1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/sizes.h> 4 #include <linux/list_sort.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "block-group.h" 8 #include "space-info.h" 9 #include "disk-io.h" 10 #include "free-space-cache.h" 11 #include "free-space-tree.h" 12 #include "volumes.h" 13 #include "transaction.h" 14 #include "ref-verify.h" 15 #include "sysfs.h" 16 #include "tree-log.h" 17 #include "delalloc-space.h" 18 #include "discard.h" 19 #include "raid56.h" 20 #include "zoned.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 25 #ifdef CONFIG_BTRFS_DEBUG 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group) 27 { 28 struct btrfs_fs_info *fs_info = block_group->fs_info; 29 30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && 31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || 32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) && 33 block_group->flags & BTRFS_BLOCK_GROUP_DATA); 34 } 35 #endif 36 37 /* 38 * Return target flags in extended format or 0 if restripe for this chunk_type 39 * is not in progress 40 * 41 * Should be called with balance_lock held 42 */ 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 44 { 45 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 46 u64 target = 0; 47 48 if (!bctl) 49 return 0; 50 51 if (flags & BTRFS_BLOCK_GROUP_DATA && 52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 60 } 61 62 return target; 63 } 64 65 /* 66 * @flags: available profiles in extended format (see ctree.h) 67 * 68 * Return reduced profile in chunk format. If profile changing is in progress 69 * (either running or paused) picks the target profile (if it's already 70 * available), otherwise falls back to plain reducing. 71 */ 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 73 { 74 u64 num_devices = fs_info->fs_devices->rw_devices; 75 u64 target; 76 u64 raid_type; 77 u64 allowed = 0; 78 79 /* 80 * See if restripe for this chunk_type is in progress, if so try to 81 * reduce to the target profile 82 */ 83 spin_lock(&fs_info->balance_lock); 84 target = get_restripe_target(fs_info, flags); 85 if (target) { 86 spin_unlock(&fs_info->balance_lock); 87 return extended_to_chunk(target); 88 } 89 spin_unlock(&fs_info->balance_lock); 90 91 /* First, mask out the RAID levels which aren't possible */ 92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 93 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 94 allowed |= btrfs_raid_array[raid_type].bg_flag; 95 } 96 allowed &= flags; 97 98 /* Select the highest-redundancy RAID level. */ 99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4) 100 allowed = BTRFS_BLOCK_GROUP_RAID1C4; 101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6) 102 allowed = BTRFS_BLOCK_GROUP_RAID6; 103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3) 104 allowed = BTRFS_BLOCK_GROUP_RAID1C3; 105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 106 allowed = BTRFS_BLOCK_GROUP_RAID5; 107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 108 allowed = BTRFS_BLOCK_GROUP_RAID10; 109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 110 allowed = BTRFS_BLOCK_GROUP_RAID1; 111 else if (allowed & BTRFS_BLOCK_GROUP_DUP) 112 allowed = BTRFS_BLOCK_GROUP_DUP; 113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 114 allowed = BTRFS_BLOCK_GROUP_RAID0; 115 116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 117 118 return extended_to_chunk(flags | allowed); 119 } 120 121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 122 { 123 unsigned seq; 124 u64 flags; 125 126 do { 127 flags = orig_flags; 128 seq = read_seqbegin(&fs_info->profiles_lock); 129 130 if (flags & BTRFS_BLOCK_GROUP_DATA) 131 flags |= fs_info->avail_data_alloc_bits; 132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 133 flags |= fs_info->avail_system_alloc_bits; 134 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 135 flags |= fs_info->avail_metadata_alloc_bits; 136 } while (read_seqretry(&fs_info->profiles_lock, seq)); 137 138 return btrfs_reduce_alloc_profile(fs_info, flags); 139 } 140 141 void btrfs_get_block_group(struct btrfs_block_group *cache) 142 { 143 refcount_inc(&cache->refs); 144 } 145 146 void btrfs_put_block_group(struct btrfs_block_group *cache) 147 { 148 if (refcount_dec_and_test(&cache->refs)) { 149 WARN_ON(cache->pinned > 0); 150 /* 151 * If there was a failure to cleanup a log tree, very likely due 152 * to an IO failure on a writeback attempt of one or more of its 153 * extent buffers, we could not do proper (and cheap) unaccounting 154 * of their reserved space, so don't warn on reserved > 0 in that 155 * case. 156 */ 157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) || 158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info)) 159 WARN_ON(cache->reserved > 0); 160 161 /* 162 * A block_group shouldn't be on the discard_list anymore. 163 * Remove the block_group from the discard_list to prevent us 164 * from causing a panic due to NULL pointer dereference. 165 */ 166 if (WARN_ON(!list_empty(&cache->discard_list))) 167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, 168 cache); 169 170 kfree(cache->free_space_ctl); 171 kfree(cache->physical_map); 172 kfree(cache); 173 } 174 } 175 176 /* 177 * This adds the block group to the fs_info rb tree for the block group cache 178 */ 179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 180 struct btrfs_block_group *block_group) 181 { 182 struct rb_node **p; 183 struct rb_node *parent = NULL; 184 struct btrfs_block_group *cache; 185 bool leftmost = true; 186 187 ASSERT(block_group->length != 0); 188 189 write_lock(&info->block_group_cache_lock); 190 p = &info->block_group_cache_tree.rb_root.rb_node; 191 192 while (*p) { 193 parent = *p; 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node); 195 if (block_group->start < cache->start) { 196 p = &(*p)->rb_left; 197 } else if (block_group->start > cache->start) { 198 p = &(*p)->rb_right; 199 leftmost = false; 200 } else { 201 write_unlock(&info->block_group_cache_lock); 202 return -EEXIST; 203 } 204 } 205 206 rb_link_node(&block_group->cache_node, parent, p); 207 rb_insert_color_cached(&block_group->cache_node, 208 &info->block_group_cache_tree, leftmost); 209 210 write_unlock(&info->block_group_cache_lock); 211 212 return 0; 213 } 214 215 /* 216 * This will return the block group at or after bytenr if contains is 0, else 217 * it will return the block group that contains the bytenr 218 */ 219 static struct btrfs_block_group *block_group_cache_tree_search( 220 struct btrfs_fs_info *info, u64 bytenr, int contains) 221 { 222 struct btrfs_block_group *cache, *ret = NULL; 223 struct rb_node *n; 224 u64 end, start; 225 226 read_lock(&info->block_group_cache_lock); 227 n = info->block_group_cache_tree.rb_root.rb_node; 228 229 while (n) { 230 cache = rb_entry(n, struct btrfs_block_group, cache_node); 231 end = cache->start + cache->length - 1; 232 start = cache->start; 233 234 if (bytenr < start) { 235 if (!contains && (!ret || start < ret->start)) 236 ret = cache; 237 n = n->rb_left; 238 } else if (bytenr > start) { 239 if (contains && bytenr <= end) { 240 ret = cache; 241 break; 242 } 243 n = n->rb_right; 244 } else { 245 ret = cache; 246 break; 247 } 248 } 249 if (ret) 250 btrfs_get_block_group(ret); 251 read_unlock(&info->block_group_cache_lock); 252 253 return ret; 254 } 255 256 /* 257 * Return the block group that starts at or after bytenr 258 */ 259 struct btrfs_block_group *btrfs_lookup_first_block_group( 260 struct btrfs_fs_info *info, u64 bytenr) 261 { 262 return block_group_cache_tree_search(info, bytenr, 0); 263 } 264 265 /* 266 * Return the block group that contains the given bytenr 267 */ 268 struct btrfs_block_group *btrfs_lookup_block_group( 269 struct btrfs_fs_info *info, u64 bytenr) 270 { 271 return block_group_cache_tree_search(info, bytenr, 1); 272 } 273 274 struct btrfs_block_group *btrfs_next_block_group( 275 struct btrfs_block_group *cache) 276 { 277 struct btrfs_fs_info *fs_info = cache->fs_info; 278 struct rb_node *node; 279 280 read_lock(&fs_info->block_group_cache_lock); 281 282 /* If our block group was removed, we need a full search. */ 283 if (RB_EMPTY_NODE(&cache->cache_node)) { 284 const u64 next_bytenr = cache->start + cache->length; 285 286 read_unlock(&fs_info->block_group_cache_lock); 287 btrfs_put_block_group(cache); 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr); 289 } 290 node = rb_next(&cache->cache_node); 291 btrfs_put_block_group(cache); 292 if (node) { 293 cache = rb_entry(node, struct btrfs_block_group, cache_node); 294 btrfs_get_block_group(cache); 295 } else 296 cache = NULL; 297 read_unlock(&fs_info->block_group_cache_lock); 298 return cache; 299 } 300 301 /* 302 * Check if we can do a NOCOW write for a given extent. 303 * 304 * @fs_info: The filesystem information object. 305 * @bytenr: Logical start address of the extent. 306 * 307 * Check if we can do a NOCOW write for the given extent, and increments the 308 * number of NOCOW writers in the block group that contains the extent, as long 309 * as the block group exists and it's currently not in read-only mode. 310 * 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller 312 * is responsible for calling btrfs_dec_nocow_writers() later. 313 * 314 * Or NULL if we can not do a NOCOW write 315 */ 316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, 317 u64 bytenr) 318 { 319 struct btrfs_block_group *bg; 320 bool can_nocow = true; 321 322 bg = btrfs_lookup_block_group(fs_info, bytenr); 323 if (!bg) 324 return NULL; 325 326 spin_lock(&bg->lock); 327 if (bg->ro) 328 can_nocow = false; 329 else 330 atomic_inc(&bg->nocow_writers); 331 spin_unlock(&bg->lock); 332 333 if (!can_nocow) { 334 btrfs_put_block_group(bg); 335 return NULL; 336 } 337 338 /* No put on block group, done by btrfs_dec_nocow_writers(). */ 339 return bg; 340 } 341 342 /* 343 * Decrement the number of NOCOW writers in a block group. 344 * 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(), 346 * and on the block group returned by that call. Typically this is called after 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and 348 * relocation. 349 * 350 * After this call, the caller should not use the block group anymore. It it wants 351 * to use it, then it should get a reference on it before calling this function. 352 */ 353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg) 354 { 355 if (atomic_dec_and_test(&bg->nocow_writers)) 356 wake_up_var(&bg->nocow_writers); 357 358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */ 359 btrfs_put_block_group(bg); 360 } 361 362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) 363 { 364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 365 } 366 367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 368 const u64 start) 369 { 370 struct btrfs_block_group *bg; 371 372 bg = btrfs_lookup_block_group(fs_info, start); 373 ASSERT(bg); 374 if (atomic_dec_and_test(&bg->reservations)) 375 wake_up_var(&bg->reservations); 376 btrfs_put_block_group(bg); 377 } 378 379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) 380 { 381 struct btrfs_space_info *space_info = bg->space_info; 382 383 ASSERT(bg->ro); 384 385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return; 387 388 /* 389 * Our block group is read only but before we set it to read only, 390 * some task might have had allocated an extent from it already, but it 391 * has not yet created a respective ordered extent (and added it to a 392 * root's list of ordered extents). 393 * Therefore wait for any task currently allocating extents, since the 394 * block group's reservations counter is incremented while a read lock 395 * on the groups' semaphore is held and decremented after releasing 396 * the read access on that semaphore and creating the ordered extent. 397 */ 398 down_write(&space_info->groups_sem); 399 up_write(&space_info->groups_sem); 400 401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 402 } 403 404 struct btrfs_caching_control *btrfs_get_caching_control( 405 struct btrfs_block_group *cache) 406 { 407 struct btrfs_caching_control *ctl; 408 409 spin_lock(&cache->lock); 410 if (!cache->caching_ctl) { 411 spin_unlock(&cache->lock); 412 return NULL; 413 } 414 415 ctl = cache->caching_ctl; 416 refcount_inc(&ctl->count); 417 spin_unlock(&cache->lock); 418 return ctl; 419 } 420 421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl) 422 { 423 if (refcount_dec_and_test(&ctl->count)) 424 kfree(ctl); 425 } 426 427 /* 428 * When we wait for progress in the block group caching, its because our 429 * allocation attempt failed at least once. So, we must sleep and let some 430 * progress happen before we try again. 431 * 432 * This function will sleep at least once waiting for new free space to show 433 * up, and then it will check the block group free space numbers for our min 434 * num_bytes. Another option is to have it go ahead and look in the rbtree for 435 * a free extent of a given size, but this is a good start. 436 * 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 438 * any of the information in this block group. 439 */ 440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, 441 u64 num_bytes) 442 { 443 struct btrfs_caching_control *caching_ctl; 444 int progress; 445 446 caching_ctl = btrfs_get_caching_control(cache); 447 if (!caching_ctl) 448 return; 449 450 /* 451 * We've already failed to allocate from this block group, so even if 452 * there's enough space in the block group it isn't contiguous enough to 453 * allow for an allocation, so wait for at least the next wakeup tick, 454 * or for the thing to be done. 455 */ 456 progress = atomic_read(&caching_ctl->progress); 457 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || 459 (progress != atomic_read(&caching_ctl->progress) && 460 (cache->free_space_ctl->free_space >= num_bytes))); 461 462 btrfs_put_caching_control(caching_ctl); 463 } 464 465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache, 466 struct btrfs_caching_control *caching_ctl) 467 { 468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); 469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0; 470 } 471 472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) 473 { 474 struct btrfs_caching_control *caching_ctl; 475 int ret; 476 477 caching_ctl = btrfs_get_caching_control(cache); 478 if (!caching_ctl) 479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 481 btrfs_put_caching_control(caching_ctl); 482 return ret; 483 } 484 485 #ifdef CONFIG_BTRFS_DEBUG 486 static void fragment_free_space(struct btrfs_block_group *block_group) 487 { 488 struct btrfs_fs_info *fs_info = block_group->fs_info; 489 u64 start = block_group->start; 490 u64 len = block_group->length; 491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 492 fs_info->nodesize : fs_info->sectorsize; 493 u64 step = chunk << 1; 494 495 while (len > chunk) { 496 btrfs_remove_free_space(block_group, start, chunk); 497 start += step; 498 if (len < step) 499 len = 0; 500 else 501 len -= step; 502 } 503 } 504 #endif 505 506 /* 507 * Add a free space range to the in memory free space cache of a block group. 508 * This checks if the range contains super block locations and any such 509 * locations are not added to the free space cache. 510 * 511 * @block_group: The target block group. 512 * @start: Start offset of the range. 513 * @end: End offset of the range (exclusive). 514 * @total_added_ret: Optional pointer to return the total amount of space 515 * added to the block group's free space cache. 516 * 517 * Returns 0 on success or < 0 on error. 518 */ 519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, 520 u64 end, u64 *total_added_ret) 521 { 522 struct btrfs_fs_info *info = block_group->fs_info; 523 u64 extent_start, extent_end, size; 524 int ret; 525 526 if (total_added_ret) 527 *total_added_ret = 0; 528 529 while (start < end) { 530 if (!find_first_extent_bit(&info->excluded_extents, start, 531 &extent_start, &extent_end, 532 EXTENT_DIRTY | EXTENT_UPTODATE, 533 NULL)) 534 break; 535 536 if (extent_start <= start) { 537 start = extent_end + 1; 538 } else if (extent_start > start && extent_start < end) { 539 size = extent_start - start; 540 ret = btrfs_add_free_space_async_trimmed(block_group, 541 start, size); 542 if (ret) 543 return ret; 544 if (total_added_ret) 545 *total_added_ret += size; 546 start = extent_end + 1; 547 } else { 548 break; 549 } 550 } 551 552 if (start < end) { 553 size = end - start; 554 ret = btrfs_add_free_space_async_trimmed(block_group, start, 555 size); 556 if (ret) 557 return ret; 558 if (total_added_ret) 559 *total_added_ret += size; 560 } 561 562 return 0; 563 } 564 565 /* 566 * Get an arbitrary extent item index / max_index through the block group 567 * 568 * @block_group the block group to sample from 569 * @index: the integral step through the block group to grab from 570 * @max_index: the granularity of the sampling 571 * @key: return value parameter for the item we find 572 * 573 * Pre-conditions on indices: 574 * 0 <= index <= max_index 575 * 0 < max_index 576 * 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative 578 * error code on error. 579 */ 580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl, 581 struct btrfs_block_group *block_group, 582 int index, int max_index, 583 struct btrfs_key *found_key) 584 { 585 struct btrfs_fs_info *fs_info = block_group->fs_info; 586 struct btrfs_root *extent_root; 587 u64 search_offset; 588 u64 search_end = block_group->start + block_group->length; 589 struct btrfs_path *path; 590 struct btrfs_key search_key; 591 int ret = 0; 592 593 ASSERT(index >= 0); 594 ASSERT(index <= max_index); 595 ASSERT(max_index > 0); 596 lockdep_assert_held(&caching_ctl->mutex); 597 lockdep_assert_held_read(&fs_info->commit_root_sem); 598 599 path = btrfs_alloc_path(); 600 if (!path) 601 return -ENOMEM; 602 603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start, 604 BTRFS_SUPER_INFO_OFFSET)); 605 606 path->skip_locking = 1; 607 path->search_commit_root = 1; 608 path->reada = READA_FORWARD; 609 610 search_offset = index * div_u64(block_group->length, max_index); 611 search_key.objectid = block_group->start + search_offset; 612 search_key.type = BTRFS_EXTENT_ITEM_KEY; 613 search_key.offset = 0; 614 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) { 616 /* Success; sampled an extent item in the block group */ 617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY && 618 found_key->objectid >= block_group->start && 619 found_key->objectid + found_key->offset <= search_end) 620 break; 621 622 /* We can't possibly find a valid extent item anymore */ 623 if (found_key->objectid >= search_end) { 624 ret = 1; 625 break; 626 } 627 } 628 629 lockdep_assert_held(&caching_ctl->mutex); 630 lockdep_assert_held_read(&fs_info->commit_root_sem); 631 btrfs_free_path(path); 632 return ret; 633 } 634 635 /* 636 * Best effort attempt to compute a block group's size class while caching it. 637 * 638 * @block_group: the block group we are caching 639 * 640 * We cannot infer the size class while adding free space extents, because that 641 * logic doesn't care about contiguous file extents (it doesn't differentiate 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the 643 * file extent items. Reading all of them is quite wasteful, because usually 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of 645 * them at even steps through the block group and pick the smallest size class 646 * we see. Since size class is best effort, and not guaranteed in general, 647 * inaccuracy is acceptable. 648 * 649 * To be more explicit about why this algorithm makes sense: 650 * 651 * If we are caching in a block group from disk, then there are three major cases 652 * to consider: 653 * 1. the block group is well behaved and all extents in it are the same size 654 * class. 655 * 2. the block group is mostly one size class with rare exceptions for last 656 * ditch allocations 657 * 3. the block group was populated before size classes and can have a totally 658 * arbitrary mix of size classes. 659 * 660 * In case 1, looking at any extent in the block group will yield the correct 661 * result. For the mixed cases, taking the minimum size class seems like a good 662 * approximation, since gaps from frees will be usable to the size class. For 663 * 2., a small handful of file extents is likely to yield the right answer. For 664 * 3, we can either read every file extent, or admit that this is best effort 665 * anyway and try to stay fast. 666 * 667 * Returns: 0 on success, negative error code on error. 668 */ 669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl, 670 struct btrfs_block_group *block_group) 671 { 672 struct btrfs_fs_info *fs_info = block_group->fs_info; 673 struct btrfs_key key; 674 int i; 675 u64 min_size = block_group->length; 676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE; 677 int ret; 678 679 if (!btrfs_block_group_should_use_size_class(block_group)) 680 return 0; 681 682 lockdep_assert_held(&caching_ctl->mutex); 683 lockdep_assert_held_read(&fs_info->commit_root_sem); 684 for (i = 0; i < 5; ++i) { 685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key); 686 if (ret < 0) 687 goto out; 688 if (ret > 0) 689 continue; 690 min_size = min_t(u64, min_size, key.offset); 691 size_class = btrfs_calc_block_group_size_class(min_size); 692 } 693 if (size_class != BTRFS_BG_SZ_NONE) { 694 spin_lock(&block_group->lock); 695 block_group->size_class = size_class; 696 spin_unlock(&block_group->lock); 697 } 698 out: 699 return ret; 700 } 701 702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 703 { 704 struct btrfs_block_group *block_group = caching_ctl->block_group; 705 struct btrfs_fs_info *fs_info = block_group->fs_info; 706 struct btrfs_root *extent_root; 707 struct btrfs_path *path; 708 struct extent_buffer *leaf; 709 struct btrfs_key key; 710 u64 total_found = 0; 711 u64 last = 0; 712 u32 nritems; 713 int ret; 714 bool wakeup = true; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); 721 extent_root = btrfs_extent_root(fs_info, last); 722 723 #ifdef CONFIG_BTRFS_DEBUG 724 /* 725 * If we're fragmenting we don't want to make anybody think we can 726 * allocate from this block group until we've had a chance to fragment 727 * the free space. 728 */ 729 if (btrfs_should_fragment_free_space(block_group)) 730 wakeup = false; 731 #endif 732 /* 733 * We don't want to deadlock with somebody trying to allocate a new 734 * extent for the extent root while also trying to search the extent 735 * root to add free space. So we skip locking and search the commit 736 * root, since its read-only 737 */ 738 path->skip_locking = 1; 739 path->search_commit_root = 1; 740 path->reada = READA_FORWARD; 741 742 key.objectid = last; 743 key.offset = 0; 744 key.type = BTRFS_EXTENT_ITEM_KEY; 745 746 next: 747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 748 if (ret < 0) 749 goto out; 750 751 leaf = path->nodes[0]; 752 nritems = btrfs_header_nritems(leaf); 753 754 while (1) { 755 if (btrfs_fs_closing(fs_info) > 1) { 756 last = (u64)-1; 757 break; 758 } 759 760 if (path->slots[0] < nritems) { 761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 762 } else { 763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); 764 if (ret) 765 break; 766 767 if (need_resched() || 768 rwsem_is_contended(&fs_info->commit_root_sem)) { 769 btrfs_release_path(path); 770 up_read(&fs_info->commit_root_sem); 771 mutex_unlock(&caching_ctl->mutex); 772 cond_resched(); 773 mutex_lock(&caching_ctl->mutex); 774 down_read(&fs_info->commit_root_sem); 775 goto next; 776 } 777 778 ret = btrfs_next_leaf(extent_root, path); 779 if (ret < 0) 780 goto out; 781 if (ret) 782 break; 783 leaf = path->nodes[0]; 784 nritems = btrfs_header_nritems(leaf); 785 continue; 786 } 787 788 if (key.objectid < last) { 789 key.objectid = last; 790 key.offset = 0; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 btrfs_release_path(path); 793 goto next; 794 } 795 796 if (key.objectid < block_group->start) { 797 path->slots[0]++; 798 continue; 799 } 800 801 if (key.objectid >= block_group->start + block_group->length) 802 break; 803 804 if (key.type == BTRFS_EXTENT_ITEM_KEY || 805 key.type == BTRFS_METADATA_ITEM_KEY) { 806 u64 space_added; 807 808 ret = btrfs_add_new_free_space(block_group, last, 809 key.objectid, &space_added); 810 if (ret) 811 goto out; 812 total_found += space_added; 813 if (key.type == BTRFS_METADATA_ITEM_KEY) 814 last = key.objectid + 815 fs_info->nodesize; 816 else 817 last = key.objectid + key.offset; 818 819 if (total_found > CACHING_CTL_WAKE_UP) { 820 total_found = 0; 821 if (wakeup) { 822 atomic_inc(&caching_ctl->progress); 823 wake_up(&caching_ctl->wait); 824 } 825 } 826 } 827 path->slots[0]++; 828 } 829 830 ret = btrfs_add_new_free_space(block_group, last, 831 block_group->start + block_group->length, 832 NULL); 833 out: 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg) 839 { 840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start, 841 bg->start + bg->length - 1, EXTENT_UPTODATE); 842 } 843 844 static noinline void caching_thread(struct btrfs_work *work) 845 { 846 struct btrfs_block_group *block_group; 847 struct btrfs_fs_info *fs_info; 848 struct btrfs_caching_control *caching_ctl; 849 int ret; 850 851 caching_ctl = container_of(work, struct btrfs_caching_control, work); 852 block_group = caching_ctl->block_group; 853 fs_info = block_group->fs_info; 854 855 mutex_lock(&caching_ctl->mutex); 856 down_read(&fs_info->commit_root_sem); 857 858 load_block_group_size_class(caching_ctl, block_group); 859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 860 ret = load_free_space_cache(block_group); 861 if (ret == 1) { 862 ret = 0; 863 goto done; 864 } 865 866 /* 867 * We failed to load the space cache, set ourselves to 868 * CACHE_STARTED and carry on. 869 */ 870 spin_lock(&block_group->lock); 871 block_group->cached = BTRFS_CACHE_STARTED; 872 spin_unlock(&block_group->lock); 873 wake_up(&caching_ctl->wait); 874 } 875 876 /* 877 * If we are in the transaction that populated the free space tree we 878 * can't actually cache from the free space tree as our commit root and 879 * real root are the same, so we could change the contents of the blocks 880 * while caching. Instead do the slow caching in this case, and after 881 * the transaction has committed we will be safe. 882 */ 883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags))) 885 ret = load_free_space_tree(caching_ctl); 886 else 887 ret = load_extent_tree_free(caching_ctl); 888 done: 889 spin_lock(&block_group->lock); 890 block_group->caching_ctl = NULL; 891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 892 spin_unlock(&block_group->lock); 893 894 #ifdef CONFIG_BTRFS_DEBUG 895 if (btrfs_should_fragment_free_space(block_group)) { 896 u64 bytes_used; 897 898 spin_lock(&block_group->space_info->lock); 899 spin_lock(&block_group->lock); 900 bytes_used = block_group->length - block_group->used; 901 block_group->space_info->bytes_used += bytes_used >> 1; 902 spin_unlock(&block_group->lock); 903 spin_unlock(&block_group->space_info->lock); 904 fragment_free_space(block_group); 905 } 906 #endif 907 908 up_read(&fs_info->commit_root_sem); 909 btrfs_free_excluded_extents(block_group); 910 mutex_unlock(&caching_ctl->mutex); 911 912 wake_up(&caching_ctl->wait); 913 914 btrfs_put_caching_control(caching_ctl); 915 btrfs_put_block_group(block_group); 916 } 917 918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait) 919 { 920 struct btrfs_fs_info *fs_info = cache->fs_info; 921 struct btrfs_caching_control *caching_ctl = NULL; 922 int ret = 0; 923 924 /* Allocator for zoned filesystems does not use the cache at all */ 925 if (btrfs_is_zoned(fs_info)) 926 return 0; 927 928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 929 if (!caching_ctl) 930 return -ENOMEM; 931 932 INIT_LIST_HEAD(&caching_ctl->list); 933 mutex_init(&caching_ctl->mutex); 934 init_waitqueue_head(&caching_ctl->wait); 935 caching_ctl->block_group = cache; 936 refcount_set(&caching_ctl->count, 2); 937 atomic_set(&caching_ctl->progress, 0); 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 939 940 spin_lock(&cache->lock); 941 if (cache->cached != BTRFS_CACHE_NO) { 942 kfree(caching_ctl); 943 944 caching_ctl = cache->caching_ctl; 945 if (caching_ctl) 946 refcount_inc(&caching_ctl->count); 947 spin_unlock(&cache->lock); 948 goto out; 949 } 950 WARN_ON(cache->caching_ctl); 951 cache->caching_ctl = caching_ctl; 952 cache->cached = BTRFS_CACHE_STARTED; 953 spin_unlock(&cache->lock); 954 955 write_lock(&fs_info->block_group_cache_lock); 956 refcount_inc(&caching_ctl->count); 957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 958 write_unlock(&fs_info->block_group_cache_lock); 959 960 btrfs_get_block_group(cache); 961 962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 963 out: 964 if (wait && caching_ctl) 965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl); 966 if (caching_ctl) 967 btrfs_put_caching_control(caching_ctl); 968 969 return ret; 970 } 971 972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 973 { 974 u64 extra_flags = chunk_to_extended(flags) & 975 BTRFS_EXTENDED_PROFILE_MASK; 976 977 write_seqlock(&fs_info->profiles_lock); 978 if (flags & BTRFS_BLOCK_GROUP_DATA) 979 fs_info->avail_data_alloc_bits &= ~extra_flags; 980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 981 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 983 fs_info->avail_system_alloc_bits &= ~extra_flags; 984 write_sequnlock(&fs_info->profiles_lock); 985 } 986 987 /* 988 * Clear incompat bits for the following feature(s): 989 * 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group 991 * in the whole filesystem 992 * 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups 994 */ 995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) 996 { 997 bool found_raid56 = false; 998 bool found_raid1c34 = false; 999 1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || 1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) || 1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { 1003 struct list_head *head = &fs_info->space_info; 1004 struct btrfs_space_info *sinfo; 1005 1006 list_for_each_entry_rcu(sinfo, head, list) { 1007 down_read(&sinfo->groups_sem); 1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) 1009 found_raid56 = true; 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) 1011 found_raid56 = true; 1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) 1013 found_raid1c34 = true; 1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) 1015 found_raid1c34 = true; 1016 up_read(&sinfo->groups_sem); 1017 } 1018 if (!found_raid56) 1019 btrfs_clear_fs_incompat(fs_info, RAID56); 1020 if (!found_raid1c34) 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34); 1022 } 1023 } 1024 1025 static int remove_block_group_item(struct btrfs_trans_handle *trans, 1026 struct btrfs_path *path, 1027 struct btrfs_block_group *block_group) 1028 { 1029 struct btrfs_fs_info *fs_info = trans->fs_info; 1030 struct btrfs_root *root; 1031 struct btrfs_key key; 1032 int ret; 1033 1034 root = btrfs_block_group_root(fs_info); 1035 key.objectid = block_group->start; 1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 1037 key.offset = block_group->length; 1038 1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1040 if (ret > 0) 1041 ret = -ENOENT; 1042 if (ret < 0) 1043 return ret; 1044 1045 ret = btrfs_del_item(trans, root, path); 1046 return ret; 1047 } 1048 1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 1050 u64 group_start, struct extent_map *em) 1051 { 1052 struct btrfs_fs_info *fs_info = trans->fs_info; 1053 struct btrfs_path *path; 1054 struct btrfs_block_group *block_group; 1055 struct btrfs_free_cluster *cluster; 1056 struct inode *inode; 1057 struct kobject *kobj = NULL; 1058 int ret; 1059 int index; 1060 int factor; 1061 struct btrfs_caching_control *caching_ctl = NULL; 1062 bool remove_em; 1063 bool remove_rsv = false; 1064 1065 block_group = btrfs_lookup_block_group(fs_info, group_start); 1066 BUG_ON(!block_group); 1067 BUG_ON(!block_group->ro); 1068 1069 trace_btrfs_remove_block_group(block_group); 1070 /* 1071 * Free the reserved super bytes from this block group before 1072 * remove it. 1073 */ 1074 btrfs_free_excluded_extents(block_group); 1075 btrfs_free_ref_tree_range(fs_info, block_group->start, 1076 block_group->length); 1077 1078 index = btrfs_bg_flags_to_raid_index(block_group->flags); 1079 factor = btrfs_bg_type_to_factor(block_group->flags); 1080 1081 /* make sure this block group isn't part of an allocation cluster */ 1082 cluster = &fs_info->data_alloc_cluster; 1083 spin_lock(&cluster->refill_lock); 1084 btrfs_return_cluster_to_free_space(block_group, cluster); 1085 spin_unlock(&cluster->refill_lock); 1086 1087 /* 1088 * make sure this block group isn't part of a metadata 1089 * allocation cluster 1090 */ 1091 cluster = &fs_info->meta_alloc_cluster; 1092 spin_lock(&cluster->refill_lock); 1093 btrfs_return_cluster_to_free_space(block_group, cluster); 1094 spin_unlock(&cluster->refill_lock); 1095 1096 btrfs_clear_treelog_bg(block_group); 1097 btrfs_clear_data_reloc_bg(block_group); 1098 1099 path = btrfs_alloc_path(); 1100 if (!path) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 1105 /* 1106 * get the inode first so any iput calls done for the io_list 1107 * aren't the final iput (no unlinks allowed now) 1108 */ 1109 inode = lookup_free_space_inode(block_group, path); 1110 1111 mutex_lock(&trans->transaction->cache_write_mutex); 1112 /* 1113 * Make sure our free space cache IO is done before removing the 1114 * free space inode 1115 */ 1116 spin_lock(&trans->transaction->dirty_bgs_lock); 1117 if (!list_empty(&block_group->io_list)) { 1118 list_del_init(&block_group->io_list); 1119 1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 1121 1122 spin_unlock(&trans->transaction->dirty_bgs_lock); 1123 btrfs_wait_cache_io(trans, block_group, path); 1124 btrfs_put_block_group(block_group); 1125 spin_lock(&trans->transaction->dirty_bgs_lock); 1126 } 1127 1128 if (!list_empty(&block_group->dirty_list)) { 1129 list_del_init(&block_group->dirty_list); 1130 remove_rsv = true; 1131 btrfs_put_block_group(block_group); 1132 } 1133 spin_unlock(&trans->transaction->dirty_bgs_lock); 1134 mutex_unlock(&trans->transaction->cache_write_mutex); 1135 1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group); 1137 if (ret) 1138 goto out; 1139 1140 write_lock(&fs_info->block_group_cache_lock); 1141 rb_erase_cached(&block_group->cache_node, 1142 &fs_info->block_group_cache_tree); 1143 RB_CLEAR_NODE(&block_group->cache_node); 1144 1145 /* Once for the block groups rbtree */ 1146 btrfs_put_block_group(block_group); 1147 1148 write_unlock(&fs_info->block_group_cache_lock); 1149 1150 down_write(&block_group->space_info->groups_sem); 1151 /* 1152 * we must use list_del_init so people can check to see if they 1153 * are still on the list after taking the semaphore 1154 */ 1155 list_del_init(&block_group->list); 1156 if (list_empty(&block_group->space_info->block_groups[index])) { 1157 kobj = block_group->space_info->block_group_kobjs[index]; 1158 block_group->space_info->block_group_kobjs[index] = NULL; 1159 clear_avail_alloc_bits(fs_info, block_group->flags); 1160 } 1161 up_write(&block_group->space_info->groups_sem); 1162 clear_incompat_bg_bits(fs_info, block_group->flags); 1163 if (kobj) { 1164 kobject_del(kobj); 1165 kobject_put(kobj); 1166 } 1167 1168 if (block_group->cached == BTRFS_CACHE_STARTED) 1169 btrfs_wait_block_group_cache_done(block_group); 1170 1171 write_lock(&fs_info->block_group_cache_lock); 1172 caching_ctl = btrfs_get_caching_control(block_group); 1173 if (!caching_ctl) { 1174 struct btrfs_caching_control *ctl; 1175 1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) { 1177 if (ctl->block_group == block_group) { 1178 caching_ctl = ctl; 1179 refcount_inc(&caching_ctl->count); 1180 break; 1181 } 1182 } 1183 } 1184 if (caching_ctl) 1185 list_del_init(&caching_ctl->list); 1186 write_unlock(&fs_info->block_group_cache_lock); 1187 1188 if (caching_ctl) { 1189 /* Once for the caching bgs list and once for us. */ 1190 btrfs_put_caching_control(caching_ctl); 1191 btrfs_put_caching_control(caching_ctl); 1192 } 1193 1194 spin_lock(&trans->transaction->dirty_bgs_lock); 1195 WARN_ON(!list_empty(&block_group->dirty_list)); 1196 WARN_ON(!list_empty(&block_group->io_list)); 1197 spin_unlock(&trans->transaction->dirty_bgs_lock); 1198 1199 btrfs_remove_free_space_cache(block_group); 1200 1201 spin_lock(&block_group->space_info->lock); 1202 list_del_init(&block_group->ro_list); 1203 1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1205 WARN_ON(block_group->space_info->total_bytes 1206 < block_group->length); 1207 WARN_ON(block_group->space_info->bytes_readonly 1208 < block_group->length - block_group->zone_unusable); 1209 WARN_ON(block_group->space_info->bytes_zone_unusable 1210 < block_group->zone_unusable); 1211 WARN_ON(block_group->space_info->disk_total 1212 < block_group->length * factor); 1213 } 1214 block_group->space_info->total_bytes -= block_group->length; 1215 block_group->space_info->bytes_readonly -= 1216 (block_group->length - block_group->zone_unusable); 1217 block_group->space_info->bytes_zone_unusable -= 1218 block_group->zone_unusable; 1219 block_group->space_info->disk_total -= block_group->length * factor; 1220 1221 spin_unlock(&block_group->space_info->lock); 1222 1223 /* 1224 * Remove the free space for the block group from the free space tree 1225 * and the block group's item from the extent tree before marking the 1226 * block group as removed. This is to prevent races with tasks that 1227 * freeze and unfreeze a block group, this task and another task 1228 * allocating a new block group - the unfreeze task ends up removing 1229 * the block group's extent map before the task calling this function 1230 * deletes the block group item from the extent tree, allowing for 1231 * another task to attempt to create another block group with the same 1232 * item key (and failing with -EEXIST and a transaction abort). 1233 */ 1234 ret = remove_block_group_free_space(trans, block_group); 1235 if (ret) 1236 goto out; 1237 1238 ret = remove_block_group_item(trans, path, block_group); 1239 if (ret < 0) 1240 goto out; 1241 1242 spin_lock(&block_group->lock); 1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags); 1244 1245 /* 1246 * At this point trimming or scrub can't start on this block group, 1247 * because we removed the block group from the rbtree 1248 * fs_info->block_group_cache_tree so no one can't find it anymore and 1249 * even if someone already got this block group before we removed it 1250 * from the rbtree, they have already incremented block_group->frozen - 1251 * if they didn't, for the trimming case they won't find any free space 1252 * entries because we already removed them all when we called 1253 * btrfs_remove_free_space_cache(). 1254 * 1255 * And we must not remove the extent map from the fs_info->mapping_tree 1256 * to prevent the same logical address range and physical device space 1257 * ranges from being reused for a new block group. This is needed to 1258 * avoid races with trimming and scrub. 1259 * 1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 1261 * completely transactionless, so while it is trimming a range the 1262 * currently running transaction might finish and a new one start, 1263 * allowing for new block groups to be created that can reuse the same 1264 * physical device locations unless we take this special care. 1265 * 1266 * There may also be an implicit trim operation if the file system 1267 * is mounted with -odiscard. The same protections must remain 1268 * in place until the extents have been discarded completely when 1269 * the transaction commit has completed. 1270 */ 1271 remove_em = (atomic_read(&block_group->frozen) == 0); 1272 spin_unlock(&block_group->lock); 1273 1274 if (remove_em) { 1275 struct extent_map_tree *em_tree; 1276 1277 em_tree = &fs_info->mapping_tree; 1278 write_lock(&em_tree->lock); 1279 remove_extent_mapping(em_tree, em); 1280 write_unlock(&em_tree->lock); 1281 /* once for the tree */ 1282 free_extent_map(em); 1283 } 1284 1285 out: 1286 /* Once for the lookup reference */ 1287 btrfs_put_block_group(block_group); 1288 if (remove_rsv) 1289 btrfs_delayed_refs_rsv_release(fs_info, 1); 1290 btrfs_free_path(path); 1291 return ret; 1292 } 1293 1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( 1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset) 1296 { 1297 struct btrfs_root *root = btrfs_block_group_root(fs_info); 1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1299 struct extent_map *em; 1300 struct map_lookup *map; 1301 unsigned int num_items; 1302 1303 read_lock(&em_tree->lock); 1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 1305 read_unlock(&em_tree->lock); 1306 ASSERT(em && em->start == chunk_offset); 1307 1308 /* 1309 * We need to reserve 3 + N units from the metadata space info in order 1310 * to remove a block group (done at btrfs_remove_chunk() and at 1311 * btrfs_remove_block_group()), which are used for: 1312 * 1313 * 1 unit for adding the free space inode's orphan (located in the tree 1314 * of tree roots). 1315 * 1 unit for deleting the block group item (located in the extent 1316 * tree). 1317 * 1 unit for deleting the free space item (located in tree of tree 1318 * roots). 1319 * N units for deleting N device extent items corresponding to each 1320 * stripe (located in the device tree). 1321 * 1322 * In order to remove a block group we also need to reserve units in the 1323 * system space info in order to update the chunk tree (update one or 1324 * more device items and remove one chunk item), but this is done at 1325 * btrfs_remove_chunk() through a call to check_system_chunk(). 1326 */ 1327 map = em->map_lookup; 1328 num_items = 3 + map->num_stripes; 1329 free_extent_map(em); 1330 1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items); 1332 } 1333 1334 /* 1335 * Mark block group @cache read-only, so later write won't happen to block 1336 * group @cache. 1337 * 1338 * If @force is not set, this function will only mark the block group readonly 1339 * if we have enough free space (1M) in other metadata/system block groups. 1340 * If @force is not set, this function will mark the block group readonly 1341 * without checking free space. 1342 * 1343 * NOTE: This function doesn't care if other block groups can contain all the 1344 * data in this block group. That check should be done by relocation routine, 1345 * not this function. 1346 */ 1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force) 1348 { 1349 struct btrfs_space_info *sinfo = cache->space_info; 1350 u64 num_bytes; 1351 int ret = -ENOSPC; 1352 1353 spin_lock(&sinfo->lock); 1354 spin_lock(&cache->lock); 1355 1356 if (cache->swap_extents) { 1357 ret = -ETXTBSY; 1358 goto out; 1359 } 1360 1361 if (cache->ro) { 1362 cache->ro++; 1363 ret = 0; 1364 goto out; 1365 } 1366 1367 num_bytes = cache->length - cache->reserved - cache->pinned - 1368 cache->bytes_super - cache->zone_unusable - cache->used; 1369 1370 /* 1371 * Data never overcommits, even in mixed mode, so do just the straight 1372 * check of left over space in how much we have allocated. 1373 */ 1374 if (force) { 1375 ret = 0; 1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) { 1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true); 1378 1379 /* 1380 * Here we make sure if we mark this bg RO, we still have enough 1381 * free space as buffer. 1382 */ 1383 if (sinfo_used + num_bytes <= sinfo->total_bytes) 1384 ret = 0; 1385 } else { 1386 /* 1387 * We overcommit metadata, so we need to do the 1388 * btrfs_can_overcommit check here, and we need to pass in 1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of 1390 * leeway to allow us to mark this block group as read only. 1391 */ 1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes, 1393 BTRFS_RESERVE_NO_FLUSH)) 1394 ret = 0; 1395 } 1396 1397 if (!ret) { 1398 sinfo->bytes_readonly += num_bytes; 1399 if (btrfs_is_zoned(cache->fs_info)) { 1400 /* Migrate zone_unusable bytes to readonly */ 1401 sinfo->bytes_readonly += cache->zone_unusable; 1402 sinfo->bytes_zone_unusable -= cache->zone_unusable; 1403 cache->zone_unusable = 0; 1404 } 1405 cache->ro++; 1406 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 1407 } 1408 out: 1409 spin_unlock(&cache->lock); 1410 spin_unlock(&sinfo->lock); 1411 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { 1412 btrfs_info(cache->fs_info, 1413 "unable to make block group %llu ro", cache->start); 1414 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); 1415 } 1416 return ret; 1417 } 1418 1419 static bool clean_pinned_extents(struct btrfs_trans_handle *trans, 1420 struct btrfs_block_group *bg) 1421 { 1422 struct btrfs_fs_info *fs_info = bg->fs_info; 1423 struct btrfs_transaction *prev_trans = NULL; 1424 const u64 start = bg->start; 1425 const u64 end = start + bg->length - 1; 1426 int ret; 1427 1428 spin_lock(&fs_info->trans_lock); 1429 if (trans->transaction->list.prev != &fs_info->trans_list) { 1430 prev_trans = list_last_entry(&trans->transaction->list, 1431 struct btrfs_transaction, list); 1432 refcount_inc(&prev_trans->use_count); 1433 } 1434 spin_unlock(&fs_info->trans_lock); 1435 1436 /* 1437 * Hold the unused_bg_unpin_mutex lock to avoid racing with 1438 * btrfs_finish_extent_commit(). If we are at transaction N, another 1439 * task might be running finish_extent_commit() for the previous 1440 * transaction N - 1, and have seen a range belonging to the block 1441 * group in pinned_extents before we were able to clear the whole block 1442 * group range from pinned_extents. This means that task can lookup for 1443 * the block group after we unpinned it from pinned_extents and removed 1444 * it, leading to a BUG_ON() at unpin_extent_range(). 1445 */ 1446 mutex_lock(&fs_info->unused_bg_unpin_mutex); 1447 if (prev_trans) { 1448 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end, 1449 EXTENT_DIRTY); 1450 if (ret) 1451 goto out; 1452 } 1453 1454 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end, 1455 EXTENT_DIRTY); 1456 out: 1457 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 1458 if (prev_trans) 1459 btrfs_put_transaction(prev_trans); 1460 1461 return ret == 0; 1462 } 1463 1464 /* 1465 * Process the unused_bgs list and remove any that don't have any allocated 1466 * space inside of them. 1467 */ 1468 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 1469 { 1470 LIST_HEAD(retry_list); 1471 struct btrfs_block_group *block_group; 1472 struct btrfs_space_info *space_info; 1473 struct btrfs_trans_handle *trans; 1474 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC); 1475 int ret = 0; 1476 1477 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1478 return; 1479 1480 if (btrfs_fs_closing(fs_info)) 1481 return; 1482 1483 /* 1484 * Long running balances can keep us blocked here for eternity, so 1485 * simply skip deletion if we're unable to get the mutex. 1486 */ 1487 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1488 return; 1489 1490 spin_lock(&fs_info->unused_bgs_lock); 1491 while (!list_empty(&fs_info->unused_bgs)) { 1492 u64 used; 1493 int trimming; 1494 1495 block_group = list_first_entry(&fs_info->unused_bgs, 1496 struct btrfs_block_group, 1497 bg_list); 1498 list_del_init(&block_group->bg_list); 1499 1500 space_info = block_group->space_info; 1501 1502 if (ret || btrfs_mixed_space_info(space_info)) { 1503 btrfs_put_block_group(block_group); 1504 continue; 1505 } 1506 spin_unlock(&fs_info->unused_bgs_lock); 1507 1508 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 1509 1510 /* Don't want to race with allocators so take the groups_sem */ 1511 down_write(&space_info->groups_sem); 1512 1513 /* 1514 * Async discard moves the final block group discard to be prior 1515 * to the unused_bgs code path. Therefore, if it's not fully 1516 * trimmed, punt it back to the async discard lists. 1517 */ 1518 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) && 1519 !btrfs_is_free_space_trimmed(block_group)) { 1520 trace_btrfs_skip_unused_block_group(block_group); 1521 up_write(&space_info->groups_sem); 1522 /* Requeue if we failed because of async discard */ 1523 btrfs_discard_queue_work(&fs_info->discard_ctl, 1524 block_group); 1525 goto next; 1526 } 1527 1528 spin_lock(&space_info->lock); 1529 spin_lock(&block_group->lock); 1530 if (btrfs_is_block_group_used(block_group) || block_group->ro || 1531 list_is_singular(&block_group->list)) { 1532 /* 1533 * We want to bail if we made new allocations or have 1534 * outstanding allocations in this block group. We do 1535 * the ro check in case balance is currently acting on 1536 * this block group. 1537 */ 1538 trace_btrfs_skip_unused_block_group(block_group); 1539 spin_unlock(&block_group->lock); 1540 spin_unlock(&space_info->lock); 1541 up_write(&space_info->groups_sem); 1542 goto next; 1543 } 1544 1545 /* 1546 * The block group may be unused but there may be space reserved 1547 * accounting with the existence of that block group, that is, 1548 * space_info->bytes_may_use was incremented by a task but no 1549 * space was yet allocated from the block group by the task. 1550 * That space may or may not be allocated, as we are generally 1551 * pessimistic about space reservation for metadata as well as 1552 * for data when using compression (as we reserve space based on 1553 * the worst case, when data can't be compressed, and before 1554 * actually attempting compression, before starting writeback). 1555 * 1556 * So check if the total space of the space_info minus the size 1557 * of this block group is less than the used space of the 1558 * space_info - if that's the case, then it means we have tasks 1559 * that might be relying on the block group in order to allocate 1560 * extents, and add back the block group to the unused list when 1561 * we finish, so that we retry later in case no tasks ended up 1562 * needing to allocate extents from the block group. 1563 */ 1564 used = btrfs_space_info_used(space_info, true); 1565 if (space_info->total_bytes - block_group->length < used) { 1566 /* 1567 * Add a reference for the list, compensate for the ref 1568 * drop under the "next" label for the 1569 * fs_info->unused_bgs list. 1570 */ 1571 btrfs_get_block_group(block_group); 1572 list_add_tail(&block_group->bg_list, &retry_list); 1573 1574 trace_btrfs_skip_unused_block_group(block_group); 1575 spin_unlock(&block_group->lock); 1576 spin_unlock(&space_info->lock); 1577 up_write(&space_info->groups_sem); 1578 goto next; 1579 } 1580 1581 spin_unlock(&block_group->lock); 1582 spin_unlock(&space_info->lock); 1583 1584 /* We don't want to force the issue, only flip if it's ok. */ 1585 ret = inc_block_group_ro(block_group, 0); 1586 up_write(&space_info->groups_sem); 1587 if (ret < 0) { 1588 ret = 0; 1589 goto next; 1590 } 1591 1592 ret = btrfs_zone_finish(block_group); 1593 if (ret < 0) { 1594 btrfs_dec_block_group_ro(block_group); 1595 if (ret == -EAGAIN) 1596 ret = 0; 1597 goto next; 1598 } 1599 1600 /* 1601 * Want to do this before we do anything else so we can recover 1602 * properly if we fail to join the transaction. 1603 */ 1604 trans = btrfs_start_trans_remove_block_group(fs_info, 1605 block_group->start); 1606 if (IS_ERR(trans)) { 1607 btrfs_dec_block_group_ro(block_group); 1608 ret = PTR_ERR(trans); 1609 goto next; 1610 } 1611 1612 /* 1613 * We could have pending pinned extents for this block group, 1614 * just delete them, we don't care about them anymore. 1615 */ 1616 if (!clean_pinned_extents(trans, block_group)) { 1617 btrfs_dec_block_group_ro(block_group); 1618 goto end_trans; 1619 } 1620 1621 /* 1622 * At this point, the block_group is read only and should fail 1623 * new allocations. However, btrfs_finish_extent_commit() can 1624 * cause this block_group to be placed back on the discard 1625 * lists because now the block_group isn't fully discarded. 1626 * Bail here and try again later after discarding everything. 1627 */ 1628 spin_lock(&fs_info->discard_ctl.lock); 1629 if (!list_empty(&block_group->discard_list)) { 1630 spin_unlock(&fs_info->discard_ctl.lock); 1631 btrfs_dec_block_group_ro(block_group); 1632 btrfs_discard_queue_work(&fs_info->discard_ctl, 1633 block_group); 1634 goto end_trans; 1635 } 1636 spin_unlock(&fs_info->discard_ctl.lock); 1637 1638 /* Reset pinned so btrfs_put_block_group doesn't complain */ 1639 spin_lock(&space_info->lock); 1640 spin_lock(&block_group->lock); 1641 1642 btrfs_space_info_update_bytes_pinned(fs_info, space_info, 1643 -block_group->pinned); 1644 space_info->bytes_readonly += block_group->pinned; 1645 block_group->pinned = 0; 1646 1647 spin_unlock(&block_group->lock); 1648 spin_unlock(&space_info->lock); 1649 1650 /* 1651 * The normal path here is an unused block group is passed here, 1652 * then trimming is handled in the transaction commit path. 1653 * Async discard interposes before this to do the trimming 1654 * before coming down the unused block group path as trimming 1655 * will no longer be done later in the transaction commit path. 1656 */ 1657 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1658 goto flip_async; 1659 1660 /* 1661 * DISCARD can flip during remount. On zoned filesystems, we 1662 * need to reset sequential-required zones. 1663 */ 1664 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) || 1665 btrfs_is_zoned(fs_info); 1666 1667 /* Implicit trim during transaction commit. */ 1668 if (trimming) 1669 btrfs_freeze_block_group(block_group); 1670 1671 /* 1672 * Btrfs_remove_chunk will abort the transaction if things go 1673 * horribly wrong. 1674 */ 1675 ret = btrfs_remove_chunk(trans, block_group->start); 1676 1677 if (ret) { 1678 if (trimming) 1679 btrfs_unfreeze_block_group(block_group); 1680 goto end_trans; 1681 } 1682 1683 /* 1684 * If we're not mounted with -odiscard, we can just forget 1685 * about this block group. Otherwise we'll need to wait 1686 * until transaction commit to do the actual discard. 1687 */ 1688 if (trimming) { 1689 spin_lock(&fs_info->unused_bgs_lock); 1690 /* 1691 * A concurrent scrub might have added us to the list 1692 * fs_info->unused_bgs, so use a list_move operation 1693 * to add the block group to the deleted_bgs list. 1694 */ 1695 list_move(&block_group->bg_list, 1696 &trans->transaction->deleted_bgs); 1697 spin_unlock(&fs_info->unused_bgs_lock); 1698 btrfs_get_block_group(block_group); 1699 } 1700 end_trans: 1701 btrfs_end_transaction(trans); 1702 next: 1703 btrfs_put_block_group(block_group); 1704 spin_lock(&fs_info->unused_bgs_lock); 1705 } 1706 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1707 spin_unlock(&fs_info->unused_bgs_lock); 1708 mutex_unlock(&fs_info->reclaim_bgs_lock); 1709 return; 1710 1711 flip_async: 1712 btrfs_end_transaction(trans); 1713 spin_lock(&fs_info->unused_bgs_lock); 1714 list_splice_tail(&retry_list, &fs_info->unused_bgs); 1715 spin_unlock(&fs_info->unused_bgs_lock); 1716 mutex_unlock(&fs_info->reclaim_bgs_lock); 1717 btrfs_put_block_group(block_group); 1718 btrfs_discard_punt_unused_bgs_list(fs_info); 1719 } 1720 1721 void btrfs_mark_bg_unused(struct btrfs_block_group *bg) 1722 { 1723 struct btrfs_fs_info *fs_info = bg->fs_info; 1724 1725 spin_lock(&fs_info->unused_bgs_lock); 1726 if (list_empty(&bg->bg_list)) { 1727 btrfs_get_block_group(bg); 1728 trace_btrfs_add_unused_block_group(bg); 1729 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 1730 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) { 1731 /* Pull out the block group from the reclaim_bgs list. */ 1732 trace_btrfs_add_unused_block_group(bg); 1733 list_move_tail(&bg->bg_list, &fs_info->unused_bgs); 1734 } 1735 spin_unlock(&fs_info->unused_bgs_lock); 1736 } 1737 1738 /* 1739 * We want block groups with a low number of used bytes to be in the beginning 1740 * of the list, so they will get reclaimed first. 1741 */ 1742 static int reclaim_bgs_cmp(void *unused, const struct list_head *a, 1743 const struct list_head *b) 1744 { 1745 const struct btrfs_block_group *bg1, *bg2; 1746 1747 bg1 = list_entry(a, struct btrfs_block_group, bg_list); 1748 bg2 = list_entry(b, struct btrfs_block_group, bg_list); 1749 1750 return bg1->used > bg2->used; 1751 } 1752 1753 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info) 1754 { 1755 if (btrfs_is_zoned(fs_info)) 1756 return btrfs_zoned_should_reclaim(fs_info); 1757 return true; 1758 } 1759 1760 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed) 1761 { 1762 const struct btrfs_space_info *space_info = bg->space_info; 1763 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold); 1764 const u64 new_val = bg->used; 1765 const u64 old_val = new_val + bytes_freed; 1766 u64 thresh; 1767 1768 if (reclaim_thresh == 0) 1769 return false; 1770 1771 thresh = mult_perc(bg->length, reclaim_thresh); 1772 1773 /* 1774 * If we were below the threshold before don't reclaim, we are likely a 1775 * brand new block group and we don't want to relocate new block groups. 1776 */ 1777 if (old_val < thresh) 1778 return false; 1779 if (new_val >= thresh) 1780 return false; 1781 return true; 1782 } 1783 1784 void btrfs_reclaim_bgs_work(struct work_struct *work) 1785 { 1786 struct btrfs_fs_info *fs_info = 1787 container_of(work, struct btrfs_fs_info, reclaim_bgs_work); 1788 struct btrfs_block_group *bg; 1789 struct btrfs_space_info *space_info; 1790 1791 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1792 return; 1793 1794 if (btrfs_fs_closing(fs_info)) 1795 return; 1796 1797 if (!btrfs_should_reclaim(fs_info)) 1798 return; 1799 1800 sb_start_write(fs_info->sb); 1801 1802 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 1803 sb_end_write(fs_info->sb); 1804 return; 1805 } 1806 1807 /* 1808 * Long running balances can keep us blocked here for eternity, so 1809 * simply skip reclaim if we're unable to get the mutex. 1810 */ 1811 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) { 1812 btrfs_exclop_finish(fs_info); 1813 sb_end_write(fs_info->sb); 1814 return; 1815 } 1816 1817 spin_lock(&fs_info->unused_bgs_lock); 1818 /* 1819 * Sort happens under lock because we can't simply splice it and sort. 1820 * The block groups might still be in use and reachable via bg_list, 1821 * and their presence in the reclaim_bgs list must be preserved. 1822 */ 1823 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp); 1824 while (!list_empty(&fs_info->reclaim_bgs)) { 1825 u64 zone_unusable; 1826 int ret = 0; 1827 1828 bg = list_first_entry(&fs_info->reclaim_bgs, 1829 struct btrfs_block_group, 1830 bg_list); 1831 list_del_init(&bg->bg_list); 1832 1833 space_info = bg->space_info; 1834 spin_unlock(&fs_info->unused_bgs_lock); 1835 1836 /* Don't race with allocators so take the groups_sem */ 1837 down_write(&space_info->groups_sem); 1838 1839 spin_lock(&bg->lock); 1840 if (bg->reserved || bg->pinned || bg->ro) { 1841 /* 1842 * We want to bail if we made new allocations or have 1843 * outstanding allocations in this block group. We do 1844 * the ro check in case balance is currently acting on 1845 * this block group. 1846 */ 1847 spin_unlock(&bg->lock); 1848 up_write(&space_info->groups_sem); 1849 goto next; 1850 } 1851 if (bg->used == 0) { 1852 /* 1853 * It is possible that we trigger relocation on a block 1854 * group as its extents are deleted and it first goes 1855 * below the threshold, then shortly after goes empty. 1856 * 1857 * In this case, relocating it does delete it, but has 1858 * some overhead in relocation specific metadata, looking 1859 * for the non-existent extents and running some extra 1860 * transactions, which we can avoid by using one of the 1861 * other mechanisms for dealing with empty block groups. 1862 */ 1863 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1864 btrfs_mark_bg_unused(bg); 1865 spin_unlock(&bg->lock); 1866 up_write(&space_info->groups_sem); 1867 goto next; 1868 1869 } 1870 /* 1871 * The block group might no longer meet the reclaim condition by 1872 * the time we get around to reclaiming it, so to avoid 1873 * reclaiming overly full block_groups, skip reclaiming them. 1874 * 1875 * Since the decision making process also depends on the amount 1876 * being freed, pass in a fake giant value to skip that extra 1877 * check, which is more meaningful when adding to the list in 1878 * the first place. 1879 */ 1880 if (!should_reclaim_block_group(bg, bg->length)) { 1881 spin_unlock(&bg->lock); 1882 up_write(&space_info->groups_sem); 1883 goto next; 1884 } 1885 spin_unlock(&bg->lock); 1886 1887 /* 1888 * Get out fast, in case we're read-only or unmounting the 1889 * filesystem. It is OK to drop block groups from the list even 1890 * for the read-only case. As we did sb_start_write(), 1891 * "mount -o remount,ro" won't happen and read-only filesystem 1892 * means it is forced read-only due to a fatal error. So, it 1893 * never gets back to read-write to let us reclaim again. 1894 */ 1895 if (btrfs_need_cleaner_sleep(fs_info)) { 1896 up_write(&space_info->groups_sem); 1897 goto next; 1898 } 1899 1900 /* 1901 * Cache the zone_unusable value before turning the block group 1902 * to read only. As soon as the blog group is read only it's 1903 * zone_unusable value gets moved to the block group's read-only 1904 * bytes and isn't available for calculations anymore. 1905 */ 1906 zone_unusable = bg->zone_unusable; 1907 ret = inc_block_group_ro(bg, 0); 1908 up_write(&space_info->groups_sem); 1909 if (ret < 0) 1910 goto next; 1911 1912 btrfs_info(fs_info, 1913 "reclaiming chunk %llu with %llu%% used %llu%% unusable", 1914 bg->start, 1915 div64_u64(bg->used * 100, bg->length), 1916 div64_u64(zone_unusable * 100, bg->length)); 1917 trace_btrfs_reclaim_block_group(bg); 1918 ret = btrfs_relocate_chunk(fs_info, bg->start); 1919 if (ret) { 1920 btrfs_dec_block_group_ro(bg); 1921 btrfs_err(fs_info, "error relocating chunk %llu", 1922 bg->start); 1923 } 1924 1925 next: 1926 if (ret) 1927 btrfs_mark_bg_to_reclaim(bg); 1928 btrfs_put_block_group(bg); 1929 1930 mutex_unlock(&fs_info->reclaim_bgs_lock); 1931 /* 1932 * Reclaiming all the block groups in the list can take really 1933 * long. Prioritize cleaning up unused block groups. 1934 */ 1935 btrfs_delete_unused_bgs(fs_info); 1936 /* 1937 * If we are interrupted by a balance, we can just bail out. The 1938 * cleaner thread restart again if necessary. 1939 */ 1940 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) 1941 goto end; 1942 spin_lock(&fs_info->unused_bgs_lock); 1943 } 1944 spin_unlock(&fs_info->unused_bgs_lock); 1945 mutex_unlock(&fs_info->reclaim_bgs_lock); 1946 end: 1947 btrfs_exclop_finish(fs_info); 1948 sb_end_write(fs_info->sb); 1949 } 1950 1951 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info) 1952 { 1953 spin_lock(&fs_info->unused_bgs_lock); 1954 if (!list_empty(&fs_info->reclaim_bgs)) 1955 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work); 1956 spin_unlock(&fs_info->unused_bgs_lock); 1957 } 1958 1959 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg) 1960 { 1961 struct btrfs_fs_info *fs_info = bg->fs_info; 1962 1963 spin_lock(&fs_info->unused_bgs_lock); 1964 if (list_empty(&bg->bg_list)) { 1965 btrfs_get_block_group(bg); 1966 trace_btrfs_add_reclaim_block_group(bg); 1967 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs); 1968 } 1969 spin_unlock(&fs_info->unused_bgs_lock); 1970 } 1971 1972 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 1973 struct btrfs_path *path) 1974 { 1975 struct extent_map_tree *em_tree; 1976 struct extent_map *em; 1977 struct btrfs_block_group_item bg; 1978 struct extent_buffer *leaf; 1979 int slot; 1980 u64 flags; 1981 int ret = 0; 1982 1983 slot = path->slots[0]; 1984 leaf = path->nodes[0]; 1985 1986 em_tree = &fs_info->mapping_tree; 1987 read_lock(&em_tree->lock); 1988 em = lookup_extent_mapping(em_tree, key->objectid, key->offset); 1989 read_unlock(&em_tree->lock); 1990 if (!em) { 1991 btrfs_err(fs_info, 1992 "logical %llu len %llu found bg but no related chunk", 1993 key->objectid, key->offset); 1994 return -ENOENT; 1995 } 1996 1997 if (em->start != key->objectid || em->len != key->offset) { 1998 btrfs_err(fs_info, 1999 "block group %llu len %llu mismatch with chunk %llu len %llu", 2000 key->objectid, key->offset, em->start, em->len); 2001 ret = -EUCLEAN; 2002 goto out_free_em; 2003 } 2004 2005 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot), 2006 sizeof(bg)); 2007 flags = btrfs_stack_block_group_flags(&bg) & 2008 BTRFS_BLOCK_GROUP_TYPE_MASK; 2009 2010 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2011 btrfs_err(fs_info, 2012 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 2013 key->objectid, key->offset, flags, 2014 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type)); 2015 ret = -EUCLEAN; 2016 } 2017 2018 out_free_em: 2019 free_extent_map(em); 2020 return ret; 2021 } 2022 2023 static int find_first_block_group(struct btrfs_fs_info *fs_info, 2024 struct btrfs_path *path, 2025 struct btrfs_key *key) 2026 { 2027 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2028 int ret; 2029 struct btrfs_key found_key; 2030 2031 btrfs_for_each_slot(root, key, &found_key, path, ret) { 2032 if (found_key.objectid >= key->objectid && 2033 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 2034 return read_bg_from_eb(fs_info, &found_key, path); 2035 } 2036 } 2037 return ret; 2038 } 2039 2040 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2041 { 2042 u64 extra_flags = chunk_to_extended(flags) & 2043 BTRFS_EXTENDED_PROFILE_MASK; 2044 2045 write_seqlock(&fs_info->profiles_lock); 2046 if (flags & BTRFS_BLOCK_GROUP_DATA) 2047 fs_info->avail_data_alloc_bits |= extra_flags; 2048 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2049 fs_info->avail_metadata_alloc_bits |= extra_flags; 2050 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2051 fs_info->avail_system_alloc_bits |= extra_flags; 2052 write_sequnlock(&fs_info->profiles_lock); 2053 } 2054 2055 /* 2056 * Map a physical disk address to a list of logical addresses. 2057 * 2058 * @fs_info: the filesystem 2059 * @chunk_start: logical address of block group 2060 * @physical: physical address to map to logical addresses 2061 * @logical: return array of logical addresses which map to @physical 2062 * @naddrs: length of @logical 2063 * @stripe_len: size of IO stripe for the given block group 2064 * 2065 * Maps a particular @physical disk address to a list of @logical addresses. 2066 * Used primarily to exclude those portions of a block group that contain super 2067 * block copies. 2068 */ 2069 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 2070 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 2071 { 2072 struct extent_map *em; 2073 struct map_lookup *map; 2074 u64 *buf; 2075 u64 bytenr; 2076 u64 data_stripe_length; 2077 u64 io_stripe_size; 2078 int i, nr = 0; 2079 int ret = 0; 2080 2081 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 2082 if (IS_ERR(em)) 2083 return -EIO; 2084 2085 map = em->map_lookup; 2086 data_stripe_length = em->orig_block_len; 2087 io_stripe_size = BTRFS_STRIPE_LEN; 2088 chunk_start = em->start; 2089 2090 /* For RAID5/6 adjust to a full IO stripe length */ 2091 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2092 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2093 2094 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 2095 if (!buf) { 2096 ret = -ENOMEM; 2097 goto out; 2098 } 2099 2100 for (i = 0; i < map->num_stripes; i++) { 2101 bool already_inserted = false; 2102 u32 stripe_nr; 2103 u32 offset; 2104 int j; 2105 2106 if (!in_range(physical, map->stripes[i].physical, 2107 data_stripe_length)) 2108 continue; 2109 2110 stripe_nr = (physical - map->stripes[i].physical) >> 2111 BTRFS_STRIPE_LEN_SHIFT; 2112 offset = (physical - map->stripes[i].physical) & 2113 BTRFS_STRIPE_LEN_MASK; 2114 2115 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2116 BTRFS_BLOCK_GROUP_RAID10)) 2117 stripe_nr = div_u64(stripe_nr * map->num_stripes + i, 2118 map->sub_stripes); 2119 /* 2120 * The remaining case would be for RAID56, multiply by 2121 * nr_data_stripes(). Alternatively, just use rmap_len below 2122 * instead of map->stripe_len 2123 */ 2124 bytenr = chunk_start + stripe_nr * io_stripe_size + offset; 2125 2126 /* Ensure we don't add duplicate addresses */ 2127 for (j = 0; j < nr; j++) { 2128 if (buf[j] == bytenr) { 2129 already_inserted = true; 2130 break; 2131 } 2132 } 2133 2134 if (!already_inserted) 2135 buf[nr++] = bytenr; 2136 } 2137 2138 *logical = buf; 2139 *naddrs = nr; 2140 *stripe_len = io_stripe_size; 2141 out: 2142 free_extent_map(em); 2143 return ret; 2144 } 2145 2146 static int exclude_super_stripes(struct btrfs_block_group *cache) 2147 { 2148 struct btrfs_fs_info *fs_info = cache->fs_info; 2149 const bool zoned = btrfs_is_zoned(fs_info); 2150 u64 bytenr; 2151 u64 *logical; 2152 int stripe_len; 2153 int i, nr, ret; 2154 2155 if (cache->start < BTRFS_SUPER_INFO_OFFSET) { 2156 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; 2157 cache->bytes_super += stripe_len; 2158 ret = set_extent_bit(&fs_info->excluded_extents, cache->start, 2159 cache->start + stripe_len - 1, 2160 EXTENT_UPTODATE, NULL); 2161 if (ret) 2162 return ret; 2163 } 2164 2165 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2166 bytenr = btrfs_sb_offset(i); 2167 ret = btrfs_rmap_block(fs_info, cache->start, 2168 bytenr, &logical, &nr, &stripe_len); 2169 if (ret) 2170 return ret; 2171 2172 /* Shouldn't have super stripes in sequential zones */ 2173 if (zoned && nr) { 2174 kfree(logical); 2175 btrfs_err(fs_info, 2176 "zoned: block group %llu must not contain super block", 2177 cache->start); 2178 return -EUCLEAN; 2179 } 2180 2181 while (nr--) { 2182 u64 len = min_t(u64, stripe_len, 2183 cache->start + cache->length - logical[nr]); 2184 2185 cache->bytes_super += len; 2186 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr], 2187 logical[nr] + len - 1, 2188 EXTENT_UPTODATE, NULL); 2189 if (ret) { 2190 kfree(logical); 2191 return ret; 2192 } 2193 } 2194 2195 kfree(logical); 2196 } 2197 return 0; 2198 } 2199 2200 static struct btrfs_block_group *btrfs_create_block_group_cache( 2201 struct btrfs_fs_info *fs_info, u64 start) 2202 { 2203 struct btrfs_block_group *cache; 2204 2205 cache = kzalloc(sizeof(*cache), GFP_NOFS); 2206 if (!cache) 2207 return NULL; 2208 2209 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 2210 GFP_NOFS); 2211 if (!cache->free_space_ctl) { 2212 kfree(cache); 2213 return NULL; 2214 } 2215 2216 cache->start = start; 2217 2218 cache->fs_info = fs_info; 2219 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 2220 2221 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 2222 2223 refcount_set(&cache->refs, 1); 2224 spin_lock_init(&cache->lock); 2225 init_rwsem(&cache->data_rwsem); 2226 INIT_LIST_HEAD(&cache->list); 2227 INIT_LIST_HEAD(&cache->cluster_list); 2228 INIT_LIST_HEAD(&cache->bg_list); 2229 INIT_LIST_HEAD(&cache->ro_list); 2230 INIT_LIST_HEAD(&cache->discard_list); 2231 INIT_LIST_HEAD(&cache->dirty_list); 2232 INIT_LIST_HEAD(&cache->io_list); 2233 INIT_LIST_HEAD(&cache->active_bg_list); 2234 btrfs_init_free_space_ctl(cache, cache->free_space_ctl); 2235 atomic_set(&cache->frozen, 0); 2236 mutex_init(&cache->free_space_lock); 2237 2238 return cache; 2239 } 2240 2241 /* 2242 * Iterate all chunks and verify that each of them has the corresponding block 2243 * group 2244 */ 2245 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 2246 { 2247 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2248 struct extent_map *em; 2249 struct btrfs_block_group *bg; 2250 u64 start = 0; 2251 int ret = 0; 2252 2253 while (1) { 2254 read_lock(&map_tree->lock); 2255 /* 2256 * lookup_extent_mapping will return the first extent map 2257 * intersecting the range, so setting @len to 1 is enough to 2258 * get the first chunk. 2259 */ 2260 em = lookup_extent_mapping(map_tree, start, 1); 2261 read_unlock(&map_tree->lock); 2262 if (!em) 2263 break; 2264 2265 bg = btrfs_lookup_block_group(fs_info, em->start); 2266 if (!bg) { 2267 btrfs_err(fs_info, 2268 "chunk start=%llu len=%llu doesn't have corresponding block group", 2269 em->start, em->len); 2270 ret = -EUCLEAN; 2271 free_extent_map(em); 2272 break; 2273 } 2274 if (bg->start != em->start || bg->length != em->len || 2275 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 2276 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 2277 btrfs_err(fs_info, 2278 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 2279 em->start, em->len, 2280 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 2281 bg->start, bg->length, 2282 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 2283 ret = -EUCLEAN; 2284 free_extent_map(em); 2285 btrfs_put_block_group(bg); 2286 break; 2287 } 2288 start = em->start + em->len; 2289 free_extent_map(em); 2290 btrfs_put_block_group(bg); 2291 } 2292 return ret; 2293 } 2294 2295 static int read_one_block_group(struct btrfs_fs_info *info, 2296 struct btrfs_block_group_item *bgi, 2297 const struct btrfs_key *key, 2298 int need_clear) 2299 { 2300 struct btrfs_block_group *cache; 2301 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); 2302 int ret; 2303 2304 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); 2305 2306 cache = btrfs_create_block_group_cache(info, key->objectid); 2307 if (!cache) 2308 return -ENOMEM; 2309 2310 cache->length = key->offset; 2311 cache->used = btrfs_stack_block_group_used(bgi); 2312 cache->commit_used = cache->used; 2313 cache->flags = btrfs_stack_block_group_flags(bgi); 2314 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi); 2315 2316 set_free_space_tree_thresholds(cache); 2317 2318 if (need_clear) { 2319 /* 2320 * When we mount with old space cache, we need to 2321 * set BTRFS_DC_CLEAR and set dirty flag. 2322 * 2323 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 2324 * truncate the old free space cache inode and 2325 * setup a new one. 2326 * b) Setting 'dirty flag' makes sure that we flush 2327 * the new space cache info onto disk. 2328 */ 2329 if (btrfs_test_opt(info, SPACE_CACHE)) 2330 cache->disk_cache_state = BTRFS_DC_CLEAR; 2331 } 2332 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 2333 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 2334 btrfs_err(info, 2335 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 2336 cache->start); 2337 ret = -EINVAL; 2338 goto error; 2339 } 2340 2341 ret = btrfs_load_block_group_zone_info(cache, false); 2342 if (ret) { 2343 btrfs_err(info, "zoned: failed to load zone info of bg %llu", 2344 cache->start); 2345 goto error; 2346 } 2347 2348 /* 2349 * We need to exclude the super stripes now so that the space info has 2350 * super bytes accounted for, otherwise we'll think we have more space 2351 * than we actually do. 2352 */ 2353 ret = exclude_super_stripes(cache); 2354 if (ret) { 2355 /* We may have excluded something, so call this just in case. */ 2356 btrfs_free_excluded_extents(cache); 2357 goto error; 2358 } 2359 2360 /* 2361 * For zoned filesystem, space after the allocation offset is the only 2362 * free space for a block group. So, we don't need any caching work. 2363 * btrfs_calc_zone_unusable() will set the amount of free space and 2364 * zone_unusable space. 2365 * 2366 * For regular filesystem, check for two cases, either we are full, and 2367 * therefore don't need to bother with the caching work since we won't 2368 * find any space, or we are empty, and we can just add all the space 2369 * in and be done with it. This saves us _a_lot_ of time, particularly 2370 * in the full case. 2371 */ 2372 if (btrfs_is_zoned(info)) { 2373 btrfs_calc_zone_unusable(cache); 2374 /* Should not have any excluded extents. Just in case, though. */ 2375 btrfs_free_excluded_extents(cache); 2376 } else if (cache->length == cache->used) { 2377 cache->cached = BTRFS_CACHE_FINISHED; 2378 btrfs_free_excluded_extents(cache); 2379 } else if (cache->used == 0) { 2380 cache->cached = BTRFS_CACHE_FINISHED; 2381 ret = btrfs_add_new_free_space(cache, cache->start, 2382 cache->start + cache->length, NULL); 2383 btrfs_free_excluded_extents(cache); 2384 if (ret) 2385 goto error; 2386 } 2387 2388 ret = btrfs_add_block_group_cache(info, cache); 2389 if (ret) { 2390 btrfs_remove_free_space_cache(cache); 2391 goto error; 2392 } 2393 trace_btrfs_add_block_group(info, cache, 0); 2394 btrfs_add_bg_to_space_info(info, cache); 2395 2396 set_avail_alloc_bits(info, cache->flags); 2397 if (btrfs_chunk_writeable(info, cache->start)) { 2398 if (cache->used == 0) { 2399 ASSERT(list_empty(&cache->bg_list)); 2400 if (btrfs_test_opt(info, DISCARD_ASYNC)) 2401 btrfs_discard_queue_work(&info->discard_ctl, cache); 2402 else 2403 btrfs_mark_bg_unused(cache); 2404 } 2405 } else { 2406 inc_block_group_ro(cache, 1); 2407 } 2408 2409 return 0; 2410 error: 2411 btrfs_put_block_group(cache); 2412 return ret; 2413 } 2414 2415 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info) 2416 { 2417 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 2418 struct rb_node *node; 2419 int ret = 0; 2420 2421 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 2422 struct extent_map *em; 2423 struct map_lookup *map; 2424 struct btrfs_block_group *bg; 2425 2426 em = rb_entry(node, struct extent_map, rb_node); 2427 map = em->map_lookup; 2428 bg = btrfs_create_block_group_cache(fs_info, em->start); 2429 if (!bg) { 2430 ret = -ENOMEM; 2431 break; 2432 } 2433 2434 /* Fill dummy cache as FULL */ 2435 bg->length = em->len; 2436 bg->flags = map->type; 2437 bg->cached = BTRFS_CACHE_FINISHED; 2438 bg->used = em->len; 2439 bg->flags = map->type; 2440 ret = btrfs_add_block_group_cache(fs_info, bg); 2441 /* 2442 * We may have some valid block group cache added already, in 2443 * that case we skip to the next one. 2444 */ 2445 if (ret == -EEXIST) { 2446 ret = 0; 2447 btrfs_put_block_group(bg); 2448 continue; 2449 } 2450 2451 if (ret) { 2452 btrfs_remove_free_space_cache(bg); 2453 btrfs_put_block_group(bg); 2454 break; 2455 } 2456 2457 btrfs_add_bg_to_space_info(fs_info, bg); 2458 2459 set_avail_alloc_bits(fs_info, bg->flags); 2460 } 2461 if (!ret) 2462 btrfs_init_global_block_rsv(fs_info); 2463 return ret; 2464 } 2465 2466 int btrfs_read_block_groups(struct btrfs_fs_info *info) 2467 { 2468 struct btrfs_root *root = btrfs_block_group_root(info); 2469 struct btrfs_path *path; 2470 int ret; 2471 struct btrfs_block_group *cache; 2472 struct btrfs_space_info *space_info; 2473 struct btrfs_key key; 2474 int need_clear = 0; 2475 u64 cache_gen; 2476 2477 /* 2478 * Either no extent root (with ibadroots rescue option) or we have 2479 * unsupported RO options. The fs can never be mounted read-write, so no 2480 * need to waste time searching block group items. 2481 * 2482 * This also allows new extent tree related changes to be RO compat, 2483 * no need for a full incompat flag. 2484 */ 2485 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) & 2486 ~BTRFS_FEATURE_COMPAT_RO_SUPP)) 2487 return fill_dummy_bgs(info); 2488 2489 key.objectid = 0; 2490 key.offset = 0; 2491 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2492 path = btrfs_alloc_path(); 2493 if (!path) 2494 return -ENOMEM; 2495 2496 cache_gen = btrfs_super_cache_generation(info->super_copy); 2497 if (btrfs_test_opt(info, SPACE_CACHE) && 2498 btrfs_super_generation(info->super_copy) != cache_gen) 2499 need_clear = 1; 2500 if (btrfs_test_opt(info, CLEAR_CACHE)) 2501 need_clear = 1; 2502 2503 while (1) { 2504 struct btrfs_block_group_item bgi; 2505 struct extent_buffer *leaf; 2506 int slot; 2507 2508 ret = find_first_block_group(info, path, &key); 2509 if (ret > 0) 2510 break; 2511 if (ret != 0) 2512 goto error; 2513 2514 leaf = path->nodes[0]; 2515 slot = path->slots[0]; 2516 2517 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 2518 sizeof(bgi)); 2519 2520 btrfs_item_key_to_cpu(leaf, &key, slot); 2521 btrfs_release_path(path); 2522 ret = read_one_block_group(info, &bgi, &key, need_clear); 2523 if (ret < 0) 2524 goto error; 2525 key.objectid += key.offset; 2526 key.offset = 0; 2527 } 2528 btrfs_release_path(path); 2529 2530 list_for_each_entry(space_info, &info->space_info, list) { 2531 int i; 2532 2533 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2534 if (list_empty(&space_info->block_groups[i])) 2535 continue; 2536 cache = list_first_entry(&space_info->block_groups[i], 2537 struct btrfs_block_group, 2538 list); 2539 btrfs_sysfs_add_block_group_type(cache); 2540 } 2541 2542 if (!(btrfs_get_alloc_profile(info, space_info->flags) & 2543 (BTRFS_BLOCK_GROUP_RAID10 | 2544 BTRFS_BLOCK_GROUP_RAID1_MASK | 2545 BTRFS_BLOCK_GROUP_RAID56_MASK | 2546 BTRFS_BLOCK_GROUP_DUP))) 2547 continue; 2548 /* 2549 * Avoid allocating from un-mirrored block group if there are 2550 * mirrored block groups. 2551 */ 2552 list_for_each_entry(cache, 2553 &space_info->block_groups[BTRFS_RAID_RAID0], 2554 list) 2555 inc_block_group_ro(cache, 1); 2556 list_for_each_entry(cache, 2557 &space_info->block_groups[BTRFS_RAID_SINGLE], 2558 list) 2559 inc_block_group_ro(cache, 1); 2560 } 2561 2562 btrfs_init_global_block_rsv(info); 2563 ret = check_chunk_block_group_mappings(info); 2564 error: 2565 btrfs_free_path(path); 2566 /* 2567 * We've hit some error while reading the extent tree, and have 2568 * rescue=ibadroots mount option. 2569 * Try to fill the tree using dummy block groups so that the user can 2570 * continue to mount and grab their data. 2571 */ 2572 if (ret && btrfs_test_opt(info, IGNOREBADROOTS)) 2573 ret = fill_dummy_bgs(info); 2574 return ret; 2575 } 2576 2577 /* 2578 * This function, insert_block_group_item(), belongs to the phase 2 of chunk 2579 * allocation. 2580 * 2581 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2582 * phases. 2583 */ 2584 static int insert_block_group_item(struct btrfs_trans_handle *trans, 2585 struct btrfs_block_group *block_group) 2586 { 2587 struct btrfs_fs_info *fs_info = trans->fs_info; 2588 struct btrfs_block_group_item bgi; 2589 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2590 struct btrfs_key key; 2591 u64 old_commit_used; 2592 int ret; 2593 2594 spin_lock(&block_group->lock); 2595 btrfs_set_stack_block_group_used(&bgi, block_group->used); 2596 btrfs_set_stack_block_group_chunk_objectid(&bgi, 2597 block_group->global_root_id); 2598 btrfs_set_stack_block_group_flags(&bgi, block_group->flags); 2599 old_commit_used = block_group->commit_used; 2600 block_group->commit_used = block_group->used; 2601 key.objectid = block_group->start; 2602 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 2603 key.offset = block_group->length; 2604 spin_unlock(&block_group->lock); 2605 2606 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); 2607 if (ret < 0) { 2608 spin_lock(&block_group->lock); 2609 block_group->commit_used = old_commit_used; 2610 spin_unlock(&block_group->lock); 2611 } 2612 2613 return ret; 2614 } 2615 2616 static int insert_dev_extent(struct btrfs_trans_handle *trans, 2617 struct btrfs_device *device, u64 chunk_offset, 2618 u64 start, u64 num_bytes) 2619 { 2620 struct btrfs_fs_info *fs_info = device->fs_info; 2621 struct btrfs_root *root = fs_info->dev_root; 2622 struct btrfs_path *path; 2623 struct btrfs_dev_extent *extent; 2624 struct extent_buffer *leaf; 2625 struct btrfs_key key; 2626 int ret; 2627 2628 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 2629 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 2630 path = btrfs_alloc_path(); 2631 if (!path) 2632 return -ENOMEM; 2633 2634 key.objectid = device->devid; 2635 key.type = BTRFS_DEV_EXTENT_KEY; 2636 key.offset = start; 2637 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); 2638 if (ret) 2639 goto out; 2640 2641 leaf = path->nodes[0]; 2642 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 2643 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); 2644 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 2645 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 2646 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 2647 2648 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 2649 btrfs_mark_buffer_dirty(trans, leaf); 2650 out: 2651 btrfs_free_path(path); 2652 return ret; 2653 } 2654 2655 /* 2656 * This function belongs to phase 2. 2657 * 2658 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2659 * phases. 2660 */ 2661 static int insert_dev_extents(struct btrfs_trans_handle *trans, 2662 u64 chunk_offset, u64 chunk_size) 2663 { 2664 struct btrfs_fs_info *fs_info = trans->fs_info; 2665 struct btrfs_device *device; 2666 struct extent_map *em; 2667 struct map_lookup *map; 2668 u64 dev_offset; 2669 u64 stripe_size; 2670 int i; 2671 int ret = 0; 2672 2673 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 2674 if (IS_ERR(em)) 2675 return PTR_ERR(em); 2676 2677 map = em->map_lookup; 2678 stripe_size = em->orig_block_len; 2679 2680 /* 2681 * Take the device list mutex to prevent races with the final phase of 2682 * a device replace operation that replaces the device object associated 2683 * with the map's stripes, because the device object's id can change 2684 * at any time during that final phase of the device replace operation 2685 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 2686 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 2687 * resulting in persisting a device extent item with such ID. 2688 */ 2689 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2690 for (i = 0; i < map->num_stripes; i++) { 2691 device = map->stripes[i].dev; 2692 dev_offset = map->stripes[i].physical; 2693 2694 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset, 2695 stripe_size); 2696 if (ret) 2697 break; 2698 } 2699 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2700 2701 free_extent_map(em); 2702 return ret; 2703 } 2704 2705 /* 2706 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of 2707 * chunk allocation. 2708 * 2709 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 2710 * phases. 2711 */ 2712 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 2713 { 2714 struct btrfs_fs_info *fs_info = trans->fs_info; 2715 struct btrfs_block_group *block_group; 2716 int ret = 0; 2717 2718 while (!list_empty(&trans->new_bgs)) { 2719 int index; 2720 2721 block_group = list_first_entry(&trans->new_bgs, 2722 struct btrfs_block_group, 2723 bg_list); 2724 if (ret) 2725 goto next; 2726 2727 index = btrfs_bg_flags_to_raid_index(block_group->flags); 2728 2729 ret = insert_block_group_item(trans, block_group); 2730 if (ret) 2731 btrfs_abort_transaction(trans, ret); 2732 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, 2733 &block_group->runtime_flags)) { 2734 mutex_lock(&fs_info->chunk_mutex); 2735 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group); 2736 mutex_unlock(&fs_info->chunk_mutex); 2737 if (ret) 2738 btrfs_abort_transaction(trans, ret); 2739 } 2740 ret = insert_dev_extents(trans, block_group->start, 2741 block_group->length); 2742 if (ret) 2743 btrfs_abort_transaction(trans, ret); 2744 add_block_group_free_space(trans, block_group); 2745 2746 /* 2747 * If we restriped during balance, we may have added a new raid 2748 * type, so now add the sysfs entries when it is safe to do so. 2749 * We don't have to worry about locking here as it's handled in 2750 * btrfs_sysfs_add_block_group_type. 2751 */ 2752 if (block_group->space_info->block_group_kobjs[index] == NULL) 2753 btrfs_sysfs_add_block_group_type(block_group); 2754 2755 /* Already aborted the transaction if it failed. */ 2756 next: 2757 btrfs_delayed_refs_rsv_release(fs_info, 1); 2758 list_del_init(&block_group->bg_list); 2759 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags); 2760 } 2761 btrfs_trans_release_chunk_metadata(trans); 2762 } 2763 2764 /* 2765 * For extent tree v2 we use the block_group_item->chunk_offset to point at our 2766 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID. 2767 */ 2768 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset) 2769 { 2770 u64 div = SZ_1G; 2771 u64 index; 2772 2773 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2774 return BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2775 2776 /* If we have a smaller fs index based on 128MiB. */ 2777 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL)) 2778 div = SZ_128M; 2779 2780 offset = div64_u64(offset, div); 2781 div64_u64_rem(offset, fs_info->nr_global_roots, &index); 2782 return index; 2783 } 2784 2785 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, 2786 u64 type, 2787 u64 chunk_offset, u64 size) 2788 { 2789 struct btrfs_fs_info *fs_info = trans->fs_info; 2790 struct btrfs_block_group *cache; 2791 int ret; 2792 2793 btrfs_set_log_full_commit(trans); 2794 2795 cache = btrfs_create_block_group_cache(fs_info, chunk_offset); 2796 if (!cache) 2797 return ERR_PTR(-ENOMEM); 2798 2799 /* 2800 * Mark it as new before adding it to the rbtree of block groups or any 2801 * list, so that no other task finds it and calls btrfs_mark_bg_unused() 2802 * before the new flag is set. 2803 */ 2804 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags); 2805 2806 cache->length = size; 2807 set_free_space_tree_thresholds(cache); 2808 cache->flags = type; 2809 cache->cached = BTRFS_CACHE_FINISHED; 2810 cache->global_root_id = calculate_global_root_id(fs_info, cache->start); 2811 2812 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 2813 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags); 2814 2815 ret = btrfs_load_block_group_zone_info(cache, true); 2816 if (ret) { 2817 btrfs_put_block_group(cache); 2818 return ERR_PTR(ret); 2819 } 2820 2821 ret = exclude_super_stripes(cache); 2822 if (ret) { 2823 /* We may have excluded something, so call this just in case */ 2824 btrfs_free_excluded_extents(cache); 2825 btrfs_put_block_group(cache); 2826 return ERR_PTR(ret); 2827 } 2828 2829 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL); 2830 btrfs_free_excluded_extents(cache); 2831 if (ret) { 2832 btrfs_put_block_group(cache); 2833 return ERR_PTR(ret); 2834 } 2835 2836 /* 2837 * Ensure the corresponding space_info object is created and 2838 * assigned to our block group. We want our bg to be added to the rbtree 2839 * with its ->space_info set. 2840 */ 2841 cache->space_info = btrfs_find_space_info(fs_info, cache->flags); 2842 ASSERT(cache->space_info); 2843 2844 ret = btrfs_add_block_group_cache(fs_info, cache); 2845 if (ret) { 2846 btrfs_remove_free_space_cache(cache); 2847 btrfs_put_block_group(cache); 2848 return ERR_PTR(ret); 2849 } 2850 2851 /* 2852 * Now that our block group has its ->space_info set and is inserted in 2853 * the rbtree, update the space info's counters. 2854 */ 2855 trace_btrfs_add_block_group(fs_info, cache, 1); 2856 btrfs_add_bg_to_space_info(fs_info, cache); 2857 btrfs_update_global_block_rsv(fs_info); 2858 2859 #ifdef CONFIG_BTRFS_DEBUG 2860 if (btrfs_should_fragment_free_space(cache)) { 2861 cache->space_info->bytes_used += size >> 1; 2862 fragment_free_space(cache); 2863 } 2864 #endif 2865 2866 list_add_tail(&cache->bg_list, &trans->new_bgs); 2867 trans->delayed_ref_updates++; 2868 btrfs_update_delayed_refs_rsv(trans); 2869 2870 set_avail_alloc_bits(fs_info, type); 2871 return cache; 2872 } 2873 2874 /* 2875 * Mark one block group RO, can be called several times for the same block 2876 * group. 2877 * 2878 * @cache: the destination block group 2879 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to 2880 * ensure we still have some free space after marking this 2881 * block group RO. 2882 */ 2883 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, 2884 bool do_chunk_alloc) 2885 { 2886 struct btrfs_fs_info *fs_info = cache->fs_info; 2887 struct btrfs_trans_handle *trans; 2888 struct btrfs_root *root = btrfs_block_group_root(fs_info); 2889 u64 alloc_flags; 2890 int ret; 2891 bool dirty_bg_running; 2892 2893 /* 2894 * This can only happen when we are doing read-only scrub on read-only 2895 * mount. 2896 * In that case we should not start a new transaction on read-only fs. 2897 * Thus here we skip all chunk allocations. 2898 */ 2899 if (sb_rdonly(fs_info->sb)) { 2900 mutex_lock(&fs_info->ro_block_group_mutex); 2901 ret = inc_block_group_ro(cache, 0); 2902 mutex_unlock(&fs_info->ro_block_group_mutex); 2903 return ret; 2904 } 2905 2906 do { 2907 trans = btrfs_join_transaction(root); 2908 if (IS_ERR(trans)) 2909 return PTR_ERR(trans); 2910 2911 dirty_bg_running = false; 2912 2913 /* 2914 * We're not allowed to set block groups readonly after the dirty 2915 * block group cache has started writing. If it already started, 2916 * back off and let this transaction commit. 2917 */ 2918 mutex_lock(&fs_info->ro_block_group_mutex); 2919 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 2920 u64 transid = trans->transid; 2921 2922 mutex_unlock(&fs_info->ro_block_group_mutex); 2923 btrfs_end_transaction(trans); 2924 2925 ret = btrfs_wait_for_commit(fs_info, transid); 2926 if (ret) 2927 return ret; 2928 dirty_bg_running = true; 2929 } 2930 } while (dirty_bg_running); 2931 2932 if (do_chunk_alloc) { 2933 /* 2934 * If we are changing raid levels, try to allocate a 2935 * corresponding block group with the new raid level. 2936 */ 2937 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2938 if (alloc_flags != cache->flags) { 2939 ret = btrfs_chunk_alloc(trans, alloc_flags, 2940 CHUNK_ALLOC_FORCE); 2941 /* 2942 * ENOSPC is allowed here, we may have enough space 2943 * already allocated at the new raid level to carry on 2944 */ 2945 if (ret == -ENOSPC) 2946 ret = 0; 2947 if (ret < 0) 2948 goto out; 2949 } 2950 } 2951 2952 ret = inc_block_group_ro(cache, 0); 2953 if (!ret) 2954 goto out; 2955 if (ret == -ETXTBSY) 2956 goto unlock_out; 2957 2958 /* 2959 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system 2960 * chunk allocation storm to exhaust the system chunk array. Otherwise 2961 * we still want to try our best to mark the block group read-only. 2962 */ 2963 if (!do_chunk_alloc && ret == -ENOSPC && 2964 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM)) 2965 goto unlock_out; 2966 2967 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); 2968 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 2969 if (ret < 0) 2970 goto out; 2971 /* 2972 * We have allocated a new chunk. We also need to activate that chunk to 2973 * grant metadata tickets for zoned filesystem. 2974 */ 2975 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true); 2976 if (ret < 0) 2977 goto out; 2978 2979 ret = inc_block_group_ro(cache, 0); 2980 if (ret == -ETXTBSY) 2981 goto unlock_out; 2982 out: 2983 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 2984 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags); 2985 mutex_lock(&fs_info->chunk_mutex); 2986 check_system_chunk(trans, alloc_flags); 2987 mutex_unlock(&fs_info->chunk_mutex); 2988 } 2989 unlock_out: 2990 mutex_unlock(&fs_info->ro_block_group_mutex); 2991 2992 btrfs_end_transaction(trans); 2993 return ret; 2994 } 2995 2996 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) 2997 { 2998 struct btrfs_space_info *sinfo = cache->space_info; 2999 u64 num_bytes; 3000 3001 BUG_ON(!cache->ro); 3002 3003 spin_lock(&sinfo->lock); 3004 spin_lock(&cache->lock); 3005 if (!--cache->ro) { 3006 if (btrfs_is_zoned(cache->fs_info)) { 3007 /* Migrate zone_unusable bytes back */ 3008 cache->zone_unusable = 3009 (cache->alloc_offset - cache->used) + 3010 (cache->length - cache->zone_capacity); 3011 sinfo->bytes_zone_unusable += cache->zone_unusable; 3012 sinfo->bytes_readonly -= cache->zone_unusable; 3013 } 3014 num_bytes = cache->length - cache->reserved - 3015 cache->pinned - cache->bytes_super - 3016 cache->zone_unusable - cache->used; 3017 sinfo->bytes_readonly -= num_bytes; 3018 list_del_init(&cache->ro_list); 3019 } 3020 spin_unlock(&cache->lock); 3021 spin_unlock(&sinfo->lock); 3022 } 3023 3024 static int update_block_group_item(struct btrfs_trans_handle *trans, 3025 struct btrfs_path *path, 3026 struct btrfs_block_group *cache) 3027 { 3028 struct btrfs_fs_info *fs_info = trans->fs_info; 3029 int ret; 3030 struct btrfs_root *root = btrfs_block_group_root(fs_info); 3031 unsigned long bi; 3032 struct extent_buffer *leaf; 3033 struct btrfs_block_group_item bgi; 3034 struct btrfs_key key; 3035 u64 old_commit_used; 3036 u64 used; 3037 3038 /* 3039 * Block group items update can be triggered out of commit transaction 3040 * critical section, thus we need a consistent view of used bytes. 3041 * We cannot use cache->used directly outside of the spin lock, as it 3042 * may be changed. 3043 */ 3044 spin_lock(&cache->lock); 3045 old_commit_used = cache->commit_used; 3046 used = cache->used; 3047 /* No change in used bytes, can safely skip it. */ 3048 if (cache->commit_used == used) { 3049 spin_unlock(&cache->lock); 3050 return 0; 3051 } 3052 cache->commit_used = used; 3053 spin_unlock(&cache->lock); 3054 3055 key.objectid = cache->start; 3056 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 3057 key.offset = cache->length; 3058 3059 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3060 if (ret) { 3061 if (ret > 0) 3062 ret = -ENOENT; 3063 goto fail; 3064 } 3065 3066 leaf = path->nodes[0]; 3067 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3068 btrfs_set_stack_block_group_used(&bgi, used); 3069 btrfs_set_stack_block_group_chunk_objectid(&bgi, 3070 cache->global_root_id); 3071 btrfs_set_stack_block_group_flags(&bgi, cache->flags); 3072 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); 3073 btrfs_mark_buffer_dirty(trans, leaf); 3074 fail: 3075 btrfs_release_path(path); 3076 /* 3077 * We didn't update the block group item, need to revert commit_used 3078 * unless the block group item didn't exist yet - this is to prevent a 3079 * race with a concurrent insertion of the block group item, with 3080 * insert_block_group_item(), that happened just after we attempted to 3081 * update. In that case we would reset commit_used to 0 just after the 3082 * insertion set it to a value greater than 0 - if the block group later 3083 * becomes with 0 used bytes, we would incorrectly skip its update. 3084 */ 3085 if (ret < 0 && ret != -ENOENT) { 3086 spin_lock(&cache->lock); 3087 cache->commit_used = old_commit_used; 3088 spin_unlock(&cache->lock); 3089 } 3090 return ret; 3091 3092 } 3093 3094 static int cache_save_setup(struct btrfs_block_group *block_group, 3095 struct btrfs_trans_handle *trans, 3096 struct btrfs_path *path) 3097 { 3098 struct btrfs_fs_info *fs_info = block_group->fs_info; 3099 struct btrfs_root *root = fs_info->tree_root; 3100 struct inode *inode = NULL; 3101 struct extent_changeset *data_reserved = NULL; 3102 u64 alloc_hint = 0; 3103 int dcs = BTRFS_DC_ERROR; 3104 u64 cache_size = 0; 3105 int retries = 0; 3106 int ret = 0; 3107 3108 if (!btrfs_test_opt(fs_info, SPACE_CACHE)) 3109 return 0; 3110 3111 /* 3112 * If this block group is smaller than 100 megs don't bother caching the 3113 * block group. 3114 */ 3115 if (block_group->length < (100 * SZ_1M)) { 3116 spin_lock(&block_group->lock); 3117 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3118 spin_unlock(&block_group->lock); 3119 return 0; 3120 } 3121 3122 if (TRANS_ABORTED(trans)) 3123 return 0; 3124 again: 3125 inode = lookup_free_space_inode(block_group, path); 3126 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3127 ret = PTR_ERR(inode); 3128 btrfs_release_path(path); 3129 goto out; 3130 } 3131 3132 if (IS_ERR(inode)) { 3133 BUG_ON(retries); 3134 retries++; 3135 3136 if (block_group->ro) 3137 goto out_free; 3138 3139 ret = create_free_space_inode(trans, block_group, path); 3140 if (ret) 3141 goto out_free; 3142 goto again; 3143 } 3144 3145 /* 3146 * We want to set the generation to 0, that way if anything goes wrong 3147 * from here on out we know not to trust this cache when we load up next 3148 * time. 3149 */ 3150 BTRFS_I(inode)->generation = 0; 3151 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3152 if (ret) { 3153 /* 3154 * So theoretically we could recover from this, simply set the 3155 * super cache generation to 0 so we know to invalidate the 3156 * cache, but then we'd have to keep track of the block groups 3157 * that fail this way so we know we _have_ to reset this cache 3158 * before the next commit or risk reading stale cache. So to 3159 * limit our exposure to horrible edge cases lets just abort the 3160 * transaction, this only happens in really bad situations 3161 * anyway. 3162 */ 3163 btrfs_abort_transaction(trans, ret); 3164 goto out_put; 3165 } 3166 WARN_ON(ret); 3167 3168 /* We've already setup this transaction, go ahead and exit */ 3169 if (block_group->cache_generation == trans->transid && 3170 i_size_read(inode)) { 3171 dcs = BTRFS_DC_SETUP; 3172 goto out_put; 3173 } 3174 3175 if (i_size_read(inode) > 0) { 3176 ret = btrfs_check_trunc_cache_free_space(fs_info, 3177 &fs_info->global_block_rsv); 3178 if (ret) 3179 goto out_put; 3180 3181 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3182 if (ret) 3183 goto out_put; 3184 } 3185 3186 spin_lock(&block_group->lock); 3187 if (block_group->cached != BTRFS_CACHE_FINISHED || 3188 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3189 /* 3190 * don't bother trying to write stuff out _if_ 3191 * a) we're not cached, 3192 * b) we're with nospace_cache mount option, 3193 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3194 */ 3195 dcs = BTRFS_DC_WRITTEN; 3196 spin_unlock(&block_group->lock); 3197 goto out_put; 3198 } 3199 spin_unlock(&block_group->lock); 3200 3201 /* 3202 * We hit an ENOSPC when setting up the cache in this transaction, just 3203 * skip doing the setup, we've already cleared the cache so we're safe. 3204 */ 3205 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3206 ret = -ENOSPC; 3207 goto out_put; 3208 } 3209 3210 /* 3211 * Try to preallocate enough space based on how big the block group is. 3212 * Keep in mind this has to include any pinned space which could end up 3213 * taking up quite a bit since it's not folded into the other space 3214 * cache. 3215 */ 3216 cache_size = div_u64(block_group->length, SZ_256M); 3217 if (!cache_size) 3218 cache_size = 1; 3219 3220 cache_size *= 16; 3221 cache_size *= fs_info->sectorsize; 3222 3223 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0, 3224 cache_size, false); 3225 if (ret) 3226 goto out_put; 3227 3228 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size, 3229 cache_size, cache_size, 3230 &alloc_hint); 3231 /* 3232 * Our cache requires contiguous chunks so that we don't modify a bunch 3233 * of metadata or split extents when writing the cache out, which means 3234 * we can enospc if we are heavily fragmented in addition to just normal 3235 * out of space conditions. So if we hit this just skip setting up any 3236 * other block groups for this transaction, maybe we'll unpin enough 3237 * space the next time around. 3238 */ 3239 if (!ret) 3240 dcs = BTRFS_DC_SETUP; 3241 else if (ret == -ENOSPC) 3242 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3243 3244 out_put: 3245 iput(inode); 3246 out_free: 3247 btrfs_release_path(path); 3248 out: 3249 spin_lock(&block_group->lock); 3250 if (!ret && dcs == BTRFS_DC_SETUP) 3251 block_group->cache_generation = trans->transid; 3252 block_group->disk_cache_state = dcs; 3253 spin_unlock(&block_group->lock); 3254 3255 extent_changeset_free(data_reserved); 3256 return ret; 3257 } 3258 3259 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) 3260 { 3261 struct btrfs_fs_info *fs_info = trans->fs_info; 3262 struct btrfs_block_group *cache, *tmp; 3263 struct btrfs_transaction *cur_trans = trans->transaction; 3264 struct btrfs_path *path; 3265 3266 if (list_empty(&cur_trans->dirty_bgs) || 3267 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3268 return 0; 3269 3270 path = btrfs_alloc_path(); 3271 if (!path) 3272 return -ENOMEM; 3273 3274 /* Could add new block groups, use _safe just in case */ 3275 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3276 dirty_list) { 3277 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3278 cache_save_setup(cache, trans, path); 3279 } 3280 3281 btrfs_free_path(path); 3282 return 0; 3283 } 3284 3285 /* 3286 * Transaction commit does final block group cache writeback during a critical 3287 * section where nothing is allowed to change the FS. This is required in 3288 * order for the cache to actually match the block group, but can introduce a 3289 * lot of latency into the commit. 3290 * 3291 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. 3292 * There's a chance we'll have to redo some of it if the block group changes 3293 * again during the commit, but it greatly reduces the commit latency by 3294 * getting rid of the easy block groups while we're still allowing others to 3295 * join the commit. 3296 */ 3297 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3298 { 3299 struct btrfs_fs_info *fs_info = trans->fs_info; 3300 struct btrfs_block_group *cache; 3301 struct btrfs_transaction *cur_trans = trans->transaction; 3302 int ret = 0; 3303 int should_put; 3304 struct btrfs_path *path = NULL; 3305 LIST_HEAD(dirty); 3306 struct list_head *io = &cur_trans->io_bgs; 3307 int loops = 0; 3308 3309 spin_lock(&cur_trans->dirty_bgs_lock); 3310 if (list_empty(&cur_trans->dirty_bgs)) { 3311 spin_unlock(&cur_trans->dirty_bgs_lock); 3312 return 0; 3313 } 3314 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3315 spin_unlock(&cur_trans->dirty_bgs_lock); 3316 3317 again: 3318 /* Make sure all the block groups on our dirty list actually exist */ 3319 btrfs_create_pending_block_groups(trans); 3320 3321 if (!path) { 3322 path = btrfs_alloc_path(); 3323 if (!path) { 3324 ret = -ENOMEM; 3325 goto out; 3326 } 3327 } 3328 3329 /* 3330 * cache_write_mutex is here only to save us from balance or automatic 3331 * removal of empty block groups deleting this block group while we are 3332 * writing out the cache 3333 */ 3334 mutex_lock(&trans->transaction->cache_write_mutex); 3335 while (!list_empty(&dirty)) { 3336 bool drop_reserve = true; 3337 3338 cache = list_first_entry(&dirty, struct btrfs_block_group, 3339 dirty_list); 3340 /* 3341 * This can happen if something re-dirties a block group that 3342 * is already under IO. Just wait for it to finish and then do 3343 * it all again 3344 */ 3345 if (!list_empty(&cache->io_list)) { 3346 list_del_init(&cache->io_list); 3347 btrfs_wait_cache_io(trans, cache, path); 3348 btrfs_put_block_group(cache); 3349 } 3350 3351 3352 /* 3353 * btrfs_wait_cache_io uses the cache->dirty_list to decide if 3354 * it should update the cache_state. Don't delete until after 3355 * we wait. 3356 * 3357 * Since we're not running in the commit critical section 3358 * we need the dirty_bgs_lock to protect from update_block_group 3359 */ 3360 spin_lock(&cur_trans->dirty_bgs_lock); 3361 list_del_init(&cache->dirty_list); 3362 spin_unlock(&cur_trans->dirty_bgs_lock); 3363 3364 should_put = 1; 3365 3366 cache_save_setup(cache, trans, path); 3367 3368 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3369 cache->io_ctl.inode = NULL; 3370 ret = btrfs_write_out_cache(trans, cache, path); 3371 if (ret == 0 && cache->io_ctl.inode) { 3372 should_put = 0; 3373 3374 /* 3375 * The cache_write_mutex is protecting the 3376 * io_list, also refer to the definition of 3377 * btrfs_transaction::io_bgs for more details 3378 */ 3379 list_add_tail(&cache->io_list, io); 3380 } else { 3381 /* 3382 * If we failed to write the cache, the 3383 * generation will be bad and life goes on 3384 */ 3385 ret = 0; 3386 } 3387 } 3388 if (!ret) { 3389 ret = update_block_group_item(trans, path, cache); 3390 /* 3391 * Our block group might still be attached to the list 3392 * of new block groups in the transaction handle of some 3393 * other task (struct btrfs_trans_handle->new_bgs). This 3394 * means its block group item isn't yet in the extent 3395 * tree. If this happens ignore the error, as we will 3396 * try again later in the critical section of the 3397 * transaction commit. 3398 */ 3399 if (ret == -ENOENT) { 3400 ret = 0; 3401 spin_lock(&cur_trans->dirty_bgs_lock); 3402 if (list_empty(&cache->dirty_list)) { 3403 list_add_tail(&cache->dirty_list, 3404 &cur_trans->dirty_bgs); 3405 btrfs_get_block_group(cache); 3406 drop_reserve = false; 3407 } 3408 spin_unlock(&cur_trans->dirty_bgs_lock); 3409 } else if (ret) { 3410 btrfs_abort_transaction(trans, ret); 3411 } 3412 } 3413 3414 /* If it's not on the io list, we need to put the block group */ 3415 if (should_put) 3416 btrfs_put_block_group(cache); 3417 if (drop_reserve) 3418 btrfs_delayed_refs_rsv_release(fs_info, 1); 3419 /* 3420 * Avoid blocking other tasks for too long. It might even save 3421 * us from writing caches for block groups that are going to be 3422 * removed. 3423 */ 3424 mutex_unlock(&trans->transaction->cache_write_mutex); 3425 if (ret) 3426 goto out; 3427 mutex_lock(&trans->transaction->cache_write_mutex); 3428 } 3429 mutex_unlock(&trans->transaction->cache_write_mutex); 3430 3431 /* 3432 * Go through delayed refs for all the stuff we've just kicked off 3433 * and then loop back (just once) 3434 */ 3435 if (!ret) 3436 ret = btrfs_run_delayed_refs(trans, 0); 3437 if (!ret && loops == 0) { 3438 loops++; 3439 spin_lock(&cur_trans->dirty_bgs_lock); 3440 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3441 /* 3442 * dirty_bgs_lock protects us from concurrent block group 3443 * deletes too (not just cache_write_mutex). 3444 */ 3445 if (!list_empty(&dirty)) { 3446 spin_unlock(&cur_trans->dirty_bgs_lock); 3447 goto again; 3448 } 3449 spin_unlock(&cur_trans->dirty_bgs_lock); 3450 } 3451 out: 3452 if (ret < 0) { 3453 spin_lock(&cur_trans->dirty_bgs_lock); 3454 list_splice_init(&dirty, &cur_trans->dirty_bgs); 3455 spin_unlock(&cur_trans->dirty_bgs_lock); 3456 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3457 } 3458 3459 btrfs_free_path(path); 3460 return ret; 3461 } 3462 3463 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) 3464 { 3465 struct btrfs_fs_info *fs_info = trans->fs_info; 3466 struct btrfs_block_group *cache; 3467 struct btrfs_transaction *cur_trans = trans->transaction; 3468 int ret = 0; 3469 int should_put; 3470 struct btrfs_path *path; 3471 struct list_head *io = &cur_trans->io_bgs; 3472 3473 path = btrfs_alloc_path(); 3474 if (!path) 3475 return -ENOMEM; 3476 3477 /* 3478 * Even though we are in the critical section of the transaction commit, 3479 * we can still have concurrent tasks adding elements to this 3480 * transaction's list of dirty block groups. These tasks correspond to 3481 * endio free space workers started when writeback finishes for a 3482 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3483 * allocate new block groups as a result of COWing nodes of the root 3484 * tree when updating the free space inode. The writeback for the space 3485 * caches is triggered by an earlier call to 3486 * btrfs_start_dirty_block_groups() and iterations of the following 3487 * loop. 3488 * Also we want to do the cache_save_setup first and then run the 3489 * delayed refs to make sure we have the best chance at doing this all 3490 * in one shot. 3491 */ 3492 spin_lock(&cur_trans->dirty_bgs_lock); 3493 while (!list_empty(&cur_trans->dirty_bgs)) { 3494 cache = list_first_entry(&cur_trans->dirty_bgs, 3495 struct btrfs_block_group, 3496 dirty_list); 3497 3498 /* 3499 * This can happen if cache_save_setup re-dirties a block group 3500 * that is already under IO. Just wait for it to finish and 3501 * then do it all again 3502 */ 3503 if (!list_empty(&cache->io_list)) { 3504 spin_unlock(&cur_trans->dirty_bgs_lock); 3505 list_del_init(&cache->io_list); 3506 btrfs_wait_cache_io(trans, cache, path); 3507 btrfs_put_block_group(cache); 3508 spin_lock(&cur_trans->dirty_bgs_lock); 3509 } 3510 3511 /* 3512 * Don't remove from the dirty list until after we've waited on 3513 * any pending IO 3514 */ 3515 list_del_init(&cache->dirty_list); 3516 spin_unlock(&cur_trans->dirty_bgs_lock); 3517 should_put = 1; 3518 3519 cache_save_setup(cache, trans, path); 3520 3521 if (!ret) 3522 ret = btrfs_run_delayed_refs(trans, 3523 (unsigned long) -1); 3524 3525 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3526 cache->io_ctl.inode = NULL; 3527 ret = btrfs_write_out_cache(trans, cache, path); 3528 if (ret == 0 && cache->io_ctl.inode) { 3529 should_put = 0; 3530 list_add_tail(&cache->io_list, io); 3531 } else { 3532 /* 3533 * If we failed to write the cache, the 3534 * generation will be bad and life goes on 3535 */ 3536 ret = 0; 3537 } 3538 } 3539 if (!ret) { 3540 ret = update_block_group_item(trans, path, cache); 3541 /* 3542 * One of the free space endio workers might have 3543 * created a new block group while updating a free space 3544 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3545 * and hasn't released its transaction handle yet, in 3546 * which case the new block group is still attached to 3547 * its transaction handle and its creation has not 3548 * finished yet (no block group item in the extent tree 3549 * yet, etc). If this is the case, wait for all free 3550 * space endio workers to finish and retry. This is a 3551 * very rare case so no need for a more efficient and 3552 * complex approach. 3553 */ 3554 if (ret == -ENOENT) { 3555 wait_event(cur_trans->writer_wait, 3556 atomic_read(&cur_trans->num_writers) == 1); 3557 ret = update_block_group_item(trans, path, cache); 3558 } 3559 if (ret) 3560 btrfs_abort_transaction(trans, ret); 3561 } 3562 3563 /* If its not on the io list, we need to put the block group */ 3564 if (should_put) 3565 btrfs_put_block_group(cache); 3566 btrfs_delayed_refs_rsv_release(fs_info, 1); 3567 spin_lock(&cur_trans->dirty_bgs_lock); 3568 } 3569 spin_unlock(&cur_trans->dirty_bgs_lock); 3570 3571 /* 3572 * Refer to the definition of io_bgs member for details why it's safe 3573 * to use it without any locking 3574 */ 3575 while (!list_empty(io)) { 3576 cache = list_first_entry(io, struct btrfs_block_group, 3577 io_list); 3578 list_del_init(&cache->io_list); 3579 btrfs_wait_cache_io(trans, cache, path); 3580 btrfs_put_block_group(cache); 3581 } 3582 3583 btrfs_free_path(path); 3584 return ret; 3585 } 3586 3587 int btrfs_update_block_group(struct btrfs_trans_handle *trans, 3588 u64 bytenr, u64 num_bytes, bool alloc) 3589 { 3590 struct btrfs_fs_info *info = trans->fs_info; 3591 struct btrfs_block_group *cache = NULL; 3592 u64 total = num_bytes; 3593 u64 old_val; 3594 u64 byte_in_group; 3595 int factor; 3596 int ret = 0; 3597 3598 /* Block accounting for super block */ 3599 spin_lock(&info->delalloc_root_lock); 3600 old_val = btrfs_super_bytes_used(info->super_copy); 3601 if (alloc) 3602 old_val += num_bytes; 3603 else 3604 old_val -= num_bytes; 3605 btrfs_set_super_bytes_used(info->super_copy, old_val); 3606 spin_unlock(&info->delalloc_root_lock); 3607 3608 while (total) { 3609 struct btrfs_space_info *space_info; 3610 bool reclaim = false; 3611 3612 cache = btrfs_lookup_block_group(info, bytenr); 3613 if (!cache) { 3614 ret = -ENOENT; 3615 break; 3616 } 3617 space_info = cache->space_info; 3618 factor = btrfs_bg_type_to_factor(cache->flags); 3619 3620 /* 3621 * If this block group has free space cache written out, we 3622 * need to make sure to load it if we are removing space. This 3623 * is because we need the unpinning stage to actually add the 3624 * space back to the block group, otherwise we will leak space. 3625 */ 3626 if (!alloc && !btrfs_block_group_done(cache)) 3627 btrfs_cache_block_group(cache, true); 3628 3629 byte_in_group = bytenr - cache->start; 3630 WARN_ON(byte_in_group > cache->length); 3631 3632 spin_lock(&space_info->lock); 3633 spin_lock(&cache->lock); 3634 3635 if (btrfs_test_opt(info, SPACE_CACHE) && 3636 cache->disk_cache_state < BTRFS_DC_CLEAR) 3637 cache->disk_cache_state = BTRFS_DC_CLEAR; 3638 3639 old_val = cache->used; 3640 num_bytes = min(total, cache->length - byte_in_group); 3641 if (alloc) { 3642 old_val += num_bytes; 3643 cache->used = old_val; 3644 cache->reserved -= num_bytes; 3645 space_info->bytes_reserved -= num_bytes; 3646 space_info->bytes_used += num_bytes; 3647 space_info->disk_used += num_bytes * factor; 3648 spin_unlock(&cache->lock); 3649 spin_unlock(&space_info->lock); 3650 } else { 3651 old_val -= num_bytes; 3652 cache->used = old_val; 3653 cache->pinned += num_bytes; 3654 btrfs_space_info_update_bytes_pinned(info, space_info, 3655 num_bytes); 3656 space_info->bytes_used -= num_bytes; 3657 space_info->disk_used -= num_bytes * factor; 3658 3659 reclaim = should_reclaim_block_group(cache, num_bytes); 3660 3661 spin_unlock(&cache->lock); 3662 spin_unlock(&space_info->lock); 3663 3664 set_extent_bit(&trans->transaction->pinned_extents, 3665 bytenr, bytenr + num_bytes - 1, 3666 EXTENT_DIRTY, NULL); 3667 } 3668 3669 spin_lock(&trans->transaction->dirty_bgs_lock); 3670 if (list_empty(&cache->dirty_list)) { 3671 list_add_tail(&cache->dirty_list, 3672 &trans->transaction->dirty_bgs); 3673 trans->delayed_ref_updates++; 3674 btrfs_get_block_group(cache); 3675 } 3676 spin_unlock(&trans->transaction->dirty_bgs_lock); 3677 3678 /* 3679 * No longer have used bytes in this block group, queue it for 3680 * deletion. We do this after adding the block group to the 3681 * dirty list to avoid races between cleaner kthread and space 3682 * cache writeout. 3683 */ 3684 if (!alloc && old_val == 0) { 3685 if (!btrfs_test_opt(info, DISCARD_ASYNC)) 3686 btrfs_mark_bg_unused(cache); 3687 } else if (!alloc && reclaim) { 3688 btrfs_mark_bg_to_reclaim(cache); 3689 } 3690 3691 btrfs_put_block_group(cache); 3692 total -= num_bytes; 3693 bytenr += num_bytes; 3694 } 3695 3696 /* Modified block groups are accounted for in the delayed_refs_rsv. */ 3697 btrfs_update_delayed_refs_rsv(trans); 3698 return ret; 3699 } 3700 3701 /* 3702 * Update the block_group and space info counters. 3703 * 3704 * @cache: The cache we are manipulating 3705 * @ram_bytes: The number of bytes of file content, and will be same to 3706 * @num_bytes except for the compress path. 3707 * @num_bytes: The number of bytes in question 3708 * @delalloc: The blocks are allocated for the delalloc write 3709 * 3710 * This is called by the allocator when it reserves space. If this is a 3711 * reservation and the block group has become read only we cannot make the 3712 * reservation and return -EAGAIN, otherwise this function always succeeds. 3713 */ 3714 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, 3715 u64 ram_bytes, u64 num_bytes, int delalloc, 3716 bool force_wrong_size_class) 3717 { 3718 struct btrfs_space_info *space_info = cache->space_info; 3719 enum btrfs_block_group_size_class size_class; 3720 int ret = 0; 3721 3722 spin_lock(&space_info->lock); 3723 spin_lock(&cache->lock); 3724 if (cache->ro) { 3725 ret = -EAGAIN; 3726 goto out; 3727 } 3728 3729 if (btrfs_block_group_should_use_size_class(cache)) { 3730 size_class = btrfs_calc_block_group_size_class(num_bytes); 3731 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class); 3732 if (ret) 3733 goto out; 3734 } 3735 cache->reserved += num_bytes; 3736 space_info->bytes_reserved += num_bytes; 3737 trace_btrfs_space_reservation(cache->fs_info, "space_info", 3738 space_info->flags, num_bytes, 1); 3739 btrfs_space_info_update_bytes_may_use(cache->fs_info, 3740 space_info, -ram_bytes); 3741 if (delalloc) 3742 cache->delalloc_bytes += num_bytes; 3743 3744 /* 3745 * Compression can use less space than we reserved, so wake tickets if 3746 * that happens. 3747 */ 3748 if (num_bytes < ram_bytes) 3749 btrfs_try_granting_tickets(cache->fs_info, space_info); 3750 out: 3751 spin_unlock(&cache->lock); 3752 spin_unlock(&space_info->lock); 3753 return ret; 3754 } 3755 3756 /* 3757 * Update the block_group and space info counters. 3758 * 3759 * @cache: The cache we are manipulating 3760 * @num_bytes: The number of bytes in question 3761 * @delalloc: The blocks are allocated for the delalloc write 3762 * 3763 * This is called by somebody who is freeing space that was never actually used 3764 * on disk. For example if you reserve some space for a new leaf in transaction 3765 * A and before transaction A commits you free that leaf, you call this with 3766 * reserve set to 0 in order to clear the reservation. 3767 */ 3768 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, 3769 u64 num_bytes, int delalloc) 3770 { 3771 struct btrfs_space_info *space_info = cache->space_info; 3772 3773 spin_lock(&space_info->lock); 3774 spin_lock(&cache->lock); 3775 if (cache->ro) 3776 space_info->bytes_readonly += num_bytes; 3777 cache->reserved -= num_bytes; 3778 space_info->bytes_reserved -= num_bytes; 3779 space_info->max_extent_size = 0; 3780 3781 if (delalloc) 3782 cache->delalloc_bytes -= num_bytes; 3783 spin_unlock(&cache->lock); 3784 3785 btrfs_try_granting_tickets(cache->fs_info, space_info); 3786 spin_unlock(&space_info->lock); 3787 } 3788 3789 static void force_metadata_allocation(struct btrfs_fs_info *info) 3790 { 3791 struct list_head *head = &info->space_info; 3792 struct btrfs_space_info *found; 3793 3794 list_for_each_entry(found, head, list) { 3795 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3796 found->force_alloc = CHUNK_ALLOC_FORCE; 3797 } 3798 } 3799 3800 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 3801 struct btrfs_space_info *sinfo, int force) 3802 { 3803 u64 bytes_used = btrfs_space_info_used(sinfo, false); 3804 u64 thresh; 3805 3806 if (force == CHUNK_ALLOC_FORCE) 3807 return 1; 3808 3809 /* 3810 * in limited mode, we want to have some free space up to 3811 * about 1% of the FS size. 3812 */ 3813 if (force == CHUNK_ALLOC_LIMITED) { 3814 thresh = btrfs_super_total_bytes(fs_info->super_copy); 3815 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1)); 3816 3817 if (sinfo->total_bytes - bytes_used < thresh) 3818 return 1; 3819 } 3820 3821 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80)) 3822 return 0; 3823 return 1; 3824 } 3825 3826 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 3827 { 3828 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); 3829 3830 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 3831 } 3832 3833 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags) 3834 { 3835 struct btrfs_block_group *bg; 3836 int ret; 3837 3838 /* 3839 * Check if we have enough space in the system space info because we 3840 * will need to update device items in the chunk btree and insert a new 3841 * chunk item in the chunk btree as well. This will allocate a new 3842 * system block group if needed. 3843 */ 3844 check_system_chunk(trans, flags); 3845 3846 bg = btrfs_create_chunk(trans, flags); 3847 if (IS_ERR(bg)) { 3848 ret = PTR_ERR(bg); 3849 goto out; 3850 } 3851 3852 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3853 /* 3854 * Normally we are not expected to fail with -ENOSPC here, since we have 3855 * previously reserved space in the system space_info and allocated one 3856 * new system chunk if necessary. However there are three exceptions: 3857 * 3858 * 1) We may have enough free space in the system space_info but all the 3859 * existing system block groups have a profile which can not be used 3860 * for extent allocation. 3861 * 3862 * This happens when mounting in degraded mode. For example we have a 3863 * RAID1 filesystem with 2 devices, lose one device and mount the fs 3864 * using the other device in degraded mode. If we then allocate a chunk, 3865 * we may have enough free space in the existing system space_info, but 3866 * none of the block groups can be used for extent allocation since they 3867 * have a RAID1 profile, and because we are in degraded mode with a 3868 * single device, we are forced to allocate a new system chunk with a 3869 * SINGLE profile. Making check_system_chunk() iterate over all system 3870 * block groups and check if they have a usable profile and enough space 3871 * can be slow on very large filesystems, so we tolerate the -ENOSPC and 3872 * try again after forcing allocation of a new system chunk. Like this 3873 * we avoid paying the cost of that search in normal circumstances, when 3874 * we were not mounted in degraded mode; 3875 * 3876 * 2) We had enough free space info the system space_info, and one suitable 3877 * block group to allocate from when we called check_system_chunk() 3878 * above. However right after we called it, the only system block group 3879 * with enough free space got turned into RO mode by a running scrub, 3880 * and in this case we have to allocate a new one and retry. We only 3881 * need do this allocate and retry once, since we have a transaction 3882 * handle and scrub uses the commit root to search for block groups; 3883 * 3884 * 3) We had one system block group with enough free space when we called 3885 * check_system_chunk(), but after that, right before we tried to 3886 * allocate the last extent buffer we needed, a discard operation came 3887 * in and it temporarily removed the last free space entry from the 3888 * block group (discard removes a free space entry, discards it, and 3889 * then adds back the entry to the block group cache). 3890 */ 3891 if (ret == -ENOSPC) { 3892 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info); 3893 struct btrfs_block_group *sys_bg; 3894 3895 sys_bg = btrfs_create_chunk(trans, sys_flags); 3896 if (IS_ERR(sys_bg)) { 3897 ret = PTR_ERR(sys_bg); 3898 btrfs_abort_transaction(trans, ret); 3899 goto out; 3900 } 3901 3902 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3903 if (ret) { 3904 btrfs_abort_transaction(trans, ret); 3905 goto out; 3906 } 3907 3908 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg); 3909 if (ret) { 3910 btrfs_abort_transaction(trans, ret); 3911 goto out; 3912 } 3913 } else if (ret) { 3914 btrfs_abort_transaction(trans, ret); 3915 goto out; 3916 } 3917 out: 3918 btrfs_trans_release_chunk_metadata(trans); 3919 3920 if (ret) 3921 return ERR_PTR(ret); 3922 3923 btrfs_get_block_group(bg); 3924 return bg; 3925 } 3926 3927 /* 3928 * Chunk allocation is done in 2 phases: 3929 * 3930 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for 3931 * the chunk, the chunk mapping, create its block group and add the items 3932 * that belong in the chunk btree to it - more specifically, we need to 3933 * update device items in the chunk btree and add a new chunk item to it. 3934 * 3935 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block 3936 * group item to the extent btree and the device extent items to the devices 3937 * btree. 3938 * 3939 * This is done to prevent deadlocks. For example when COWing a node from the 3940 * extent btree we are holding a write lock on the node's parent and if we 3941 * trigger chunk allocation and attempted to insert the new block group item 3942 * in the extent btree right way, we could deadlock because the path for the 3943 * insertion can include that parent node. At first glance it seems impossible 3944 * to trigger chunk allocation after starting a transaction since tasks should 3945 * reserve enough transaction units (metadata space), however while that is true 3946 * most of the time, chunk allocation may still be triggered for several reasons: 3947 * 3948 * 1) When reserving metadata, we check if there is enough free space in the 3949 * metadata space_info and therefore don't trigger allocation of a new chunk. 3950 * However later when the task actually tries to COW an extent buffer from 3951 * the extent btree or from the device btree for example, it is forced to 3952 * allocate a new block group (chunk) because the only one that had enough 3953 * free space was just turned to RO mode by a running scrub for example (or 3954 * device replace, block group reclaim thread, etc), so we can not use it 3955 * for allocating an extent and end up being forced to allocate a new one; 3956 * 3957 * 2) Because we only check that the metadata space_info has enough free bytes, 3958 * we end up not allocating a new metadata chunk in that case. However if 3959 * the filesystem was mounted in degraded mode, none of the existing block 3960 * groups might be suitable for extent allocation due to their incompatible 3961 * profile (for e.g. mounting a 2 devices filesystem, where all block groups 3962 * use a RAID1 profile, in degraded mode using a single device). In this case 3963 * when the task attempts to COW some extent buffer of the extent btree for 3964 * example, it will trigger allocation of a new metadata block group with a 3965 * suitable profile (SINGLE profile in the example of the degraded mount of 3966 * the RAID1 filesystem); 3967 * 3968 * 3) The task has reserved enough transaction units / metadata space, but when 3969 * it attempts to COW an extent buffer from the extent or device btree for 3970 * example, it does not find any free extent in any metadata block group, 3971 * therefore forced to try to allocate a new metadata block group. 3972 * This is because some other task allocated all available extents in the 3973 * meanwhile - this typically happens with tasks that don't reserve space 3974 * properly, either intentionally or as a bug. One example where this is 3975 * done intentionally is fsync, as it does not reserve any transaction units 3976 * and ends up allocating a variable number of metadata extents for log 3977 * tree extent buffers; 3978 * 3979 * 4) The task has reserved enough transaction units / metadata space, but right 3980 * before it tries to allocate the last extent buffer it needs, a discard 3981 * operation comes in and, temporarily, removes the last free space entry from 3982 * the only metadata block group that had free space (discard starts by 3983 * removing a free space entry from a block group, then does the discard 3984 * operation and, once it's done, it adds back the free space entry to the 3985 * block group). 3986 * 3987 * We also need this 2 phases setup when adding a device to a filesystem with 3988 * a seed device - we must create new metadata and system chunks without adding 3989 * any of the block group items to the chunk, extent and device btrees. If we 3990 * did not do it this way, we would get ENOSPC when attempting to update those 3991 * btrees, since all the chunks from the seed device are read-only. 3992 * 3993 * Phase 1 does the updates and insertions to the chunk btree because if we had 3994 * it done in phase 2 and have a thundering herd of tasks allocating chunks in 3995 * parallel, we risk having too many system chunks allocated by many tasks if 3996 * many tasks reach phase 1 without the previous ones completing phase 2. In the 3997 * extreme case this leads to exhaustion of the system chunk array in the 3998 * superblock. This is easier to trigger if using a btree node/leaf size of 64K 3999 * and with RAID filesystems (so we have more device items in the chunk btree). 4000 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of 4001 * the system chunk array due to concurrent allocations") provides more details. 4002 * 4003 * Allocation of system chunks does not happen through this function. A task that 4004 * needs to update the chunk btree (the only btree that uses system chunks), must 4005 * preallocate chunk space by calling either check_system_chunk() or 4006 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or 4007 * metadata chunk or when removing a chunk, while the later is used before doing 4008 * a modification to the chunk btree - use cases for the later are adding, 4009 * removing and resizing a device as well as relocation of a system chunk. 4010 * See the comment below for more details. 4011 * 4012 * The reservation of system space, done through check_system_chunk(), as well 4013 * as all the updates and insertions into the chunk btree must be done while 4014 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing 4015 * an extent buffer from the chunks btree we never trigger allocation of a new 4016 * system chunk, which would result in a deadlock (trying to lock twice an 4017 * extent buffer of the chunk btree, first time before triggering the chunk 4018 * allocation and the second time during chunk allocation while attempting to 4019 * update the chunks btree). The system chunk array is also updated while holding 4020 * that mutex. The same logic applies to removing chunks - we must reserve system 4021 * space, update the chunk btree and the system chunk array in the superblock 4022 * while holding fs_info->chunk_mutex. 4023 * 4024 * This function, btrfs_chunk_alloc(), belongs to phase 1. 4025 * 4026 * If @force is CHUNK_ALLOC_FORCE: 4027 * - return 1 if it successfully allocates a chunk, 4028 * - return errors including -ENOSPC otherwise. 4029 * If @force is NOT CHUNK_ALLOC_FORCE: 4030 * - return 0 if it doesn't need to allocate a new chunk, 4031 * - return 1 if it successfully allocates a chunk, 4032 * - return errors including -ENOSPC otherwise. 4033 */ 4034 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4035 enum btrfs_chunk_alloc_enum force) 4036 { 4037 struct btrfs_fs_info *fs_info = trans->fs_info; 4038 struct btrfs_space_info *space_info; 4039 struct btrfs_block_group *ret_bg; 4040 bool wait_for_alloc = false; 4041 bool should_alloc = false; 4042 bool from_extent_allocation = false; 4043 int ret = 0; 4044 4045 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) { 4046 from_extent_allocation = true; 4047 force = CHUNK_ALLOC_FORCE; 4048 } 4049 4050 /* Don't re-enter if we're already allocating a chunk */ 4051 if (trans->allocating_chunk) 4052 return -ENOSPC; 4053 /* 4054 * Allocation of system chunks can not happen through this path, as we 4055 * could end up in a deadlock if we are allocating a data or metadata 4056 * chunk and there is another task modifying the chunk btree. 4057 * 4058 * This is because while we are holding the chunk mutex, we will attempt 4059 * to add the new chunk item to the chunk btree or update an existing 4060 * device item in the chunk btree, while the other task that is modifying 4061 * the chunk btree is attempting to COW an extent buffer while holding a 4062 * lock on it and on its parent - if the COW operation triggers a system 4063 * chunk allocation, then we can deadlock because we are holding the 4064 * chunk mutex and we may need to access that extent buffer or its parent 4065 * in order to add the chunk item or update a device item. 4066 * 4067 * Tasks that want to modify the chunk tree should reserve system space 4068 * before updating the chunk btree, by calling either 4069 * btrfs_reserve_chunk_metadata() or check_system_chunk(). 4070 * It's possible that after a task reserves the space, it still ends up 4071 * here - this happens in the cases described above at do_chunk_alloc(). 4072 * The task will have to either retry or fail. 4073 */ 4074 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4075 return -ENOSPC; 4076 4077 space_info = btrfs_find_space_info(fs_info, flags); 4078 ASSERT(space_info); 4079 4080 do { 4081 spin_lock(&space_info->lock); 4082 if (force < space_info->force_alloc) 4083 force = space_info->force_alloc; 4084 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4085 if (space_info->full) { 4086 /* No more free physical space */ 4087 if (should_alloc) 4088 ret = -ENOSPC; 4089 else 4090 ret = 0; 4091 spin_unlock(&space_info->lock); 4092 return ret; 4093 } else if (!should_alloc) { 4094 spin_unlock(&space_info->lock); 4095 return 0; 4096 } else if (space_info->chunk_alloc) { 4097 /* 4098 * Someone is already allocating, so we need to block 4099 * until this someone is finished and then loop to 4100 * recheck if we should continue with our allocation 4101 * attempt. 4102 */ 4103 wait_for_alloc = true; 4104 force = CHUNK_ALLOC_NO_FORCE; 4105 spin_unlock(&space_info->lock); 4106 mutex_lock(&fs_info->chunk_mutex); 4107 mutex_unlock(&fs_info->chunk_mutex); 4108 } else { 4109 /* Proceed with allocation */ 4110 space_info->chunk_alloc = 1; 4111 wait_for_alloc = false; 4112 spin_unlock(&space_info->lock); 4113 } 4114 4115 cond_resched(); 4116 } while (wait_for_alloc); 4117 4118 mutex_lock(&fs_info->chunk_mutex); 4119 trans->allocating_chunk = true; 4120 4121 /* 4122 * If we have mixed data/metadata chunks we want to make sure we keep 4123 * allocating mixed chunks instead of individual chunks. 4124 */ 4125 if (btrfs_mixed_space_info(space_info)) 4126 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4127 4128 /* 4129 * if we're doing a data chunk, go ahead and make sure that 4130 * we keep a reasonable number of metadata chunks allocated in the 4131 * FS as well. 4132 */ 4133 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4134 fs_info->data_chunk_allocations++; 4135 if (!(fs_info->data_chunk_allocations % 4136 fs_info->metadata_ratio)) 4137 force_metadata_allocation(fs_info); 4138 } 4139 4140 ret_bg = do_chunk_alloc(trans, flags); 4141 trans->allocating_chunk = false; 4142 4143 if (IS_ERR(ret_bg)) { 4144 ret = PTR_ERR(ret_bg); 4145 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) { 4146 /* 4147 * New block group is likely to be used soon. Try to activate 4148 * it now. Failure is OK for now. 4149 */ 4150 btrfs_zone_activate(ret_bg); 4151 } 4152 4153 if (!ret) 4154 btrfs_put_block_group(ret_bg); 4155 4156 spin_lock(&space_info->lock); 4157 if (ret < 0) { 4158 if (ret == -ENOSPC) 4159 space_info->full = 1; 4160 else 4161 goto out; 4162 } else { 4163 ret = 1; 4164 space_info->max_extent_size = 0; 4165 } 4166 4167 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4168 out: 4169 space_info->chunk_alloc = 0; 4170 spin_unlock(&space_info->lock); 4171 mutex_unlock(&fs_info->chunk_mutex); 4172 4173 return ret; 4174 } 4175 4176 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4177 { 4178 u64 num_dev; 4179 4180 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; 4181 if (!num_dev) 4182 num_dev = fs_info->fs_devices->rw_devices; 4183 4184 return num_dev; 4185 } 4186 4187 static void reserve_chunk_space(struct btrfs_trans_handle *trans, 4188 u64 bytes, 4189 u64 type) 4190 { 4191 struct btrfs_fs_info *fs_info = trans->fs_info; 4192 struct btrfs_space_info *info; 4193 u64 left; 4194 int ret = 0; 4195 4196 /* 4197 * Needed because we can end up allocating a system chunk and for an 4198 * atomic and race free space reservation in the chunk block reserve. 4199 */ 4200 lockdep_assert_held(&fs_info->chunk_mutex); 4201 4202 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4203 spin_lock(&info->lock); 4204 left = info->total_bytes - btrfs_space_info_used(info, true); 4205 spin_unlock(&info->lock); 4206 4207 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4208 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4209 left, bytes, type); 4210 btrfs_dump_space_info(fs_info, info, 0, 0); 4211 } 4212 4213 if (left < bytes) { 4214 u64 flags = btrfs_system_alloc_profile(fs_info); 4215 struct btrfs_block_group *bg; 4216 4217 /* 4218 * Ignore failure to create system chunk. We might end up not 4219 * needing it, as we might not need to COW all nodes/leafs from 4220 * the paths we visit in the chunk tree (they were already COWed 4221 * or created in the current transaction for example). 4222 */ 4223 bg = btrfs_create_chunk(trans, flags); 4224 if (IS_ERR(bg)) { 4225 ret = PTR_ERR(bg); 4226 } else { 4227 /* 4228 * We have a new chunk. We also need to activate it for 4229 * zoned filesystem. 4230 */ 4231 ret = btrfs_zoned_activate_one_bg(fs_info, info, true); 4232 if (ret < 0) 4233 return; 4234 4235 /* 4236 * If we fail to add the chunk item here, we end up 4237 * trying again at phase 2 of chunk allocation, at 4238 * btrfs_create_pending_block_groups(). So ignore 4239 * any error here. An ENOSPC here could happen, due to 4240 * the cases described at do_chunk_alloc() - the system 4241 * block group we just created was just turned into RO 4242 * mode by a scrub for example, or a running discard 4243 * temporarily removed its free space entries, etc. 4244 */ 4245 btrfs_chunk_alloc_add_chunk_item(trans, bg); 4246 } 4247 } 4248 4249 if (!ret) { 4250 ret = btrfs_block_rsv_add(fs_info, 4251 &fs_info->chunk_block_rsv, 4252 bytes, BTRFS_RESERVE_NO_FLUSH); 4253 if (!ret) 4254 trans->chunk_bytes_reserved += bytes; 4255 } 4256 } 4257 4258 /* 4259 * Reserve space in the system space for allocating or removing a chunk. 4260 * The caller must be holding fs_info->chunk_mutex. 4261 */ 4262 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4263 { 4264 struct btrfs_fs_info *fs_info = trans->fs_info; 4265 const u64 num_devs = get_profile_num_devs(fs_info, type); 4266 u64 bytes; 4267 4268 /* num_devs device items to update and 1 chunk item to add or remove. */ 4269 bytes = btrfs_calc_metadata_size(fs_info, num_devs) + 4270 btrfs_calc_insert_metadata_size(fs_info, 1); 4271 4272 reserve_chunk_space(trans, bytes, type); 4273 } 4274 4275 /* 4276 * Reserve space in the system space, if needed, for doing a modification to the 4277 * chunk btree. 4278 * 4279 * @trans: A transaction handle. 4280 * @is_item_insertion: Indicate if the modification is for inserting a new item 4281 * in the chunk btree or if it's for the deletion or update 4282 * of an existing item. 4283 * 4284 * This is used in a context where we need to update the chunk btree outside 4285 * block group allocation and removal, to avoid a deadlock with a concurrent 4286 * task that is allocating a metadata or data block group and therefore needs to 4287 * update the chunk btree while holding the chunk mutex. After the update to the 4288 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called. 4289 * 4290 */ 4291 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, 4292 bool is_item_insertion) 4293 { 4294 struct btrfs_fs_info *fs_info = trans->fs_info; 4295 u64 bytes; 4296 4297 if (is_item_insertion) 4298 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 4299 else 4300 bytes = btrfs_calc_metadata_size(fs_info, 1); 4301 4302 mutex_lock(&fs_info->chunk_mutex); 4303 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM); 4304 mutex_unlock(&fs_info->chunk_mutex); 4305 } 4306 4307 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 4308 { 4309 struct btrfs_block_group *block_group; 4310 4311 block_group = btrfs_lookup_first_block_group(info, 0); 4312 while (block_group) { 4313 btrfs_wait_block_group_cache_done(block_group); 4314 spin_lock(&block_group->lock); 4315 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, 4316 &block_group->runtime_flags)) { 4317 struct inode *inode = block_group->inode; 4318 4319 block_group->inode = NULL; 4320 spin_unlock(&block_group->lock); 4321 4322 ASSERT(block_group->io_ctl.inode == NULL); 4323 iput(inode); 4324 } else { 4325 spin_unlock(&block_group->lock); 4326 } 4327 block_group = btrfs_next_block_group(block_group); 4328 } 4329 } 4330 4331 /* 4332 * Must be called only after stopping all workers, since we could have block 4333 * group caching kthreads running, and therefore they could race with us if we 4334 * freed the block groups before stopping them. 4335 */ 4336 int btrfs_free_block_groups(struct btrfs_fs_info *info) 4337 { 4338 struct btrfs_block_group *block_group; 4339 struct btrfs_space_info *space_info; 4340 struct btrfs_caching_control *caching_ctl; 4341 struct rb_node *n; 4342 4343 if (btrfs_is_zoned(info)) { 4344 if (info->active_meta_bg) { 4345 btrfs_put_block_group(info->active_meta_bg); 4346 info->active_meta_bg = NULL; 4347 } 4348 if (info->active_system_bg) { 4349 btrfs_put_block_group(info->active_system_bg); 4350 info->active_system_bg = NULL; 4351 } 4352 } 4353 4354 write_lock(&info->block_group_cache_lock); 4355 while (!list_empty(&info->caching_block_groups)) { 4356 caching_ctl = list_entry(info->caching_block_groups.next, 4357 struct btrfs_caching_control, list); 4358 list_del(&caching_ctl->list); 4359 btrfs_put_caching_control(caching_ctl); 4360 } 4361 write_unlock(&info->block_group_cache_lock); 4362 4363 spin_lock(&info->unused_bgs_lock); 4364 while (!list_empty(&info->unused_bgs)) { 4365 block_group = list_first_entry(&info->unused_bgs, 4366 struct btrfs_block_group, 4367 bg_list); 4368 list_del_init(&block_group->bg_list); 4369 btrfs_put_block_group(block_group); 4370 } 4371 4372 while (!list_empty(&info->reclaim_bgs)) { 4373 block_group = list_first_entry(&info->reclaim_bgs, 4374 struct btrfs_block_group, 4375 bg_list); 4376 list_del_init(&block_group->bg_list); 4377 btrfs_put_block_group(block_group); 4378 } 4379 spin_unlock(&info->unused_bgs_lock); 4380 4381 spin_lock(&info->zone_active_bgs_lock); 4382 while (!list_empty(&info->zone_active_bgs)) { 4383 block_group = list_first_entry(&info->zone_active_bgs, 4384 struct btrfs_block_group, 4385 active_bg_list); 4386 list_del_init(&block_group->active_bg_list); 4387 btrfs_put_block_group(block_group); 4388 } 4389 spin_unlock(&info->zone_active_bgs_lock); 4390 4391 write_lock(&info->block_group_cache_lock); 4392 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) { 4393 block_group = rb_entry(n, struct btrfs_block_group, 4394 cache_node); 4395 rb_erase_cached(&block_group->cache_node, 4396 &info->block_group_cache_tree); 4397 RB_CLEAR_NODE(&block_group->cache_node); 4398 write_unlock(&info->block_group_cache_lock); 4399 4400 down_write(&block_group->space_info->groups_sem); 4401 list_del(&block_group->list); 4402 up_write(&block_group->space_info->groups_sem); 4403 4404 /* 4405 * We haven't cached this block group, which means we could 4406 * possibly have excluded extents on this block group. 4407 */ 4408 if (block_group->cached == BTRFS_CACHE_NO || 4409 block_group->cached == BTRFS_CACHE_ERROR) 4410 btrfs_free_excluded_extents(block_group); 4411 4412 btrfs_remove_free_space_cache(block_group); 4413 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 4414 ASSERT(list_empty(&block_group->dirty_list)); 4415 ASSERT(list_empty(&block_group->io_list)); 4416 ASSERT(list_empty(&block_group->bg_list)); 4417 ASSERT(refcount_read(&block_group->refs) == 1); 4418 ASSERT(block_group->swap_extents == 0); 4419 btrfs_put_block_group(block_group); 4420 4421 write_lock(&info->block_group_cache_lock); 4422 } 4423 write_unlock(&info->block_group_cache_lock); 4424 4425 btrfs_release_global_block_rsv(info); 4426 4427 while (!list_empty(&info->space_info)) { 4428 space_info = list_entry(info->space_info.next, 4429 struct btrfs_space_info, 4430 list); 4431 4432 /* 4433 * Do not hide this behind enospc_debug, this is actually 4434 * important and indicates a real bug if this happens. 4435 */ 4436 if (WARN_ON(space_info->bytes_pinned > 0 || 4437 space_info->bytes_may_use > 0)) 4438 btrfs_dump_space_info(info, space_info, 0, 0); 4439 4440 /* 4441 * If there was a failure to cleanup a log tree, very likely due 4442 * to an IO failure on a writeback attempt of one or more of its 4443 * extent buffers, we could not do proper (and cheap) unaccounting 4444 * of their reserved space, so don't warn on bytes_reserved > 0 in 4445 * that case. 4446 */ 4447 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) || 4448 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) { 4449 if (WARN_ON(space_info->bytes_reserved > 0)) 4450 btrfs_dump_space_info(info, space_info, 0, 0); 4451 } 4452 4453 WARN_ON(space_info->reclaim_size > 0); 4454 list_del(&space_info->list); 4455 btrfs_sysfs_remove_space_info(space_info); 4456 } 4457 return 0; 4458 } 4459 4460 void btrfs_freeze_block_group(struct btrfs_block_group *cache) 4461 { 4462 atomic_inc(&cache->frozen); 4463 } 4464 4465 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group) 4466 { 4467 struct btrfs_fs_info *fs_info = block_group->fs_info; 4468 struct extent_map_tree *em_tree; 4469 struct extent_map *em; 4470 bool cleanup; 4471 4472 spin_lock(&block_group->lock); 4473 cleanup = (atomic_dec_and_test(&block_group->frozen) && 4474 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)); 4475 spin_unlock(&block_group->lock); 4476 4477 if (cleanup) { 4478 em_tree = &fs_info->mapping_tree; 4479 write_lock(&em_tree->lock); 4480 em = lookup_extent_mapping(em_tree, block_group->start, 4481 1); 4482 BUG_ON(!em); /* logic error, can't happen */ 4483 remove_extent_mapping(em_tree, em); 4484 write_unlock(&em_tree->lock); 4485 4486 /* once for us and once for the tree */ 4487 free_extent_map(em); 4488 free_extent_map(em); 4489 4490 /* 4491 * We may have left one free space entry and other possible 4492 * tasks trimming this block group have left 1 entry each one. 4493 * Free them if any. 4494 */ 4495 btrfs_remove_free_space_cache(block_group); 4496 } 4497 } 4498 4499 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg) 4500 { 4501 bool ret = true; 4502 4503 spin_lock(&bg->lock); 4504 if (bg->ro) 4505 ret = false; 4506 else 4507 bg->swap_extents++; 4508 spin_unlock(&bg->lock); 4509 4510 return ret; 4511 } 4512 4513 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount) 4514 { 4515 spin_lock(&bg->lock); 4516 ASSERT(!bg->ro); 4517 ASSERT(bg->swap_extents >= amount); 4518 bg->swap_extents -= amount; 4519 spin_unlock(&bg->lock); 4520 } 4521 4522 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size) 4523 { 4524 if (size <= SZ_128K) 4525 return BTRFS_BG_SZ_SMALL; 4526 if (size <= SZ_8M) 4527 return BTRFS_BG_SZ_MEDIUM; 4528 return BTRFS_BG_SZ_LARGE; 4529 } 4530 4531 /* 4532 * Handle a block group allocating an extent in a size class 4533 * 4534 * @bg: The block group we allocated in. 4535 * @size_class: The size class of the allocation. 4536 * @force_wrong_size_class: Whether we are desperate enough to allow 4537 * mismatched size classes. 4538 * 4539 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the 4540 * case of a race that leads to the wrong size class without 4541 * force_wrong_size_class set. 4542 * 4543 * find_free_extent will skip block groups with a mismatched size class until 4544 * it really needs to avoid ENOSPC. In that case it will set 4545 * force_wrong_size_class. However, if a block group is newly allocated and 4546 * doesn't yet have a size class, then it is possible for two allocations of 4547 * different sizes to race and both try to use it. The loser is caught here and 4548 * has to retry. 4549 */ 4550 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, 4551 enum btrfs_block_group_size_class size_class, 4552 bool force_wrong_size_class) 4553 { 4554 ASSERT(size_class != BTRFS_BG_SZ_NONE); 4555 4556 /* The new allocation is in the right size class, do nothing */ 4557 if (bg->size_class == size_class) 4558 return 0; 4559 /* 4560 * The new allocation is in a mismatched size class. 4561 * This means one of two things: 4562 * 4563 * 1. Two tasks in find_free_extent for different size_classes raced 4564 * and hit the same empty block_group. Make the loser try again. 4565 * 2. A call to find_free_extent got desperate enough to set 4566 * 'force_wrong_slab'. Don't change the size_class, but allow the 4567 * allocation. 4568 */ 4569 if (bg->size_class != BTRFS_BG_SZ_NONE) { 4570 if (force_wrong_size_class) 4571 return 0; 4572 return -EAGAIN; 4573 } 4574 /* 4575 * The happy new block group case: the new allocation is the first 4576 * one in the block_group so we set size_class. 4577 */ 4578 bg->size_class = size_class; 4579 4580 return 0; 4581 } 4582 4583 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg) 4584 { 4585 if (btrfs_is_zoned(bg->fs_info)) 4586 return false; 4587 if (!btrfs_is_block_group_data_only(bg)) 4588 return false; 4589 return true; 4590 } 4591