xref: /openbmc/linux/fs/btrfs/block-group.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		spin_unlock(&fs_info->balance_lock);
70 		return extended_to_chunk(target);
71 	}
72 	spin_unlock(&fs_info->balance_lock);
73 
74 	/* First, mask out the RAID levels which aren't possible */
75 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 			allowed |= btrfs_raid_array[raid_type].bg_flag;
78 	}
79 	allowed &= flags;
80 
81 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 		allowed = BTRFS_BLOCK_GROUP_RAID6;
83 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 		allowed = BTRFS_BLOCK_GROUP_RAID5;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 		allowed = BTRFS_BLOCK_GROUP_RAID10;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 		allowed = BTRFS_BLOCK_GROUP_RAID1;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 		allowed = BTRFS_BLOCK_GROUP_RAID0;
91 
92 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93 
94 	return extended_to_chunk(flags | allowed);
95 }
96 
97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99 	unsigned seq;
100 	u64 flags;
101 
102 	do {
103 		flags = orig_flags;
104 		seq = read_seqbegin(&fs_info->profiles_lock);
105 
106 		if (flags & BTRFS_BLOCK_GROUP_DATA)
107 			flags |= fs_info->avail_data_alloc_bits;
108 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 			flags |= fs_info->avail_system_alloc_bits;
110 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 			flags |= fs_info->avail_metadata_alloc_bits;
112 	} while (read_seqretry(&fs_info->profiles_lock, seq));
113 
114 	return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116 
117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119 	refcount_inc(&cache->refs);
120 }
121 
122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124 	if (refcount_dec_and_test(&cache->refs)) {
125 		WARN_ON(cache->pinned > 0);
126 		WARN_ON(cache->reserved > 0);
127 
128 		/*
129 		 * A block_group shouldn't be on the discard_list anymore.
130 		 * Remove the block_group from the discard_list to prevent us
131 		 * from causing a panic due to NULL pointer dereference.
132 		 */
133 		if (WARN_ON(!list_empty(&cache->discard_list)))
134 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 						  cache);
136 
137 		/*
138 		 * If not empty, someone is still holding mutex of
139 		 * full_stripe_lock, which can only be released by caller.
140 		 * And it will definitely cause use-after-free when caller
141 		 * tries to release full stripe lock.
142 		 *
143 		 * No better way to resolve, but only to warn.
144 		 */
145 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 		kfree(cache->free_space_ctl);
147 		kfree(cache);
148 	}
149 }
150 
151 /*
152  * This adds the block group to the fs_info rb tree for the block group cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 				       struct btrfs_block_group *block_group)
156 {
157 	struct rb_node **p;
158 	struct rb_node *parent = NULL;
159 	struct btrfs_block_group *cache;
160 
161 	ASSERT(block_group->length != 0);
162 
163 	spin_lock(&info->block_group_cache_lock);
164 	p = &info->block_group_cache_tree.rb_node;
165 
166 	while (*p) {
167 		parent = *p;
168 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169 		if (block_group->start < cache->start) {
170 			p = &(*p)->rb_left;
171 		} else if (block_group->start > cache->start) {
172 			p = &(*p)->rb_right;
173 		} else {
174 			spin_unlock(&info->block_group_cache_lock);
175 			return -EEXIST;
176 		}
177 	}
178 
179 	rb_link_node(&block_group->cache_node, parent, p);
180 	rb_insert_color(&block_group->cache_node,
181 			&info->block_group_cache_tree);
182 
183 	if (info->first_logical_byte > block_group->start)
184 		info->first_logical_byte = block_group->start;
185 
186 	spin_unlock(&info->block_group_cache_lock);
187 
188 	return 0;
189 }
190 
191 /*
192  * This will return the block group at or after bytenr if contains is 0, else
193  * it will return the block group that contains the bytenr
194  */
195 static struct btrfs_block_group *block_group_cache_tree_search(
196 		struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198 	struct btrfs_block_group *cache, *ret = NULL;
199 	struct rb_node *n;
200 	u64 end, start;
201 
202 	spin_lock(&info->block_group_cache_lock);
203 	n = info->block_group_cache_tree.rb_node;
204 
205 	while (n) {
206 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 		end = cache->start + cache->length - 1;
208 		start = cache->start;
209 
210 		if (bytenr < start) {
211 			if (!contains && (!ret || start < ret->start))
212 				ret = cache;
213 			n = n->rb_left;
214 		} else if (bytenr > start) {
215 			if (contains && bytenr <= end) {
216 				ret = cache;
217 				break;
218 			}
219 			n = n->rb_right;
220 		} else {
221 			ret = cache;
222 			break;
223 		}
224 	}
225 	if (ret) {
226 		btrfs_get_block_group(ret);
227 		if (bytenr == 0 && info->first_logical_byte > ret->start)
228 			info->first_logical_byte = ret->start;
229 	}
230 	spin_unlock(&info->block_group_cache_lock);
231 
232 	return ret;
233 }
234 
235 /*
236  * Return the block group that starts at or after bytenr
237  */
238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239 		struct btrfs_fs_info *info, u64 bytenr)
240 {
241 	return block_group_cache_tree_search(info, bytenr, 0);
242 }
243 
244 /*
245  * Return the block group that contains the given bytenr
246  */
247 struct btrfs_block_group *btrfs_lookup_block_group(
248 		struct btrfs_fs_info *info, u64 bytenr)
249 {
250 	return block_group_cache_tree_search(info, bytenr, 1);
251 }
252 
253 struct btrfs_block_group *btrfs_next_block_group(
254 		struct btrfs_block_group *cache)
255 {
256 	struct btrfs_fs_info *fs_info = cache->fs_info;
257 	struct rb_node *node;
258 
259 	spin_lock(&fs_info->block_group_cache_lock);
260 
261 	/* If our block group was removed, we need a full search. */
262 	if (RB_EMPTY_NODE(&cache->cache_node)) {
263 		const u64 next_bytenr = cache->start + cache->length;
264 
265 		spin_unlock(&fs_info->block_group_cache_lock);
266 		btrfs_put_block_group(cache);
267 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 	}
269 	node = rb_next(&cache->cache_node);
270 	btrfs_put_block_group(cache);
271 	if (node) {
272 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 		btrfs_get_block_group(cache);
274 	} else
275 		cache = NULL;
276 	spin_unlock(&fs_info->block_group_cache_lock);
277 	return cache;
278 }
279 
280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282 	struct btrfs_block_group *bg;
283 	bool ret = true;
284 
285 	bg = btrfs_lookup_block_group(fs_info, bytenr);
286 	if (!bg)
287 		return false;
288 
289 	spin_lock(&bg->lock);
290 	if (bg->ro)
291 		ret = false;
292 	else
293 		atomic_inc(&bg->nocow_writers);
294 	spin_unlock(&bg->lock);
295 
296 	/* No put on block group, done by btrfs_dec_nocow_writers */
297 	if (!ret)
298 		btrfs_put_block_group(bg);
299 
300 	return ret;
301 }
302 
303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 
307 	bg = btrfs_lookup_block_group(fs_info, bytenr);
308 	ASSERT(bg);
309 	if (atomic_dec_and_test(&bg->nocow_writers))
310 		wake_up_var(&bg->nocow_writers);
311 	/*
312 	 * Once for our lookup and once for the lookup done by a previous call
313 	 * to btrfs_inc_nocow_writers()
314 	 */
315 	btrfs_put_block_group(bg);
316 	btrfs_put_block_group(bg);
317 }
318 
319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323 
324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 					const u64 start)
326 {
327 	struct btrfs_block_group *bg;
328 
329 	bg = btrfs_lookup_block_group(fs_info, start);
330 	ASSERT(bg);
331 	if (atomic_dec_and_test(&bg->reservations))
332 		wake_up_var(&bg->reservations);
333 	btrfs_put_block_group(bg);
334 }
335 
336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338 	struct btrfs_space_info *space_info = bg->space_info;
339 
340 	ASSERT(bg->ro);
341 
342 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 		return;
344 
345 	/*
346 	 * Our block group is read only but before we set it to read only,
347 	 * some task might have had allocated an extent from it already, but it
348 	 * has not yet created a respective ordered extent (and added it to a
349 	 * root's list of ordered extents).
350 	 * Therefore wait for any task currently allocating extents, since the
351 	 * block group's reservations counter is incremented while a read lock
352 	 * on the groups' semaphore is held and decremented after releasing
353 	 * the read access on that semaphore and creating the ordered extent.
354 	 */
355 	down_write(&space_info->groups_sem);
356 	up_write(&space_info->groups_sem);
357 
358 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360 
361 struct btrfs_caching_control *btrfs_get_caching_control(
362 		struct btrfs_block_group *cache)
363 {
364 	struct btrfs_caching_control *ctl;
365 
366 	spin_lock(&cache->lock);
367 	if (!cache->caching_ctl) {
368 		spin_unlock(&cache->lock);
369 		return NULL;
370 	}
371 
372 	ctl = cache->caching_ctl;
373 	refcount_inc(&ctl->count);
374 	spin_unlock(&cache->lock);
375 	return ctl;
376 }
377 
378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380 	if (refcount_dec_and_test(&ctl->count))
381 		kfree(ctl);
382 }
383 
384 /*
385  * When we wait for progress in the block group caching, its because our
386  * allocation attempt failed at least once.  So, we must sleep and let some
387  * progress happen before we try again.
388  *
389  * This function will sleep at least once waiting for new free space to show
390  * up, and then it will check the block group free space numbers for our min
391  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
392  * a free extent of a given size, but this is a good start.
393  *
394  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395  * any of the information in this block group.
396  */
397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 					   u64 num_bytes)
399 {
400 	struct btrfs_caching_control *caching_ctl;
401 
402 	caching_ctl = btrfs_get_caching_control(cache);
403 	if (!caching_ctl)
404 		return;
405 
406 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 		   (cache->free_space_ctl->free_space >= num_bytes));
408 
409 	btrfs_put_caching_control(caching_ctl);
410 }
411 
412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414 	struct btrfs_caching_control *caching_ctl;
415 	int ret = 0;
416 
417 	caching_ctl = btrfs_get_caching_control(cache);
418 	if (!caching_ctl)
419 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420 
421 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 	if (cache->cached == BTRFS_CACHE_ERROR)
423 		ret = -EIO;
424 	btrfs_put_caching_control(caching_ctl);
425 	return ret;
426 }
427 
428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430 	bool ret;
431 
432 	spin_lock(&cache->lock);
433 	ret = cache->cached != BTRFS_CACHE_FAST;
434 	spin_unlock(&cache->lock);
435 
436 	return ret;
437 }
438 
439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 				struct btrfs_caching_control *caching_ctl)
441 {
442 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444 
445 #ifdef CONFIG_BTRFS_DEBUG
446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448 	struct btrfs_fs_info *fs_info = block_group->fs_info;
449 	u64 start = block_group->start;
450 	u64 len = block_group->length;
451 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 		fs_info->nodesize : fs_info->sectorsize;
453 	u64 step = chunk << 1;
454 
455 	while (len > chunk) {
456 		btrfs_remove_free_space(block_group, start, chunk);
457 		start += step;
458 		if (len < step)
459 			len = 0;
460 		else
461 			len -= step;
462 	}
463 }
464 #endif
465 
466 /*
467  * This is only called by btrfs_cache_block_group, since we could have freed
468  * extents we need to check the pinned_extents for any extents that can't be
469  * used yet since their free space will be released as soon as the transaction
470  * commits.
471  */
472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474 	struct btrfs_fs_info *info = block_group->fs_info;
475 	u64 extent_start, extent_end, size, total_added = 0;
476 	int ret;
477 
478 	while (start < end) {
479 		ret = find_first_extent_bit(&info->excluded_extents, start,
480 					    &extent_start, &extent_end,
481 					    EXTENT_DIRTY | EXTENT_UPTODATE,
482 					    NULL);
483 		if (ret)
484 			break;
485 
486 		if (extent_start <= start) {
487 			start = extent_end + 1;
488 		} else if (extent_start > start && extent_start < end) {
489 			size = extent_start - start;
490 			total_added += size;
491 			ret = btrfs_add_free_space_async_trimmed(block_group,
492 								 start, size);
493 			BUG_ON(ret); /* -ENOMEM or logic error */
494 			start = extent_end + 1;
495 		} else {
496 			break;
497 		}
498 	}
499 
500 	if (start < end) {
501 		size = end - start;
502 		total_added += size;
503 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 							 size);
505 		BUG_ON(ret); /* -ENOMEM or logic error */
506 	}
507 
508 	return total_added;
509 }
510 
511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513 	struct btrfs_block_group *block_group = caching_ctl->block_group;
514 	struct btrfs_fs_info *fs_info = block_group->fs_info;
515 	struct btrfs_root *extent_root = fs_info->extent_root;
516 	struct btrfs_path *path;
517 	struct extent_buffer *leaf;
518 	struct btrfs_key key;
519 	u64 total_found = 0;
520 	u64 last = 0;
521 	u32 nritems;
522 	int ret;
523 	bool wakeup = true;
524 
525 	path = btrfs_alloc_path();
526 	if (!path)
527 		return -ENOMEM;
528 
529 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530 
531 #ifdef CONFIG_BTRFS_DEBUG
532 	/*
533 	 * If we're fragmenting we don't want to make anybody think we can
534 	 * allocate from this block group until we've had a chance to fragment
535 	 * the free space.
536 	 */
537 	if (btrfs_should_fragment_free_space(block_group))
538 		wakeup = false;
539 #endif
540 	/*
541 	 * We don't want to deadlock with somebody trying to allocate a new
542 	 * extent for the extent root while also trying to search the extent
543 	 * root to add free space.  So we skip locking and search the commit
544 	 * root, since its read-only
545 	 */
546 	path->skip_locking = 1;
547 	path->search_commit_root = 1;
548 	path->reada = READA_FORWARD;
549 
550 	key.objectid = last;
551 	key.offset = 0;
552 	key.type = BTRFS_EXTENT_ITEM_KEY;
553 
554 next:
555 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 	if (ret < 0)
557 		goto out;
558 
559 	leaf = path->nodes[0];
560 	nritems = btrfs_header_nritems(leaf);
561 
562 	while (1) {
563 		if (btrfs_fs_closing(fs_info) > 1) {
564 			last = (u64)-1;
565 			break;
566 		}
567 
568 		if (path->slots[0] < nritems) {
569 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 		} else {
571 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 			if (ret)
573 				break;
574 
575 			if (need_resched() ||
576 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
577 				if (wakeup)
578 					caching_ctl->progress = last;
579 				btrfs_release_path(path);
580 				up_read(&fs_info->commit_root_sem);
581 				mutex_unlock(&caching_ctl->mutex);
582 				cond_resched();
583 				mutex_lock(&caching_ctl->mutex);
584 				down_read(&fs_info->commit_root_sem);
585 				goto next;
586 			}
587 
588 			ret = btrfs_next_leaf(extent_root, path);
589 			if (ret < 0)
590 				goto out;
591 			if (ret)
592 				break;
593 			leaf = path->nodes[0];
594 			nritems = btrfs_header_nritems(leaf);
595 			continue;
596 		}
597 
598 		if (key.objectid < last) {
599 			key.objectid = last;
600 			key.offset = 0;
601 			key.type = BTRFS_EXTENT_ITEM_KEY;
602 
603 			if (wakeup)
604 				caching_ctl->progress = last;
605 			btrfs_release_path(path);
606 			goto next;
607 		}
608 
609 		if (key.objectid < block_group->start) {
610 			path->slots[0]++;
611 			continue;
612 		}
613 
614 		if (key.objectid >= block_group->start + block_group->length)
615 			break;
616 
617 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 		    key.type == BTRFS_METADATA_ITEM_KEY) {
619 			total_found += add_new_free_space(block_group, last,
620 							  key.objectid);
621 			if (key.type == BTRFS_METADATA_ITEM_KEY)
622 				last = key.objectid +
623 					fs_info->nodesize;
624 			else
625 				last = key.objectid + key.offset;
626 
627 			if (total_found > CACHING_CTL_WAKE_UP) {
628 				total_found = 0;
629 				if (wakeup)
630 					wake_up(&caching_ctl->wait);
631 			}
632 		}
633 		path->slots[0]++;
634 	}
635 	ret = 0;
636 
637 	total_found += add_new_free_space(block_group, last,
638 				block_group->start + block_group->length);
639 	caching_ctl->progress = (u64)-1;
640 
641 out:
642 	btrfs_free_path(path);
643 	return ret;
644 }
645 
646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648 	struct btrfs_block_group *block_group;
649 	struct btrfs_fs_info *fs_info;
650 	struct btrfs_caching_control *caching_ctl;
651 	int ret;
652 
653 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 	block_group = caching_ctl->block_group;
655 	fs_info = block_group->fs_info;
656 
657 	mutex_lock(&caching_ctl->mutex);
658 	down_read(&fs_info->commit_root_sem);
659 
660 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 		ret = load_free_space_cache(block_group);
662 		if (ret == 1) {
663 			ret = 0;
664 			goto done;
665 		}
666 
667 		/*
668 		 * We failed to load the space cache, set ourselves to
669 		 * CACHE_STARTED and carry on.
670 		 */
671 		spin_lock(&block_group->lock);
672 		block_group->cached = BTRFS_CACHE_STARTED;
673 		spin_unlock(&block_group->lock);
674 		wake_up(&caching_ctl->wait);
675 	}
676 
677 	/*
678 	 * If we are in the transaction that populated the free space tree we
679 	 * can't actually cache from the free space tree as our commit root and
680 	 * real root are the same, so we could change the contents of the blocks
681 	 * while caching.  Instead do the slow caching in this case, and after
682 	 * the transaction has committed we will be safe.
683 	 */
684 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 		ret = load_free_space_tree(caching_ctl);
687 	else
688 		ret = load_extent_tree_free(caching_ctl);
689 done:
690 	spin_lock(&block_group->lock);
691 	block_group->caching_ctl = NULL;
692 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 	spin_unlock(&block_group->lock);
694 
695 #ifdef CONFIG_BTRFS_DEBUG
696 	if (btrfs_should_fragment_free_space(block_group)) {
697 		u64 bytes_used;
698 
699 		spin_lock(&block_group->space_info->lock);
700 		spin_lock(&block_group->lock);
701 		bytes_used = block_group->length - block_group->used;
702 		block_group->space_info->bytes_used += bytes_used >> 1;
703 		spin_unlock(&block_group->lock);
704 		spin_unlock(&block_group->space_info->lock);
705 		fragment_free_space(block_group);
706 	}
707 #endif
708 
709 	caching_ctl->progress = (u64)-1;
710 
711 	up_read(&fs_info->commit_root_sem);
712 	btrfs_free_excluded_extents(block_group);
713 	mutex_unlock(&caching_ctl->mutex);
714 
715 	wake_up(&caching_ctl->wait);
716 
717 	btrfs_put_caching_control(caching_ctl);
718 	btrfs_put_block_group(block_group);
719 }
720 
721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723 	DEFINE_WAIT(wait);
724 	struct btrfs_fs_info *fs_info = cache->fs_info;
725 	struct btrfs_caching_control *caching_ctl = NULL;
726 	int ret = 0;
727 
728 	/* Allocator for zoned filesystems does not use the cache at all */
729 	if (btrfs_is_zoned(fs_info))
730 		return 0;
731 
732 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 	if (!caching_ctl)
734 		return -ENOMEM;
735 
736 	INIT_LIST_HEAD(&caching_ctl->list);
737 	mutex_init(&caching_ctl->mutex);
738 	init_waitqueue_head(&caching_ctl->wait);
739 	caching_ctl->block_group = cache;
740 	caching_ctl->progress = cache->start;
741 	refcount_set(&caching_ctl->count, 2);
742 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743 
744 	spin_lock(&cache->lock);
745 	if (cache->cached != BTRFS_CACHE_NO) {
746 		kfree(caching_ctl);
747 
748 		caching_ctl = cache->caching_ctl;
749 		if (caching_ctl)
750 			refcount_inc(&caching_ctl->count);
751 		spin_unlock(&cache->lock);
752 		goto out;
753 	}
754 	WARN_ON(cache->caching_ctl);
755 	cache->caching_ctl = caching_ctl;
756 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 		cache->cached = BTRFS_CACHE_FAST;
758 	else
759 		cache->cached = BTRFS_CACHE_STARTED;
760 	cache->has_caching_ctl = 1;
761 	spin_unlock(&cache->lock);
762 
763 	spin_lock(&fs_info->block_group_cache_lock);
764 	refcount_inc(&caching_ctl->count);
765 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766 	spin_unlock(&fs_info->block_group_cache_lock);
767 
768 	btrfs_get_block_group(cache);
769 
770 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772 	if (load_cache_only && caching_ctl)
773 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 	if (caching_ctl)
775 		btrfs_put_caching_control(caching_ctl);
776 
777 	return ret;
778 }
779 
780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782 	u64 extra_flags = chunk_to_extended(flags) &
783 				BTRFS_EXTENDED_PROFILE_MASK;
784 
785 	write_seqlock(&fs_info->profiles_lock);
786 	if (flags & BTRFS_BLOCK_GROUP_DATA)
787 		fs_info->avail_data_alloc_bits &= ~extra_flags;
788 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 		fs_info->avail_system_alloc_bits &= ~extra_flags;
792 	write_sequnlock(&fs_info->profiles_lock);
793 }
794 
795 /*
796  * Clear incompat bits for the following feature(s):
797  *
798  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799  *            in the whole filesystem
800  *
801  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802  */
803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805 	bool found_raid56 = false;
806 	bool found_raid1c34 = false;
807 
808 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 		struct list_head *head = &fs_info->space_info;
812 		struct btrfs_space_info *sinfo;
813 
814 		list_for_each_entry_rcu(sinfo, head, list) {
815 			down_read(&sinfo->groups_sem);
816 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817 				found_raid56 = true;
818 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 				found_raid56 = true;
820 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 				found_raid1c34 = true;
822 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 				found_raid1c34 = true;
824 			up_read(&sinfo->groups_sem);
825 		}
826 		if (!found_raid56)
827 			btrfs_clear_fs_incompat(fs_info, RAID56);
828 		if (!found_raid1c34)
829 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 	}
831 }
832 
833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 				   struct btrfs_path *path,
835 				   struct btrfs_block_group *block_group)
836 {
837 	struct btrfs_fs_info *fs_info = trans->fs_info;
838 	struct btrfs_root *root;
839 	struct btrfs_key key;
840 	int ret;
841 
842 	root = fs_info->extent_root;
843 	key.objectid = block_group->start;
844 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 	key.offset = block_group->length;
846 
847 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 	if (ret > 0)
849 		ret = -ENOENT;
850 	if (ret < 0)
851 		return ret;
852 
853 	ret = btrfs_del_item(trans, root, path);
854 	return ret;
855 }
856 
857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 			     u64 group_start, struct extent_map *em)
859 {
860 	struct btrfs_fs_info *fs_info = trans->fs_info;
861 	struct btrfs_path *path;
862 	struct btrfs_block_group *block_group;
863 	struct btrfs_free_cluster *cluster;
864 	struct inode *inode;
865 	struct kobject *kobj = NULL;
866 	int ret;
867 	int index;
868 	int factor;
869 	struct btrfs_caching_control *caching_ctl = NULL;
870 	bool remove_em;
871 	bool remove_rsv = false;
872 
873 	block_group = btrfs_lookup_block_group(fs_info, group_start);
874 	BUG_ON(!block_group);
875 	BUG_ON(!block_group->ro);
876 
877 	trace_btrfs_remove_block_group(block_group);
878 	/*
879 	 * Free the reserved super bytes from this block group before
880 	 * remove it.
881 	 */
882 	btrfs_free_excluded_extents(block_group);
883 	btrfs_free_ref_tree_range(fs_info, block_group->start,
884 				  block_group->length);
885 
886 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 	factor = btrfs_bg_type_to_factor(block_group->flags);
888 
889 	/* make sure this block group isn't part of an allocation cluster */
890 	cluster = &fs_info->data_alloc_cluster;
891 	spin_lock(&cluster->refill_lock);
892 	btrfs_return_cluster_to_free_space(block_group, cluster);
893 	spin_unlock(&cluster->refill_lock);
894 
895 	/*
896 	 * make sure this block group isn't part of a metadata
897 	 * allocation cluster
898 	 */
899 	cluster = &fs_info->meta_alloc_cluster;
900 	spin_lock(&cluster->refill_lock);
901 	btrfs_return_cluster_to_free_space(block_group, cluster);
902 	spin_unlock(&cluster->refill_lock);
903 
904 	btrfs_clear_treelog_bg(block_group);
905 
906 	path = btrfs_alloc_path();
907 	if (!path) {
908 		ret = -ENOMEM;
909 		goto out;
910 	}
911 
912 	/*
913 	 * get the inode first so any iput calls done for the io_list
914 	 * aren't the final iput (no unlinks allowed now)
915 	 */
916 	inode = lookup_free_space_inode(block_group, path);
917 
918 	mutex_lock(&trans->transaction->cache_write_mutex);
919 	/*
920 	 * Make sure our free space cache IO is done before removing the
921 	 * free space inode
922 	 */
923 	spin_lock(&trans->transaction->dirty_bgs_lock);
924 	if (!list_empty(&block_group->io_list)) {
925 		list_del_init(&block_group->io_list);
926 
927 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928 
929 		spin_unlock(&trans->transaction->dirty_bgs_lock);
930 		btrfs_wait_cache_io(trans, block_group, path);
931 		btrfs_put_block_group(block_group);
932 		spin_lock(&trans->transaction->dirty_bgs_lock);
933 	}
934 
935 	if (!list_empty(&block_group->dirty_list)) {
936 		list_del_init(&block_group->dirty_list);
937 		remove_rsv = true;
938 		btrfs_put_block_group(block_group);
939 	}
940 	spin_unlock(&trans->transaction->dirty_bgs_lock);
941 	mutex_unlock(&trans->transaction->cache_write_mutex);
942 
943 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 	if (ret)
945 		goto out;
946 
947 	spin_lock(&fs_info->block_group_cache_lock);
948 	rb_erase(&block_group->cache_node,
949 		 &fs_info->block_group_cache_tree);
950 	RB_CLEAR_NODE(&block_group->cache_node);
951 
952 	/* Once for the block groups rbtree */
953 	btrfs_put_block_group(block_group);
954 
955 	if (fs_info->first_logical_byte == block_group->start)
956 		fs_info->first_logical_byte = (u64)-1;
957 	spin_unlock(&fs_info->block_group_cache_lock);
958 
959 	down_write(&block_group->space_info->groups_sem);
960 	/*
961 	 * we must use list_del_init so people can check to see if they
962 	 * are still on the list after taking the semaphore
963 	 */
964 	list_del_init(&block_group->list);
965 	if (list_empty(&block_group->space_info->block_groups[index])) {
966 		kobj = block_group->space_info->block_group_kobjs[index];
967 		block_group->space_info->block_group_kobjs[index] = NULL;
968 		clear_avail_alloc_bits(fs_info, block_group->flags);
969 	}
970 	up_write(&block_group->space_info->groups_sem);
971 	clear_incompat_bg_bits(fs_info, block_group->flags);
972 	if (kobj) {
973 		kobject_del(kobj);
974 		kobject_put(kobj);
975 	}
976 
977 	if (block_group->has_caching_ctl)
978 		caching_ctl = btrfs_get_caching_control(block_group);
979 	if (block_group->cached == BTRFS_CACHE_STARTED)
980 		btrfs_wait_block_group_cache_done(block_group);
981 	if (block_group->has_caching_ctl) {
982 		spin_lock(&fs_info->block_group_cache_lock);
983 		if (!caching_ctl) {
984 			struct btrfs_caching_control *ctl;
985 
986 			list_for_each_entry(ctl,
987 				    &fs_info->caching_block_groups, list)
988 				if (ctl->block_group == block_group) {
989 					caching_ctl = ctl;
990 					refcount_inc(&caching_ctl->count);
991 					break;
992 				}
993 		}
994 		if (caching_ctl)
995 			list_del_init(&caching_ctl->list);
996 		spin_unlock(&fs_info->block_group_cache_lock);
997 		if (caching_ctl) {
998 			/* Once for the caching bgs list and once for us. */
999 			btrfs_put_caching_control(caching_ctl);
1000 			btrfs_put_caching_control(caching_ctl);
1001 		}
1002 	}
1003 
1004 	spin_lock(&trans->transaction->dirty_bgs_lock);
1005 	WARN_ON(!list_empty(&block_group->dirty_list));
1006 	WARN_ON(!list_empty(&block_group->io_list));
1007 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1008 
1009 	btrfs_remove_free_space_cache(block_group);
1010 
1011 	spin_lock(&block_group->space_info->lock);
1012 	list_del_init(&block_group->ro_list);
1013 
1014 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 		WARN_ON(block_group->space_info->total_bytes
1016 			< block_group->length);
1017 		WARN_ON(block_group->space_info->bytes_readonly
1018 			< block_group->length - block_group->zone_unusable);
1019 		WARN_ON(block_group->space_info->bytes_zone_unusable
1020 			< block_group->zone_unusable);
1021 		WARN_ON(block_group->space_info->disk_total
1022 			< block_group->length * factor);
1023 	}
1024 	block_group->space_info->total_bytes -= block_group->length;
1025 	block_group->space_info->bytes_readonly -=
1026 		(block_group->length - block_group->zone_unusable);
1027 	block_group->space_info->bytes_zone_unusable -=
1028 		block_group->zone_unusable;
1029 	block_group->space_info->disk_total -= block_group->length * factor;
1030 
1031 	spin_unlock(&block_group->space_info->lock);
1032 
1033 	/*
1034 	 * Remove the free space for the block group from the free space tree
1035 	 * and the block group's item from the extent tree before marking the
1036 	 * block group as removed. This is to prevent races with tasks that
1037 	 * freeze and unfreeze a block group, this task and another task
1038 	 * allocating a new block group - the unfreeze task ends up removing
1039 	 * the block group's extent map before the task calling this function
1040 	 * deletes the block group item from the extent tree, allowing for
1041 	 * another task to attempt to create another block group with the same
1042 	 * item key (and failing with -EEXIST and a transaction abort).
1043 	 */
1044 	ret = remove_block_group_free_space(trans, block_group);
1045 	if (ret)
1046 		goto out;
1047 
1048 	ret = remove_block_group_item(trans, path, block_group);
1049 	if (ret < 0)
1050 		goto out;
1051 
1052 	spin_lock(&block_group->lock);
1053 	block_group->removed = 1;
1054 	/*
1055 	 * At this point trimming or scrub can't start on this block group,
1056 	 * because we removed the block group from the rbtree
1057 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 	 * even if someone already got this block group before we removed it
1059 	 * from the rbtree, they have already incremented block_group->frozen -
1060 	 * if they didn't, for the trimming case they won't find any free space
1061 	 * entries because we already removed them all when we called
1062 	 * btrfs_remove_free_space_cache().
1063 	 *
1064 	 * And we must not remove the extent map from the fs_info->mapping_tree
1065 	 * to prevent the same logical address range and physical device space
1066 	 * ranges from being reused for a new block group. This is needed to
1067 	 * avoid races with trimming and scrub.
1068 	 *
1069 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 	 * completely transactionless, so while it is trimming a range the
1071 	 * currently running transaction might finish and a new one start,
1072 	 * allowing for new block groups to be created that can reuse the same
1073 	 * physical device locations unless we take this special care.
1074 	 *
1075 	 * There may also be an implicit trim operation if the file system
1076 	 * is mounted with -odiscard. The same protections must remain
1077 	 * in place until the extents have been discarded completely when
1078 	 * the transaction commit has completed.
1079 	 */
1080 	remove_em = (atomic_read(&block_group->frozen) == 0);
1081 	spin_unlock(&block_group->lock);
1082 
1083 	if (remove_em) {
1084 		struct extent_map_tree *em_tree;
1085 
1086 		em_tree = &fs_info->mapping_tree;
1087 		write_lock(&em_tree->lock);
1088 		remove_extent_mapping(em_tree, em);
1089 		write_unlock(&em_tree->lock);
1090 		/* once for the tree */
1091 		free_extent_map(em);
1092 	}
1093 
1094 out:
1095 	/* Once for the lookup reference */
1096 	btrfs_put_block_group(block_group);
1097 	if (remove_rsv)
1098 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 	btrfs_free_path(path);
1100 	return ret;
1101 }
1102 
1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 	struct extent_map *em;
1108 	struct map_lookup *map;
1109 	unsigned int num_items;
1110 
1111 	read_lock(&em_tree->lock);
1112 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 	read_unlock(&em_tree->lock);
1114 	ASSERT(em && em->start == chunk_offset);
1115 
1116 	/*
1117 	 * We need to reserve 3 + N units from the metadata space info in order
1118 	 * to remove a block group (done at btrfs_remove_chunk() and at
1119 	 * btrfs_remove_block_group()), which are used for:
1120 	 *
1121 	 * 1 unit for adding the free space inode's orphan (located in the tree
1122 	 * of tree roots).
1123 	 * 1 unit for deleting the block group item (located in the extent
1124 	 * tree).
1125 	 * 1 unit for deleting the free space item (located in tree of tree
1126 	 * roots).
1127 	 * N units for deleting N device extent items corresponding to each
1128 	 * stripe (located in the device tree).
1129 	 *
1130 	 * In order to remove a block group we also need to reserve units in the
1131 	 * system space info in order to update the chunk tree (update one or
1132 	 * more device items and remove one chunk item), but this is done at
1133 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 	 */
1135 	map = em->map_lookup;
1136 	num_items = 3 + map->num_stripes;
1137 	free_extent_map(em);
1138 
1139 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 							   num_items);
1141 }
1142 
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158 	struct btrfs_space_info *sinfo = cache->space_info;
1159 	u64 num_bytes;
1160 	int ret = -ENOSPC;
1161 
1162 	spin_lock(&sinfo->lock);
1163 	spin_lock(&cache->lock);
1164 
1165 	if (cache->swap_extents) {
1166 		ret = -ETXTBSY;
1167 		goto out;
1168 	}
1169 
1170 	if (cache->ro) {
1171 		cache->ro++;
1172 		ret = 0;
1173 		goto out;
1174 	}
1175 
1176 	num_bytes = cache->length - cache->reserved - cache->pinned -
1177 		    cache->bytes_super - cache->zone_unusable - cache->used;
1178 
1179 	/*
1180 	 * Data never overcommits, even in mixed mode, so do just the straight
1181 	 * check of left over space in how much we have allocated.
1182 	 */
1183 	if (force) {
1184 		ret = 0;
1185 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187 
1188 		/*
1189 		 * Here we make sure if we mark this bg RO, we still have enough
1190 		 * free space as buffer.
1191 		 */
1192 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 			ret = 0;
1194 	} else {
1195 		/*
1196 		 * We overcommit metadata, so we need to do the
1197 		 * btrfs_can_overcommit check here, and we need to pass in
1198 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 		 * leeway to allow us to mark this block group as read only.
1200 		 */
1201 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 					 BTRFS_RESERVE_NO_FLUSH))
1203 			ret = 0;
1204 	}
1205 
1206 	if (!ret) {
1207 		sinfo->bytes_readonly += num_bytes;
1208 		if (btrfs_is_zoned(cache->fs_info)) {
1209 			/* Migrate zone_unusable bytes to readonly */
1210 			sinfo->bytes_readonly += cache->zone_unusable;
1211 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 			cache->zone_unusable = 0;
1213 		}
1214 		cache->ro++;
1215 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216 	}
1217 out:
1218 	spin_unlock(&cache->lock);
1219 	spin_unlock(&sinfo->lock);
1220 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 		btrfs_info(cache->fs_info,
1222 			"unable to make block group %llu ro", cache->start);
1223 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 	}
1225 	return ret;
1226 }
1227 
1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 				 struct btrfs_block_group *bg)
1230 {
1231 	struct btrfs_fs_info *fs_info = bg->fs_info;
1232 	struct btrfs_transaction *prev_trans = NULL;
1233 	const u64 start = bg->start;
1234 	const u64 end = start + bg->length - 1;
1235 	int ret;
1236 
1237 	spin_lock(&fs_info->trans_lock);
1238 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 		prev_trans = list_last_entry(&trans->transaction->list,
1240 					     struct btrfs_transaction, list);
1241 		refcount_inc(&prev_trans->use_count);
1242 	}
1243 	spin_unlock(&fs_info->trans_lock);
1244 
1245 	/*
1246 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 	 * task might be running finish_extent_commit() for the previous
1249 	 * transaction N - 1, and have seen a range belonging to the block
1250 	 * group in pinned_extents before we were able to clear the whole block
1251 	 * group range from pinned_extents. This means that task can lookup for
1252 	 * the block group after we unpinned it from pinned_extents and removed
1253 	 * it, leading to a BUG_ON() at unpin_extent_range().
1254 	 */
1255 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 	if (prev_trans) {
1257 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 					EXTENT_DIRTY);
1259 		if (ret)
1260 			goto out;
1261 	}
1262 
1263 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264 				EXTENT_DIRTY);
1265 out:
1266 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 	if (prev_trans)
1268 		btrfs_put_transaction(prev_trans);
1269 
1270 	return ret == 0;
1271 }
1272 
1273 /*
1274  * Process the unused_bgs list and remove any that don't have any allocated
1275  * space inside of them.
1276  */
1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279 	struct btrfs_block_group *block_group;
1280 	struct btrfs_space_info *space_info;
1281 	struct btrfs_trans_handle *trans;
1282 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 	int ret = 0;
1284 
1285 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 		return;
1287 
1288 	/*
1289 	 * Long running balances can keep us blocked here for eternity, so
1290 	 * simply skip deletion if we're unable to get the mutex.
1291 	 */
1292 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293 		return;
1294 
1295 	spin_lock(&fs_info->unused_bgs_lock);
1296 	while (!list_empty(&fs_info->unused_bgs)) {
1297 		int trimming;
1298 
1299 		block_group = list_first_entry(&fs_info->unused_bgs,
1300 					       struct btrfs_block_group,
1301 					       bg_list);
1302 		list_del_init(&block_group->bg_list);
1303 
1304 		space_info = block_group->space_info;
1305 
1306 		if (ret || btrfs_mixed_space_info(space_info)) {
1307 			btrfs_put_block_group(block_group);
1308 			continue;
1309 		}
1310 		spin_unlock(&fs_info->unused_bgs_lock);
1311 
1312 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313 
1314 		/* Don't want to race with allocators so take the groups_sem */
1315 		down_write(&space_info->groups_sem);
1316 
1317 		/*
1318 		 * Async discard moves the final block group discard to be prior
1319 		 * to the unused_bgs code path.  Therefore, if it's not fully
1320 		 * trimmed, punt it back to the async discard lists.
1321 		 */
1322 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 		    !btrfs_is_free_space_trimmed(block_group)) {
1324 			trace_btrfs_skip_unused_block_group(block_group);
1325 			up_write(&space_info->groups_sem);
1326 			/* Requeue if we failed because of async discard */
1327 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 						 block_group);
1329 			goto next;
1330 		}
1331 
1332 		spin_lock(&block_group->lock);
1333 		if (block_group->reserved || block_group->pinned ||
1334 		    block_group->used || block_group->ro ||
1335 		    list_is_singular(&block_group->list)) {
1336 			/*
1337 			 * We want to bail if we made new allocations or have
1338 			 * outstanding allocations in this block group.  We do
1339 			 * the ro check in case balance is currently acting on
1340 			 * this block group.
1341 			 */
1342 			trace_btrfs_skip_unused_block_group(block_group);
1343 			spin_unlock(&block_group->lock);
1344 			up_write(&space_info->groups_sem);
1345 			goto next;
1346 		}
1347 		spin_unlock(&block_group->lock);
1348 
1349 		/* We don't want to force the issue, only flip if it's ok. */
1350 		ret = inc_block_group_ro(block_group, 0);
1351 		up_write(&space_info->groups_sem);
1352 		if (ret < 0) {
1353 			ret = 0;
1354 			goto next;
1355 		}
1356 
1357 		/*
1358 		 * Want to do this before we do anything else so we can recover
1359 		 * properly if we fail to join the transaction.
1360 		 */
1361 		trans = btrfs_start_trans_remove_block_group(fs_info,
1362 						     block_group->start);
1363 		if (IS_ERR(trans)) {
1364 			btrfs_dec_block_group_ro(block_group);
1365 			ret = PTR_ERR(trans);
1366 			goto next;
1367 		}
1368 
1369 		/*
1370 		 * We could have pending pinned extents for this block group,
1371 		 * just delete them, we don't care about them anymore.
1372 		 */
1373 		if (!clean_pinned_extents(trans, block_group)) {
1374 			btrfs_dec_block_group_ro(block_group);
1375 			goto end_trans;
1376 		}
1377 
1378 		/*
1379 		 * At this point, the block_group is read only and should fail
1380 		 * new allocations.  However, btrfs_finish_extent_commit() can
1381 		 * cause this block_group to be placed back on the discard
1382 		 * lists because now the block_group isn't fully discarded.
1383 		 * Bail here and try again later after discarding everything.
1384 		 */
1385 		spin_lock(&fs_info->discard_ctl.lock);
1386 		if (!list_empty(&block_group->discard_list)) {
1387 			spin_unlock(&fs_info->discard_ctl.lock);
1388 			btrfs_dec_block_group_ro(block_group);
1389 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 						 block_group);
1391 			goto end_trans;
1392 		}
1393 		spin_unlock(&fs_info->discard_ctl.lock);
1394 
1395 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1396 		spin_lock(&space_info->lock);
1397 		spin_lock(&block_group->lock);
1398 
1399 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 						     -block_group->pinned);
1401 		space_info->bytes_readonly += block_group->pinned;
1402 		block_group->pinned = 0;
1403 
1404 		spin_unlock(&block_group->lock);
1405 		spin_unlock(&space_info->lock);
1406 
1407 		/*
1408 		 * The normal path here is an unused block group is passed here,
1409 		 * then trimming is handled in the transaction commit path.
1410 		 * Async discard interposes before this to do the trimming
1411 		 * before coming down the unused block group path as trimming
1412 		 * will no longer be done later in the transaction commit path.
1413 		 */
1414 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415 			goto flip_async;
1416 
1417 		/*
1418 		 * DISCARD can flip during remount. On zoned filesystems, we
1419 		 * need to reset sequential-required zones.
1420 		 */
1421 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422 				btrfs_is_zoned(fs_info);
1423 
1424 		/* Implicit trim during transaction commit. */
1425 		if (trimming)
1426 			btrfs_freeze_block_group(block_group);
1427 
1428 		/*
1429 		 * Btrfs_remove_chunk will abort the transaction if things go
1430 		 * horribly wrong.
1431 		 */
1432 		ret = btrfs_remove_chunk(trans, block_group->start);
1433 
1434 		if (ret) {
1435 			if (trimming)
1436 				btrfs_unfreeze_block_group(block_group);
1437 			goto end_trans;
1438 		}
1439 
1440 		/*
1441 		 * If we're not mounted with -odiscard, we can just forget
1442 		 * about this block group. Otherwise we'll need to wait
1443 		 * until transaction commit to do the actual discard.
1444 		 */
1445 		if (trimming) {
1446 			spin_lock(&fs_info->unused_bgs_lock);
1447 			/*
1448 			 * A concurrent scrub might have added us to the list
1449 			 * fs_info->unused_bgs, so use a list_move operation
1450 			 * to add the block group to the deleted_bgs list.
1451 			 */
1452 			list_move(&block_group->bg_list,
1453 				  &trans->transaction->deleted_bgs);
1454 			spin_unlock(&fs_info->unused_bgs_lock);
1455 			btrfs_get_block_group(block_group);
1456 		}
1457 end_trans:
1458 		btrfs_end_transaction(trans);
1459 next:
1460 		btrfs_put_block_group(block_group);
1461 		spin_lock(&fs_info->unused_bgs_lock);
1462 	}
1463 	spin_unlock(&fs_info->unused_bgs_lock);
1464 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1465 	return;
1466 
1467 flip_async:
1468 	btrfs_end_transaction(trans);
1469 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1470 	btrfs_put_block_group(block_group);
1471 	btrfs_discard_punt_unused_bgs_list(fs_info);
1472 }
1473 
1474 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475 {
1476 	struct btrfs_fs_info *fs_info = bg->fs_info;
1477 
1478 	spin_lock(&fs_info->unused_bgs_lock);
1479 	if (list_empty(&bg->bg_list)) {
1480 		btrfs_get_block_group(bg);
1481 		trace_btrfs_add_unused_block_group(bg);
1482 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483 	}
1484 	spin_unlock(&fs_info->unused_bgs_lock);
1485 }
1486 
1487 void btrfs_reclaim_bgs_work(struct work_struct *work)
1488 {
1489 	struct btrfs_fs_info *fs_info =
1490 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491 	struct btrfs_block_group *bg;
1492 	struct btrfs_space_info *space_info;
1493 	LIST_HEAD(again_list);
1494 
1495 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496 		return;
1497 
1498 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499 		return;
1500 
1501 	/*
1502 	 * Long running balances can keep us blocked here for eternity, so
1503 	 * simply skip reclaim if we're unable to get the mutex.
1504 	 */
1505 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1506 		btrfs_exclop_finish(fs_info);
1507 		return;
1508 	}
1509 
1510 	spin_lock(&fs_info->unused_bgs_lock);
1511 	while (!list_empty(&fs_info->reclaim_bgs)) {
1512 		u64 zone_unusable;
1513 		int ret = 0;
1514 
1515 		bg = list_first_entry(&fs_info->reclaim_bgs,
1516 				      struct btrfs_block_group,
1517 				      bg_list);
1518 		list_del_init(&bg->bg_list);
1519 
1520 		space_info = bg->space_info;
1521 		spin_unlock(&fs_info->unused_bgs_lock);
1522 
1523 		/* Don't race with allocators so take the groups_sem */
1524 		down_write(&space_info->groups_sem);
1525 
1526 		spin_lock(&bg->lock);
1527 		if (bg->reserved || bg->pinned || bg->ro) {
1528 			/*
1529 			 * We want to bail if we made new allocations or have
1530 			 * outstanding allocations in this block group.  We do
1531 			 * the ro check in case balance is currently acting on
1532 			 * this block group.
1533 			 */
1534 			spin_unlock(&bg->lock);
1535 			up_write(&space_info->groups_sem);
1536 			goto next;
1537 		}
1538 		spin_unlock(&bg->lock);
1539 
1540 		/* Get out fast, in case we're unmounting the filesystem */
1541 		if (btrfs_fs_closing(fs_info)) {
1542 			up_write(&space_info->groups_sem);
1543 			goto next;
1544 		}
1545 
1546 		/*
1547 		 * Cache the zone_unusable value before turning the block group
1548 		 * to read only. As soon as the blog group is read only it's
1549 		 * zone_unusable value gets moved to the block group's read-only
1550 		 * bytes and isn't available for calculations anymore.
1551 		 */
1552 		zone_unusable = bg->zone_unusable;
1553 		ret = inc_block_group_ro(bg, 0);
1554 		up_write(&space_info->groups_sem);
1555 		if (ret < 0)
1556 			goto next;
1557 
1558 		btrfs_info(fs_info,
1559 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1560 				bg->start, div_u64(bg->used * 100, bg->length),
1561 				div64_u64(zone_unusable * 100, bg->length));
1562 		trace_btrfs_reclaim_block_group(bg);
1563 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1564 		if (ret)
1565 			btrfs_err(fs_info, "error relocating chunk %llu",
1566 				  bg->start);
1567 
1568 next:
1569 		spin_lock(&fs_info->unused_bgs_lock);
1570 		if (ret == -EAGAIN && list_empty(&bg->bg_list))
1571 			list_add_tail(&bg->bg_list, &again_list);
1572 		else
1573 			btrfs_put_block_group(bg);
1574 	}
1575 	list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1576 	spin_unlock(&fs_info->unused_bgs_lock);
1577 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1578 	btrfs_exclop_finish(fs_info);
1579 }
1580 
1581 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1582 {
1583 	spin_lock(&fs_info->unused_bgs_lock);
1584 	if (!list_empty(&fs_info->reclaim_bgs))
1585 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1586 	spin_unlock(&fs_info->unused_bgs_lock);
1587 }
1588 
1589 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1590 {
1591 	struct btrfs_fs_info *fs_info = bg->fs_info;
1592 
1593 	spin_lock(&fs_info->unused_bgs_lock);
1594 	if (list_empty(&bg->bg_list)) {
1595 		btrfs_get_block_group(bg);
1596 		trace_btrfs_add_reclaim_block_group(bg);
1597 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1598 	}
1599 	spin_unlock(&fs_info->unused_bgs_lock);
1600 }
1601 
1602 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1603 			   struct btrfs_path *path)
1604 {
1605 	struct extent_map_tree *em_tree;
1606 	struct extent_map *em;
1607 	struct btrfs_block_group_item bg;
1608 	struct extent_buffer *leaf;
1609 	int slot;
1610 	u64 flags;
1611 	int ret = 0;
1612 
1613 	slot = path->slots[0];
1614 	leaf = path->nodes[0];
1615 
1616 	em_tree = &fs_info->mapping_tree;
1617 	read_lock(&em_tree->lock);
1618 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1619 	read_unlock(&em_tree->lock);
1620 	if (!em) {
1621 		btrfs_err(fs_info,
1622 			  "logical %llu len %llu found bg but no related chunk",
1623 			  key->objectid, key->offset);
1624 		return -ENOENT;
1625 	}
1626 
1627 	if (em->start != key->objectid || em->len != key->offset) {
1628 		btrfs_err(fs_info,
1629 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1630 			key->objectid, key->offset, em->start, em->len);
1631 		ret = -EUCLEAN;
1632 		goto out_free_em;
1633 	}
1634 
1635 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1636 			   sizeof(bg));
1637 	flags = btrfs_stack_block_group_flags(&bg) &
1638 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1639 
1640 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1641 		btrfs_err(fs_info,
1642 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1643 			  key->objectid, key->offset, flags,
1644 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1645 		ret = -EUCLEAN;
1646 	}
1647 
1648 out_free_em:
1649 	free_extent_map(em);
1650 	return ret;
1651 }
1652 
1653 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1654 				  struct btrfs_path *path,
1655 				  struct btrfs_key *key)
1656 {
1657 	struct btrfs_root *root = fs_info->extent_root;
1658 	int ret;
1659 	struct btrfs_key found_key;
1660 	struct extent_buffer *leaf;
1661 	int slot;
1662 
1663 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1664 	if (ret < 0)
1665 		return ret;
1666 
1667 	while (1) {
1668 		slot = path->slots[0];
1669 		leaf = path->nodes[0];
1670 		if (slot >= btrfs_header_nritems(leaf)) {
1671 			ret = btrfs_next_leaf(root, path);
1672 			if (ret == 0)
1673 				continue;
1674 			if (ret < 0)
1675 				goto out;
1676 			break;
1677 		}
1678 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1679 
1680 		if (found_key.objectid >= key->objectid &&
1681 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1682 			ret = read_bg_from_eb(fs_info, &found_key, path);
1683 			break;
1684 		}
1685 
1686 		path->slots[0]++;
1687 	}
1688 out:
1689 	return ret;
1690 }
1691 
1692 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1693 {
1694 	u64 extra_flags = chunk_to_extended(flags) &
1695 				BTRFS_EXTENDED_PROFILE_MASK;
1696 
1697 	write_seqlock(&fs_info->profiles_lock);
1698 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1699 		fs_info->avail_data_alloc_bits |= extra_flags;
1700 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1701 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1702 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1703 		fs_info->avail_system_alloc_bits |= extra_flags;
1704 	write_sequnlock(&fs_info->profiles_lock);
1705 }
1706 
1707 /**
1708  * Map a physical disk address to a list of logical addresses
1709  *
1710  * @fs_info:       the filesystem
1711  * @chunk_start:   logical address of block group
1712  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1713  * @physical:	   physical address to map to logical addresses
1714  * @logical:	   return array of logical addresses which map to @physical
1715  * @naddrs:	   length of @logical
1716  * @stripe_len:    size of IO stripe for the given block group
1717  *
1718  * Maps a particular @physical disk address to a list of @logical addresses.
1719  * Used primarily to exclude those portions of a block group that contain super
1720  * block copies.
1721  */
1722 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1723 		     struct block_device *bdev, u64 physical, u64 **logical,
1724 		     int *naddrs, int *stripe_len)
1725 {
1726 	struct extent_map *em;
1727 	struct map_lookup *map;
1728 	u64 *buf;
1729 	u64 bytenr;
1730 	u64 data_stripe_length;
1731 	u64 io_stripe_size;
1732 	int i, nr = 0;
1733 	int ret = 0;
1734 
1735 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1736 	if (IS_ERR(em))
1737 		return -EIO;
1738 
1739 	map = em->map_lookup;
1740 	data_stripe_length = em->orig_block_len;
1741 	io_stripe_size = map->stripe_len;
1742 	chunk_start = em->start;
1743 
1744 	/* For RAID5/6 adjust to a full IO stripe length */
1745 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1746 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1747 
1748 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1749 	if (!buf) {
1750 		ret = -ENOMEM;
1751 		goto out;
1752 	}
1753 
1754 	for (i = 0; i < map->num_stripes; i++) {
1755 		bool already_inserted = false;
1756 		u64 stripe_nr;
1757 		u64 offset;
1758 		int j;
1759 
1760 		if (!in_range(physical, map->stripes[i].physical,
1761 			      data_stripe_length))
1762 			continue;
1763 
1764 		if (bdev && map->stripes[i].dev->bdev != bdev)
1765 			continue;
1766 
1767 		stripe_nr = physical - map->stripes[i].physical;
1768 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1769 
1770 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1771 			stripe_nr = stripe_nr * map->num_stripes + i;
1772 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1773 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1774 			stripe_nr = stripe_nr * map->num_stripes + i;
1775 		}
1776 		/*
1777 		 * The remaining case would be for RAID56, multiply by
1778 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1779 		 * instead of map->stripe_len
1780 		 */
1781 
1782 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1783 
1784 		/* Ensure we don't add duplicate addresses */
1785 		for (j = 0; j < nr; j++) {
1786 			if (buf[j] == bytenr) {
1787 				already_inserted = true;
1788 				break;
1789 			}
1790 		}
1791 
1792 		if (!already_inserted)
1793 			buf[nr++] = bytenr;
1794 	}
1795 
1796 	*logical = buf;
1797 	*naddrs = nr;
1798 	*stripe_len = io_stripe_size;
1799 out:
1800 	free_extent_map(em);
1801 	return ret;
1802 }
1803 
1804 static int exclude_super_stripes(struct btrfs_block_group *cache)
1805 {
1806 	struct btrfs_fs_info *fs_info = cache->fs_info;
1807 	const bool zoned = btrfs_is_zoned(fs_info);
1808 	u64 bytenr;
1809 	u64 *logical;
1810 	int stripe_len;
1811 	int i, nr, ret;
1812 
1813 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1814 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1815 		cache->bytes_super += stripe_len;
1816 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1817 						stripe_len);
1818 		if (ret)
1819 			return ret;
1820 	}
1821 
1822 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1823 		bytenr = btrfs_sb_offset(i);
1824 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1825 				       bytenr, &logical, &nr, &stripe_len);
1826 		if (ret)
1827 			return ret;
1828 
1829 		/* Shouldn't have super stripes in sequential zones */
1830 		if (zoned && nr) {
1831 			btrfs_err(fs_info,
1832 			"zoned: block group %llu must not contain super block",
1833 				  cache->start);
1834 			return -EUCLEAN;
1835 		}
1836 
1837 		while (nr--) {
1838 			u64 len = min_t(u64, stripe_len,
1839 				cache->start + cache->length - logical[nr]);
1840 
1841 			cache->bytes_super += len;
1842 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1843 							len);
1844 			if (ret) {
1845 				kfree(logical);
1846 				return ret;
1847 			}
1848 		}
1849 
1850 		kfree(logical);
1851 	}
1852 	return 0;
1853 }
1854 
1855 static void link_block_group(struct btrfs_block_group *cache)
1856 {
1857 	struct btrfs_space_info *space_info = cache->space_info;
1858 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1859 
1860 	down_write(&space_info->groups_sem);
1861 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1862 	up_write(&space_info->groups_sem);
1863 }
1864 
1865 static struct btrfs_block_group *btrfs_create_block_group_cache(
1866 		struct btrfs_fs_info *fs_info, u64 start)
1867 {
1868 	struct btrfs_block_group *cache;
1869 
1870 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1871 	if (!cache)
1872 		return NULL;
1873 
1874 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1875 					GFP_NOFS);
1876 	if (!cache->free_space_ctl) {
1877 		kfree(cache);
1878 		return NULL;
1879 	}
1880 
1881 	cache->start = start;
1882 
1883 	cache->fs_info = fs_info;
1884 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1885 
1886 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1887 
1888 	refcount_set(&cache->refs, 1);
1889 	spin_lock_init(&cache->lock);
1890 	init_rwsem(&cache->data_rwsem);
1891 	INIT_LIST_HEAD(&cache->list);
1892 	INIT_LIST_HEAD(&cache->cluster_list);
1893 	INIT_LIST_HEAD(&cache->bg_list);
1894 	INIT_LIST_HEAD(&cache->ro_list);
1895 	INIT_LIST_HEAD(&cache->discard_list);
1896 	INIT_LIST_HEAD(&cache->dirty_list);
1897 	INIT_LIST_HEAD(&cache->io_list);
1898 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1899 	atomic_set(&cache->frozen, 0);
1900 	mutex_init(&cache->free_space_lock);
1901 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1902 
1903 	return cache;
1904 }
1905 
1906 /*
1907  * Iterate all chunks and verify that each of them has the corresponding block
1908  * group
1909  */
1910 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1911 {
1912 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1913 	struct extent_map *em;
1914 	struct btrfs_block_group *bg;
1915 	u64 start = 0;
1916 	int ret = 0;
1917 
1918 	while (1) {
1919 		read_lock(&map_tree->lock);
1920 		/*
1921 		 * lookup_extent_mapping will return the first extent map
1922 		 * intersecting the range, so setting @len to 1 is enough to
1923 		 * get the first chunk.
1924 		 */
1925 		em = lookup_extent_mapping(map_tree, start, 1);
1926 		read_unlock(&map_tree->lock);
1927 		if (!em)
1928 			break;
1929 
1930 		bg = btrfs_lookup_block_group(fs_info, em->start);
1931 		if (!bg) {
1932 			btrfs_err(fs_info,
1933 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1934 				     em->start, em->len);
1935 			ret = -EUCLEAN;
1936 			free_extent_map(em);
1937 			break;
1938 		}
1939 		if (bg->start != em->start || bg->length != em->len ||
1940 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1941 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1942 			btrfs_err(fs_info,
1943 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1944 				em->start, em->len,
1945 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1946 				bg->start, bg->length,
1947 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1948 			ret = -EUCLEAN;
1949 			free_extent_map(em);
1950 			btrfs_put_block_group(bg);
1951 			break;
1952 		}
1953 		start = em->start + em->len;
1954 		free_extent_map(em);
1955 		btrfs_put_block_group(bg);
1956 	}
1957 	return ret;
1958 }
1959 
1960 static int read_one_block_group(struct btrfs_fs_info *info,
1961 				struct btrfs_block_group_item *bgi,
1962 				const struct btrfs_key *key,
1963 				int need_clear)
1964 {
1965 	struct btrfs_block_group *cache;
1966 	struct btrfs_space_info *space_info;
1967 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1968 	int ret;
1969 
1970 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1971 
1972 	cache = btrfs_create_block_group_cache(info, key->objectid);
1973 	if (!cache)
1974 		return -ENOMEM;
1975 
1976 	cache->length = key->offset;
1977 	cache->used = btrfs_stack_block_group_used(bgi);
1978 	cache->flags = btrfs_stack_block_group_flags(bgi);
1979 
1980 	set_free_space_tree_thresholds(cache);
1981 
1982 	if (need_clear) {
1983 		/*
1984 		 * When we mount with old space cache, we need to
1985 		 * set BTRFS_DC_CLEAR and set dirty flag.
1986 		 *
1987 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1988 		 *    truncate the old free space cache inode and
1989 		 *    setup a new one.
1990 		 * b) Setting 'dirty flag' makes sure that we flush
1991 		 *    the new space cache info onto disk.
1992 		 */
1993 		if (btrfs_test_opt(info, SPACE_CACHE))
1994 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1995 	}
1996 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1997 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1998 			btrfs_err(info,
1999 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2000 				  cache->start);
2001 			ret = -EINVAL;
2002 			goto error;
2003 	}
2004 
2005 	ret = btrfs_load_block_group_zone_info(cache, false);
2006 	if (ret) {
2007 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2008 			  cache->start);
2009 		goto error;
2010 	}
2011 
2012 	/*
2013 	 * We need to exclude the super stripes now so that the space info has
2014 	 * super bytes accounted for, otherwise we'll think we have more space
2015 	 * than we actually do.
2016 	 */
2017 	ret = exclude_super_stripes(cache);
2018 	if (ret) {
2019 		/* We may have excluded something, so call this just in case. */
2020 		btrfs_free_excluded_extents(cache);
2021 		goto error;
2022 	}
2023 
2024 	/*
2025 	 * For zoned filesystem, space after the allocation offset is the only
2026 	 * free space for a block group. So, we don't need any caching work.
2027 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2028 	 * zone_unusable space.
2029 	 *
2030 	 * For regular filesystem, check for two cases, either we are full, and
2031 	 * therefore don't need to bother with the caching work since we won't
2032 	 * find any space, or we are empty, and we can just add all the space
2033 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2034 	 * in the full case.
2035 	 */
2036 	if (btrfs_is_zoned(info)) {
2037 		btrfs_calc_zone_unusable(cache);
2038 	} else if (cache->length == cache->used) {
2039 		cache->last_byte_to_unpin = (u64)-1;
2040 		cache->cached = BTRFS_CACHE_FINISHED;
2041 		btrfs_free_excluded_extents(cache);
2042 	} else if (cache->used == 0) {
2043 		cache->last_byte_to_unpin = (u64)-1;
2044 		cache->cached = BTRFS_CACHE_FINISHED;
2045 		add_new_free_space(cache, cache->start,
2046 				   cache->start + cache->length);
2047 		btrfs_free_excluded_extents(cache);
2048 	}
2049 
2050 	ret = btrfs_add_block_group_cache(info, cache);
2051 	if (ret) {
2052 		btrfs_remove_free_space_cache(cache);
2053 		goto error;
2054 	}
2055 	trace_btrfs_add_block_group(info, cache, 0);
2056 	btrfs_update_space_info(info, cache->flags, cache->length,
2057 				cache->used, cache->bytes_super,
2058 				cache->zone_unusable, &space_info);
2059 
2060 	cache->space_info = space_info;
2061 
2062 	link_block_group(cache);
2063 
2064 	set_avail_alloc_bits(info, cache->flags);
2065 	if (btrfs_chunk_readonly(info, cache->start)) {
2066 		inc_block_group_ro(cache, 1);
2067 	} else if (cache->used == 0) {
2068 		ASSERT(list_empty(&cache->bg_list));
2069 		if (btrfs_test_opt(info, DISCARD_ASYNC))
2070 			btrfs_discard_queue_work(&info->discard_ctl, cache);
2071 		else
2072 			btrfs_mark_bg_unused(cache);
2073 	}
2074 	return 0;
2075 error:
2076 	btrfs_put_block_group(cache);
2077 	return ret;
2078 }
2079 
2080 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2081 {
2082 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2083 	struct btrfs_space_info *space_info;
2084 	struct rb_node *node;
2085 	int ret = 0;
2086 
2087 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2088 		struct extent_map *em;
2089 		struct map_lookup *map;
2090 		struct btrfs_block_group *bg;
2091 
2092 		em = rb_entry(node, struct extent_map, rb_node);
2093 		map = em->map_lookup;
2094 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2095 		if (!bg) {
2096 			ret = -ENOMEM;
2097 			break;
2098 		}
2099 
2100 		/* Fill dummy cache as FULL */
2101 		bg->length = em->len;
2102 		bg->flags = map->type;
2103 		bg->last_byte_to_unpin = (u64)-1;
2104 		bg->cached = BTRFS_CACHE_FINISHED;
2105 		bg->used = em->len;
2106 		bg->flags = map->type;
2107 		ret = btrfs_add_block_group_cache(fs_info, bg);
2108 		if (ret) {
2109 			btrfs_remove_free_space_cache(bg);
2110 			btrfs_put_block_group(bg);
2111 			break;
2112 		}
2113 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2114 					0, 0, &space_info);
2115 		bg->space_info = space_info;
2116 		link_block_group(bg);
2117 
2118 		set_avail_alloc_bits(fs_info, bg->flags);
2119 	}
2120 	if (!ret)
2121 		btrfs_init_global_block_rsv(fs_info);
2122 	return ret;
2123 }
2124 
2125 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2126 {
2127 	struct btrfs_path *path;
2128 	int ret;
2129 	struct btrfs_block_group *cache;
2130 	struct btrfs_space_info *space_info;
2131 	struct btrfs_key key;
2132 	int need_clear = 0;
2133 	u64 cache_gen;
2134 
2135 	if (!info->extent_root)
2136 		return fill_dummy_bgs(info);
2137 
2138 	key.objectid = 0;
2139 	key.offset = 0;
2140 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2141 	path = btrfs_alloc_path();
2142 	if (!path)
2143 		return -ENOMEM;
2144 
2145 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2146 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2147 	    btrfs_super_generation(info->super_copy) != cache_gen)
2148 		need_clear = 1;
2149 	if (btrfs_test_opt(info, CLEAR_CACHE))
2150 		need_clear = 1;
2151 
2152 	while (1) {
2153 		struct btrfs_block_group_item bgi;
2154 		struct extent_buffer *leaf;
2155 		int slot;
2156 
2157 		ret = find_first_block_group(info, path, &key);
2158 		if (ret > 0)
2159 			break;
2160 		if (ret != 0)
2161 			goto error;
2162 
2163 		leaf = path->nodes[0];
2164 		slot = path->slots[0];
2165 
2166 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2167 				   sizeof(bgi));
2168 
2169 		btrfs_item_key_to_cpu(leaf, &key, slot);
2170 		btrfs_release_path(path);
2171 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2172 		if (ret < 0)
2173 			goto error;
2174 		key.objectid += key.offset;
2175 		key.offset = 0;
2176 	}
2177 	btrfs_release_path(path);
2178 
2179 	list_for_each_entry(space_info, &info->space_info, list) {
2180 		int i;
2181 
2182 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2183 			if (list_empty(&space_info->block_groups[i]))
2184 				continue;
2185 			cache = list_first_entry(&space_info->block_groups[i],
2186 						 struct btrfs_block_group,
2187 						 list);
2188 			btrfs_sysfs_add_block_group_type(cache);
2189 		}
2190 
2191 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2192 		      (BTRFS_BLOCK_GROUP_RAID10 |
2193 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2194 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2195 		       BTRFS_BLOCK_GROUP_DUP)))
2196 			continue;
2197 		/*
2198 		 * Avoid allocating from un-mirrored block group if there are
2199 		 * mirrored block groups.
2200 		 */
2201 		list_for_each_entry(cache,
2202 				&space_info->block_groups[BTRFS_RAID_RAID0],
2203 				list)
2204 			inc_block_group_ro(cache, 1);
2205 		list_for_each_entry(cache,
2206 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2207 				list)
2208 			inc_block_group_ro(cache, 1);
2209 	}
2210 
2211 	btrfs_init_global_block_rsv(info);
2212 	ret = check_chunk_block_group_mappings(info);
2213 error:
2214 	btrfs_free_path(path);
2215 	return ret;
2216 }
2217 
2218 /*
2219  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2220  * allocation.
2221  *
2222  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2223  * phases.
2224  */
2225 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2226 				   struct btrfs_block_group *block_group)
2227 {
2228 	struct btrfs_fs_info *fs_info = trans->fs_info;
2229 	struct btrfs_block_group_item bgi;
2230 	struct btrfs_root *root;
2231 	struct btrfs_key key;
2232 
2233 	spin_lock(&block_group->lock);
2234 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2235 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2236 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2237 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2238 	key.objectid = block_group->start;
2239 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2240 	key.offset = block_group->length;
2241 	spin_unlock(&block_group->lock);
2242 
2243 	root = fs_info->extent_root;
2244 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2245 }
2246 
2247 /*
2248  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2249  * chunk allocation.
2250  *
2251  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2252  * phases.
2253  */
2254 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2255 {
2256 	struct btrfs_fs_info *fs_info = trans->fs_info;
2257 	struct btrfs_block_group *block_group;
2258 	int ret = 0;
2259 
2260 	while (!list_empty(&trans->new_bgs)) {
2261 		int index;
2262 
2263 		block_group = list_first_entry(&trans->new_bgs,
2264 					       struct btrfs_block_group,
2265 					       bg_list);
2266 		if (ret)
2267 			goto next;
2268 
2269 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2270 
2271 		ret = insert_block_group_item(trans, block_group);
2272 		if (ret)
2273 			btrfs_abort_transaction(trans, ret);
2274 		if (!block_group->chunk_item_inserted) {
2275 			mutex_lock(&fs_info->chunk_mutex);
2276 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2277 			mutex_unlock(&fs_info->chunk_mutex);
2278 			if (ret)
2279 				btrfs_abort_transaction(trans, ret);
2280 		}
2281 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2282 					block_group->length);
2283 		if (ret)
2284 			btrfs_abort_transaction(trans, ret);
2285 		add_block_group_free_space(trans, block_group);
2286 
2287 		/*
2288 		 * If we restriped during balance, we may have added a new raid
2289 		 * type, so now add the sysfs entries when it is safe to do so.
2290 		 * We don't have to worry about locking here as it's handled in
2291 		 * btrfs_sysfs_add_block_group_type.
2292 		 */
2293 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2294 			btrfs_sysfs_add_block_group_type(block_group);
2295 
2296 		/* Already aborted the transaction if it failed. */
2297 next:
2298 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2299 		list_del_init(&block_group->bg_list);
2300 	}
2301 	btrfs_trans_release_chunk_metadata(trans);
2302 }
2303 
2304 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2305 						 u64 bytes_used, u64 type,
2306 						 u64 chunk_offset, u64 size)
2307 {
2308 	struct btrfs_fs_info *fs_info = trans->fs_info;
2309 	struct btrfs_block_group *cache;
2310 	int ret;
2311 
2312 	btrfs_set_log_full_commit(trans);
2313 
2314 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2315 	if (!cache)
2316 		return ERR_PTR(-ENOMEM);
2317 
2318 	cache->length = size;
2319 	set_free_space_tree_thresholds(cache);
2320 	cache->used = bytes_used;
2321 	cache->flags = type;
2322 	cache->last_byte_to_unpin = (u64)-1;
2323 	cache->cached = BTRFS_CACHE_FINISHED;
2324 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2325 		cache->needs_free_space = 1;
2326 
2327 	ret = btrfs_load_block_group_zone_info(cache, true);
2328 	if (ret) {
2329 		btrfs_put_block_group(cache);
2330 		return ERR_PTR(ret);
2331 	}
2332 
2333 	ret = exclude_super_stripes(cache);
2334 	if (ret) {
2335 		/* We may have excluded something, so call this just in case */
2336 		btrfs_free_excluded_extents(cache);
2337 		btrfs_put_block_group(cache);
2338 		return ERR_PTR(ret);
2339 	}
2340 
2341 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2342 
2343 	btrfs_free_excluded_extents(cache);
2344 
2345 #ifdef CONFIG_BTRFS_DEBUG
2346 	if (btrfs_should_fragment_free_space(cache)) {
2347 		u64 new_bytes_used = size - bytes_used;
2348 
2349 		bytes_used += new_bytes_used >> 1;
2350 		fragment_free_space(cache);
2351 	}
2352 #endif
2353 	/*
2354 	 * Ensure the corresponding space_info object is created and
2355 	 * assigned to our block group. We want our bg to be added to the rbtree
2356 	 * with its ->space_info set.
2357 	 */
2358 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2359 	ASSERT(cache->space_info);
2360 
2361 	ret = btrfs_add_block_group_cache(fs_info, cache);
2362 	if (ret) {
2363 		btrfs_remove_free_space_cache(cache);
2364 		btrfs_put_block_group(cache);
2365 		return ERR_PTR(ret);
2366 	}
2367 
2368 	/*
2369 	 * Now that our block group has its ->space_info set and is inserted in
2370 	 * the rbtree, update the space info's counters.
2371 	 */
2372 	trace_btrfs_add_block_group(fs_info, cache, 1);
2373 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2374 				cache->bytes_super, 0, &cache->space_info);
2375 	btrfs_update_global_block_rsv(fs_info);
2376 
2377 	link_block_group(cache);
2378 
2379 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2380 	trans->delayed_ref_updates++;
2381 	btrfs_update_delayed_refs_rsv(trans);
2382 
2383 	set_avail_alloc_bits(fs_info, type);
2384 	return cache;
2385 }
2386 
2387 /*
2388  * Mark one block group RO, can be called several times for the same block
2389  * group.
2390  *
2391  * @cache:		the destination block group
2392  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2393  * 			ensure we still have some free space after marking this
2394  * 			block group RO.
2395  */
2396 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2397 			     bool do_chunk_alloc)
2398 {
2399 	struct btrfs_fs_info *fs_info = cache->fs_info;
2400 	struct btrfs_trans_handle *trans;
2401 	u64 alloc_flags;
2402 	int ret;
2403 	bool dirty_bg_running;
2404 
2405 	do {
2406 		trans = btrfs_join_transaction(fs_info->extent_root);
2407 		if (IS_ERR(trans))
2408 			return PTR_ERR(trans);
2409 
2410 		dirty_bg_running = false;
2411 
2412 		/*
2413 		 * We're not allowed to set block groups readonly after the dirty
2414 		 * block group cache has started writing.  If it already started,
2415 		 * back off and let this transaction commit.
2416 		 */
2417 		mutex_lock(&fs_info->ro_block_group_mutex);
2418 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2419 			u64 transid = trans->transid;
2420 
2421 			mutex_unlock(&fs_info->ro_block_group_mutex);
2422 			btrfs_end_transaction(trans);
2423 
2424 			ret = btrfs_wait_for_commit(fs_info, transid);
2425 			if (ret)
2426 				return ret;
2427 			dirty_bg_running = true;
2428 		}
2429 	} while (dirty_bg_running);
2430 
2431 	if (do_chunk_alloc) {
2432 		/*
2433 		 * If we are changing raid levels, try to allocate a
2434 		 * corresponding block group with the new raid level.
2435 		 */
2436 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2437 		if (alloc_flags != cache->flags) {
2438 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2439 						CHUNK_ALLOC_FORCE);
2440 			/*
2441 			 * ENOSPC is allowed here, we may have enough space
2442 			 * already allocated at the new raid level to carry on
2443 			 */
2444 			if (ret == -ENOSPC)
2445 				ret = 0;
2446 			if (ret < 0)
2447 				goto out;
2448 		}
2449 	}
2450 
2451 	ret = inc_block_group_ro(cache, 0);
2452 	if (!do_chunk_alloc || ret == -ETXTBSY)
2453 		goto unlock_out;
2454 	if (!ret)
2455 		goto out;
2456 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2457 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2458 	if (ret < 0)
2459 		goto out;
2460 	ret = inc_block_group_ro(cache, 0);
2461 	if (ret == -ETXTBSY)
2462 		goto unlock_out;
2463 out:
2464 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2465 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2466 		mutex_lock(&fs_info->chunk_mutex);
2467 		check_system_chunk(trans, alloc_flags);
2468 		mutex_unlock(&fs_info->chunk_mutex);
2469 	}
2470 unlock_out:
2471 	mutex_unlock(&fs_info->ro_block_group_mutex);
2472 
2473 	btrfs_end_transaction(trans);
2474 	return ret;
2475 }
2476 
2477 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2478 {
2479 	struct btrfs_space_info *sinfo = cache->space_info;
2480 	u64 num_bytes;
2481 
2482 	BUG_ON(!cache->ro);
2483 
2484 	spin_lock(&sinfo->lock);
2485 	spin_lock(&cache->lock);
2486 	if (!--cache->ro) {
2487 		if (btrfs_is_zoned(cache->fs_info)) {
2488 			/* Migrate zone_unusable bytes back */
2489 			cache->zone_unusable = cache->alloc_offset - cache->used;
2490 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2491 			sinfo->bytes_readonly -= cache->zone_unusable;
2492 		}
2493 		num_bytes = cache->length - cache->reserved -
2494 			    cache->pinned - cache->bytes_super -
2495 			    cache->zone_unusable - cache->used;
2496 		sinfo->bytes_readonly -= num_bytes;
2497 		list_del_init(&cache->ro_list);
2498 	}
2499 	spin_unlock(&cache->lock);
2500 	spin_unlock(&sinfo->lock);
2501 }
2502 
2503 static int update_block_group_item(struct btrfs_trans_handle *trans,
2504 				   struct btrfs_path *path,
2505 				   struct btrfs_block_group *cache)
2506 {
2507 	struct btrfs_fs_info *fs_info = trans->fs_info;
2508 	int ret;
2509 	struct btrfs_root *root = fs_info->extent_root;
2510 	unsigned long bi;
2511 	struct extent_buffer *leaf;
2512 	struct btrfs_block_group_item bgi;
2513 	struct btrfs_key key;
2514 
2515 	key.objectid = cache->start;
2516 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2517 	key.offset = cache->length;
2518 
2519 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2520 	if (ret) {
2521 		if (ret > 0)
2522 			ret = -ENOENT;
2523 		goto fail;
2524 	}
2525 
2526 	leaf = path->nodes[0];
2527 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2528 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2529 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2530 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2531 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2532 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2533 	btrfs_mark_buffer_dirty(leaf);
2534 fail:
2535 	btrfs_release_path(path);
2536 	return ret;
2537 
2538 }
2539 
2540 static int cache_save_setup(struct btrfs_block_group *block_group,
2541 			    struct btrfs_trans_handle *trans,
2542 			    struct btrfs_path *path)
2543 {
2544 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2545 	struct btrfs_root *root = fs_info->tree_root;
2546 	struct inode *inode = NULL;
2547 	struct extent_changeset *data_reserved = NULL;
2548 	u64 alloc_hint = 0;
2549 	int dcs = BTRFS_DC_ERROR;
2550 	u64 cache_size = 0;
2551 	int retries = 0;
2552 	int ret = 0;
2553 
2554 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2555 		return 0;
2556 
2557 	/*
2558 	 * If this block group is smaller than 100 megs don't bother caching the
2559 	 * block group.
2560 	 */
2561 	if (block_group->length < (100 * SZ_1M)) {
2562 		spin_lock(&block_group->lock);
2563 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2564 		spin_unlock(&block_group->lock);
2565 		return 0;
2566 	}
2567 
2568 	if (TRANS_ABORTED(trans))
2569 		return 0;
2570 again:
2571 	inode = lookup_free_space_inode(block_group, path);
2572 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2573 		ret = PTR_ERR(inode);
2574 		btrfs_release_path(path);
2575 		goto out;
2576 	}
2577 
2578 	if (IS_ERR(inode)) {
2579 		BUG_ON(retries);
2580 		retries++;
2581 
2582 		if (block_group->ro)
2583 			goto out_free;
2584 
2585 		ret = create_free_space_inode(trans, block_group, path);
2586 		if (ret)
2587 			goto out_free;
2588 		goto again;
2589 	}
2590 
2591 	/*
2592 	 * We want to set the generation to 0, that way if anything goes wrong
2593 	 * from here on out we know not to trust this cache when we load up next
2594 	 * time.
2595 	 */
2596 	BTRFS_I(inode)->generation = 0;
2597 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2598 	if (ret) {
2599 		/*
2600 		 * So theoretically we could recover from this, simply set the
2601 		 * super cache generation to 0 so we know to invalidate the
2602 		 * cache, but then we'd have to keep track of the block groups
2603 		 * that fail this way so we know we _have_ to reset this cache
2604 		 * before the next commit or risk reading stale cache.  So to
2605 		 * limit our exposure to horrible edge cases lets just abort the
2606 		 * transaction, this only happens in really bad situations
2607 		 * anyway.
2608 		 */
2609 		btrfs_abort_transaction(trans, ret);
2610 		goto out_put;
2611 	}
2612 	WARN_ON(ret);
2613 
2614 	/* We've already setup this transaction, go ahead and exit */
2615 	if (block_group->cache_generation == trans->transid &&
2616 	    i_size_read(inode)) {
2617 		dcs = BTRFS_DC_SETUP;
2618 		goto out_put;
2619 	}
2620 
2621 	if (i_size_read(inode) > 0) {
2622 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2623 					&fs_info->global_block_rsv);
2624 		if (ret)
2625 			goto out_put;
2626 
2627 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2628 		if (ret)
2629 			goto out_put;
2630 	}
2631 
2632 	spin_lock(&block_group->lock);
2633 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2634 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2635 		/*
2636 		 * don't bother trying to write stuff out _if_
2637 		 * a) we're not cached,
2638 		 * b) we're with nospace_cache mount option,
2639 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2640 		 */
2641 		dcs = BTRFS_DC_WRITTEN;
2642 		spin_unlock(&block_group->lock);
2643 		goto out_put;
2644 	}
2645 	spin_unlock(&block_group->lock);
2646 
2647 	/*
2648 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2649 	 * skip doing the setup, we've already cleared the cache so we're safe.
2650 	 */
2651 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2652 		ret = -ENOSPC;
2653 		goto out_put;
2654 	}
2655 
2656 	/*
2657 	 * Try to preallocate enough space based on how big the block group is.
2658 	 * Keep in mind this has to include any pinned space which could end up
2659 	 * taking up quite a bit since it's not folded into the other space
2660 	 * cache.
2661 	 */
2662 	cache_size = div_u64(block_group->length, SZ_256M);
2663 	if (!cache_size)
2664 		cache_size = 1;
2665 
2666 	cache_size *= 16;
2667 	cache_size *= fs_info->sectorsize;
2668 
2669 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2670 					  cache_size);
2671 	if (ret)
2672 		goto out_put;
2673 
2674 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2675 					      cache_size, cache_size,
2676 					      &alloc_hint);
2677 	/*
2678 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2679 	 * of metadata or split extents when writing the cache out, which means
2680 	 * we can enospc if we are heavily fragmented in addition to just normal
2681 	 * out of space conditions.  So if we hit this just skip setting up any
2682 	 * other block groups for this transaction, maybe we'll unpin enough
2683 	 * space the next time around.
2684 	 */
2685 	if (!ret)
2686 		dcs = BTRFS_DC_SETUP;
2687 	else if (ret == -ENOSPC)
2688 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2689 
2690 out_put:
2691 	iput(inode);
2692 out_free:
2693 	btrfs_release_path(path);
2694 out:
2695 	spin_lock(&block_group->lock);
2696 	if (!ret && dcs == BTRFS_DC_SETUP)
2697 		block_group->cache_generation = trans->transid;
2698 	block_group->disk_cache_state = dcs;
2699 	spin_unlock(&block_group->lock);
2700 
2701 	extent_changeset_free(data_reserved);
2702 	return ret;
2703 }
2704 
2705 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2706 {
2707 	struct btrfs_fs_info *fs_info = trans->fs_info;
2708 	struct btrfs_block_group *cache, *tmp;
2709 	struct btrfs_transaction *cur_trans = trans->transaction;
2710 	struct btrfs_path *path;
2711 
2712 	if (list_empty(&cur_trans->dirty_bgs) ||
2713 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2714 		return 0;
2715 
2716 	path = btrfs_alloc_path();
2717 	if (!path)
2718 		return -ENOMEM;
2719 
2720 	/* Could add new block groups, use _safe just in case */
2721 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2722 				 dirty_list) {
2723 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2724 			cache_save_setup(cache, trans, path);
2725 	}
2726 
2727 	btrfs_free_path(path);
2728 	return 0;
2729 }
2730 
2731 /*
2732  * Transaction commit does final block group cache writeback during a critical
2733  * section where nothing is allowed to change the FS.  This is required in
2734  * order for the cache to actually match the block group, but can introduce a
2735  * lot of latency into the commit.
2736  *
2737  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2738  * There's a chance we'll have to redo some of it if the block group changes
2739  * again during the commit, but it greatly reduces the commit latency by
2740  * getting rid of the easy block groups while we're still allowing others to
2741  * join the commit.
2742  */
2743 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2744 {
2745 	struct btrfs_fs_info *fs_info = trans->fs_info;
2746 	struct btrfs_block_group *cache;
2747 	struct btrfs_transaction *cur_trans = trans->transaction;
2748 	int ret = 0;
2749 	int should_put;
2750 	struct btrfs_path *path = NULL;
2751 	LIST_HEAD(dirty);
2752 	struct list_head *io = &cur_trans->io_bgs;
2753 	int num_started = 0;
2754 	int loops = 0;
2755 
2756 	spin_lock(&cur_trans->dirty_bgs_lock);
2757 	if (list_empty(&cur_trans->dirty_bgs)) {
2758 		spin_unlock(&cur_trans->dirty_bgs_lock);
2759 		return 0;
2760 	}
2761 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2762 	spin_unlock(&cur_trans->dirty_bgs_lock);
2763 
2764 again:
2765 	/* Make sure all the block groups on our dirty list actually exist */
2766 	btrfs_create_pending_block_groups(trans);
2767 
2768 	if (!path) {
2769 		path = btrfs_alloc_path();
2770 		if (!path) {
2771 			ret = -ENOMEM;
2772 			goto out;
2773 		}
2774 	}
2775 
2776 	/*
2777 	 * cache_write_mutex is here only to save us from balance or automatic
2778 	 * removal of empty block groups deleting this block group while we are
2779 	 * writing out the cache
2780 	 */
2781 	mutex_lock(&trans->transaction->cache_write_mutex);
2782 	while (!list_empty(&dirty)) {
2783 		bool drop_reserve = true;
2784 
2785 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2786 					 dirty_list);
2787 		/*
2788 		 * This can happen if something re-dirties a block group that
2789 		 * is already under IO.  Just wait for it to finish and then do
2790 		 * it all again
2791 		 */
2792 		if (!list_empty(&cache->io_list)) {
2793 			list_del_init(&cache->io_list);
2794 			btrfs_wait_cache_io(trans, cache, path);
2795 			btrfs_put_block_group(cache);
2796 		}
2797 
2798 
2799 		/*
2800 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2801 		 * it should update the cache_state.  Don't delete until after
2802 		 * we wait.
2803 		 *
2804 		 * Since we're not running in the commit critical section
2805 		 * we need the dirty_bgs_lock to protect from update_block_group
2806 		 */
2807 		spin_lock(&cur_trans->dirty_bgs_lock);
2808 		list_del_init(&cache->dirty_list);
2809 		spin_unlock(&cur_trans->dirty_bgs_lock);
2810 
2811 		should_put = 1;
2812 
2813 		cache_save_setup(cache, trans, path);
2814 
2815 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2816 			cache->io_ctl.inode = NULL;
2817 			ret = btrfs_write_out_cache(trans, cache, path);
2818 			if (ret == 0 && cache->io_ctl.inode) {
2819 				num_started++;
2820 				should_put = 0;
2821 
2822 				/*
2823 				 * The cache_write_mutex is protecting the
2824 				 * io_list, also refer to the definition of
2825 				 * btrfs_transaction::io_bgs for more details
2826 				 */
2827 				list_add_tail(&cache->io_list, io);
2828 			} else {
2829 				/*
2830 				 * If we failed to write the cache, the
2831 				 * generation will be bad and life goes on
2832 				 */
2833 				ret = 0;
2834 			}
2835 		}
2836 		if (!ret) {
2837 			ret = update_block_group_item(trans, path, cache);
2838 			/*
2839 			 * Our block group might still be attached to the list
2840 			 * of new block groups in the transaction handle of some
2841 			 * other task (struct btrfs_trans_handle->new_bgs). This
2842 			 * means its block group item isn't yet in the extent
2843 			 * tree. If this happens ignore the error, as we will
2844 			 * try again later in the critical section of the
2845 			 * transaction commit.
2846 			 */
2847 			if (ret == -ENOENT) {
2848 				ret = 0;
2849 				spin_lock(&cur_trans->dirty_bgs_lock);
2850 				if (list_empty(&cache->dirty_list)) {
2851 					list_add_tail(&cache->dirty_list,
2852 						      &cur_trans->dirty_bgs);
2853 					btrfs_get_block_group(cache);
2854 					drop_reserve = false;
2855 				}
2856 				spin_unlock(&cur_trans->dirty_bgs_lock);
2857 			} else if (ret) {
2858 				btrfs_abort_transaction(trans, ret);
2859 			}
2860 		}
2861 
2862 		/* If it's not on the io list, we need to put the block group */
2863 		if (should_put)
2864 			btrfs_put_block_group(cache);
2865 		if (drop_reserve)
2866 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2867 		/*
2868 		 * Avoid blocking other tasks for too long. It might even save
2869 		 * us from writing caches for block groups that are going to be
2870 		 * removed.
2871 		 */
2872 		mutex_unlock(&trans->transaction->cache_write_mutex);
2873 		if (ret)
2874 			goto out;
2875 		mutex_lock(&trans->transaction->cache_write_mutex);
2876 	}
2877 	mutex_unlock(&trans->transaction->cache_write_mutex);
2878 
2879 	/*
2880 	 * Go through delayed refs for all the stuff we've just kicked off
2881 	 * and then loop back (just once)
2882 	 */
2883 	if (!ret)
2884 		ret = btrfs_run_delayed_refs(trans, 0);
2885 	if (!ret && loops == 0) {
2886 		loops++;
2887 		spin_lock(&cur_trans->dirty_bgs_lock);
2888 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2889 		/*
2890 		 * dirty_bgs_lock protects us from concurrent block group
2891 		 * deletes too (not just cache_write_mutex).
2892 		 */
2893 		if (!list_empty(&dirty)) {
2894 			spin_unlock(&cur_trans->dirty_bgs_lock);
2895 			goto again;
2896 		}
2897 		spin_unlock(&cur_trans->dirty_bgs_lock);
2898 	}
2899 out:
2900 	if (ret < 0) {
2901 		spin_lock(&cur_trans->dirty_bgs_lock);
2902 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2903 		spin_unlock(&cur_trans->dirty_bgs_lock);
2904 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2905 	}
2906 
2907 	btrfs_free_path(path);
2908 	return ret;
2909 }
2910 
2911 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2912 {
2913 	struct btrfs_fs_info *fs_info = trans->fs_info;
2914 	struct btrfs_block_group *cache;
2915 	struct btrfs_transaction *cur_trans = trans->transaction;
2916 	int ret = 0;
2917 	int should_put;
2918 	struct btrfs_path *path;
2919 	struct list_head *io = &cur_trans->io_bgs;
2920 	int num_started = 0;
2921 
2922 	path = btrfs_alloc_path();
2923 	if (!path)
2924 		return -ENOMEM;
2925 
2926 	/*
2927 	 * Even though we are in the critical section of the transaction commit,
2928 	 * we can still have concurrent tasks adding elements to this
2929 	 * transaction's list of dirty block groups. These tasks correspond to
2930 	 * endio free space workers started when writeback finishes for a
2931 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2932 	 * allocate new block groups as a result of COWing nodes of the root
2933 	 * tree when updating the free space inode. The writeback for the space
2934 	 * caches is triggered by an earlier call to
2935 	 * btrfs_start_dirty_block_groups() and iterations of the following
2936 	 * loop.
2937 	 * Also we want to do the cache_save_setup first and then run the
2938 	 * delayed refs to make sure we have the best chance at doing this all
2939 	 * in one shot.
2940 	 */
2941 	spin_lock(&cur_trans->dirty_bgs_lock);
2942 	while (!list_empty(&cur_trans->dirty_bgs)) {
2943 		cache = list_first_entry(&cur_trans->dirty_bgs,
2944 					 struct btrfs_block_group,
2945 					 dirty_list);
2946 
2947 		/*
2948 		 * This can happen if cache_save_setup re-dirties a block group
2949 		 * that is already under IO.  Just wait for it to finish and
2950 		 * then do it all again
2951 		 */
2952 		if (!list_empty(&cache->io_list)) {
2953 			spin_unlock(&cur_trans->dirty_bgs_lock);
2954 			list_del_init(&cache->io_list);
2955 			btrfs_wait_cache_io(trans, cache, path);
2956 			btrfs_put_block_group(cache);
2957 			spin_lock(&cur_trans->dirty_bgs_lock);
2958 		}
2959 
2960 		/*
2961 		 * Don't remove from the dirty list until after we've waited on
2962 		 * any pending IO
2963 		 */
2964 		list_del_init(&cache->dirty_list);
2965 		spin_unlock(&cur_trans->dirty_bgs_lock);
2966 		should_put = 1;
2967 
2968 		cache_save_setup(cache, trans, path);
2969 
2970 		if (!ret)
2971 			ret = btrfs_run_delayed_refs(trans,
2972 						     (unsigned long) -1);
2973 
2974 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2975 			cache->io_ctl.inode = NULL;
2976 			ret = btrfs_write_out_cache(trans, cache, path);
2977 			if (ret == 0 && cache->io_ctl.inode) {
2978 				num_started++;
2979 				should_put = 0;
2980 				list_add_tail(&cache->io_list, io);
2981 			} else {
2982 				/*
2983 				 * If we failed to write the cache, the
2984 				 * generation will be bad and life goes on
2985 				 */
2986 				ret = 0;
2987 			}
2988 		}
2989 		if (!ret) {
2990 			ret = update_block_group_item(trans, path, cache);
2991 			/*
2992 			 * One of the free space endio workers might have
2993 			 * created a new block group while updating a free space
2994 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2995 			 * and hasn't released its transaction handle yet, in
2996 			 * which case the new block group is still attached to
2997 			 * its transaction handle and its creation has not
2998 			 * finished yet (no block group item in the extent tree
2999 			 * yet, etc). If this is the case, wait for all free
3000 			 * space endio workers to finish and retry. This is a
3001 			 * very rare case so no need for a more efficient and
3002 			 * complex approach.
3003 			 */
3004 			if (ret == -ENOENT) {
3005 				wait_event(cur_trans->writer_wait,
3006 				   atomic_read(&cur_trans->num_writers) == 1);
3007 				ret = update_block_group_item(trans, path, cache);
3008 			}
3009 			if (ret)
3010 				btrfs_abort_transaction(trans, ret);
3011 		}
3012 
3013 		/* If its not on the io list, we need to put the block group */
3014 		if (should_put)
3015 			btrfs_put_block_group(cache);
3016 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3017 		spin_lock(&cur_trans->dirty_bgs_lock);
3018 	}
3019 	spin_unlock(&cur_trans->dirty_bgs_lock);
3020 
3021 	/*
3022 	 * Refer to the definition of io_bgs member for details why it's safe
3023 	 * to use it without any locking
3024 	 */
3025 	while (!list_empty(io)) {
3026 		cache = list_first_entry(io, struct btrfs_block_group,
3027 					 io_list);
3028 		list_del_init(&cache->io_list);
3029 		btrfs_wait_cache_io(trans, cache, path);
3030 		btrfs_put_block_group(cache);
3031 	}
3032 
3033 	btrfs_free_path(path);
3034 	return ret;
3035 }
3036 
3037 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3038 			     u64 bytenr, u64 num_bytes, int alloc)
3039 {
3040 	struct btrfs_fs_info *info = trans->fs_info;
3041 	struct btrfs_block_group *cache = NULL;
3042 	u64 total = num_bytes;
3043 	u64 old_val;
3044 	u64 byte_in_group;
3045 	int factor;
3046 	int ret = 0;
3047 
3048 	/* Block accounting for super block */
3049 	spin_lock(&info->delalloc_root_lock);
3050 	old_val = btrfs_super_bytes_used(info->super_copy);
3051 	if (alloc)
3052 		old_val += num_bytes;
3053 	else
3054 		old_val -= num_bytes;
3055 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3056 	spin_unlock(&info->delalloc_root_lock);
3057 
3058 	while (total) {
3059 		cache = btrfs_lookup_block_group(info, bytenr);
3060 		if (!cache) {
3061 			ret = -ENOENT;
3062 			break;
3063 		}
3064 		factor = btrfs_bg_type_to_factor(cache->flags);
3065 
3066 		/*
3067 		 * If this block group has free space cache written out, we
3068 		 * need to make sure to load it if we are removing space.  This
3069 		 * is because we need the unpinning stage to actually add the
3070 		 * space back to the block group, otherwise we will leak space.
3071 		 */
3072 		if (!alloc && !btrfs_block_group_done(cache))
3073 			btrfs_cache_block_group(cache, 1);
3074 
3075 		byte_in_group = bytenr - cache->start;
3076 		WARN_ON(byte_in_group > cache->length);
3077 
3078 		spin_lock(&cache->space_info->lock);
3079 		spin_lock(&cache->lock);
3080 
3081 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3082 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3083 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3084 
3085 		old_val = cache->used;
3086 		num_bytes = min(total, cache->length - byte_in_group);
3087 		if (alloc) {
3088 			old_val += num_bytes;
3089 			cache->used = old_val;
3090 			cache->reserved -= num_bytes;
3091 			cache->space_info->bytes_reserved -= num_bytes;
3092 			cache->space_info->bytes_used += num_bytes;
3093 			cache->space_info->disk_used += num_bytes * factor;
3094 			spin_unlock(&cache->lock);
3095 			spin_unlock(&cache->space_info->lock);
3096 		} else {
3097 			old_val -= num_bytes;
3098 			cache->used = old_val;
3099 			cache->pinned += num_bytes;
3100 			btrfs_space_info_update_bytes_pinned(info,
3101 					cache->space_info, num_bytes);
3102 			cache->space_info->bytes_used -= num_bytes;
3103 			cache->space_info->disk_used -= num_bytes * factor;
3104 			spin_unlock(&cache->lock);
3105 			spin_unlock(&cache->space_info->lock);
3106 
3107 			set_extent_dirty(&trans->transaction->pinned_extents,
3108 					 bytenr, bytenr + num_bytes - 1,
3109 					 GFP_NOFS | __GFP_NOFAIL);
3110 		}
3111 
3112 		spin_lock(&trans->transaction->dirty_bgs_lock);
3113 		if (list_empty(&cache->dirty_list)) {
3114 			list_add_tail(&cache->dirty_list,
3115 				      &trans->transaction->dirty_bgs);
3116 			trans->delayed_ref_updates++;
3117 			btrfs_get_block_group(cache);
3118 		}
3119 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3120 
3121 		/*
3122 		 * No longer have used bytes in this block group, queue it for
3123 		 * deletion. We do this after adding the block group to the
3124 		 * dirty list to avoid races between cleaner kthread and space
3125 		 * cache writeout.
3126 		 */
3127 		if (!alloc && old_val == 0) {
3128 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3129 				btrfs_mark_bg_unused(cache);
3130 		}
3131 
3132 		btrfs_put_block_group(cache);
3133 		total -= num_bytes;
3134 		bytenr += num_bytes;
3135 	}
3136 
3137 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3138 	btrfs_update_delayed_refs_rsv(trans);
3139 	return ret;
3140 }
3141 
3142 /**
3143  * btrfs_add_reserved_bytes - update the block_group and space info counters
3144  * @cache:	The cache we are manipulating
3145  * @ram_bytes:  The number of bytes of file content, and will be same to
3146  *              @num_bytes except for the compress path.
3147  * @num_bytes:	The number of bytes in question
3148  * @delalloc:   The blocks are allocated for the delalloc write
3149  *
3150  * This is called by the allocator when it reserves space. If this is a
3151  * reservation and the block group has become read only we cannot make the
3152  * reservation and return -EAGAIN, otherwise this function always succeeds.
3153  */
3154 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3155 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3156 {
3157 	struct btrfs_space_info *space_info = cache->space_info;
3158 	int ret = 0;
3159 
3160 	spin_lock(&space_info->lock);
3161 	spin_lock(&cache->lock);
3162 	if (cache->ro) {
3163 		ret = -EAGAIN;
3164 	} else {
3165 		cache->reserved += num_bytes;
3166 		space_info->bytes_reserved += num_bytes;
3167 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3168 					      space_info->flags, num_bytes, 1);
3169 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3170 						      space_info, -ram_bytes);
3171 		if (delalloc)
3172 			cache->delalloc_bytes += num_bytes;
3173 
3174 		/*
3175 		 * Compression can use less space than we reserved, so wake
3176 		 * tickets if that happens
3177 		 */
3178 		if (num_bytes < ram_bytes)
3179 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3180 	}
3181 	spin_unlock(&cache->lock);
3182 	spin_unlock(&space_info->lock);
3183 	return ret;
3184 }
3185 
3186 /**
3187  * btrfs_free_reserved_bytes - update the block_group and space info counters
3188  * @cache:      The cache we are manipulating
3189  * @num_bytes:  The number of bytes in question
3190  * @delalloc:   The blocks are allocated for the delalloc write
3191  *
3192  * This is called by somebody who is freeing space that was never actually used
3193  * on disk.  For example if you reserve some space for a new leaf in transaction
3194  * A and before transaction A commits you free that leaf, you call this with
3195  * reserve set to 0 in order to clear the reservation.
3196  */
3197 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3198 			       u64 num_bytes, int delalloc)
3199 {
3200 	struct btrfs_space_info *space_info = cache->space_info;
3201 
3202 	spin_lock(&space_info->lock);
3203 	spin_lock(&cache->lock);
3204 	if (cache->ro)
3205 		space_info->bytes_readonly += num_bytes;
3206 	cache->reserved -= num_bytes;
3207 	space_info->bytes_reserved -= num_bytes;
3208 	space_info->max_extent_size = 0;
3209 
3210 	if (delalloc)
3211 		cache->delalloc_bytes -= num_bytes;
3212 	spin_unlock(&cache->lock);
3213 
3214 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3215 	spin_unlock(&space_info->lock);
3216 }
3217 
3218 static void force_metadata_allocation(struct btrfs_fs_info *info)
3219 {
3220 	struct list_head *head = &info->space_info;
3221 	struct btrfs_space_info *found;
3222 
3223 	list_for_each_entry(found, head, list) {
3224 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3225 			found->force_alloc = CHUNK_ALLOC_FORCE;
3226 	}
3227 }
3228 
3229 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3230 			      struct btrfs_space_info *sinfo, int force)
3231 {
3232 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3233 	u64 thresh;
3234 
3235 	if (force == CHUNK_ALLOC_FORCE)
3236 		return 1;
3237 
3238 	/*
3239 	 * in limited mode, we want to have some free space up to
3240 	 * about 1% of the FS size.
3241 	 */
3242 	if (force == CHUNK_ALLOC_LIMITED) {
3243 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3244 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3245 
3246 		if (sinfo->total_bytes - bytes_used < thresh)
3247 			return 1;
3248 	}
3249 
3250 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3251 		return 0;
3252 	return 1;
3253 }
3254 
3255 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3256 {
3257 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3258 
3259 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3260 }
3261 
3262 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3263 {
3264 	struct btrfs_block_group *bg;
3265 	int ret;
3266 
3267 	/*
3268 	 * Check if we have enough space in the system space info because we
3269 	 * will need to update device items in the chunk btree and insert a new
3270 	 * chunk item in the chunk btree as well. This will allocate a new
3271 	 * system block group if needed.
3272 	 */
3273 	check_system_chunk(trans, flags);
3274 
3275 	bg = btrfs_alloc_chunk(trans, flags);
3276 	if (IS_ERR(bg)) {
3277 		ret = PTR_ERR(bg);
3278 		goto out;
3279 	}
3280 
3281 	/*
3282 	 * If this is a system chunk allocation then stop right here and do not
3283 	 * add the chunk item to the chunk btree. This is to prevent a deadlock
3284 	 * because this system chunk allocation can be triggered while COWing
3285 	 * some extent buffer of the chunk btree and while holding a lock on a
3286 	 * parent extent buffer, in which case attempting to insert the chunk
3287 	 * item (or update the device item) would result in a deadlock on that
3288 	 * parent extent buffer. In this case defer the chunk btree updates to
3289 	 * the second phase of chunk allocation and keep our reservation until
3290 	 * the second phase completes.
3291 	 *
3292 	 * This is a rare case and can only be triggered by the very few cases
3293 	 * we have where we need to touch the chunk btree outside chunk allocation
3294 	 * and chunk removal. These cases are basically adding a device, removing
3295 	 * a device or resizing a device.
3296 	 */
3297 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3298 		return 0;
3299 
3300 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3301 	/*
3302 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3303 	 * previously reserved space in the system space_info and allocated one
3304 	 * new system chunk if necessary. However there are two exceptions:
3305 	 *
3306 	 * 1) We may have enough free space in the system space_info but all the
3307 	 *    existing system block groups have a profile which can not be used
3308 	 *    for extent allocation.
3309 	 *
3310 	 *    This happens when mounting in degraded mode. For example we have a
3311 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3312 	 *    using the other device in degraded mode. If we then allocate a chunk,
3313 	 *    we may have enough free space in the existing system space_info, but
3314 	 *    none of the block groups can be used for extent allocation since they
3315 	 *    have a RAID1 profile, and because we are in degraded mode with a
3316 	 *    single device, we are forced to allocate a new system chunk with a
3317 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3318 	 *    block groups and check if they have a usable profile and enough space
3319 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3320 	 *    try again after forcing allocation of a new system chunk. Like this
3321 	 *    we avoid paying the cost of that search in normal circumstances, when
3322 	 *    we were not mounted in degraded mode;
3323 	 *
3324 	 * 2) We had enough free space info the system space_info, and one suitable
3325 	 *    block group to allocate from when we called check_system_chunk()
3326 	 *    above. However right after we called it, the only system block group
3327 	 *    with enough free space got turned into RO mode by a running scrub,
3328 	 *    and in this case we have to allocate a new one and retry. We only
3329 	 *    need do this allocate and retry once, since we have a transaction
3330 	 *    handle and scrub uses the commit root to search for block groups.
3331 	 */
3332 	if (ret == -ENOSPC) {
3333 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3334 		struct btrfs_block_group *sys_bg;
3335 
3336 		sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3337 		if (IS_ERR(sys_bg)) {
3338 			ret = PTR_ERR(sys_bg);
3339 			btrfs_abort_transaction(trans, ret);
3340 			goto out;
3341 		}
3342 
3343 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3344 		if (ret) {
3345 			btrfs_abort_transaction(trans, ret);
3346 			goto out;
3347 		}
3348 
3349 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3350 		if (ret) {
3351 			btrfs_abort_transaction(trans, ret);
3352 			goto out;
3353 		}
3354 	} else if (ret) {
3355 		btrfs_abort_transaction(trans, ret);
3356 		goto out;
3357 	}
3358 out:
3359 	btrfs_trans_release_chunk_metadata(trans);
3360 
3361 	return ret;
3362 }
3363 
3364 /*
3365  * Chunk allocation is done in 2 phases:
3366  *
3367  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3368  *    the chunk, the chunk mapping, create its block group and add the items
3369  *    that belong in the chunk btree to it - more specifically, we need to
3370  *    update device items in the chunk btree and add a new chunk item to it.
3371  *
3372  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3373  *    group item to the extent btree and the device extent items to the devices
3374  *    btree.
3375  *
3376  * This is done to prevent deadlocks. For example when COWing a node from the
3377  * extent btree we are holding a write lock on the node's parent and if we
3378  * trigger chunk allocation and attempted to insert the new block group item
3379  * in the extent btree right way, we could deadlock because the path for the
3380  * insertion can include that parent node. At first glance it seems impossible
3381  * to trigger chunk allocation after starting a transaction since tasks should
3382  * reserve enough transaction units (metadata space), however while that is true
3383  * most of the time, chunk allocation may still be triggered for several reasons:
3384  *
3385  * 1) When reserving metadata, we check if there is enough free space in the
3386  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3387  *    However later when the task actually tries to COW an extent buffer from
3388  *    the extent btree or from the device btree for example, it is forced to
3389  *    allocate a new block group (chunk) because the only one that had enough
3390  *    free space was just turned to RO mode by a running scrub for example (or
3391  *    device replace, block group reclaim thread, etc), so we can not use it
3392  *    for allocating an extent and end up being forced to allocate a new one;
3393  *
3394  * 2) Because we only check that the metadata space_info has enough free bytes,
3395  *    we end up not allocating a new metadata chunk in that case. However if
3396  *    the filesystem was mounted in degraded mode, none of the existing block
3397  *    groups might be suitable for extent allocation due to their incompatible
3398  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3399  *    use a RAID1 profile, in degraded mode using a single device). In this case
3400  *    when the task attempts to COW some extent buffer of the extent btree for
3401  *    example, it will trigger allocation of a new metadata block group with a
3402  *    suitable profile (SINGLE profile in the example of the degraded mount of
3403  *    the RAID1 filesystem);
3404  *
3405  * 3) The task has reserved enough transaction units / metadata space, but when
3406  *    it attempts to COW an extent buffer from the extent or device btree for
3407  *    example, it does not find any free extent in any metadata block group,
3408  *    therefore forced to try to allocate a new metadata block group.
3409  *    This is because some other task allocated all available extents in the
3410  *    meanwhile - this typically happens with tasks that don't reserve space
3411  *    properly, either intentionally or as a bug. One example where this is
3412  *    done intentionally is fsync, as it does not reserve any transaction units
3413  *    and ends up allocating a variable number of metadata extents for log
3414  *    tree extent buffers.
3415  *
3416  * We also need this 2 phases setup when adding a device to a filesystem with
3417  * a seed device - we must create new metadata and system chunks without adding
3418  * any of the block group items to the chunk, extent and device btrees. If we
3419  * did not do it this way, we would get ENOSPC when attempting to update those
3420  * btrees, since all the chunks from the seed device are read-only.
3421  *
3422  * Phase 1 does the updates and insertions to the chunk btree because if we had
3423  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3424  * parallel, we risk having too many system chunks allocated by many tasks if
3425  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3426  * extreme case this leads to exhaustion of the system chunk array in the
3427  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3428  * and with RAID filesystems (so we have more device items in the chunk btree).
3429  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3430  * the system chunk array due to concurrent allocations") provides more details.
3431  *
3432  * For allocation of system chunks, we defer the updates and insertions into the
3433  * chunk btree to phase 2. This is to prevent deadlocks on extent buffers because
3434  * if the chunk allocation is triggered while COWing an extent buffer of the
3435  * chunk btree, we are holding a lock on the parent of that extent buffer and
3436  * doing the chunk btree updates and insertions can require locking that parent.
3437  * This is for the very few and rare cases where we update the chunk btree that
3438  * are not chunk allocation or chunk removal: adding a device, removing a device
3439  * or resizing a device.
3440  *
3441  * The reservation of system space, done through check_system_chunk(), as well
3442  * as all the updates and insertions into the chunk btree must be done while
3443  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3444  * an extent buffer from the chunks btree we never trigger allocation of a new
3445  * system chunk, which would result in a deadlock (trying to lock twice an
3446  * extent buffer of the chunk btree, first time before triggering the chunk
3447  * allocation and the second time during chunk allocation while attempting to
3448  * update the chunks btree). The system chunk array is also updated while holding
3449  * that mutex. The same logic applies to removing chunks - we must reserve system
3450  * space, update the chunk btree and the system chunk array in the superblock
3451  * while holding fs_info->chunk_mutex.
3452  *
3453  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3454  *
3455  * If @force is CHUNK_ALLOC_FORCE:
3456  *    - return 1 if it successfully allocates a chunk,
3457  *    - return errors including -ENOSPC otherwise.
3458  * If @force is NOT CHUNK_ALLOC_FORCE:
3459  *    - return 0 if it doesn't need to allocate a new chunk,
3460  *    - return 1 if it successfully allocates a chunk,
3461  *    - return errors including -ENOSPC otherwise.
3462  */
3463 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3464 		      enum btrfs_chunk_alloc_enum force)
3465 {
3466 	struct btrfs_fs_info *fs_info = trans->fs_info;
3467 	struct btrfs_space_info *space_info;
3468 	bool wait_for_alloc = false;
3469 	bool should_alloc = false;
3470 	int ret = 0;
3471 
3472 	/* Don't re-enter if we're already allocating a chunk */
3473 	if (trans->allocating_chunk)
3474 		return -ENOSPC;
3475 	/*
3476 	 * If we are removing a chunk, don't re-enter or we would deadlock.
3477 	 * System space reservation and system chunk allocation is done by the
3478 	 * chunk remove operation (btrfs_remove_chunk()).
3479 	 */
3480 	if (trans->removing_chunk)
3481 		return -ENOSPC;
3482 
3483 	space_info = btrfs_find_space_info(fs_info, flags);
3484 	ASSERT(space_info);
3485 
3486 	do {
3487 		spin_lock(&space_info->lock);
3488 		if (force < space_info->force_alloc)
3489 			force = space_info->force_alloc;
3490 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3491 		if (space_info->full) {
3492 			/* No more free physical space */
3493 			if (should_alloc)
3494 				ret = -ENOSPC;
3495 			else
3496 				ret = 0;
3497 			spin_unlock(&space_info->lock);
3498 			return ret;
3499 		} else if (!should_alloc) {
3500 			spin_unlock(&space_info->lock);
3501 			return 0;
3502 		} else if (space_info->chunk_alloc) {
3503 			/*
3504 			 * Someone is already allocating, so we need to block
3505 			 * until this someone is finished and then loop to
3506 			 * recheck if we should continue with our allocation
3507 			 * attempt.
3508 			 */
3509 			wait_for_alloc = true;
3510 			spin_unlock(&space_info->lock);
3511 			mutex_lock(&fs_info->chunk_mutex);
3512 			mutex_unlock(&fs_info->chunk_mutex);
3513 		} else {
3514 			/* Proceed with allocation */
3515 			space_info->chunk_alloc = 1;
3516 			wait_for_alloc = false;
3517 			spin_unlock(&space_info->lock);
3518 		}
3519 
3520 		cond_resched();
3521 	} while (wait_for_alloc);
3522 
3523 	mutex_lock(&fs_info->chunk_mutex);
3524 	trans->allocating_chunk = true;
3525 
3526 	/*
3527 	 * If we have mixed data/metadata chunks we want to make sure we keep
3528 	 * allocating mixed chunks instead of individual chunks.
3529 	 */
3530 	if (btrfs_mixed_space_info(space_info))
3531 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3532 
3533 	/*
3534 	 * if we're doing a data chunk, go ahead and make sure that
3535 	 * we keep a reasonable number of metadata chunks allocated in the
3536 	 * FS as well.
3537 	 */
3538 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3539 		fs_info->data_chunk_allocations++;
3540 		if (!(fs_info->data_chunk_allocations %
3541 		      fs_info->metadata_ratio))
3542 			force_metadata_allocation(fs_info);
3543 	}
3544 
3545 	ret = do_chunk_alloc(trans, flags);
3546 	trans->allocating_chunk = false;
3547 
3548 	spin_lock(&space_info->lock);
3549 	if (ret < 0) {
3550 		if (ret == -ENOSPC)
3551 			space_info->full = 1;
3552 		else
3553 			goto out;
3554 	} else {
3555 		ret = 1;
3556 		space_info->max_extent_size = 0;
3557 	}
3558 
3559 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3560 out:
3561 	space_info->chunk_alloc = 0;
3562 	spin_unlock(&space_info->lock);
3563 	mutex_unlock(&fs_info->chunk_mutex);
3564 
3565 	return ret;
3566 }
3567 
3568 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3569 {
3570 	u64 num_dev;
3571 
3572 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3573 	if (!num_dev)
3574 		num_dev = fs_info->fs_devices->rw_devices;
3575 
3576 	return num_dev;
3577 }
3578 
3579 /*
3580  * Reserve space in the system space for allocating or removing a chunk
3581  */
3582 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3583 {
3584 	struct btrfs_fs_info *fs_info = trans->fs_info;
3585 	struct btrfs_space_info *info;
3586 	u64 left;
3587 	u64 thresh;
3588 	int ret = 0;
3589 	u64 num_devs;
3590 
3591 	/*
3592 	 * Needed because we can end up allocating a system chunk and for an
3593 	 * atomic and race free space reservation in the chunk block reserve.
3594 	 */
3595 	lockdep_assert_held(&fs_info->chunk_mutex);
3596 
3597 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3598 	spin_lock(&info->lock);
3599 	left = info->total_bytes - btrfs_space_info_used(info, true);
3600 	spin_unlock(&info->lock);
3601 
3602 	num_devs = get_profile_num_devs(fs_info, type);
3603 
3604 	/* num_devs device items to update and 1 chunk item to add or remove */
3605 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3606 		btrfs_calc_insert_metadata_size(fs_info, 1);
3607 
3608 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3609 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3610 			   left, thresh, type);
3611 		btrfs_dump_space_info(fs_info, info, 0, 0);
3612 	}
3613 
3614 	if (left < thresh) {
3615 		u64 flags = btrfs_system_alloc_profile(fs_info);
3616 		struct btrfs_block_group *bg;
3617 
3618 		/*
3619 		 * Ignore failure to create system chunk. We might end up not
3620 		 * needing it, as we might not need to COW all nodes/leafs from
3621 		 * the paths we visit in the chunk tree (they were already COWed
3622 		 * or created in the current transaction for example).
3623 		 *
3624 		 * Also, if our caller is allocating a system chunk, do not
3625 		 * attempt to insert the chunk item in the chunk btree, as we
3626 		 * could deadlock on an extent buffer since our caller may be
3627 		 * COWing an extent buffer from the chunk btree.
3628 		 */
3629 		bg = btrfs_alloc_chunk(trans, flags);
3630 		if (IS_ERR(bg)) {
3631 			ret = PTR_ERR(bg);
3632 		} else if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
3633 			/*
3634 			 * If we fail to add the chunk item here, we end up
3635 			 * trying again at phase 2 of chunk allocation, at
3636 			 * btrfs_create_pending_block_groups(). So ignore
3637 			 * any error here.
3638 			 */
3639 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3640 		}
3641 	}
3642 
3643 	if (!ret) {
3644 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3645 					  &fs_info->chunk_block_rsv,
3646 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3647 		if (!ret)
3648 			trans->chunk_bytes_reserved += thresh;
3649 	}
3650 }
3651 
3652 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3653 {
3654 	struct btrfs_block_group *block_group;
3655 	u64 last = 0;
3656 
3657 	while (1) {
3658 		struct inode *inode;
3659 
3660 		block_group = btrfs_lookup_first_block_group(info, last);
3661 		while (block_group) {
3662 			btrfs_wait_block_group_cache_done(block_group);
3663 			spin_lock(&block_group->lock);
3664 			if (block_group->iref)
3665 				break;
3666 			spin_unlock(&block_group->lock);
3667 			block_group = btrfs_next_block_group(block_group);
3668 		}
3669 		if (!block_group) {
3670 			if (last == 0)
3671 				break;
3672 			last = 0;
3673 			continue;
3674 		}
3675 
3676 		inode = block_group->inode;
3677 		block_group->iref = 0;
3678 		block_group->inode = NULL;
3679 		spin_unlock(&block_group->lock);
3680 		ASSERT(block_group->io_ctl.inode == NULL);
3681 		iput(inode);
3682 		last = block_group->start + block_group->length;
3683 		btrfs_put_block_group(block_group);
3684 	}
3685 }
3686 
3687 /*
3688  * Must be called only after stopping all workers, since we could have block
3689  * group caching kthreads running, and therefore they could race with us if we
3690  * freed the block groups before stopping them.
3691  */
3692 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3693 {
3694 	struct btrfs_block_group *block_group;
3695 	struct btrfs_space_info *space_info;
3696 	struct btrfs_caching_control *caching_ctl;
3697 	struct rb_node *n;
3698 
3699 	spin_lock(&info->block_group_cache_lock);
3700 	while (!list_empty(&info->caching_block_groups)) {
3701 		caching_ctl = list_entry(info->caching_block_groups.next,
3702 					 struct btrfs_caching_control, list);
3703 		list_del(&caching_ctl->list);
3704 		btrfs_put_caching_control(caching_ctl);
3705 	}
3706 	spin_unlock(&info->block_group_cache_lock);
3707 
3708 	spin_lock(&info->unused_bgs_lock);
3709 	while (!list_empty(&info->unused_bgs)) {
3710 		block_group = list_first_entry(&info->unused_bgs,
3711 					       struct btrfs_block_group,
3712 					       bg_list);
3713 		list_del_init(&block_group->bg_list);
3714 		btrfs_put_block_group(block_group);
3715 	}
3716 	spin_unlock(&info->unused_bgs_lock);
3717 
3718 	spin_lock(&info->unused_bgs_lock);
3719 	while (!list_empty(&info->reclaim_bgs)) {
3720 		block_group = list_first_entry(&info->reclaim_bgs,
3721 					       struct btrfs_block_group,
3722 					       bg_list);
3723 		list_del_init(&block_group->bg_list);
3724 		btrfs_put_block_group(block_group);
3725 	}
3726 	spin_unlock(&info->unused_bgs_lock);
3727 
3728 	spin_lock(&info->block_group_cache_lock);
3729 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3730 		block_group = rb_entry(n, struct btrfs_block_group,
3731 				       cache_node);
3732 		rb_erase(&block_group->cache_node,
3733 			 &info->block_group_cache_tree);
3734 		RB_CLEAR_NODE(&block_group->cache_node);
3735 		spin_unlock(&info->block_group_cache_lock);
3736 
3737 		down_write(&block_group->space_info->groups_sem);
3738 		list_del(&block_group->list);
3739 		up_write(&block_group->space_info->groups_sem);
3740 
3741 		/*
3742 		 * We haven't cached this block group, which means we could
3743 		 * possibly have excluded extents on this block group.
3744 		 */
3745 		if (block_group->cached == BTRFS_CACHE_NO ||
3746 		    block_group->cached == BTRFS_CACHE_ERROR)
3747 			btrfs_free_excluded_extents(block_group);
3748 
3749 		btrfs_remove_free_space_cache(block_group);
3750 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3751 		ASSERT(list_empty(&block_group->dirty_list));
3752 		ASSERT(list_empty(&block_group->io_list));
3753 		ASSERT(list_empty(&block_group->bg_list));
3754 		ASSERT(refcount_read(&block_group->refs) == 1);
3755 		ASSERT(block_group->swap_extents == 0);
3756 		btrfs_put_block_group(block_group);
3757 
3758 		spin_lock(&info->block_group_cache_lock);
3759 	}
3760 	spin_unlock(&info->block_group_cache_lock);
3761 
3762 	btrfs_release_global_block_rsv(info);
3763 
3764 	while (!list_empty(&info->space_info)) {
3765 		space_info = list_entry(info->space_info.next,
3766 					struct btrfs_space_info,
3767 					list);
3768 
3769 		/*
3770 		 * Do not hide this behind enospc_debug, this is actually
3771 		 * important and indicates a real bug if this happens.
3772 		 */
3773 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3774 			    space_info->bytes_reserved > 0 ||
3775 			    space_info->bytes_may_use > 0))
3776 			btrfs_dump_space_info(info, space_info, 0, 0);
3777 		WARN_ON(space_info->reclaim_size > 0);
3778 		list_del(&space_info->list);
3779 		btrfs_sysfs_remove_space_info(space_info);
3780 	}
3781 	return 0;
3782 }
3783 
3784 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3785 {
3786 	atomic_inc(&cache->frozen);
3787 }
3788 
3789 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3790 {
3791 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3792 	struct extent_map_tree *em_tree;
3793 	struct extent_map *em;
3794 	bool cleanup;
3795 
3796 	spin_lock(&block_group->lock);
3797 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3798 		   block_group->removed);
3799 	spin_unlock(&block_group->lock);
3800 
3801 	if (cleanup) {
3802 		em_tree = &fs_info->mapping_tree;
3803 		write_lock(&em_tree->lock);
3804 		em = lookup_extent_mapping(em_tree, block_group->start,
3805 					   1);
3806 		BUG_ON(!em); /* logic error, can't happen */
3807 		remove_extent_mapping(em_tree, em);
3808 		write_unlock(&em_tree->lock);
3809 
3810 		/* once for us and once for the tree */
3811 		free_extent_map(em);
3812 		free_extent_map(em);
3813 
3814 		/*
3815 		 * We may have left one free space entry and other possible
3816 		 * tasks trimming this block group have left 1 entry each one.
3817 		 * Free them if any.
3818 		 */
3819 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3820 	}
3821 }
3822 
3823 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3824 {
3825 	bool ret = true;
3826 
3827 	spin_lock(&bg->lock);
3828 	if (bg->ro)
3829 		ret = false;
3830 	else
3831 		bg->swap_extents++;
3832 	spin_unlock(&bg->lock);
3833 
3834 	return ret;
3835 }
3836 
3837 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3838 {
3839 	spin_lock(&bg->lock);
3840 	ASSERT(!bg->ro);
3841 	ASSERT(bg->swap_extents >= amount);
3842 	bg->swap_extents -= amount;
3843 	spin_unlock(&bg->lock);
3844 }
3845