btree while holding the chunk mutex. After the update to the
3925  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3926  *
3927  */
3928 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3929 				  bool is_item_insertion)
3930 {
3931 	struct btrfs_fs_info *fs_info = trans->fs_info;
3932 	u64 bytes;
3933 
3934 	if (is_item_insertion)
3935 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3936 	else
3937 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3938 
3939 	mutex_lock(&fs_info->chunk_mutex);
3940 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3941 	mutex_unlock(&fs_info->chunk_mutex);
3942 }
3943 
3944 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3945 {
3946 	struct btrfs_block_group *block_group;
3947 
3948 	block_group = btrfs_lookup_first_block_group(info, 0);
3949 	while (block_group) {
3950 		btrfs_wait_block_group_cache_done(block_group);
3951 		spin_lock(&block_group->lock);
3952 		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
3953 				       &block_group->runtime_flags)) {
3954 			struct inode *inode = block_group->inode;
3955 
3956 			block_group->inode = NULL;
3957 			spin_unlock(&block_group->lock);
3958 
3959 			ASSERT(block_group->io_ctl.inode == NULL);
3960 			iput(inode);
3961 		} else {
3962 			spin_unlock(&block_group->lock);
3963 		}
3964 		block_group = btrfs_next_block_group(block_group);
3965 	}
3966 }
3967 
3968 /*
3969  * Must be called only after stopping all workers, since we could have block
3970  * group caching kthreads running, and therefore they could race with us if we
3971  * freed the block groups before stopping them.
3972  */
3973 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3974 {
3975 	struct btrfs_block_group *block_group;
3976 	struct btrfs_space_info *space_info;
3977 	struct btrfs_caching_control *caching_ctl;
3978 	struct rb_node *n;
3979 
3980 	write_lock(&info->block_group_cache_lock);
3981 	while (!list_empty(&info->caching_block_groups)) {
3982 		caching_ctl = list_entry(info->caching_block_groups.next,
3983 					 struct btrfs_caching_control, list);
3984 		list_del(&caching_ctl->list);
3985 		btrfs_put_caching_control(caching_ctl);
3986 	}
3987 	write_unlock(&info->block_group_cache_lock);
3988 
3989 	spin_lock(&info->unused_bgs_lock);
3990 	while (!list_empty(&info->unused_bgs)) {
3991 		block_group = list_first_entry(&info->unused_bgs,
3992 					       struct btrfs_block_group,
3993 					       bg_list);
3994 		list_del_init(&block_group->bg_list);
3995 		btrfs_put_block_group(block_group);
3996 	}
3997 
3998 	while (!list_empty(&info->reclaim_bgs)) {
3999 		block_group = list_first_entry(&info->reclaim_bgs,
4000 					       struct btrfs_block_group,
4001 					       bg_list);
4002 		list_del_init(&block_group->bg_list);
4003 		btrfs_put_block_group(block_group);
4004 	}
4005 	spin_unlock(&info->unused_bgs_lock);
4006 
4007 	spin_lock(&info->zone_active_bgs_lock);
4008 	while (!list_empty(&info->zone_active_bgs)) {
4009 		block_group = list_first_entry(&info->zone_active_bgs,
4010 					       struct btrfs_block_group,
4011 					       active_bg_list);
4012 		list_del_init(&block_group->active_bg_list);
4013 		btrfs_put_block_group(block_group);
4014 	}
4015 	spin_unlock(&info->zone_active_bgs_lock);
4016 
4017 	write_lock(&info->block_group_cache_lock);
4018 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4019 		block_group = rb_entry(n, struct btrfs_block_group,
4020 				       cache_node);
4021 		rb_erase_cached(&block_group->cache_node,
4022 				&info->block_group_cache_tree);
4023 		RB_CLEAR_NODE(&block_group->cache_node);
4024 		write_unlock(&info->block_group_cache_lock);
4025 
4026 		down_write(&block_group->space_info->groups_sem);
4027 		list_del(&block_group->list);
4028 		up_write(&block_group->space_info->groups_sem);
4029 
4030 		/*
4031 		 * We haven't cached this block group, which means we could
4032 		 * possibly have excluded extents on this block group.
4033 		 */
4034 		if (block_group->cached == BTRFS_CACHE_NO ||
4035 		    block_group->cached == BTRFS_CACHE_ERROR)
4036 			btrfs_free_excluded_extents(block_group);
4037 
4038 		btrfs_remove_free_space_cache(block_group);
4039 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4040 		ASSERT(list_empty(&block_group->dirty_list));
4041 		ASSERT(list_empty(&block_group->io_list));
4042 		ASSERT(list_empty(&block_group->bg_list));
4043 		ASSERT(refcount_read(&block_group->refs) == 1);
4044 		ASSERT(block_group->swap_extents == 0);
4045 		btrfs_put_block_group(block_group);
4046 
4047 		write_lock(&info->block_group_cache_lock);
4048 	}
4049 	write_unlock(&info->block_group_cache_lock);
4050 
4051 	btrfs_release_global_block_rsv(info);
4052 
4053 	while (!list_empty(&info->space_info)) {
4054 		space_info = list_entry(info->space_info.next,
4055 					struct btrfs_space_info,
4056 					list);
4057 
4058 		/*
4059 		 * Do not hide this behind enospc_debug, this is actually
4060 		 * important and indicates a real bug if this happens.
4061 		 */
4062 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4063 			    space_info->bytes_may_use > 0))
4064 			btrfs_dump_space_info(info, space_info, 0, 0);
4065 
4066 		/*
4067 		 * If there was a failure to cleanup a log tree, very likely due
4068 		 * to an IO failure on a writeback attempt of one or more of its
4069 		 * extent buffers, we could not do proper (and cheap) unaccounting
4070 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4071 		 * that case.
4072 		 */
4073 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4074 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4075 			if (WARN_ON(space_info->bytes_reserved > 0))
4076 				btrfs_dump_space_info(info, space_info, 0, 0);
4077 		}
4078 
4079 		WARN_ON(space_info->reclaim_size > 0);
4080 		list_del(&space_info->list);
4081 		btrfs_sysfs_remove_space_info(space_info);
4082 	}
4083 	return 0;
4084 }
4085 
4086 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4087 {
4088 	atomic_inc(&cache->frozen);
4089 }
4090 
4091 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4092 {
4093 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4094 	struct extent_map_tree *em_tree;
4095 	struct extent_map *em;
4096 	bool cleanup;
4097 
4098 	spin_lock(&block_group->lock);
4099 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4100 		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4101 	spin_unlock(&block_group->lock);
4102 
4103 	if (cleanup) {
4104 		em_tree = &fs_info->mapping_tree;
4105 		write_lock(&em_tree->lock);
4106 		em = lookup_extent_mapping(em_tree, block_group->start,
4107 					   1);
4108 		BUG_ON(!em); /* logic error, can't happen */
4109 		remove_extent_mapping(em_tree, em);
4110 		write_unlock(&em_tree->lock);
4111 
4112 		/* once for us and once for the tree */
4113 		free_extent_map(em);
4114 		free_extent_map(em);
4115 
4116 		/*
4117 		 * We may have left one free space entry and other possible
4118 		 * tasks trimming this block group have left 1 entry each one.
4119 		 * Free them if any.
4120 		 */
4121 		btrfs_remove_free_space_cache(block_group);
4122 	}
4123 }
4124 
4125 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4126 {
4127 	bool ret = true;
4128 
4129 	spin_lock(&bg->lock);
4130 	if (bg->ro)
4131 		ret = false;
4132 	else
4133 		bg->swap_extents++;
4134 	spin_unlock(&bg->lock);
4135 
4136 	return ret;
4137 }
4138 
4139 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4140 {
4141 	spin_lock(&bg->lock);
4142 	ASSERT(!bg->ro);
4143 	ASSERT(bg->swap_extents >= amount);
4144 	bg->swap_extents -= amount;
4145 	spin_unlock(&bg->lock);
4146 }
4147