xref: /openbmc/linux/fs/btrfs/block-group.c (revision 8b8dcc37)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		WARN_ON(cache->reserved > 0);
128 
129 		/*
130 		 * A block_group shouldn't be on the discard_list anymore.
131 		 * Remove the block_group from the discard_list to prevent us
132 		 * from causing a panic due to NULL pointer dereference.
133 		 */
134 		if (WARN_ON(!list_empty(&cache->discard_list)))
135 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
136 						  cache);
137 
138 		/*
139 		 * If not empty, someone is still holding mutex of
140 		 * full_stripe_lock, which can only be released by caller.
141 		 * And it will definitely cause use-after-free when caller
142 		 * tries to release full stripe lock.
143 		 *
144 		 * No better way to resolve, but only to warn.
145 		 */
146 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
147 		kfree(cache->free_space_ctl);
148 		kfree(cache->physical_map);
149 		kfree(cache);
150 	}
151 }
152 
153 /*
154  * This adds the block group to the fs_info rb tree for the block group cache
155  */
156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
157 				       struct btrfs_block_group *block_group)
158 {
159 	struct rb_node **p;
160 	struct rb_node *parent = NULL;
161 	struct btrfs_block_group *cache;
162 
163 	ASSERT(block_group->length != 0);
164 
165 	spin_lock(&info->block_group_cache_lock);
166 	p = &info->block_group_cache_tree.rb_node;
167 
168 	while (*p) {
169 		parent = *p;
170 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
171 		if (block_group->start < cache->start) {
172 			p = &(*p)->rb_left;
173 		} else if (block_group->start > cache->start) {
174 			p = &(*p)->rb_right;
175 		} else {
176 			spin_unlock(&info->block_group_cache_lock);
177 			return -EEXIST;
178 		}
179 	}
180 
181 	rb_link_node(&block_group->cache_node, parent, p);
182 	rb_insert_color(&block_group->cache_node,
183 			&info->block_group_cache_tree);
184 
185 	if (info->first_logical_byte > block_group->start)
186 		info->first_logical_byte = block_group->start;
187 
188 	spin_unlock(&info->block_group_cache_lock);
189 
190 	return 0;
191 }
192 
193 /*
194  * This will return the block group at or after bytenr if contains is 0, else
195  * it will return the block group that contains the bytenr
196  */
197 static struct btrfs_block_group *block_group_cache_tree_search(
198 		struct btrfs_fs_info *info, u64 bytenr, int contains)
199 {
200 	struct btrfs_block_group *cache, *ret = NULL;
201 	struct rb_node *n;
202 	u64 end, start;
203 
204 	spin_lock(&info->block_group_cache_lock);
205 	n = info->block_group_cache_tree.rb_node;
206 
207 	while (n) {
208 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
209 		end = cache->start + cache->length - 1;
210 		start = cache->start;
211 
212 		if (bytenr < start) {
213 			if (!contains && (!ret || start < ret->start))
214 				ret = cache;
215 			n = n->rb_left;
216 		} else if (bytenr > start) {
217 			if (contains && bytenr <= end) {
218 				ret = cache;
219 				break;
220 			}
221 			n = n->rb_right;
222 		} else {
223 			ret = cache;
224 			break;
225 		}
226 	}
227 	if (ret) {
228 		btrfs_get_block_group(ret);
229 		if (bytenr == 0 && info->first_logical_byte > ret->start)
230 			info->first_logical_byte = ret->start;
231 	}
232 	spin_unlock(&info->block_group_cache_lock);
233 
234 	return ret;
235 }
236 
237 /*
238  * Return the block group that starts at or after bytenr
239  */
240 struct btrfs_block_group *btrfs_lookup_first_block_group(
241 		struct btrfs_fs_info *info, u64 bytenr)
242 {
243 	return block_group_cache_tree_search(info, bytenr, 0);
244 }
245 
246 /*
247  * Return the block group that contains the given bytenr
248  */
249 struct btrfs_block_group *btrfs_lookup_block_group(
250 		struct btrfs_fs_info *info, u64 bytenr)
251 {
252 	return block_group_cache_tree_search(info, bytenr, 1);
253 }
254 
255 struct btrfs_block_group *btrfs_next_block_group(
256 		struct btrfs_block_group *cache)
257 {
258 	struct btrfs_fs_info *fs_info = cache->fs_info;
259 	struct rb_node *node;
260 
261 	spin_lock(&fs_info->block_group_cache_lock);
262 
263 	/* If our block group was removed, we need a full search. */
264 	if (RB_EMPTY_NODE(&cache->cache_node)) {
265 		const u64 next_bytenr = cache->start + cache->length;
266 
267 		spin_unlock(&fs_info->block_group_cache_lock);
268 		btrfs_put_block_group(cache);
269 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
270 	}
271 	node = rb_next(&cache->cache_node);
272 	btrfs_put_block_group(cache);
273 	if (node) {
274 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
275 		btrfs_get_block_group(cache);
276 	} else
277 		cache = NULL;
278 	spin_unlock(&fs_info->block_group_cache_lock);
279 	return cache;
280 }
281 
282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
283 {
284 	struct btrfs_block_group *bg;
285 	bool ret = true;
286 
287 	bg = btrfs_lookup_block_group(fs_info, bytenr);
288 	if (!bg)
289 		return false;
290 
291 	spin_lock(&bg->lock);
292 	if (bg->ro)
293 		ret = false;
294 	else
295 		atomic_inc(&bg->nocow_writers);
296 	spin_unlock(&bg->lock);
297 
298 	/* No put on block group, done by btrfs_dec_nocow_writers */
299 	if (!ret)
300 		btrfs_put_block_group(bg);
301 
302 	return ret;
303 }
304 
305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 	struct btrfs_block_group *bg;
308 
309 	bg = btrfs_lookup_block_group(fs_info, bytenr);
310 	ASSERT(bg);
311 	if (atomic_dec_and_test(&bg->nocow_writers))
312 		wake_up_var(&bg->nocow_writers);
313 	/*
314 	 * Once for our lookup and once for the lookup done by a previous call
315 	 * to btrfs_inc_nocow_writers()
316 	 */
317 	btrfs_put_block_group(bg);
318 	btrfs_put_block_group(bg);
319 }
320 
321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
322 {
323 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
324 }
325 
326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
327 					const u64 start)
328 {
329 	struct btrfs_block_group *bg;
330 
331 	bg = btrfs_lookup_block_group(fs_info, start);
332 	ASSERT(bg);
333 	if (atomic_dec_and_test(&bg->reservations))
334 		wake_up_var(&bg->reservations);
335 	btrfs_put_block_group(bg);
336 }
337 
338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
339 {
340 	struct btrfs_space_info *space_info = bg->space_info;
341 
342 	ASSERT(bg->ro);
343 
344 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
345 		return;
346 
347 	/*
348 	 * Our block group is read only but before we set it to read only,
349 	 * some task might have had allocated an extent from it already, but it
350 	 * has not yet created a respective ordered extent (and added it to a
351 	 * root's list of ordered extents).
352 	 * Therefore wait for any task currently allocating extents, since the
353 	 * block group's reservations counter is incremented while a read lock
354 	 * on the groups' semaphore is held and decremented after releasing
355 	 * the read access on that semaphore and creating the ordered extent.
356 	 */
357 	down_write(&space_info->groups_sem);
358 	up_write(&space_info->groups_sem);
359 
360 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
361 }
362 
363 struct btrfs_caching_control *btrfs_get_caching_control(
364 		struct btrfs_block_group *cache)
365 {
366 	struct btrfs_caching_control *ctl;
367 
368 	spin_lock(&cache->lock);
369 	if (!cache->caching_ctl) {
370 		spin_unlock(&cache->lock);
371 		return NULL;
372 	}
373 
374 	ctl = cache->caching_ctl;
375 	refcount_inc(&ctl->count);
376 	spin_unlock(&cache->lock);
377 	return ctl;
378 }
379 
380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
381 {
382 	if (refcount_dec_and_test(&ctl->count))
383 		kfree(ctl);
384 }
385 
386 /*
387  * When we wait for progress in the block group caching, its because our
388  * allocation attempt failed at least once.  So, we must sleep and let some
389  * progress happen before we try again.
390  *
391  * This function will sleep at least once waiting for new free space to show
392  * up, and then it will check the block group free space numbers for our min
393  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
394  * a free extent of a given size, but this is a good start.
395  *
396  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
397  * any of the information in this block group.
398  */
399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
400 					   u64 num_bytes)
401 {
402 	struct btrfs_caching_control *caching_ctl;
403 
404 	caching_ctl = btrfs_get_caching_control(cache);
405 	if (!caching_ctl)
406 		return;
407 
408 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
409 		   (cache->free_space_ctl->free_space >= num_bytes));
410 
411 	btrfs_put_caching_control(caching_ctl);
412 }
413 
414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
415 {
416 	struct btrfs_caching_control *caching_ctl;
417 	int ret = 0;
418 
419 	caching_ctl = btrfs_get_caching_control(cache);
420 	if (!caching_ctl)
421 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
422 
423 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
424 	if (cache->cached == BTRFS_CACHE_ERROR)
425 		ret = -EIO;
426 	btrfs_put_caching_control(caching_ctl);
427 	return ret;
428 }
429 
430 static bool space_cache_v1_done(struct btrfs_block_group *cache)
431 {
432 	bool ret;
433 
434 	spin_lock(&cache->lock);
435 	ret = cache->cached != BTRFS_CACHE_FAST;
436 	spin_unlock(&cache->lock);
437 
438 	return ret;
439 }
440 
441 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
442 				struct btrfs_caching_control *caching_ctl)
443 {
444 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
445 }
446 
447 #ifdef CONFIG_BTRFS_DEBUG
448 static void fragment_free_space(struct btrfs_block_group *block_group)
449 {
450 	struct btrfs_fs_info *fs_info = block_group->fs_info;
451 	u64 start = block_group->start;
452 	u64 len = block_group->length;
453 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
454 		fs_info->nodesize : fs_info->sectorsize;
455 	u64 step = chunk << 1;
456 
457 	while (len > chunk) {
458 		btrfs_remove_free_space(block_group, start, chunk);
459 		start += step;
460 		if (len < step)
461 			len = 0;
462 		else
463 			len -= step;
464 	}
465 }
466 #endif
467 
468 /*
469  * This is only called by btrfs_cache_block_group, since we could have freed
470  * extents we need to check the pinned_extents for any extents that can't be
471  * used yet since their free space will be released as soon as the transaction
472  * commits.
473  */
474 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
475 {
476 	struct btrfs_fs_info *info = block_group->fs_info;
477 	u64 extent_start, extent_end, size, total_added = 0;
478 	int ret;
479 
480 	while (start < end) {
481 		ret = find_first_extent_bit(&info->excluded_extents, start,
482 					    &extent_start, &extent_end,
483 					    EXTENT_DIRTY | EXTENT_UPTODATE,
484 					    NULL);
485 		if (ret)
486 			break;
487 
488 		if (extent_start <= start) {
489 			start = extent_end + 1;
490 		} else if (extent_start > start && extent_start < end) {
491 			size = extent_start - start;
492 			total_added += size;
493 			ret = btrfs_add_free_space_async_trimmed(block_group,
494 								 start, size);
495 			BUG_ON(ret); /* -ENOMEM or logic error */
496 			start = extent_end + 1;
497 		} else {
498 			break;
499 		}
500 	}
501 
502 	if (start < end) {
503 		size = end - start;
504 		total_added += size;
505 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
506 							 size);
507 		BUG_ON(ret); /* -ENOMEM or logic error */
508 	}
509 
510 	return total_added;
511 }
512 
513 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
514 {
515 	struct btrfs_block_group *block_group = caching_ctl->block_group;
516 	struct btrfs_fs_info *fs_info = block_group->fs_info;
517 	struct btrfs_root *extent_root = fs_info->extent_root;
518 	struct btrfs_path *path;
519 	struct extent_buffer *leaf;
520 	struct btrfs_key key;
521 	u64 total_found = 0;
522 	u64 last = 0;
523 	u32 nritems;
524 	int ret;
525 	bool wakeup = true;
526 
527 	path = btrfs_alloc_path();
528 	if (!path)
529 		return -ENOMEM;
530 
531 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
532 
533 #ifdef CONFIG_BTRFS_DEBUG
534 	/*
535 	 * If we're fragmenting we don't want to make anybody think we can
536 	 * allocate from this block group until we've had a chance to fragment
537 	 * the free space.
538 	 */
539 	if (btrfs_should_fragment_free_space(block_group))
540 		wakeup = false;
541 #endif
542 	/*
543 	 * We don't want to deadlock with somebody trying to allocate a new
544 	 * extent for the extent root while also trying to search the extent
545 	 * root to add free space.  So we skip locking and search the commit
546 	 * root, since its read-only
547 	 */
548 	path->skip_locking = 1;
549 	path->search_commit_root = 1;
550 	path->reada = READA_FORWARD;
551 
552 	key.objectid = last;
553 	key.offset = 0;
554 	key.type = BTRFS_EXTENT_ITEM_KEY;
555 
556 next:
557 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
558 	if (ret < 0)
559 		goto out;
560 
561 	leaf = path->nodes[0];
562 	nritems = btrfs_header_nritems(leaf);
563 
564 	while (1) {
565 		if (btrfs_fs_closing(fs_info) > 1) {
566 			last = (u64)-1;
567 			break;
568 		}
569 
570 		if (path->slots[0] < nritems) {
571 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
572 		} else {
573 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
574 			if (ret)
575 				break;
576 
577 			if (need_resched() ||
578 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
579 				if (wakeup)
580 					caching_ctl->progress = last;
581 				btrfs_release_path(path);
582 				up_read(&fs_info->commit_root_sem);
583 				mutex_unlock(&caching_ctl->mutex);
584 				cond_resched();
585 				mutex_lock(&caching_ctl->mutex);
586 				down_read(&fs_info->commit_root_sem);
587 				goto next;
588 			}
589 
590 			ret = btrfs_next_leaf(extent_root, path);
591 			if (ret < 0)
592 				goto out;
593 			if (ret)
594 				break;
595 			leaf = path->nodes[0];
596 			nritems = btrfs_header_nritems(leaf);
597 			continue;
598 		}
599 
600 		if (key.objectid < last) {
601 			key.objectid = last;
602 			key.offset = 0;
603 			key.type = BTRFS_EXTENT_ITEM_KEY;
604 
605 			if (wakeup)
606 				caching_ctl->progress = last;
607 			btrfs_release_path(path);
608 			goto next;
609 		}
610 
611 		if (key.objectid < block_group->start) {
612 			path->slots[0]++;
613 			continue;
614 		}
615 
616 		if (key.objectid >= block_group->start + block_group->length)
617 			break;
618 
619 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
620 		    key.type == BTRFS_METADATA_ITEM_KEY) {
621 			total_found += add_new_free_space(block_group, last,
622 							  key.objectid);
623 			if (key.type == BTRFS_METADATA_ITEM_KEY)
624 				last = key.objectid +
625 					fs_info->nodesize;
626 			else
627 				last = key.objectid + key.offset;
628 
629 			if (total_found > CACHING_CTL_WAKE_UP) {
630 				total_found = 0;
631 				if (wakeup)
632 					wake_up(&caching_ctl->wait);
633 			}
634 		}
635 		path->slots[0]++;
636 	}
637 	ret = 0;
638 
639 	total_found += add_new_free_space(block_group, last,
640 				block_group->start + block_group->length);
641 	caching_ctl->progress = (u64)-1;
642 
643 out:
644 	btrfs_free_path(path);
645 	return ret;
646 }
647 
648 static noinline void caching_thread(struct btrfs_work *work)
649 {
650 	struct btrfs_block_group *block_group;
651 	struct btrfs_fs_info *fs_info;
652 	struct btrfs_caching_control *caching_ctl;
653 	int ret;
654 
655 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
656 	block_group = caching_ctl->block_group;
657 	fs_info = block_group->fs_info;
658 
659 	mutex_lock(&caching_ctl->mutex);
660 	down_read(&fs_info->commit_root_sem);
661 
662 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
663 		ret = load_free_space_cache(block_group);
664 		if (ret == 1) {
665 			ret = 0;
666 			goto done;
667 		}
668 
669 		/*
670 		 * We failed to load the space cache, set ourselves to
671 		 * CACHE_STARTED and carry on.
672 		 */
673 		spin_lock(&block_group->lock);
674 		block_group->cached = BTRFS_CACHE_STARTED;
675 		spin_unlock(&block_group->lock);
676 		wake_up(&caching_ctl->wait);
677 	}
678 
679 	/*
680 	 * If we are in the transaction that populated the free space tree we
681 	 * can't actually cache from the free space tree as our commit root and
682 	 * real root are the same, so we could change the contents of the blocks
683 	 * while caching.  Instead do the slow caching in this case, and after
684 	 * the transaction has committed we will be safe.
685 	 */
686 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
687 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
688 		ret = load_free_space_tree(caching_ctl);
689 	else
690 		ret = load_extent_tree_free(caching_ctl);
691 done:
692 	spin_lock(&block_group->lock);
693 	block_group->caching_ctl = NULL;
694 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
695 	spin_unlock(&block_group->lock);
696 
697 #ifdef CONFIG_BTRFS_DEBUG
698 	if (btrfs_should_fragment_free_space(block_group)) {
699 		u64 bytes_used;
700 
701 		spin_lock(&block_group->space_info->lock);
702 		spin_lock(&block_group->lock);
703 		bytes_used = block_group->length - block_group->used;
704 		block_group->space_info->bytes_used += bytes_used >> 1;
705 		spin_unlock(&block_group->lock);
706 		spin_unlock(&block_group->space_info->lock);
707 		fragment_free_space(block_group);
708 	}
709 #endif
710 
711 	caching_ctl->progress = (u64)-1;
712 
713 	up_read(&fs_info->commit_root_sem);
714 	btrfs_free_excluded_extents(block_group);
715 	mutex_unlock(&caching_ctl->mutex);
716 
717 	wake_up(&caching_ctl->wait);
718 
719 	btrfs_put_caching_control(caching_ctl);
720 	btrfs_put_block_group(block_group);
721 }
722 
723 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
724 {
725 	DEFINE_WAIT(wait);
726 	struct btrfs_fs_info *fs_info = cache->fs_info;
727 	struct btrfs_caching_control *caching_ctl = NULL;
728 	int ret = 0;
729 
730 	/* Allocator for zoned filesystems does not use the cache at all */
731 	if (btrfs_is_zoned(fs_info))
732 		return 0;
733 
734 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
735 	if (!caching_ctl)
736 		return -ENOMEM;
737 
738 	INIT_LIST_HEAD(&caching_ctl->list);
739 	mutex_init(&caching_ctl->mutex);
740 	init_waitqueue_head(&caching_ctl->wait);
741 	caching_ctl->block_group = cache;
742 	caching_ctl->progress = cache->start;
743 	refcount_set(&caching_ctl->count, 2);
744 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
745 
746 	spin_lock(&cache->lock);
747 	if (cache->cached != BTRFS_CACHE_NO) {
748 		kfree(caching_ctl);
749 
750 		caching_ctl = cache->caching_ctl;
751 		if (caching_ctl)
752 			refcount_inc(&caching_ctl->count);
753 		spin_unlock(&cache->lock);
754 		goto out;
755 	}
756 	WARN_ON(cache->caching_ctl);
757 	cache->caching_ctl = caching_ctl;
758 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
759 		cache->cached = BTRFS_CACHE_FAST;
760 	else
761 		cache->cached = BTRFS_CACHE_STARTED;
762 	cache->has_caching_ctl = 1;
763 	spin_unlock(&cache->lock);
764 
765 	spin_lock(&fs_info->block_group_cache_lock);
766 	refcount_inc(&caching_ctl->count);
767 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
768 	spin_unlock(&fs_info->block_group_cache_lock);
769 
770 	btrfs_get_block_group(cache);
771 
772 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
773 out:
774 	if (load_cache_only && caching_ctl)
775 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
776 	if (caching_ctl)
777 		btrfs_put_caching_control(caching_ctl);
778 
779 	return ret;
780 }
781 
782 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
783 {
784 	u64 extra_flags = chunk_to_extended(flags) &
785 				BTRFS_EXTENDED_PROFILE_MASK;
786 
787 	write_seqlock(&fs_info->profiles_lock);
788 	if (flags & BTRFS_BLOCK_GROUP_DATA)
789 		fs_info->avail_data_alloc_bits &= ~extra_flags;
790 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
791 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
792 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
793 		fs_info->avail_system_alloc_bits &= ~extra_flags;
794 	write_sequnlock(&fs_info->profiles_lock);
795 }
796 
797 /*
798  * Clear incompat bits for the following feature(s):
799  *
800  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
801  *            in the whole filesystem
802  *
803  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
804  */
805 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
806 {
807 	bool found_raid56 = false;
808 	bool found_raid1c34 = false;
809 
810 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
811 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
812 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
813 		struct list_head *head = &fs_info->space_info;
814 		struct btrfs_space_info *sinfo;
815 
816 		list_for_each_entry_rcu(sinfo, head, list) {
817 			down_read(&sinfo->groups_sem);
818 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
819 				found_raid56 = true;
820 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
821 				found_raid56 = true;
822 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
823 				found_raid1c34 = true;
824 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
825 				found_raid1c34 = true;
826 			up_read(&sinfo->groups_sem);
827 		}
828 		if (!found_raid56)
829 			btrfs_clear_fs_incompat(fs_info, RAID56);
830 		if (!found_raid1c34)
831 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
832 	}
833 }
834 
835 static int remove_block_group_item(struct btrfs_trans_handle *trans,
836 				   struct btrfs_path *path,
837 				   struct btrfs_block_group *block_group)
838 {
839 	struct btrfs_fs_info *fs_info = trans->fs_info;
840 	struct btrfs_root *root;
841 	struct btrfs_key key;
842 	int ret;
843 
844 	root = fs_info->extent_root;
845 	key.objectid = block_group->start;
846 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
847 	key.offset = block_group->length;
848 
849 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
850 	if (ret > 0)
851 		ret = -ENOENT;
852 	if (ret < 0)
853 		return ret;
854 
855 	ret = btrfs_del_item(trans, root, path);
856 	return ret;
857 }
858 
859 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
860 			     u64 group_start, struct extent_map *em)
861 {
862 	struct btrfs_fs_info *fs_info = trans->fs_info;
863 	struct btrfs_path *path;
864 	struct btrfs_block_group *block_group;
865 	struct btrfs_free_cluster *cluster;
866 	struct inode *inode;
867 	struct kobject *kobj = NULL;
868 	int ret;
869 	int index;
870 	int factor;
871 	struct btrfs_caching_control *caching_ctl = NULL;
872 	bool remove_em;
873 	bool remove_rsv = false;
874 
875 	block_group = btrfs_lookup_block_group(fs_info, group_start);
876 	BUG_ON(!block_group);
877 	BUG_ON(!block_group->ro);
878 
879 	trace_btrfs_remove_block_group(block_group);
880 	/*
881 	 * Free the reserved super bytes from this block group before
882 	 * remove it.
883 	 */
884 	btrfs_free_excluded_extents(block_group);
885 	btrfs_free_ref_tree_range(fs_info, block_group->start,
886 				  block_group->length);
887 
888 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
889 	factor = btrfs_bg_type_to_factor(block_group->flags);
890 
891 	/* make sure this block group isn't part of an allocation cluster */
892 	cluster = &fs_info->data_alloc_cluster;
893 	spin_lock(&cluster->refill_lock);
894 	btrfs_return_cluster_to_free_space(block_group, cluster);
895 	spin_unlock(&cluster->refill_lock);
896 
897 	/*
898 	 * make sure this block group isn't part of a metadata
899 	 * allocation cluster
900 	 */
901 	cluster = &fs_info->meta_alloc_cluster;
902 	spin_lock(&cluster->refill_lock);
903 	btrfs_return_cluster_to_free_space(block_group, cluster);
904 	spin_unlock(&cluster->refill_lock);
905 
906 	btrfs_clear_treelog_bg(block_group);
907 	btrfs_clear_data_reloc_bg(block_group);
908 
909 	path = btrfs_alloc_path();
910 	if (!path) {
911 		ret = -ENOMEM;
912 		goto out;
913 	}
914 
915 	/*
916 	 * get the inode first so any iput calls done for the io_list
917 	 * aren't the final iput (no unlinks allowed now)
918 	 */
919 	inode = lookup_free_space_inode(block_group, path);
920 
921 	mutex_lock(&trans->transaction->cache_write_mutex);
922 	/*
923 	 * Make sure our free space cache IO is done before removing the
924 	 * free space inode
925 	 */
926 	spin_lock(&trans->transaction->dirty_bgs_lock);
927 	if (!list_empty(&block_group->io_list)) {
928 		list_del_init(&block_group->io_list);
929 
930 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
931 
932 		spin_unlock(&trans->transaction->dirty_bgs_lock);
933 		btrfs_wait_cache_io(trans, block_group, path);
934 		btrfs_put_block_group(block_group);
935 		spin_lock(&trans->transaction->dirty_bgs_lock);
936 	}
937 
938 	if (!list_empty(&block_group->dirty_list)) {
939 		list_del_init(&block_group->dirty_list);
940 		remove_rsv = true;
941 		btrfs_put_block_group(block_group);
942 	}
943 	spin_unlock(&trans->transaction->dirty_bgs_lock);
944 	mutex_unlock(&trans->transaction->cache_write_mutex);
945 
946 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
947 	if (ret)
948 		goto out;
949 
950 	spin_lock(&fs_info->block_group_cache_lock);
951 	rb_erase(&block_group->cache_node,
952 		 &fs_info->block_group_cache_tree);
953 	RB_CLEAR_NODE(&block_group->cache_node);
954 
955 	/* Once for the block groups rbtree */
956 	btrfs_put_block_group(block_group);
957 
958 	if (fs_info->first_logical_byte == block_group->start)
959 		fs_info->first_logical_byte = (u64)-1;
960 	spin_unlock(&fs_info->block_group_cache_lock);
961 
962 	down_write(&block_group->space_info->groups_sem);
963 	/*
964 	 * we must use list_del_init so people can check to see if they
965 	 * are still on the list after taking the semaphore
966 	 */
967 	list_del_init(&block_group->list);
968 	if (list_empty(&block_group->space_info->block_groups[index])) {
969 		kobj = block_group->space_info->block_group_kobjs[index];
970 		block_group->space_info->block_group_kobjs[index] = NULL;
971 		clear_avail_alloc_bits(fs_info, block_group->flags);
972 	}
973 	up_write(&block_group->space_info->groups_sem);
974 	clear_incompat_bg_bits(fs_info, block_group->flags);
975 	if (kobj) {
976 		kobject_del(kobj);
977 		kobject_put(kobj);
978 	}
979 
980 	if (block_group->has_caching_ctl)
981 		caching_ctl = btrfs_get_caching_control(block_group);
982 	if (block_group->cached == BTRFS_CACHE_STARTED)
983 		btrfs_wait_block_group_cache_done(block_group);
984 	if (block_group->has_caching_ctl) {
985 		spin_lock(&fs_info->block_group_cache_lock);
986 		if (!caching_ctl) {
987 			struct btrfs_caching_control *ctl;
988 
989 			list_for_each_entry(ctl,
990 				    &fs_info->caching_block_groups, list)
991 				if (ctl->block_group == block_group) {
992 					caching_ctl = ctl;
993 					refcount_inc(&caching_ctl->count);
994 					break;
995 				}
996 		}
997 		if (caching_ctl)
998 			list_del_init(&caching_ctl->list);
999 		spin_unlock(&fs_info->block_group_cache_lock);
1000 		if (caching_ctl) {
1001 			/* Once for the caching bgs list and once for us. */
1002 			btrfs_put_caching_control(caching_ctl);
1003 			btrfs_put_caching_control(caching_ctl);
1004 		}
1005 	}
1006 
1007 	spin_lock(&trans->transaction->dirty_bgs_lock);
1008 	WARN_ON(!list_empty(&block_group->dirty_list));
1009 	WARN_ON(!list_empty(&block_group->io_list));
1010 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1011 
1012 	btrfs_remove_free_space_cache(block_group);
1013 
1014 	spin_lock(&block_group->space_info->lock);
1015 	list_del_init(&block_group->ro_list);
1016 
1017 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1018 		WARN_ON(block_group->space_info->total_bytes
1019 			< block_group->length);
1020 		WARN_ON(block_group->space_info->bytes_readonly
1021 			< block_group->length - block_group->zone_unusable);
1022 		WARN_ON(block_group->space_info->bytes_zone_unusable
1023 			< block_group->zone_unusable);
1024 		WARN_ON(block_group->space_info->disk_total
1025 			< block_group->length * factor);
1026 	}
1027 	block_group->space_info->total_bytes -= block_group->length;
1028 	block_group->space_info->bytes_readonly -=
1029 		(block_group->length - block_group->zone_unusable);
1030 	block_group->space_info->bytes_zone_unusable -=
1031 		block_group->zone_unusable;
1032 	block_group->space_info->disk_total -= block_group->length * factor;
1033 
1034 	spin_unlock(&block_group->space_info->lock);
1035 
1036 	/*
1037 	 * Remove the free space for the block group from the free space tree
1038 	 * and the block group's item from the extent tree before marking the
1039 	 * block group as removed. This is to prevent races with tasks that
1040 	 * freeze and unfreeze a block group, this task and another task
1041 	 * allocating a new block group - the unfreeze task ends up removing
1042 	 * the block group's extent map before the task calling this function
1043 	 * deletes the block group item from the extent tree, allowing for
1044 	 * another task to attempt to create another block group with the same
1045 	 * item key (and failing with -EEXIST and a transaction abort).
1046 	 */
1047 	ret = remove_block_group_free_space(trans, block_group);
1048 	if (ret)
1049 		goto out;
1050 
1051 	ret = remove_block_group_item(trans, path, block_group);
1052 	if (ret < 0)
1053 		goto out;
1054 
1055 	spin_lock(&block_group->lock);
1056 	block_group->removed = 1;
1057 	/*
1058 	 * At this point trimming or scrub can't start on this block group,
1059 	 * because we removed the block group from the rbtree
1060 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1061 	 * even if someone already got this block group before we removed it
1062 	 * from the rbtree, they have already incremented block_group->frozen -
1063 	 * if they didn't, for the trimming case they won't find any free space
1064 	 * entries because we already removed them all when we called
1065 	 * btrfs_remove_free_space_cache().
1066 	 *
1067 	 * And we must not remove the extent map from the fs_info->mapping_tree
1068 	 * to prevent the same logical address range and physical device space
1069 	 * ranges from being reused for a new block group. This is needed to
1070 	 * avoid races with trimming and scrub.
1071 	 *
1072 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1073 	 * completely transactionless, so while it is trimming a range the
1074 	 * currently running transaction might finish and a new one start,
1075 	 * allowing for new block groups to be created that can reuse the same
1076 	 * physical device locations unless we take this special care.
1077 	 *
1078 	 * There may also be an implicit trim operation if the file system
1079 	 * is mounted with -odiscard. The same protections must remain
1080 	 * in place until the extents have been discarded completely when
1081 	 * the transaction commit has completed.
1082 	 */
1083 	remove_em = (atomic_read(&block_group->frozen) == 0);
1084 	spin_unlock(&block_group->lock);
1085 
1086 	if (remove_em) {
1087 		struct extent_map_tree *em_tree;
1088 
1089 		em_tree = &fs_info->mapping_tree;
1090 		write_lock(&em_tree->lock);
1091 		remove_extent_mapping(em_tree, em);
1092 		write_unlock(&em_tree->lock);
1093 		/* once for the tree */
1094 		free_extent_map(em);
1095 	}
1096 
1097 out:
1098 	/* Once for the lookup reference */
1099 	btrfs_put_block_group(block_group);
1100 	if (remove_rsv)
1101 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1102 	btrfs_free_path(path);
1103 	return ret;
1104 }
1105 
1106 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1107 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1108 {
1109 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1110 	struct extent_map *em;
1111 	struct map_lookup *map;
1112 	unsigned int num_items;
1113 
1114 	read_lock(&em_tree->lock);
1115 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1116 	read_unlock(&em_tree->lock);
1117 	ASSERT(em && em->start == chunk_offset);
1118 
1119 	/*
1120 	 * We need to reserve 3 + N units from the metadata space info in order
1121 	 * to remove a block group (done at btrfs_remove_chunk() and at
1122 	 * btrfs_remove_block_group()), which are used for:
1123 	 *
1124 	 * 1 unit for adding the free space inode's orphan (located in the tree
1125 	 * of tree roots).
1126 	 * 1 unit for deleting the block group item (located in the extent
1127 	 * tree).
1128 	 * 1 unit for deleting the free space item (located in tree of tree
1129 	 * roots).
1130 	 * N units for deleting N device extent items corresponding to each
1131 	 * stripe (located in the device tree).
1132 	 *
1133 	 * In order to remove a block group we also need to reserve units in the
1134 	 * system space info in order to update the chunk tree (update one or
1135 	 * more device items and remove one chunk item), but this is done at
1136 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1137 	 */
1138 	map = em->map_lookup;
1139 	num_items = 3 + map->num_stripes;
1140 	free_extent_map(em);
1141 
1142 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1143 							   num_items);
1144 }
1145 
1146 /*
1147  * Mark block group @cache read-only, so later write won't happen to block
1148  * group @cache.
1149  *
1150  * If @force is not set, this function will only mark the block group readonly
1151  * if we have enough free space (1M) in other metadata/system block groups.
1152  * If @force is not set, this function will mark the block group readonly
1153  * without checking free space.
1154  *
1155  * NOTE: This function doesn't care if other block groups can contain all the
1156  * data in this block group. That check should be done by relocation routine,
1157  * not this function.
1158  */
1159 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1160 {
1161 	struct btrfs_space_info *sinfo = cache->space_info;
1162 	u64 num_bytes;
1163 	int ret = -ENOSPC;
1164 
1165 	spin_lock(&sinfo->lock);
1166 	spin_lock(&cache->lock);
1167 
1168 	if (cache->swap_extents) {
1169 		ret = -ETXTBSY;
1170 		goto out;
1171 	}
1172 
1173 	if (cache->ro) {
1174 		cache->ro++;
1175 		ret = 0;
1176 		goto out;
1177 	}
1178 
1179 	num_bytes = cache->length - cache->reserved - cache->pinned -
1180 		    cache->bytes_super - cache->zone_unusable - cache->used;
1181 
1182 	/*
1183 	 * Data never overcommits, even in mixed mode, so do just the straight
1184 	 * check of left over space in how much we have allocated.
1185 	 */
1186 	if (force) {
1187 		ret = 0;
1188 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1189 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1190 
1191 		/*
1192 		 * Here we make sure if we mark this bg RO, we still have enough
1193 		 * free space as buffer.
1194 		 */
1195 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1196 			ret = 0;
1197 	} else {
1198 		/*
1199 		 * We overcommit metadata, so we need to do the
1200 		 * btrfs_can_overcommit check here, and we need to pass in
1201 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1202 		 * leeway to allow us to mark this block group as read only.
1203 		 */
1204 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1205 					 BTRFS_RESERVE_NO_FLUSH))
1206 			ret = 0;
1207 	}
1208 
1209 	if (!ret) {
1210 		sinfo->bytes_readonly += num_bytes;
1211 		if (btrfs_is_zoned(cache->fs_info)) {
1212 			/* Migrate zone_unusable bytes to readonly */
1213 			sinfo->bytes_readonly += cache->zone_unusable;
1214 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1215 			cache->zone_unusable = 0;
1216 		}
1217 		cache->ro++;
1218 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1219 	}
1220 out:
1221 	spin_unlock(&cache->lock);
1222 	spin_unlock(&sinfo->lock);
1223 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1224 		btrfs_info(cache->fs_info,
1225 			"unable to make block group %llu ro", cache->start);
1226 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1227 	}
1228 	return ret;
1229 }
1230 
1231 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1232 				 struct btrfs_block_group *bg)
1233 {
1234 	struct btrfs_fs_info *fs_info = bg->fs_info;
1235 	struct btrfs_transaction *prev_trans = NULL;
1236 	const u64 start = bg->start;
1237 	const u64 end = start + bg->length - 1;
1238 	int ret;
1239 
1240 	spin_lock(&fs_info->trans_lock);
1241 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1242 		prev_trans = list_last_entry(&trans->transaction->list,
1243 					     struct btrfs_transaction, list);
1244 		refcount_inc(&prev_trans->use_count);
1245 	}
1246 	spin_unlock(&fs_info->trans_lock);
1247 
1248 	/*
1249 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1250 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1251 	 * task might be running finish_extent_commit() for the previous
1252 	 * transaction N - 1, and have seen a range belonging to the block
1253 	 * group in pinned_extents before we were able to clear the whole block
1254 	 * group range from pinned_extents. This means that task can lookup for
1255 	 * the block group after we unpinned it from pinned_extents and removed
1256 	 * it, leading to a BUG_ON() at unpin_extent_range().
1257 	 */
1258 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1259 	if (prev_trans) {
1260 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1261 					EXTENT_DIRTY);
1262 		if (ret)
1263 			goto out;
1264 	}
1265 
1266 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1267 				EXTENT_DIRTY);
1268 out:
1269 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1270 	if (prev_trans)
1271 		btrfs_put_transaction(prev_trans);
1272 
1273 	return ret == 0;
1274 }
1275 
1276 /*
1277  * Process the unused_bgs list and remove any that don't have any allocated
1278  * space inside of them.
1279  */
1280 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1281 {
1282 	struct btrfs_block_group *block_group;
1283 	struct btrfs_space_info *space_info;
1284 	struct btrfs_trans_handle *trans;
1285 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1286 	int ret = 0;
1287 
1288 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1289 		return;
1290 
1291 	/*
1292 	 * Long running balances can keep us blocked here for eternity, so
1293 	 * simply skip deletion if we're unable to get the mutex.
1294 	 */
1295 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1296 		return;
1297 
1298 	spin_lock(&fs_info->unused_bgs_lock);
1299 	while (!list_empty(&fs_info->unused_bgs)) {
1300 		int trimming;
1301 
1302 		block_group = list_first_entry(&fs_info->unused_bgs,
1303 					       struct btrfs_block_group,
1304 					       bg_list);
1305 		list_del_init(&block_group->bg_list);
1306 
1307 		space_info = block_group->space_info;
1308 
1309 		if (ret || btrfs_mixed_space_info(space_info)) {
1310 			btrfs_put_block_group(block_group);
1311 			continue;
1312 		}
1313 		spin_unlock(&fs_info->unused_bgs_lock);
1314 
1315 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1316 
1317 		/* Don't want to race with allocators so take the groups_sem */
1318 		down_write(&space_info->groups_sem);
1319 
1320 		/*
1321 		 * Async discard moves the final block group discard to be prior
1322 		 * to the unused_bgs code path.  Therefore, if it's not fully
1323 		 * trimmed, punt it back to the async discard lists.
1324 		 */
1325 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1326 		    !btrfs_is_free_space_trimmed(block_group)) {
1327 			trace_btrfs_skip_unused_block_group(block_group);
1328 			up_write(&space_info->groups_sem);
1329 			/* Requeue if we failed because of async discard */
1330 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1331 						 block_group);
1332 			goto next;
1333 		}
1334 
1335 		spin_lock(&block_group->lock);
1336 		if (block_group->reserved || block_group->pinned ||
1337 		    block_group->used || block_group->ro ||
1338 		    list_is_singular(&block_group->list)) {
1339 			/*
1340 			 * We want to bail if we made new allocations or have
1341 			 * outstanding allocations in this block group.  We do
1342 			 * the ro check in case balance is currently acting on
1343 			 * this block group.
1344 			 */
1345 			trace_btrfs_skip_unused_block_group(block_group);
1346 			spin_unlock(&block_group->lock);
1347 			up_write(&space_info->groups_sem);
1348 			goto next;
1349 		}
1350 		spin_unlock(&block_group->lock);
1351 
1352 		/* We don't want to force the issue, only flip if it's ok. */
1353 		ret = inc_block_group_ro(block_group, 0);
1354 		up_write(&space_info->groups_sem);
1355 		if (ret < 0) {
1356 			ret = 0;
1357 			goto next;
1358 		}
1359 
1360 		/*
1361 		 * Want to do this before we do anything else so we can recover
1362 		 * properly if we fail to join the transaction.
1363 		 */
1364 		trans = btrfs_start_trans_remove_block_group(fs_info,
1365 						     block_group->start);
1366 		if (IS_ERR(trans)) {
1367 			btrfs_dec_block_group_ro(block_group);
1368 			ret = PTR_ERR(trans);
1369 			goto next;
1370 		}
1371 
1372 		/*
1373 		 * We could have pending pinned extents for this block group,
1374 		 * just delete them, we don't care about them anymore.
1375 		 */
1376 		if (!clean_pinned_extents(trans, block_group)) {
1377 			btrfs_dec_block_group_ro(block_group);
1378 			goto end_trans;
1379 		}
1380 
1381 		/*
1382 		 * At this point, the block_group is read only and should fail
1383 		 * new allocations.  However, btrfs_finish_extent_commit() can
1384 		 * cause this block_group to be placed back on the discard
1385 		 * lists because now the block_group isn't fully discarded.
1386 		 * Bail here and try again later after discarding everything.
1387 		 */
1388 		spin_lock(&fs_info->discard_ctl.lock);
1389 		if (!list_empty(&block_group->discard_list)) {
1390 			spin_unlock(&fs_info->discard_ctl.lock);
1391 			btrfs_dec_block_group_ro(block_group);
1392 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1393 						 block_group);
1394 			goto end_trans;
1395 		}
1396 		spin_unlock(&fs_info->discard_ctl.lock);
1397 
1398 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1399 		spin_lock(&space_info->lock);
1400 		spin_lock(&block_group->lock);
1401 
1402 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1403 						     -block_group->pinned);
1404 		space_info->bytes_readonly += block_group->pinned;
1405 		block_group->pinned = 0;
1406 
1407 		spin_unlock(&block_group->lock);
1408 		spin_unlock(&space_info->lock);
1409 
1410 		/*
1411 		 * The normal path here is an unused block group is passed here,
1412 		 * then trimming is handled in the transaction commit path.
1413 		 * Async discard interposes before this to do the trimming
1414 		 * before coming down the unused block group path as trimming
1415 		 * will no longer be done later in the transaction commit path.
1416 		 */
1417 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1418 			goto flip_async;
1419 
1420 		/*
1421 		 * DISCARD can flip during remount. On zoned filesystems, we
1422 		 * need to reset sequential-required zones.
1423 		 */
1424 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1425 				btrfs_is_zoned(fs_info);
1426 
1427 		/* Implicit trim during transaction commit. */
1428 		if (trimming)
1429 			btrfs_freeze_block_group(block_group);
1430 
1431 		/*
1432 		 * Btrfs_remove_chunk will abort the transaction if things go
1433 		 * horribly wrong.
1434 		 */
1435 		ret = btrfs_remove_chunk(trans, block_group->start);
1436 
1437 		if (ret) {
1438 			if (trimming)
1439 				btrfs_unfreeze_block_group(block_group);
1440 			goto end_trans;
1441 		}
1442 
1443 		/*
1444 		 * If we're not mounted with -odiscard, we can just forget
1445 		 * about this block group. Otherwise we'll need to wait
1446 		 * until transaction commit to do the actual discard.
1447 		 */
1448 		if (trimming) {
1449 			spin_lock(&fs_info->unused_bgs_lock);
1450 			/*
1451 			 * A concurrent scrub might have added us to the list
1452 			 * fs_info->unused_bgs, so use a list_move operation
1453 			 * to add the block group to the deleted_bgs list.
1454 			 */
1455 			list_move(&block_group->bg_list,
1456 				  &trans->transaction->deleted_bgs);
1457 			spin_unlock(&fs_info->unused_bgs_lock);
1458 			btrfs_get_block_group(block_group);
1459 		}
1460 end_trans:
1461 		btrfs_end_transaction(trans);
1462 next:
1463 		btrfs_put_block_group(block_group);
1464 		spin_lock(&fs_info->unused_bgs_lock);
1465 	}
1466 	spin_unlock(&fs_info->unused_bgs_lock);
1467 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1468 	return;
1469 
1470 flip_async:
1471 	btrfs_end_transaction(trans);
1472 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1473 	btrfs_put_block_group(block_group);
1474 	btrfs_discard_punt_unused_bgs_list(fs_info);
1475 }
1476 
1477 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1478 {
1479 	struct btrfs_fs_info *fs_info = bg->fs_info;
1480 
1481 	spin_lock(&fs_info->unused_bgs_lock);
1482 	if (list_empty(&bg->bg_list)) {
1483 		btrfs_get_block_group(bg);
1484 		trace_btrfs_add_unused_block_group(bg);
1485 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1486 	}
1487 	spin_unlock(&fs_info->unused_bgs_lock);
1488 }
1489 
1490 /*
1491  * We want block groups with a low number of used bytes to be in the beginning
1492  * of the list, so they will get reclaimed first.
1493  */
1494 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1495 			   const struct list_head *b)
1496 {
1497 	const struct btrfs_block_group *bg1, *bg2;
1498 
1499 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1500 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1501 
1502 	return bg1->used > bg2->used;
1503 }
1504 
1505 void btrfs_reclaim_bgs_work(struct work_struct *work)
1506 {
1507 	struct btrfs_fs_info *fs_info =
1508 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1509 	struct btrfs_block_group *bg;
1510 	struct btrfs_space_info *space_info;
1511 	LIST_HEAD(again_list);
1512 
1513 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1514 		return;
1515 
1516 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1517 		return;
1518 
1519 	/*
1520 	 * Long running balances can keep us blocked here for eternity, so
1521 	 * simply skip reclaim if we're unable to get the mutex.
1522 	 */
1523 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1524 		btrfs_exclop_finish(fs_info);
1525 		return;
1526 	}
1527 
1528 	spin_lock(&fs_info->unused_bgs_lock);
1529 	/*
1530 	 * Sort happens under lock because we can't simply splice it and sort.
1531 	 * The block groups might still be in use and reachable via bg_list,
1532 	 * and their presence in the reclaim_bgs list must be preserved.
1533 	 */
1534 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1535 	while (!list_empty(&fs_info->reclaim_bgs)) {
1536 		u64 zone_unusable;
1537 		int ret = 0;
1538 
1539 		bg = list_first_entry(&fs_info->reclaim_bgs,
1540 				      struct btrfs_block_group,
1541 				      bg_list);
1542 		list_del_init(&bg->bg_list);
1543 
1544 		space_info = bg->space_info;
1545 		spin_unlock(&fs_info->unused_bgs_lock);
1546 
1547 		/* Don't race with allocators so take the groups_sem */
1548 		down_write(&space_info->groups_sem);
1549 
1550 		spin_lock(&bg->lock);
1551 		if (bg->reserved || bg->pinned || bg->ro) {
1552 			/*
1553 			 * We want to bail if we made new allocations or have
1554 			 * outstanding allocations in this block group.  We do
1555 			 * the ro check in case balance is currently acting on
1556 			 * this block group.
1557 			 */
1558 			spin_unlock(&bg->lock);
1559 			up_write(&space_info->groups_sem);
1560 			goto next;
1561 		}
1562 		spin_unlock(&bg->lock);
1563 
1564 		/* Get out fast, in case we're unmounting the filesystem */
1565 		if (btrfs_fs_closing(fs_info)) {
1566 			up_write(&space_info->groups_sem);
1567 			goto next;
1568 		}
1569 
1570 		/*
1571 		 * Cache the zone_unusable value before turning the block group
1572 		 * to read only. As soon as the blog group is read only it's
1573 		 * zone_unusable value gets moved to the block group's read-only
1574 		 * bytes and isn't available for calculations anymore.
1575 		 */
1576 		zone_unusable = bg->zone_unusable;
1577 		ret = inc_block_group_ro(bg, 0);
1578 		up_write(&space_info->groups_sem);
1579 		if (ret < 0)
1580 			goto next;
1581 
1582 		btrfs_info(fs_info,
1583 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1584 				bg->start, div_u64(bg->used * 100, bg->length),
1585 				div64_u64(zone_unusable * 100, bg->length));
1586 		trace_btrfs_reclaim_block_group(bg);
1587 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1588 		if (ret && ret != -EAGAIN)
1589 			btrfs_err(fs_info, "error relocating chunk %llu",
1590 				  bg->start);
1591 
1592 next:
1593 		spin_lock(&fs_info->unused_bgs_lock);
1594 		if (ret == -EAGAIN && list_empty(&bg->bg_list))
1595 			list_add_tail(&bg->bg_list, &again_list);
1596 		else
1597 			btrfs_put_block_group(bg);
1598 	}
1599 	list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1600 	spin_unlock(&fs_info->unused_bgs_lock);
1601 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1602 	btrfs_exclop_finish(fs_info);
1603 }
1604 
1605 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1606 {
1607 	spin_lock(&fs_info->unused_bgs_lock);
1608 	if (!list_empty(&fs_info->reclaim_bgs))
1609 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1610 	spin_unlock(&fs_info->unused_bgs_lock);
1611 }
1612 
1613 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1614 {
1615 	struct btrfs_fs_info *fs_info = bg->fs_info;
1616 
1617 	spin_lock(&fs_info->unused_bgs_lock);
1618 	if (list_empty(&bg->bg_list)) {
1619 		btrfs_get_block_group(bg);
1620 		trace_btrfs_add_reclaim_block_group(bg);
1621 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1622 	}
1623 	spin_unlock(&fs_info->unused_bgs_lock);
1624 }
1625 
1626 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1627 			   struct btrfs_path *path)
1628 {
1629 	struct extent_map_tree *em_tree;
1630 	struct extent_map *em;
1631 	struct btrfs_block_group_item bg;
1632 	struct extent_buffer *leaf;
1633 	int slot;
1634 	u64 flags;
1635 	int ret = 0;
1636 
1637 	slot = path->slots[0];
1638 	leaf = path->nodes[0];
1639 
1640 	em_tree = &fs_info->mapping_tree;
1641 	read_lock(&em_tree->lock);
1642 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1643 	read_unlock(&em_tree->lock);
1644 	if (!em) {
1645 		btrfs_err(fs_info,
1646 			  "logical %llu len %llu found bg but no related chunk",
1647 			  key->objectid, key->offset);
1648 		return -ENOENT;
1649 	}
1650 
1651 	if (em->start != key->objectid || em->len != key->offset) {
1652 		btrfs_err(fs_info,
1653 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1654 			key->objectid, key->offset, em->start, em->len);
1655 		ret = -EUCLEAN;
1656 		goto out_free_em;
1657 	}
1658 
1659 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1660 			   sizeof(bg));
1661 	flags = btrfs_stack_block_group_flags(&bg) &
1662 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1663 
1664 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1665 		btrfs_err(fs_info,
1666 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1667 			  key->objectid, key->offset, flags,
1668 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1669 		ret = -EUCLEAN;
1670 	}
1671 
1672 out_free_em:
1673 	free_extent_map(em);
1674 	return ret;
1675 }
1676 
1677 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1678 				  struct btrfs_path *path,
1679 				  struct btrfs_key *key)
1680 {
1681 	struct btrfs_root *root = fs_info->extent_root;
1682 	int ret;
1683 	struct btrfs_key found_key;
1684 	struct extent_buffer *leaf;
1685 	int slot;
1686 
1687 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1688 	if (ret < 0)
1689 		return ret;
1690 
1691 	while (1) {
1692 		slot = path->slots[0];
1693 		leaf = path->nodes[0];
1694 		if (slot >= btrfs_header_nritems(leaf)) {
1695 			ret = btrfs_next_leaf(root, path);
1696 			if (ret == 0)
1697 				continue;
1698 			if (ret < 0)
1699 				goto out;
1700 			break;
1701 		}
1702 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1703 
1704 		if (found_key.objectid >= key->objectid &&
1705 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1706 			ret = read_bg_from_eb(fs_info, &found_key, path);
1707 			break;
1708 		}
1709 
1710 		path->slots[0]++;
1711 	}
1712 out:
1713 	return ret;
1714 }
1715 
1716 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1717 {
1718 	u64 extra_flags = chunk_to_extended(flags) &
1719 				BTRFS_EXTENDED_PROFILE_MASK;
1720 
1721 	write_seqlock(&fs_info->profiles_lock);
1722 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1723 		fs_info->avail_data_alloc_bits |= extra_flags;
1724 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1725 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1726 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1727 		fs_info->avail_system_alloc_bits |= extra_flags;
1728 	write_sequnlock(&fs_info->profiles_lock);
1729 }
1730 
1731 /**
1732  * Map a physical disk address to a list of logical addresses
1733  *
1734  * @fs_info:       the filesystem
1735  * @chunk_start:   logical address of block group
1736  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1737  * @physical:	   physical address to map to logical addresses
1738  * @logical:	   return array of logical addresses which map to @physical
1739  * @naddrs:	   length of @logical
1740  * @stripe_len:    size of IO stripe for the given block group
1741  *
1742  * Maps a particular @physical disk address to a list of @logical addresses.
1743  * Used primarily to exclude those portions of a block group that contain super
1744  * block copies.
1745  */
1746 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1747 		     struct block_device *bdev, u64 physical, u64 **logical,
1748 		     int *naddrs, int *stripe_len)
1749 {
1750 	struct extent_map *em;
1751 	struct map_lookup *map;
1752 	u64 *buf;
1753 	u64 bytenr;
1754 	u64 data_stripe_length;
1755 	u64 io_stripe_size;
1756 	int i, nr = 0;
1757 	int ret = 0;
1758 
1759 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1760 	if (IS_ERR(em))
1761 		return -EIO;
1762 
1763 	map = em->map_lookup;
1764 	data_stripe_length = em->orig_block_len;
1765 	io_stripe_size = map->stripe_len;
1766 	chunk_start = em->start;
1767 
1768 	/* For RAID5/6 adjust to a full IO stripe length */
1769 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1770 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1771 
1772 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1773 	if (!buf) {
1774 		ret = -ENOMEM;
1775 		goto out;
1776 	}
1777 
1778 	for (i = 0; i < map->num_stripes; i++) {
1779 		bool already_inserted = false;
1780 		u64 stripe_nr;
1781 		u64 offset;
1782 		int j;
1783 
1784 		if (!in_range(physical, map->stripes[i].physical,
1785 			      data_stripe_length))
1786 			continue;
1787 
1788 		if (bdev && map->stripes[i].dev->bdev != bdev)
1789 			continue;
1790 
1791 		stripe_nr = physical - map->stripes[i].physical;
1792 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1793 
1794 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1795 			stripe_nr = stripe_nr * map->num_stripes + i;
1796 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1797 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1798 			stripe_nr = stripe_nr * map->num_stripes + i;
1799 		}
1800 		/*
1801 		 * The remaining case would be for RAID56, multiply by
1802 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1803 		 * instead of map->stripe_len
1804 		 */
1805 
1806 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1807 
1808 		/* Ensure we don't add duplicate addresses */
1809 		for (j = 0; j < nr; j++) {
1810 			if (buf[j] == bytenr) {
1811 				already_inserted = true;
1812 				break;
1813 			}
1814 		}
1815 
1816 		if (!already_inserted)
1817 			buf[nr++] = bytenr;
1818 	}
1819 
1820 	*logical = buf;
1821 	*naddrs = nr;
1822 	*stripe_len = io_stripe_size;
1823 out:
1824 	free_extent_map(em);
1825 	return ret;
1826 }
1827 
1828 static int exclude_super_stripes(struct btrfs_block_group *cache)
1829 {
1830 	struct btrfs_fs_info *fs_info = cache->fs_info;
1831 	const bool zoned = btrfs_is_zoned(fs_info);
1832 	u64 bytenr;
1833 	u64 *logical;
1834 	int stripe_len;
1835 	int i, nr, ret;
1836 
1837 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1838 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1839 		cache->bytes_super += stripe_len;
1840 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1841 						stripe_len);
1842 		if (ret)
1843 			return ret;
1844 	}
1845 
1846 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1847 		bytenr = btrfs_sb_offset(i);
1848 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1849 				       bytenr, &logical, &nr, &stripe_len);
1850 		if (ret)
1851 			return ret;
1852 
1853 		/* Shouldn't have super stripes in sequential zones */
1854 		if (zoned && nr) {
1855 			btrfs_err(fs_info,
1856 			"zoned: block group %llu must not contain super block",
1857 				  cache->start);
1858 			return -EUCLEAN;
1859 		}
1860 
1861 		while (nr--) {
1862 			u64 len = min_t(u64, stripe_len,
1863 				cache->start + cache->length - logical[nr]);
1864 
1865 			cache->bytes_super += len;
1866 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1867 							len);
1868 			if (ret) {
1869 				kfree(logical);
1870 				return ret;
1871 			}
1872 		}
1873 
1874 		kfree(logical);
1875 	}
1876 	return 0;
1877 }
1878 
1879 static void link_block_group(struct btrfs_block_group *cache)
1880 {
1881 	struct btrfs_space_info *space_info = cache->space_info;
1882 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1883 
1884 	down_write(&space_info->groups_sem);
1885 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1886 	up_write(&space_info->groups_sem);
1887 }
1888 
1889 static struct btrfs_block_group *btrfs_create_block_group_cache(
1890 		struct btrfs_fs_info *fs_info, u64 start)
1891 {
1892 	struct btrfs_block_group *cache;
1893 
1894 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1895 	if (!cache)
1896 		return NULL;
1897 
1898 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1899 					GFP_NOFS);
1900 	if (!cache->free_space_ctl) {
1901 		kfree(cache);
1902 		return NULL;
1903 	}
1904 
1905 	cache->start = start;
1906 
1907 	cache->fs_info = fs_info;
1908 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1909 
1910 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1911 
1912 	refcount_set(&cache->refs, 1);
1913 	spin_lock_init(&cache->lock);
1914 	init_rwsem(&cache->data_rwsem);
1915 	INIT_LIST_HEAD(&cache->list);
1916 	INIT_LIST_HEAD(&cache->cluster_list);
1917 	INIT_LIST_HEAD(&cache->bg_list);
1918 	INIT_LIST_HEAD(&cache->ro_list);
1919 	INIT_LIST_HEAD(&cache->discard_list);
1920 	INIT_LIST_HEAD(&cache->dirty_list);
1921 	INIT_LIST_HEAD(&cache->io_list);
1922 	INIT_LIST_HEAD(&cache->active_bg_list);
1923 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1924 	atomic_set(&cache->frozen, 0);
1925 	mutex_init(&cache->free_space_lock);
1926 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1927 
1928 	return cache;
1929 }
1930 
1931 /*
1932  * Iterate all chunks and verify that each of them has the corresponding block
1933  * group
1934  */
1935 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1936 {
1937 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1938 	struct extent_map *em;
1939 	struct btrfs_block_group *bg;
1940 	u64 start = 0;
1941 	int ret = 0;
1942 
1943 	while (1) {
1944 		read_lock(&map_tree->lock);
1945 		/*
1946 		 * lookup_extent_mapping will return the first extent map
1947 		 * intersecting the range, so setting @len to 1 is enough to
1948 		 * get the first chunk.
1949 		 */
1950 		em = lookup_extent_mapping(map_tree, start, 1);
1951 		read_unlock(&map_tree->lock);
1952 		if (!em)
1953 			break;
1954 
1955 		bg = btrfs_lookup_block_group(fs_info, em->start);
1956 		if (!bg) {
1957 			btrfs_err(fs_info,
1958 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1959 				     em->start, em->len);
1960 			ret = -EUCLEAN;
1961 			free_extent_map(em);
1962 			break;
1963 		}
1964 		if (bg->start != em->start || bg->length != em->len ||
1965 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1966 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1967 			btrfs_err(fs_info,
1968 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1969 				em->start, em->len,
1970 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1971 				bg->start, bg->length,
1972 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1973 			ret = -EUCLEAN;
1974 			free_extent_map(em);
1975 			btrfs_put_block_group(bg);
1976 			break;
1977 		}
1978 		start = em->start + em->len;
1979 		free_extent_map(em);
1980 		btrfs_put_block_group(bg);
1981 	}
1982 	return ret;
1983 }
1984 
1985 static int read_one_block_group(struct btrfs_fs_info *info,
1986 				struct btrfs_block_group_item *bgi,
1987 				const struct btrfs_key *key,
1988 				int need_clear)
1989 {
1990 	struct btrfs_block_group *cache;
1991 	struct btrfs_space_info *space_info;
1992 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1993 	int ret;
1994 
1995 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1996 
1997 	cache = btrfs_create_block_group_cache(info, key->objectid);
1998 	if (!cache)
1999 		return -ENOMEM;
2000 
2001 	cache->length = key->offset;
2002 	cache->used = btrfs_stack_block_group_used(bgi);
2003 	cache->flags = btrfs_stack_block_group_flags(bgi);
2004 
2005 	set_free_space_tree_thresholds(cache);
2006 
2007 	if (need_clear) {
2008 		/*
2009 		 * When we mount with old space cache, we need to
2010 		 * set BTRFS_DC_CLEAR and set dirty flag.
2011 		 *
2012 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2013 		 *    truncate the old free space cache inode and
2014 		 *    setup a new one.
2015 		 * b) Setting 'dirty flag' makes sure that we flush
2016 		 *    the new space cache info onto disk.
2017 		 */
2018 		if (btrfs_test_opt(info, SPACE_CACHE))
2019 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2020 	}
2021 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2022 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2023 			btrfs_err(info,
2024 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2025 				  cache->start);
2026 			ret = -EINVAL;
2027 			goto error;
2028 	}
2029 
2030 	ret = btrfs_load_block_group_zone_info(cache, false);
2031 	if (ret) {
2032 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2033 			  cache->start);
2034 		goto error;
2035 	}
2036 
2037 	/*
2038 	 * We need to exclude the super stripes now so that the space info has
2039 	 * super bytes accounted for, otherwise we'll think we have more space
2040 	 * than we actually do.
2041 	 */
2042 	ret = exclude_super_stripes(cache);
2043 	if (ret) {
2044 		/* We may have excluded something, so call this just in case. */
2045 		btrfs_free_excluded_extents(cache);
2046 		goto error;
2047 	}
2048 
2049 	/*
2050 	 * For zoned filesystem, space after the allocation offset is the only
2051 	 * free space for a block group. So, we don't need any caching work.
2052 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2053 	 * zone_unusable space.
2054 	 *
2055 	 * For regular filesystem, check for two cases, either we are full, and
2056 	 * therefore don't need to bother with the caching work since we won't
2057 	 * find any space, or we are empty, and we can just add all the space
2058 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2059 	 * in the full case.
2060 	 */
2061 	if (btrfs_is_zoned(info)) {
2062 		btrfs_calc_zone_unusable(cache);
2063 		/* Should not have any excluded extents. Just in case, though. */
2064 		btrfs_free_excluded_extents(cache);
2065 	} else if (cache->length == cache->used) {
2066 		cache->last_byte_to_unpin = (u64)-1;
2067 		cache->cached = BTRFS_CACHE_FINISHED;
2068 		btrfs_free_excluded_extents(cache);
2069 	} else if (cache->used == 0) {
2070 		cache->last_byte_to_unpin = (u64)-1;
2071 		cache->cached = BTRFS_CACHE_FINISHED;
2072 		add_new_free_space(cache, cache->start,
2073 				   cache->start + cache->length);
2074 		btrfs_free_excluded_extents(cache);
2075 	}
2076 
2077 	ret = btrfs_add_block_group_cache(info, cache);
2078 	if (ret) {
2079 		btrfs_remove_free_space_cache(cache);
2080 		goto error;
2081 	}
2082 	trace_btrfs_add_block_group(info, cache, 0);
2083 	btrfs_update_space_info(info, cache->flags, cache->length,
2084 				cache->used, cache->bytes_super,
2085 				cache->zone_unusable, &space_info);
2086 
2087 	cache->space_info = space_info;
2088 
2089 	link_block_group(cache);
2090 
2091 	set_avail_alloc_bits(info, cache->flags);
2092 	if (btrfs_chunk_writeable(info, cache->start)) {
2093 		if (cache->used == 0) {
2094 			ASSERT(list_empty(&cache->bg_list));
2095 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2096 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2097 			else
2098 				btrfs_mark_bg_unused(cache);
2099 		}
2100 	} else {
2101 		inc_block_group_ro(cache, 1);
2102 	}
2103 
2104 	return 0;
2105 error:
2106 	btrfs_put_block_group(cache);
2107 	return ret;
2108 }
2109 
2110 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2111 {
2112 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2113 	struct btrfs_space_info *space_info;
2114 	struct rb_node *node;
2115 	int ret = 0;
2116 
2117 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2118 		struct extent_map *em;
2119 		struct map_lookup *map;
2120 		struct btrfs_block_group *bg;
2121 
2122 		em = rb_entry(node, struct extent_map, rb_node);
2123 		map = em->map_lookup;
2124 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2125 		if (!bg) {
2126 			ret = -ENOMEM;
2127 			break;
2128 		}
2129 
2130 		/* Fill dummy cache as FULL */
2131 		bg->length = em->len;
2132 		bg->flags = map->type;
2133 		bg->last_byte_to_unpin = (u64)-1;
2134 		bg->cached = BTRFS_CACHE_FINISHED;
2135 		bg->used = em->len;
2136 		bg->flags = map->type;
2137 		ret = btrfs_add_block_group_cache(fs_info, bg);
2138 		/*
2139 		 * We may have some valid block group cache added already, in
2140 		 * that case we skip to the next one.
2141 		 */
2142 		if (ret == -EEXIST) {
2143 			ret = 0;
2144 			btrfs_put_block_group(bg);
2145 			continue;
2146 		}
2147 
2148 		if (ret) {
2149 			btrfs_remove_free_space_cache(bg);
2150 			btrfs_put_block_group(bg);
2151 			break;
2152 		}
2153 
2154 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2155 					0, 0, &space_info);
2156 		bg->space_info = space_info;
2157 		link_block_group(bg);
2158 
2159 		set_avail_alloc_bits(fs_info, bg->flags);
2160 	}
2161 	if (!ret)
2162 		btrfs_init_global_block_rsv(fs_info);
2163 	return ret;
2164 }
2165 
2166 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2167 {
2168 	struct btrfs_path *path;
2169 	int ret;
2170 	struct btrfs_block_group *cache;
2171 	struct btrfs_space_info *space_info;
2172 	struct btrfs_key key;
2173 	int need_clear = 0;
2174 	u64 cache_gen;
2175 
2176 	if (!info->extent_root)
2177 		return fill_dummy_bgs(info);
2178 
2179 	key.objectid = 0;
2180 	key.offset = 0;
2181 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2182 	path = btrfs_alloc_path();
2183 	if (!path)
2184 		return -ENOMEM;
2185 
2186 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2187 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2188 	    btrfs_super_generation(info->super_copy) != cache_gen)
2189 		need_clear = 1;
2190 	if (btrfs_test_opt(info, CLEAR_CACHE))
2191 		need_clear = 1;
2192 
2193 	while (1) {
2194 		struct btrfs_block_group_item bgi;
2195 		struct extent_buffer *leaf;
2196 		int slot;
2197 
2198 		ret = find_first_block_group(info, path, &key);
2199 		if (ret > 0)
2200 			break;
2201 		if (ret != 0)
2202 			goto error;
2203 
2204 		leaf = path->nodes[0];
2205 		slot = path->slots[0];
2206 
2207 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2208 				   sizeof(bgi));
2209 
2210 		btrfs_item_key_to_cpu(leaf, &key, slot);
2211 		btrfs_release_path(path);
2212 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2213 		if (ret < 0)
2214 			goto error;
2215 		key.objectid += key.offset;
2216 		key.offset = 0;
2217 	}
2218 	btrfs_release_path(path);
2219 
2220 	list_for_each_entry(space_info, &info->space_info, list) {
2221 		int i;
2222 
2223 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2224 			if (list_empty(&space_info->block_groups[i]))
2225 				continue;
2226 			cache = list_first_entry(&space_info->block_groups[i],
2227 						 struct btrfs_block_group,
2228 						 list);
2229 			btrfs_sysfs_add_block_group_type(cache);
2230 		}
2231 
2232 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2233 		      (BTRFS_BLOCK_GROUP_RAID10 |
2234 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2235 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2236 		       BTRFS_BLOCK_GROUP_DUP)))
2237 			continue;
2238 		/*
2239 		 * Avoid allocating from un-mirrored block group if there are
2240 		 * mirrored block groups.
2241 		 */
2242 		list_for_each_entry(cache,
2243 				&space_info->block_groups[BTRFS_RAID_RAID0],
2244 				list)
2245 			inc_block_group_ro(cache, 1);
2246 		list_for_each_entry(cache,
2247 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2248 				list)
2249 			inc_block_group_ro(cache, 1);
2250 	}
2251 
2252 	btrfs_init_global_block_rsv(info);
2253 	ret = check_chunk_block_group_mappings(info);
2254 error:
2255 	btrfs_free_path(path);
2256 	/*
2257 	 * We've hit some error while reading the extent tree, and have
2258 	 * rescue=ibadroots mount option.
2259 	 * Try to fill the tree using dummy block groups so that the user can
2260 	 * continue to mount and grab their data.
2261 	 */
2262 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2263 		ret = fill_dummy_bgs(info);
2264 	return ret;
2265 }
2266 
2267 /*
2268  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2269  * allocation.
2270  *
2271  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2272  * phases.
2273  */
2274 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2275 				   struct btrfs_block_group *block_group)
2276 {
2277 	struct btrfs_fs_info *fs_info = trans->fs_info;
2278 	struct btrfs_block_group_item bgi;
2279 	struct btrfs_root *root;
2280 	struct btrfs_key key;
2281 
2282 	spin_lock(&block_group->lock);
2283 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2284 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2285 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2286 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2287 	key.objectid = block_group->start;
2288 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2289 	key.offset = block_group->length;
2290 	spin_unlock(&block_group->lock);
2291 
2292 	root = fs_info->extent_root;
2293 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2294 }
2295 
2296 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2297 			    struct btrfs_device *device, u64 chunk_offset,
2298 			    u64 start, u64 num_bytes)
2299 {
2300 	struct btrfs_fs_info *fs_info = device->fs_info;
2301 	struct btrfs_root *root = fs_info->dev_root;
2302 	struct btrfs_path *path;
2303 	struct btrfs_dev_extent *extent;
2304 	struct extent_buffer *leaf;
2305 	struct btrfs_key key;
2306 	int ret;
2307 
2308 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2309 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2310 	path = btrfs_alloc_path();
2311 	if (!path)
2312 		return -ENOMEM;
2313 
2314 	key.objectid = device->devid;
2315 	key.type = BTRFS_DEV_EXTENT_KEY;
2316 	key.offset = start;
2317 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2318 	if (ret)
2319 		goto out;
2320 
2321 	leaf = path->nodes[0];
2322 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2323 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2324 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2325 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2326 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2327 
2328 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2329 	btrfs_mark_buffer_dirty(leaf);
2330 out:
2331 	btrfs_free_path(path);
2332 	return ret;
2333 }
2334 
2335 /*
2336  * This function belongs to phase 2.
2337  *
2338  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2339  * phases.
2340  */
2341 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2342 				   u64 chunk_offset, u64 chunk_size)
2343 {
2344 	struct btrfs_fs_info *fs_info = trans->fs_info;
2345 	struct btrfs_device *device;
2346 	struct extent_map *em;
2347 	struct map_lookup *map;
2348 	u64 dev_offset;
2349 	u64 stripe_size;
2350 	int i;
2351 	int ret = 0;
2352 
2353 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2354 	if (IS_ERR(em))
2355 		return PTR_ERR(em);
2356 
2357 	map = em->map_lookup;
2358 	stripe_size = em->orig_block_len;
2359 
2360 	/*
2361 	 * Take the device list mutex to prevent races with the final phase of
2362 	 * a device replace operation that replaces the device object associated
2363 	 * with the map's stripes, because the device object's id can change
2364 	 * at any time during that final phase of the device replace operation
2365 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2366 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2367 	 * resulting in persisting a device extent item with such ID.
2368 	 */
2369 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2370 	for (i = 0; i < map->num_stripes; i++) {
2371 		device = map->stripes[i].dev;
2372 		dev_offset = map->stripes[i].physical;
2373 
2374 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2375 				       stripe_size);
2376 		if (ret)
2377 			break;
2378 	}
2379 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2380 
2381 	free_extent_map(em);
2382 	return ret;
2383 }
2384 
2385 /*
2386  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2387  * chunk allocation.
2388  *
2389  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2390  * phases.
2391  */
2392 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2393 {
2394 	struct btrfs_fs_info *fs_info = trans->fs_info;
2395 	struct btrfs_block_group *block_group;
2396 	int ret = 0;
2397 
2398 	while (!list_empty(&trans->new_bgs)) {
2399 		int index;
2400 
2401 		block_group = list_first_entry(&trans->new_bgs,
2402 					       struct btrfs_block_group,
2403 					       bg_list);
2404 		if (ret)
2405 			goto next;
2406 
2407 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2408 
2409 		ret = insert_block_group_item(trans, block_group);
2410 		if (ret)
2411 			btrfs_abort_transaction(trans, ret);
2412 		if (!block_group->chunk_item_inserted) {
2413 			mutex_lock(&fs_info->chunk_mutex);
2414 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2415 			mutex_unlock(&fs_info->chunk_mutex);
2416 			if (ret)
2417 				btrfs_abort_transaction(trans, ret);
2418 		}
2419 		ret = insert_dev_extents(trans, block_group->start,
2420 					 block_group->length);
2421 		if (ret)
2422 			btrfs_abort_transaction(trans, ret);
2423 		add_block_group_free_space(trans, block_group);
2424 
2425 		/*
2426 		 * If we restriped during balance, we may have added a new raid
2427 		 * type, so now add the sysfs entries when it is safe to do so.
2428 		 * We don't have to worry about locking here as it's handled in
2429 		 * btrfs_sysfs_add_block_group_type.
2430 		 */
2431 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2432 			btrfs_sysfs_add_block_group_type(block_group);
2433 
2434 		/* Already aborted the transaction if it failed. */
2435 next:
2436 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2437 		list_del_init(&block_group->bg_list);
2438 	}
2439 	btrfs_trans_release_chunk_metadata(trans);
2440 }
2441 
2442 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2443 						 u64 bytes_used, u64 type,
2444 						 u64 chunk_offset, u64 size)
2445 {
2446 	struct btrfs_fs_info *fs_info = trans->fs_info;
2447 	struct btrfs_block_group *cache;
2448 	int ret;
2449 
2450 	btrfs_set_log_full_commit(trans);
2451 
2452 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2453 	if (!cache)
2454 		return ERR_PTR(-ENOMEM);
2455 
2456 	cache->length = size;
2457 	set_free_space_tree_thresholds(cache);
2458 	cache->used = bytes_used;
2459 	cache->flags = type;
2460 	cache->last_byte_to_unpin = (u64)-1;
2461 	cache->cached = BTRFS_CACHE_FINISHED;
2462 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2463 		cache->needs_free_space = 1;
2464 
2465 	ret = btrfs_load_block_group_zone_info(cache, true);
2466 	if (ret) {
2467 		btrfs_put_block_group(cache);
2468 		return ERR_PTR(ret);
2469 	}
2470 
2471 	/*
2472 	 * New block group is likely to be used soon. Try to activate it now.
2473 	 * Failure is OK for now.
2474 	 */
2475 	btrfs_zone_activate(cache);
2476 
2477 	ret = exclude_super_stripes(cache);
2478 	if (ret) {
2479 		/* We may have excluded something, so call this just in case */
2480 		btrfs_free_excluded_extents(cache);
2481 		btrfs_put_block_group(cache);
2482 		return ERR_PTR(ret);
2483 	}
2484 
2485 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2486 
2487 	btrfs_free_excluded_extents(cache);
2488 
2489 #ifdef CONFIG_BTRFS_DEBUG
2490 	if (btrfs_should_fragment_free_space(cache)) {
2491 		u64 new_bytes_used = size - bytes_used;
2492 
2493 		bytes_used += new_bytes_used >> 1;
2494 		fragment_free_space(cache);
2495 	}
2496 #endif
2497 	/*
2498 	 * Ensure the corresponding space_info object is created and
2499 	 * assigned to our block group. We want our bg to be added to the rbtree
2500 	 * with its ->space_info set.
2501 	 */
2502 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2503 	ASSERT(cache->space_info);
2504 
2505 	ret = btrfs_add_block_group_cache(fs_info, cache);
2506 	if (ret) {
2507 		btrfs_remove_free_space_cache(cache);
2508 		btrfs_put_block_group(cache);
2509 		return ERR_PTR(ret);
2510 	}
2511 
2512 	/*
2513 	 * Now that our block group has its ->space_info set and is inserted in
2514 	 * the rbtree, update the space info's counters.
2515 	 */
2516 	trace_btrfs_add_block_group(fs_info, cache, 1);
2517 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2518 				cache->bytes_super, cache->zone_unusable,
2519 				&cache->space_info);
2520 	btrfs_update_global_block_rsv(fs_info);
2521 
2522 	link_block_group(cache);
2523 
2524 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2525 	trans->delayed_ref_updates++;
2526 	btrfs_update_delayed_refs_rsv(trans);
2527 
2528 	set_avail_alloc_bits(fs_info, type);
2529 	return cache;
2530 }
2531 
2532 /*
2533  * Mark one block group RO, can be called several times for the same block
2534  * group.
2535  *
2536  * @cache:		the destination block group
2537  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2538  * 			ensure we still have some free space after marking this
2539  * 			block group RO.
2540  */
2541 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2542 			     bool do_chunk_alloc)
2543 {
2544 	struct btrfs_fs_info *fs_info = cache->fs_info;
2545 	struct btrfs_trans_handle *trans;
2546 	u64 alloc_flags;
2547 	int ret;
2548 	bool dirty_bg_running;
2549 
2550 	do {
2551 		trans = btrfs_join_transaction(fs_info->extent_root);
2552 		if (IS_ERR(trans))
2553 			return PTR_ERR(trans);
2554 
2555 		dirty_bg_running = false;
2556 
2557 		/*
2558 		 * We're not allowed to set block groups readonly after the dirty
2559 		 * block group cache has started writing.  If it already started,
2560 		 * back off and let this transaction commit.
2561 		 */
2562 		mutex_lock(&fs_info->ro_block_group_mutex);
2563 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2564 			u64 transid = trans->transid;
2565 
2566 			mutex_unlock(&fs_info->ro_block_group_mutex);
2567 			btrfs_end_transaction(trans);
2568 
2569 			ret = btrfs_wait_for_commit(fs_info, transid);
2570 			if (ret)
2571 				return ret;
2572 			dirty_bg_running = true;
2573 		}
2574 	} while (dirty_bg_running);
2575 
2576 	if (do_chunk_alloc) {
2577 		/*
2578 		 * If we are changing raid levels, try to allocate a
2579 		 * corresponding block group with the new raid level.
2580 		 */
2581 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2582 		if (alloc_flags != cache->flags) {
2583 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2584 						CHUNK_ALLOC_FORCE);
2585 			/*
2586 			 * ENOSPC is allowed here, we may have enough space
2587 			 * already allocated at the new raid level to carry on
2588 			 */
2589 			if (ret == -ENOSPC)
2590 				ret = 0;
2591 			if (ret < 0)
2592 				goto out;
2593 		}
2594 	}
2595 
2596 	ret = inc_block_group_ro(cache, 0);
2597 	if (!do_chunk_alloc || ret == -ETXTBSY)
2598 		goto unlock_out;
2599 	if (!ret)
2600 		goto out;
2601 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2602 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2603 	if (ret < 0)
2604 		goto out;
2605 	ret = inc_block_group_ro(cache, 0);
2606 	if (ret == -ETXTBSY)
2607 		goto unlock_out;
2608 out:
2609 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2610 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2611 		mutex_lock(&fs_info->chunk_mutex);
2612 		check_system_chunk(trans, alloc_flags);
2613 		mutex_unlock(&fs_info->chunk_mutex);
2614 	}
2615 unlock_out:
2616 	mutex_unlock(&fs_info->ro_block_group_mutex);
2617 
2618 	btrfs_end_transaction(trans);
2619 	return ret;
2620 }
2621 
2622 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2623 {
2624 	struct btrfs_space_info *sinfo = cache->space_info;
2625 	u64 num_bytes;
2626 
2627 	BUG_ON(!cache->ro);
2628 
2629 	spin_lock(&sinfo->lock);
2630 	spin_lock(&cache->lock);
2631 	if (!--cache->ro) {
2632 		if (btrfs_is_zoned(cache->fs_info)) {
2633 			/* Migrate zone_unusable bytes back */
2634 			cache->zone_unusable =
2635 				(cache->alloc_offset - cache->used) +
2636 				(cache->length - cache->zone_capacity);
2637 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2638 			sinfo->bytes_readonly -= cache->zone_unusable;
2639 		}
2640 		num_bytes = cache->length - cache->reserved -
2641 			    cache->pinned - cache->bytes_super -
2642 			    cache->zone_unusable - cache->used;
2643 		sinfo->bytes_readonly -= num_bytes;
2644 		list_del_init(&cache->ro_list);
2645 	}
2646 	spin_unlock(&cache->lock);
2647 	spin_unlock(&sinfo->lock);
2648 }
2649 
2650 static int update_block_group_item(struct btrfs_trans_handle *trans,
2651 				   struct btrfs_path *path,
2652 				   struct btrfs_block_group *cache)
2653 {
2654 	struct btrfs_fs_info *fs_info = trans->fs_info;
2655 	int ret;
2656 	struct btrfs_root *root = fs_info->extent_root;
2657 	unsigned long bi;
2658 	struct extent_buffer *leaf;
2659 	struct btrfs_block_group_item bgi;
2660 	struct btrfs_key key;
2661 
2662 	key.objectid = cache->start;
2663 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2664 	key.offset = cache->length;
2665 
2666 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2667 	if (ret) {
2668 		if (ret > 0)
2669 			ret = -ENOENT;
2670 		goto fail;
2671 	}
2672 
2673 	leaf = path->nodes[0];
2674 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2675 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2676 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2677 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2678 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2679 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2680 	btrfs_mark_buffer_dirty(leaf);
2681 fail:
2682 	btrfs_release_path(path);
2683 	return ret;
2684 
2685 }
2686 
2687 static int cache_save_setup(struct btrfs_block_group *block_group,
2688 			    struct btrfs_trans_handle *trans,
2689 			    struct btrfs_path *path)
2690 {
2691 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2692 	struct btrfs_root *root = fs_info->tree_root;
2693 	struct inode *inode = NULL;
2694 	struct extent_changeset *data_reserved = NULL;
2695 	u64 alloc_hint = 0;
2696 	int dcs = BTRFS_DC_ERROR;
2697 	u64 cache_size = 0;
2698 	int retries = 0;
2699 	int ret = 0;
2700 
2701 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2702 		return 0;
2703 
2704 	/*
2705 	 * If this block group is smaller than 100 megs don't bother caching the
2706 	 * block group.
2707 	 */
2708 	if (block_group->length < (100 * SZ_1M)) {
2709 		spin_lock(&block_group->lock);
2710 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2711 		spin_unlock(&block_group->lock);
2712 		return 0;
2713 	}
2714 
2715 	if (TRANS_ABORTED(trans))
2716 		return 0;
2717 again:
2718 	inode = lookup_free_space_inode(block_group, path);
2719 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2720 		ret = PTR_ERR(inode);
2721 		btrfs_release_path(path);
2722 		goto out;
2723 	}
2724 
2725 	if (IS_ERR(inode)) {
2726 		BUG_ON(retries);
2727 		retries++;
2728 
2729 		if (block_group->ro)
2730 			goto out_free;
2731 
2732 		ret = create_free_space_inode(trans, block_group, path);
2733 		if (ret)
2734 			goto out_free;
2735 		goto again;
2736 	}
2737 
2738 	/*
2739 	 * We want to set the generation to 0, that way if anything goes wrong
2740 	 * from here on out we know not to trust this cache when we load up next
2741 	 * time.
2742 	 */
2743 	BTRFS_I(inode)->generation = 0;
2744 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2745 	if (ret) {
2746 		/*
2747 		 * So theoretically we could recover from this, simply set the
2748 		 * super cache generation to 0 so we know to invalidate the
2749 		 * cache, but then we'd have to keep track of the block groups
2750 		 * that fail this way so we know we _have_ to reset this cache
2751 		 * before the next commit or risk reading stale cache.  So to
2752 		 * limit our exposure to horrible edge cases lets just abort the
2753 		 * transaction, this only happens in really bad situations
2754 		 * anyway.
2755 		 */
2756 		btrfs_abort_transaction(trans, ret);
2757 		goto out_put;
2758 	}
2759 	WARN_ON(ret);
2760 
2761 	/* We've already setup this transaction, go ahead and exit */
2762 	if (block_group->cache_generation == trans->transid &&
2763 	    i_size_read(inode)) {
2764 		dcs = BTRFS_DC_SETUP;
2765 		goto out_put;
2766 	}
2767 
2768 	if (i_size_read(inode) > 0) {
2769 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2770 					&fs_info->global_block_rsv);
2771 		if (ret)
2772 			goto out_put;
2773 
2774 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2775 		if (ret)
2776 			goto out_put;
2777 	}
2778 
2779 	spin_lock(&block_group->lock);
2780 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2781 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2782 		/*
2783 		 * don't bother trying to write stuff out _if_
2784 		 * a) we're not cached,
2785 		 * b) we're with nospace_cache mount option,
2786 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2787 		 */
2788 		dcs = BTRFS_DC_WRITTEN;
2789 		spin_unlock(&block_group->lock);
2790 		goto out_put;
2791 	}
2792 	spin_unlock(&block_group->lock);
2793 
2794 	/*
2795 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2796 	 * skip doing the setup, we've already cleared the cache so we're safe.
2797 	 */
2798 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2799 		ret = -ENOSPC;
2800 		goto out_put;
2801 	}
2802 
2803 	/*
2804 	 * Try to preallocate enough space based on how big the block group is.
2805 	 * Keep in mind this has to include any pinned space which could end up
2806 	 * taking up quite a bit since it's not folded into the other space
2807 	 * cache.
2808 	 */
2809 	cache_size = div_u64(block_group->length, SZ_256M);
2810 	if (!cache_size)
2811 		cache_size = 1;
2812 
2813 	cache_size *= 16;
2814 	cache_size *= fs_info->sectorsize;
2815 
2816 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2817 					  cache_size);
2818 	if (ret)
2819 		goto out_put;
2820 
2821 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2822 					      cache_size, cache_size,
2823 					      &alloc_hint);
2824 	/*
2825 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2826 	 * of metadata or split extents when writing the cache out, which means
2827 	 * we can enospc if we are heavily fragmented in addition to just normal
2828 	 * out of space conditions.  So if we hit this just skip setting up any
2829 	 * other block groups for this transaction, maybe we'll unpin enough
2830 	 * space the next time around.
2831 	 */
2832 	if (!ret)
2833 		dcs = BTRFS_DC_SETUP;
2834 	else if (ret == -ENOSPC)
2835 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2836 
2837 out_put:
2838 	iput(inode);
2839 out_free:
2840 	btrfs_release_path(path);
2841 out:
2842 	spin_lock(&block_group->lock);
2843 	if (!ret && dcs == BTRFS_DC_SETUP)
2844 		block_group->cache_generation = trans->transid;
2845 	block_group->disk_cache_state = dcs;
2846 	spin_unlock(&block_group->lock);
2847 
2848 	extent_changeset_free(data_reserved);
2849 	return ret;
2850 }
2851 
2852 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2853 {
2854 	struct btrfs_fs_info *fs_info = trans->fs_info;
2855 	struct btrfs_block_group *cache, *tmp;
2856 	struct btrfs_transaction *cur_trans = trans->transaction;
2857 	struct btrfs_path *path;
2858 
2859 	if (list_empty(&cur_trans->dirty_bgs) ||
2860 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2861 		return 0;
2862 
2863 	path = btrfs_alloc_path();
2864 	if (!path)
2865 		return -ENOMEM;
2866 
2867 	/* Could add new block groups, use _safe just in case */
2868 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2869 				 dirty_list) {
2870 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2871 			cache_save_setup(cache, trans, path);
2872 	}
2873 
2874 	btrfs_free_path(path);
2875 	return 0;
2876 }
2877 
2878 /*
2879  * Transaction commit does final block group cache writeback during a critical
2880  * section where nothing is allowed to change the FS.  This is required in
2881  * order for the cache to actually match the block group, but can introduce a
2882  * lot of latency into the commit.
2883  *
2884  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2885  * There's a chance we'll have to redo some of it if the block group changes
2886  * again during the commit, but it greatly reduces the commit latency by
2887  * getting rid of the easy block groups while we're still allowing others to
2888  * join the commit.
2889  */
2890 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2891 {
2892 	struct btrfs_fs_info *fs_info = trans->fs_info;
2893 	struct btrfs_block_group *cache;
2894 	struct btrfs_transaction *cur_trans = trans->transaction;
2895 	int ret = 0;
2896 	int should_put;
2897 	struct btrfs_path *path = NULL;
2898 	LIST_HEAD(dirty);
2899 	struct list_head *io = &cur_trans->io_bgs;
2900 	int num_started = 0;
2901 	int loops = 0;
2902 
2903 	spin_lock(&cur_trans->dirty_bgs_lock);
2904 	if (list_empty(&cur_trans->dirty_bgs)) {
2905 		spin_unlock(&cur_trans->dirty_bgs_lock);
2906 		return 0;
2907 	}
2908 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2909 	spin_unlock(&cur_trans->dirty_bgs_lock);
2910 
2911 again:
2912 	/* Make sure all the block groups on our dirty list actually exist */
2913 	btrfs_create_pending_block_groups(trans);
2914 
2915 	if (!path) {
2916 		path = btrfs_alloc_path();
2917 		if (!path) {
2918 			ret = -ENOMEM;
2919 			goto out;
2920 		}
2921 	}
2922 
2923 	/*
2924 	 * cache_write_mutex is here only to save us from balance or automatic
2925 	 * removal of empty block groups deleting this block group while we are
2926 	 * writing out the cache
2927 	 */
2928 	mutex_lock(&trans->transaction->cache_write_mutex);
2929 	while (!list_empty(&dirty)) {
2930 		bool drop_reserve = true;
2931 
2932 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2933 					 dirty_list);
2934 		/*
2935 		 * This can happen if something re-dirties a block group that
2936 		 * is already under IO.  Just wait for it to finish and then do
2937 		 * it all again
2938 		 */
2939 		if (!list_empty(&cache->io_list)) {
2940 			list_del_init(&cache->io_list);
2941 			btrfs_wait_cache_io(trans, cache, path);
2942 			btrfs_put_block_group(cache);
2943 		}
2944 
2945 
2946 		/*
2947 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2948 		 * it should update the cache_state.  Don't delete until after
2949 		 * we wait.
2950 		 *
2951 		 * Since we're not running in the commit critical section
2952 		 * we need the dirty_bgs_lock to protect from update_block_group
2953 		 */
2954 		spin_lock(&cur_trans->dirty_bgs_lock);
2955 		list_del_init(&cache->dirty_list);
2956 		spin_unlock(&cur_trans->dirty_bgs_lock);
2957 
2958 		should_put = 1;
2959 
2960 		cache_save_setup(cache, trans, path);
2961 
2962 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2963 			cache->io_ctl.inode = NULL;
2964 			ret = btrfs_write_out_cache(trans, cache, path);
2965 			if (ret == 0 && cache->io_ctl.inode) {
2966 				num_started++;
2967 				should_put = 0;
2968 
2969 				/*
2970 				 * The cache_write_mutex is protecting the
2971 				 * io_list, also refer to the definition of
2972 				 * btrfs_transaction::io_bgs for more details
2973 				 */
2974 				list_add_tail(&cache->io_list, io);
2975 			} else {
2976 				/*
2977 				 * If we failed to write the cache, the
2978 				 * generation will be bad and life goes on
2979 				 */
2980 				ret = 0;
2981 			}
2982 		}
2983 		if (!ret) {
2984 			ret = update_block_group_item(trans, path, cache);
2985 			/*
2986 			 * Our block group might still be attached to the list
2987 			 * of new block groups in the transaction handle of some
2988 			 * other task (struct btrfs_trans_handle->new_bgs). This
2989 			 * means its block group item isn't yet in the extent
2990 			 * tree. If this happens ignore the error, as we will
2991 			 * try again later in the critical section of the
2992 			 * transaction commit.
2993 			 */
2994 			if (ret == -ENOENT) {
2995 				ret = 0;
2996 				spin_lock(&cur_trans->dirty_bgs_lock);
2997 				if (list_empty(&cache->dirty_list)) {
2998 					list_add_tail(&cache->dirty_list,
2999 						      &cur_trans->dirty_bgs);
3000 					btrfs_get_block_group(cache);
3001 					drop_reserve = false;
3002 				}
3003 				spin_unlock(&cur_trans->dirty_bgs_lock);
3004 			} else if (ret) {
3005 				btrfs_abort_transaction(trans, ret);
3006 			}
3007 		}
3008 
3009 		/* If it's not on the io list, we need to put the block group */
3010 		if (should_put)
3011 			btrfs_put_block_group(cache);
3012 		if (drop_reserve)
3013 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3014 		/*
3015 		 * Avoid blocking other tasks for too long. It might even save
3016 		 * us from writing caches for block groups that are going to be
3017 		 * removed.
3018 		 */
3019 		mutex_unlock(&trans->transaction->cache_write_mutex);
3020 		if (ret)
3021 			goto out;
3022 		mutex_lock(&trans->transaction->cache_write_mutex);
3023 	}
3024 	mutex_unlock(&trans->transaction->cache_write_mutex);
3025 
3026 	/*
3027 	 * Go through delayed refs for all the stuff we've just kicked off
3028 	 * and then loop back (just once)
3029 	 */
3030 	if (!ret)
3031 		ret = btrfs_run_delayed_refs(trans, 0);
3032 	if (!ret && loops == 0) {
3033 		loops++;
3034 		spin_lock(&cur_trans->dirty_bgs_lock);
3035 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3036 		/*
3037 		 * dirty_bgs_lock protects us from concurrent block group
3038 		 * deletes too (not just cache_write_mutex).
3039 		 */
3040 		if (!list_empty(&dirty)) {
3041 			spin_unlock(&cur_trans->dirty_bgs_lock);
3042 			goto again;
3043 		}
3044 		spin_unlock(&cur_trans->dirty_bgs_lock);
3045 	}
3046 out:
3047 	if (ret < 0) {
3048 		spin_lock(&cur_trans->dirty_bgs_lock);
3049 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3050 		spin_unlock(&cur_trans->dirty_bgs_lock);
3051 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3052 	}
3053 
3054 	btrfs_free_path(path);
3055 	return ret;
3056 }
3057 
3058 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3059 {
3060 	struct btrfs_fs_info *fs_info = trans->fs_info;
3061 	struct btrfs_block_group *cache;
3062 	struct btrfs_transaction *cur_trans = trans->transaction;
3063 	int ret = 0;
3064 	int should_put;
3065 	struct btrfs_path *path;
3066 	struct list_head *io = &cur_trans->io_bgs;
3067 	int num_started = 0;
3068 
3069 	path = btrfs_alloc_path();
3070 	if (!path)
3071 		return -ENOMEM;
3072 
3073 	/*
3074 	 * Even though we are in the critical section of the transaction commit,
3075 	 * we can still have concurrent tasks adding elements to this
3076 	 * transaction's list of dirty block groups. These tasks correspond to
3077 	 * endio free space workers started when writeback finishes for a
3078 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3079 	 * allocate new block groups as a result of COWing nodes of the root
3080 	 * tree when updating the free space inode. The writeback for the space
3081 	 * caches is triggered by an earlier call to
3082 	 * btrfs_start_dirty_block_groups() and iterations of the following
3083 	 * loop.
3084 	 * Also we want to do the cache_save_setup first and then run the
3085 	 * delayed refs to make sure we have the best chance at doing this all
3086 	 * in one shot.
3087 	 */
3088 	spin_lock(&cur_trans->dirty_bgs_lock);
3089 	while (!list_empty(&cur_trans->dirty_bgs)) {
3090 		cache = list_first_entry(&cur_trans->dirty_bgs,
3091 					 struct btrfs_block_group,
3092 					 dirty_list);
3093 
3094 		/*
3095 		 * This can happen if cache_save_setup re-dirties a block group
3096 		 * that is already under IO.  Just wait for it to finish and
3097 		 * then do it all again
3098 		 */
3099 		if (!list_empty(&cache->io_list)) {
3100 			spin_unlock(&cur_trans->dirty_bgs_lock);
3101 			list_del_init(&cache->io_list);
3102 			btrfs_wait_cache_io(trans, cache, path);
3103 			btrfs_put_block_group(cache);
3104 			spin_lock(&cur_trans->dirty_bgs_lock);
3105 		}
3106 
3107 		/*
3108 		 * Don't remove from the dirty list until after we've waited on
3109 		 * any pending IO
3110 		 */
3111 		list_del_init(&cache->dirty_list);
3112 		spin_unlock(&cur_trans->dirty_bgs_lock);
3113 		should_put = 1;
3114 
3115 		cache_save_setup(cache, trans, path);
3116 
3117 		if (!ret)
3118 			ret = btrfs_run_delayed_refs(trans,
3119 						     (unsigned long) -1);
3120 
3121 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3122 			cache->io_ctl.inode = NULL;
3123 			ret = btrfs_write_out_cache(trans, cache, path);
3124 			if (ret == 0 && cache->io_ctl.inode) {
3125 				num_started++;
3126 				should_put = 0;
3127 				list_add_tail(&cache->io_list, io);
3128 			} else {
3129 				/*
3130 				 * If we failed to write the cache, the
3131 				 * generation will be bad and life goes on
3132 				 */
3133 				ret = 0;
3134 			}
3135 		}
3136 		if (!ret) {
3137 			ret = update_block_group_item(trans, path, cache);
3138 			/*
3139 			 * One of the free space endio workers might have
3140 			 * created a new block group while updating a free space
3141 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3142 			 * and hasn't released its transaction handle yet, in
3143 			 * which case the new block group is still attached to
3144 			 * its transaction handle and its creation has not
3145 			 * finished yet (no block group item in the extent tree
3146 			 * yet, etc). If this is the case, wait for all free
3147 			 * space endio workers to finish and retry. This is a
3148 			 * very rare case so no need for a more efficient and
3149 			 * complex approach.
3150 			 */
3151 			if (ret == -ENOENT) {
3152 				wait_event(cur_trans->writer_wait,
3153 				   atomic_read(&cur_trans->num_writers) == 1);
3154 				ret = update_block_group_item(trans, path, cache);
3155 			}
3156 			if (ret)
3157 				btrfs_abort_transaction(trans, ret);
3158 		}
3159 
3160 		/* If its not on the io list, we need to put the block group */
3161 		if (should_put)
3162 			btrfs_put_block_group(cache);
3163 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3164 		spin_lock(&cur_trans->dirty_bgs_lock);
3165 	}
3166 	spin_unlock(&cur_trans->dirty_bgs_lock);
3167 
3168 	/*
3169 	 * Refer to the definition of io_bgs member for details why it's safe
3170 	 * to use it without any locking
3171 	 */
3172 	while (!list_empty(io)) {
3173 		cache = list_first_entry(io, struct btrfs_block_group,
3174 					 io_list);
3175 		list_del_init(&cache->io_list);
3176 		btrfs_wait_cache_io(trans, cache, path);
3177 		btrfs_put_block_group(cache);
3178 	}
3179 
3180 	btrfs_free_path(path);
3181 	return ret;
3182 }
3183 
3184 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3185 			     u64 bytenr, u64 num_bytes, bool alloc)
3186 {
3187 	struct btrfs_fs_info *info = trans->fs_info;
3188 	struct btrfs_block_group *cache = NULL;
3189 	u64 total = num_bytes;
3190 	u64 old_val;
3191 	u64 byte_in_group;
3192 	int factor;
3193 	int ret = 0;
3194 
3195 	/* Block accounting for super block */
3196 	spin_lock(&info->delalloc_root_lock);
3197 	old_val = btrfs_super_bytes_used(info->super_copy);
3198 	if (alloc)
3199 		old_val += num_bytes;
3200 	else
3201 		old_val -= num_bytes;
3202 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3203 	spin_unlock(&info->delalloc_root_lock);
3204 
3205 	while (total) {
3206 		cache = btrfs_lookup_block_group(info, bytenr);
3207 		if (!cache) {
3208 			ret = -ENOENT;
3209 			break;
3210 		}
3211 		factor = btrfs_bg_type_to_factor(cache->flags);
3212 
3213 		/*
3214 		 * If this block group has free space cache written out, we
3215 		 * need to make sure to load it if we are removing space.  This
3216 		 * is because we need the unpinning stage to actually add the
3217 		 * space back to the block group, otherwise we will leak space.
3218 		 */
3219 		if (!alloc && !btrfs_block_group_done(cache))
3220 			btrfs_cache_block_group(cache, 1);
3221 
3222 		byte_in_group = bytenr - cache->start;
3223 		WARN_ON(byte_in_group > cache->length);
3224 
3225 		spin_lock(&cache->space_info->lock);
3226 		spin_lock(&cache->lock);
3227 
3228 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3229 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3230 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3231 
3232 		old_val = cache->used;
3233 		num_bytes = min(total, cache->length - byte_in_group);
3234 		if (alloc) {
3235 			old_val += num_bytes;
3236 			cache->used = old_val;
3237 			cache->reserved -= num_bytes;
3238 			cache->space_info->bytes_reserved -= num_bytes;
3239 			cache->space_info->bytes_used += num_bytes;
3240 			cache->space_info->disk_used += num_bytes * factor;
3241 			spin_unlock(&cache->lock);
3242 			spin_unlock(&cache->space_info->lock);
3243 		} else {
3244 			old_val -= num_bytes;
3245 			cache->used = old_val;
3246 			cache->pinned += num_bytes;
3247 			btrfs_space_info_update_bytes_pinned(info,
3248 					cache->space_info, num_bytes);
3249 			cache->space_info->bytes_used -= num_bytes;
3250 			cache->space_info->disk_used -= num_bytes * factor;
3251 			spin_unlock(&cache->lock);
3252 			spin_unlock(&cache->space_info->lock);
3253 
3254 			set_extent_dirty(&trans->transaction->pinned_extents,
3255 					 bytenr, bytenr + num_bytes - 1,
3256 					 GFP_NOFS | __GFP_NOFAIL);
3257 		}
3258 
3259 		spin_lock(&trans->transaction->dirty_bgs_lock);
3260 		if (list_empty(&cache->dirty_list)) {
3261 			list_add_tail(&cache->dirty_list,
3262 				      &trans->transaction->dirty_bgs);
3263 			trans->delayed_ref_updates++;
3264 			btrfs_get_block_group(cache);
3265 		}
3266 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3267 
3268 		/*
3269 		 * No longer have used bytes in this block group, queue it for
3270 		 * deletion. We do this after adding the block group to the
3271 		 * dirty list to avoid races between cleaner kthread and space
3272 		 * cache writeout.
3273 		 */
3274 		if (!alloc && old_val == 0) {
3275 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3276 				btrfs_mark_bg_unused(cache);
3277 		}
3278 
3279 		btrfs_put_block_group(cache);
3280 		total -= num_bytes;
3281 		bytenr += num_bytes;
3282 	}
3283 
3284 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3285 	btrfs_update_delayed_refs_rsv(trans);
3286 	return ret;
3287 }
3288 
3289 /**
3290  * btrfs_add_reserved_bytes - update the block_group and space info counters
3291  * @cache:	The cache we are manipulating
3292  * @ram_bytes:  The number of bytes of file content, and will be same to
3293  *              @num_bytes except for the compress path.
3294  * @num_bytes:	The number of bytes in question
3295  * @delalloc:   The blocks are allocated for the delalloc write
3296  *
3297  * This is called by the allocator when it reserves space. If this is a
3298  * reservation and the block group has become read only we cannot make the
3299  * reservation and return -EAGAIN, otherwise this function always succeeds.
3300  */
3301 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3302 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3303 {
3304 	struct btrfs_space_info *space_info = cache->space_info;
3305 	int ret = 0;
3306 
3307 	spin_lock(&space_info->lock);
3308 	spin_lock(&cache->lock);
3309 	if (cache->ro) {
3310 		ret = -EAGAIN;
3311 	} else {
3312 		cache->reserved += num_bytes;
3313 		space_info->bytes_reserved += num_bytes;
3314 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3315 					      space_info->flags, num_bytes, 1);
3316 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3317 						      space_info, -ram_bytes);
3318 		if (delalloc)
3319 			cache->delalloc_bytes += num_bytes;
3320 
3321 		/*
3322 		 * Compression can use less space than we reserved, so wake
3323 		 * tickets if that happens
3324 		 */
3325 		if (num_bytes < ram_bytes)
3326 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3327 	}
3328 	spin_unlock(&cache->lock);
3329 	spin_unlock(&space_info->lock);
3330 	return ret;
3331 }
3332 
3333 /**
3334  * btrfs_free_reserved_bytes - update the block_group and space info counters
3335  * @cache:      The cache we are manipulating
3336  * @num_bytes:  The number of bytes in question
3337  * @delalloc:   The blocks are allocated for the delalloc write
3338  *
3339  * This is called by somebody who is freeing space that was never actually used
3340  * on disk.  For example if you reserve some space for a new leaf in transaction
3341  * A and before transaction A commits you free that leaf, you call this with
3342  * reserve set to 0 in order to clear the reservation.
3343  */
3344 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3345 			       u64 num_bytes, int delalloc)
3346 {
3347 	struct btrfs_space_info *space_info = cache->space_info;
3348 
3349 	spin_lock(&space_info->lock);
3350 	spin_lock(&cache->lock);
3351 	if (cache->ro)
3352 		space_info->bytes_readonly += num_bytes;
3353 	cache->reserved -= num_bytes;
3354 	space_info->bytes_reserved -= num_bytes;
3355 	space_info->max_extent_size = 0;
3356 
3357 	if (delalloc)
3358 		cache->delalloc_bytes -= num_bytes;
3359 	spin_unlock(&cache->lock);
3360 
3361 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3362 	spin_unlock(&space_info->lock);
3363 }
3364 
3365 static void force_metadata_allocation(struct btrfs_fs_info *info)
3366 {
3367 	struct list_head *head = &info->space_info;
3368 	struct btrfs_space_info *found;
3369 
3370 	list_for_each_entry(found, head, list) {
3371 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3372 			found->force_alloc = CHUNK_ALLOC_FORCE;
3373 	}
3374 }
3375 
3376 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3377 			      struct btrfs_space_info *sinfo, int force)
3378 {
3379 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3380 	u64 thresh;
3381 
3382 	if (force == CHUNK_ALLOC_FORCE)
3383 		return 1;
3384 
3385 	/*
3386 	 * in limited mode, we want to have some free space up to
3387 	 * about 1% of the FS size.
3388 	 */
3389 	if (force == CHUNK_ALLOC_LIMITED) {
3390 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3391 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3392 
3393 		if (sinfo->total_bytes - bytes_used < thresh)
3394 			return 1;
3395 	}
3396 
3397 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3398 		return 0;
3399 	return 1;
3400 }
3401 
3402 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3403 {
3404 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3405 
3406 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3407 }
3408 
3409 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3410 {
3411 	struct btrfs_block_group *bg;
3412 	int ret;
3413 
3414 	/*
3415 	 * Check if we have enough space in the system space info because we
3416 	 * will need to update device items in the chunk btree and insert a new
3417 	 * chunk item in the chunk btree as well. This will allocate a new
3418 	 * system block group if needed.
3419 	 */
3420 	check_system_chunk(trans, flags);
3421 
3422 	bg = btrfs_create_chunk(trans, flags);
3423 	if (IS_ERR(bg)) {
3424 		ret = PTR_ERR(bg);
3425 		goto out;
3426 	}
3427 
3428 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3429 	/*
3430 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3431 	 * previously reserved space in the system space_info and allocated one
3432 	 * new system chunk if necessary. However there are three exceptions:
3433 	 *
3434 	 * 1) We may have enough free space in the system space_info but all the
3435 	 *    existing system block groups have a profile which can not be used
3436 	 *    for extent allocation.
3437 	 *
3438 	 *    This happens when mounting in degraded mode. For example we have a
3439 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3440 	 *    using the other device in degraded mode. If we then allocate a chunk,
3441 	 *    we may have enough free space in the existing system space_info, but
3442 	 *    none of the block groups can be used for extent allocation since they
3443 	 *    have a RAID1 profile, and because we are in degraded mode with a
3444 	 *    single device, we are forced to allocate a new system chunk with a
3445 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3446 	 *    block groups and check if they have a usable profile and enough space
3447 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3448 	 *    try again after forcing allocation of a new system chunk. Like this
3449 	 *    we avoid paying the cost of that search in normal circumstances, when
3450 	 *    we were not mounted in degraded mode;
3451 	 *
3452 	 * 2) We had enough free space info the system space_info, and one suitable
3453 	 *    block group to allocate from when we called check_system_chunk()
3454 	 *    above. However right after we called it, the only system block group
3455 	 *    with enough free space got turned into RO mode by a running scrub,
3456 	 *    and in this case we have to allocate a new one and retry. We only
3457 	 *    need do this allocate and retry once, since we have a transaction
3458 	 *    handle and scrub uses the commit root to search for block groups;
3459 	 *
3460 	 * 3) We had one system block group with enough free space when we called
3461 	 *    check_system_chunk(), but after that, right before we tried to
3462 	 *    allocate the last extent buffer we needed, a discard operation came
3463 	 *    in and it temporarily removed the last free space entry from the
3464 	 *    block group (discard removes a free space entry, discards it, and
3465 	 *    then adds back the entry to the block group cache).
3466 	 */
3467 	if (ret == -ENOSPC) {
3468 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3469 		struct btrfs_block_group *sys_bg;
3470 
3471 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3472 		if (IS_ERR(sys_bg)) {
3473 			ret = PTR_ERR(sys_bg);
3474 			btrfs_abort_transaction(trans, ret);
3475 			goto out;
3476 		}
3477 
3478 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3479 		if (ret) {
3480 			btrfs_abort_transaction(trans, ret);
3481 			goto out;
3482 		}
3483 
3484 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3485 		if (ret) {
3486 			btrfs_abort_transaction(trans, ret);
3487 			goto out;
3488 		}
3489 	} else if (ret) {
3490 		btrfs_abort_transaction(trans, ret);
3491 		goto out;
3492 	}
3493 out:
3494 	btrfs_trans_release_chunk_metadata(trans);
3495 
3496 	return ret;
3497 }
3498 
3499 /*
3500  * Chunk allocation is done in 2 phases:
3501  *
3502  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3503  *    the chunk, the chunk mapping, create its block group and add the items
3504  *    that belong in the chunk btree to it - more specifically, we need to
3505  *    update device items in the chunk btree and add a new chunk item to it.
3506  *
3507  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3508  *    group item to the extent btree and the device extent items to the devices
3509  *    btree.
3510  *
3511  * This is done to prevent deadlocks. For example when COWing a node from the
3512  * extent btree we are holding a write lock on the node's parent and if we
3513  * trigger chunk allocation and attempted to insert the new block group item
3514  * in the extent btree right way, we could deadlock because the path for the
3515  * insertion can include that parent node. At first glance it seems impossible
3516  * to trigger chunk allocation after starting a transaction since tasks should
3517  * reserve enough transaction units (metadata space), however while that is true
3518  * most of the time, chunk allocation may still be triggered for several reasons:
3519  *
3520  * 1) When reserving metadata, we check if there is enough free space in the
3521  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3522  *    However later when the task actually tries to COW an extent buffer from
3523  *    the extent btree or from the device btree for example, it is forced to
3524  *    allocate a new block group (chunk) because the only one that had enough
3525  *    free space was just turned to RO mode by a running scrub for example (or
3526  *    device replace, block group reclaim thread, etc), so we can not use it
3527  *    for allocating an extent and end up being forced to allocate a new one;
3528  *
3529  * 2) Because we only check that the metadata space_info has enough free bytes,
3530  *    we end up not allocating a new metadata chunk in that case. However if
3531  *    the filesystem was mounted in degraded mode, none of the existing block
3532  *    groups might be suitable for extent allocation due to their incompatible
3533  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3534  *    use a RAID1 profile, in degraded mode using a single device). In this case
3535  *    when the task attempts to COW some extent buffer of the extent btree for
3536  *    example, it will trigger allocation of a new metadata block group with a
3537  *    suitable profile (SINGLE profile in the example of the degraded mount of
3538  *    the RAID1 filesystem);
3539  *
3540  * 3) The task has reserved enough transaction units / metadata space, but when
3541  *    it attempts to COW an extent buffer from the extent or device btree for
3542  *    example, it does not find any free extent in any metadata block group,
3543  *    therefore forced to try to allocate a new metadata block group.
3544  *    This is because some other task allocated all available extents in the
3545  *    meanwhile - this typically happens with tasks that don't reserve space
3546  *    properly, either intentionally or as a bug. One example where this is
3547  *    done intentionally is fsync, as it does not reserve any transaction units
3548  *    and ends up allocating a variable number of metadata extents for log
3549  *    tree extent buffers;
3550  *
3551  * 4) The task has reserved enough transaction units / metadata space, but right
3552  *    before it tries to allocate the last extent buffer it needs, a discard
3553  *    operation comes in and, temporarily, removes the last free space entry from
3554  *    the only metadata block group that had free space (discard starts by
3555  *    removing a free space entry from a block group, then does the discard
3556  *    operation and, once it's done, it adds back the free space entry to the
3557  *    block group).
3558  *
3559  * We also need this 2 phases setup when adding a device to a filesystem with
3560  * a seed device - we must create new metadata and system chunks without adding
3561  * any of the block group items to the chunk, extent and device btrees. If we
3562  * did not do it this way, we would get ENOSPC when attempting to update those
3563  * btrees, since all the chunks from the seed device are read-only.
3564  *
3565  * Phase 1 does the updates and insertions to the chunk btree because if we had
3566  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3567  * parallel, we risk having too many system chunks allocated by many tasks if
3568  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3569  * extreme case this leads to exhaustion of the system chunk array in the
3570  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3571  * and with RAID filesystems (so we have more device items in the chunk btree).
3572  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3573  * the system chunk array due to concurrent allocations") provides more details.
3574  *
3575  * Allocation of system chunks does not happen through this function. A task that
3576  * needs to update the chunk btree (the only btree that uses system chunks), must
3577  * preallocate chunk space by calling either check_system_chunk() or
3578  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3579  * metadata chunk or when removing a chunk, while the later is used before doing
3580  * a modification to the chunk btree - use cases for the later are adding,
3581  * removing and resizing a device as well as relocation of a system chunk.
3582  * See the comment below for more details.
3583  *
3584  * The reservation of system space, done through check_system_chunk(), as well
3585  * as all the updates and insertions into the chunk btree must be done while
3586  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3587  * an extent buffer from the chunks btree we never trigger allocation of a new
3588  * system chunk, which would result in a deadlock (trying to lock twice an
3589  * extent buffer of the chunk btree, first time before triggering the chunk
3590  * allocation and the second time during chunk allocation while attempting to
3591  * update the chunks btree). The system chunk array is also updated while holding
3592  * that mutex. The same logic applies to removing chunks - we must reserve system
3593  * space, update the chunk btree and the system chunk array in the superblock
3594  * while holding fs_info->chunk_mutex.
3595  *
3596  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3597  *
3598  * If @force is CHUNK_ALLOC_FORCE:
3599  *    - return 1 if it successfully allocates a chunk,
3600  *    - return errors including -ENOSPC otherwise.
3601  * If @force is NOT CHUNK_ALLOC_FORCE:
3602  *    - return 0 if it doesn't need to allocate a new chunk,
3603  *    - return 1 if it successfully allocates a chunk,
3604  *    - return errors including -ENOSPC otherwise.
3605  */
3606 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3607 		      enum btrfs_chunk_alloc_enum force)
3608 {
3609 	struct btrfs_fs_info *fs_info = trans->fs_info;
3610 	struct btrfs_space_info *space_info;
3611 	bool wait_for_alloc = false;
3612 	bool should_alloc = false;
3613 	int ret = 0;
3614 
3615 	/* Don't re-enter if we're already allocating a chunk */
3616 	if (trans->allocating_chunk)
3617 		return -ENOSPC;
3618 	/*
3619 	 * Allocation of system chunks can not happen through this path, as we
3620 	 * could end up in a deadlock if we are allocating a data or metadata
3621 	 * chunk and there is another task modifying the chunk btree.
3622 	 *
3623 	 * This is because while we are holding the chunk mutex, we will attempt
3624 	 * to add the new chunk item to the chunk btree or update an existing
3625 	 * device item in the chunk btree, while the other task that is modifying
3626 	 * the chunk btree is attempting to COW an extent buffer while holding a
3627 	 * lock on it and on its parent - if the COW operation triggers a system
3628 	 * chunk allocation, then we can deadlock because we are holding the
3629 	 * chunk mutex and we may need to access that extent buffer or its parent
3630 	 * in order to add the chunk item or update a device item.
3631 	 *
3632 	 * Tasks that want to modify the chunk tree should reserve system space
3633 	 * before updating the chunk btree, by calling either
3634 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3635 	 * It's possible that after a task reserves the space, it still ends up
3636 	 * here - this happens in the cases described above at do_chunk_alloc().
3637 	 * The task will have to either retry or fail.
3638 	 */
3639 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3640 		return -ENOSPC;
3641 
3642 	space_info = btrfs_find_space_info(fs_info, flags);
3643 	ASSERT(space_info);
3644 
3645 	do {
3646 		spin_lock(&space_info->lock);
3647 		if (force < space_info->force_alloc)
3648 			force = space_info->force_alloc;
3649 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3650 		if (space_info->full) {
3651 			/* No more free physical space */
3652 			if (should_alloc)
3653 				ret = -ENOSPC;
3654 			else
3655 				ret = 0;
3656 			spin_unlock(&space_info->lock);
3657 			return ret;
3658 		} else if (!should_alloc) {
3659 			spin_unlock(&space_info->lock);
3660 			return 0;
3661 		} else if (space_info->chunk_alloc) {
3662 			/*
3663 			 * Someone is already allocating, so we need to block
3664 			 * until this someone is finished and then loop to
3665 			 * recheck if we should continue with our allocation
3666 			 * attempt.
3667 			 */
3668 			wait_for_alloc = true;
3669 			spin_unlock(&space_info->lock);
3670 			mutex_lock(&fs_info->chunk_mutex);
3671 			mutex_unlock(&fs_info->chunk_mutex);
3672 		} else {
3673 			/* Proceed with allocation */
3674 			space_info->chunk_alloc = 1;
3675 			wait_for_alloc = false;
3676 			spin_unlock(&space_info->lock);
3677 		}
3678 
3679 		cond_resched();
3680 	} while (wait_for_alloc);
3681 
3682 	mutex_lock(&fs_info->chunk_mutex);
3683 	trans->allocating_chunk = true;
3684 
3685 	/*
3686 	 * If we have mixed data/metadata chunks we want to make sure we keep
3687 	 * allocating mixed chunks instead of individual chunks.
3688 	 */
3689 	if (btrfs_mixed_space_info(space_info))
3690 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3691 
3692 	/*
3693 	 * if we're doing a data chunk, go ahead and make sure that
3694 	 * we keep a reasonable number of metadata chunks allocated in the
3695 	 * FS as well.
3696 	 */
3697 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3698 		fs_info->data_chunk_allocations++;
3699 		if (!(fs_info->data_chunk_allocations %
3700 		      fs_info->metadata_ratio))
3701 			force_metadata_allocation(fs_info);
3702 	}
3703 
3704 	ret = do_chunk_alloc(trans, flags);
3705 	trans->allocating_chunk = false;
3706 
3707 	spin_lock(&space_info->lock);
3708 	if (ret < 0) {
3709 		if (ret == -ENOSPC)
3710 			space_info->full = 1;
3711 		else
3712 			goto out;
3713 	} else {
3714 		ret = 1;
3715 		space_info->max_extent_size = 0;
3716 	}
3717 
3718 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3719 out:
3720 	space_info->chunk_alloc = 0;
3721 	spin_unlock(&space_info->lock);
3722 	mutex_unlock(&fs_info->chunk_mutex);
3723 
3724 	return ret;
3725 }
3726 
3727 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3728 {
3729 	u64 num_dev;
3730 
3731 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3732 	if (!num_dev)
3733 		num_dev = fs_info->fs_devices->rw_devices;
3734 
3735 	return num_dev;
3736 }
3737 
3738 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3739 				u64 bytes,
3740 				u64 type)
3741 {
3742 	struct btrfs_fs_info *fs_info = trans->fs_info;
3743 	struct btrfs_space_info *info;
3744 	u64 left;
3745 	int ret = 0;
3746 
3747 	/*
3748 	 * Needed because we can end up allocating a system chunk and for an
3749 	 * atomic and race free space reservation in the chunk block reserve.
3750 	 */
3751 	lockdep_assert_held(&fs_info->chunk_mutex);
3752 
3753 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3754 	spin_lock(&info->lock);
3755 	left = info->total_bytes - btrfs_space_info_used(info, true);
3756 	spin_unlock(&info->lock);
3757 
3758 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3759 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3760 			   left, bytes, type);
3761 		btrfs_dump_space_info(fs_info, info, 0, 0);
3762 	}
3763 
3764 	if (left < bytes) {
3765 		u64 flags = btrfs_system_alloc_profile(fs_info);
3766 		struct btrfs_block_group *bg;
3767 
3768 		/*
3769 		 * Ignore failure to create system chunk. We might end up not
3770 		 * needing it, as we might not need to COW all nodes/leafs from
3771 		 * the paths we visit in the chunk tree (they were already COWed
3772 		 * or created in the current transaction for example).
3773 		 */
3774 		bg = btrfs_create_chunk(trans, flags);
3775 		if (IS_ERR(bg)) {
3776 			ret = PTR_ERR(bg);
3777 		} else {
3778 			/*
3779 			 * If we fail to add the chunk item here, we end up
3780 			 * trying again at phase 2 of chunk allocation, at
3781 			 * btrfs_create_pending_block_groups(). So ignore
3782 			 * any error here. An ENOSPC here could happen, due to
3783 			 * the cases described at do_chunk_alloc() - the system
3784 			 * block group we just created was just turned into RO
3785 			 * mode by a scrub for example, or a running discard
3786 			 * temporarily removed its free space entries, etc.
3787 			 */
3788 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3789 		}
3790 	}
3791 
3792 	if (!ret) {
3793 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3794 					  &fs_info->chunk_block_rsv,
3795 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3796 		if (!ret)
3797 			trans->chunk_bytes_reserved += bytes;
3798 	}
3799 }
3800 
3801 /*
3802  * Reserve space in the system space for allocating or removing a chunk.
3803  * The caller must be holding fs_info->chunk_mutex.
3804  */
3805 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3806 {
3807 	struct btrfs_fs_info *fs_info = trans->fs_info;
3808 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3809 	u64 bytes;
3810 
3811 	/* num_devs device items to update and 1 chunk item to add or remove. */
3812 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3813 		btrfs_calc_insert_metadata_size(fs_info, 1);
3814 
3815 	reserve_chunk_space(trans, bytes, type);
3816 }
3817 
3818 /*
3819  * Reserve space in the system space, if needed, for doing a modification to the
3820  * chunk btree.
3821  *
3822  * @trans:		A transaction handle.
3823  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3824  *			in the chunk btree or if it's for the deletion or update
3825  *			of an existing item.
3826  *
3827  * This is used in a context where we need to update the chunk btree outside
3828  * block group allocation and removal, to avoid a deadlock with a concurrent
3829  * task that is allocating a metadata or data block group and therefore needs to
3830  * update the chunk btree while holding the chunk mutex. After the update to the
3831  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3832  *
3833  */
3834 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3835 				  bool is_item_insertion)
3836 {
3837 	struct btrfs_fs_info *fs_info = trans->fs_info;
3838 	u64 bytes;
3839 
3840 	if (is_item_insertion)
3841 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3842 	else
3843 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3844 
3845 	mutex_lock(&fs_info->chunk_mutex);
3846 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3847 	mutex_unlock(&fs_info->chunk_mutex);
3848 }
3849 
3850 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3851 {
3852 	struct btrfs_block_group *block_group;
3853 	u64 last = 0;
3854 
3855 	while (1) {
3856 		struct inode *inode;
3857 
3858 		block_group = btrfs_lookup_first_block_group(info, last);
3859 		while (block_group) {
3860 			btrfs_wait_block_group_cache_done(block_group);
3861 			spin_lock(&block_group->lock);
3862 			if (block_group->iref)
3863 				break;
3864 			spin_unlock(&block_group->lock);
3865 			block_group = btrfs_next_block_group(block_group);
3866 		}
3867 		if (!block_group) {
3868 			if (last == 0)
3869 				break;
3870 			last = 0;
3871 			continue;
3872 		}
3873 
3874 		inode = block_group->inode;
3875 		block_group->iref = 0;
3876 		block_group->inode = NULL;
3877 		spin_unlock(&block_group->lock);
3878 		ASSERT(block_group->io_ctl.inode == NULL);
3879 		iput(inode);
3880 		last = block_group->start + block_group->length;
3881 		btrfs_put_block_group(block_group);
3882 	}
3883 }
3884 
3885 /*
3886  * Must be called only after stopping all workers, since we could have block
3887  * group caching kthreads running, and therefore they could race with us if we
3888  * freed the block groups before stopping them.
3889  */
3890 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3891 {
3892 	struct btrfs_block_group *block_group;
3893 	struct btrfs_space_info *space_info;
3894 	struct btrfs_caching_control *caching_ctl;
3895 	struct rb_node *n;
3896 
3897 	spin_lock(&info->block_group_cache_lock);
3898 	while (!list_empty(&info->caching_block_groups)) {
3899 		caching_ctl = list_entry(info->caching_block_groups.next,
3900 					 struct btrfs_caching_control, list);
3901 		list_del(&caching_ctl->list);
3902 		btrfs_put_caching_control(caching_ctl);
3903 	}
3904 	spin_unlock(&info->block_group_cache_lock);
3905 
3906 	spin_lock(&info->unused_bgs_lock);
3907 	while (!list_empty(&info->unused_bgs)) {
3908 		block_group = list_first_entry(&info->unused_bgs,
3909 					       struct btrfs_block_group,
3910 					       bg_list);
3911 		list_del_init(&block_group->bg_list);
3912 		btrfs_put_block_group(block_group);
3913 	}
3914 	spin_unlock(&info->unused_bgs_lock);
3915 
3916 	spin_lock(&info->unused_bgs_lock);
3917 	while (!list_empty(&info->reclaim_bgs)) {
3918 		block_group = list_first_entry(&info->reclaim_bgs,
3919 					       struct btrfs_block_group,
3920 					       bg_list);
3921 		list_del_init(&block_group->bg_list);
3922 		btrfs_put_block_group(block_group);
3923 	}
3924 	spin_unlock(&info->unused_bgs_lock);
3925 
3926 	spin_lock(&info->zone_active_bgs_lock);
3927 	while (!list_empty(&info->zone_active_bgs)) {
3928 		block_group = list_first_entry(&info->zone_active_bgs,
3929 					       struct btrfs_block_group,
3930 					       active_bg_list);
3931 		list_del_init(&block_group->active_bg_list);
3932 		btrfs_put_block_group(block_group);
3933 	}
3934 	spin_unlock(&info->zone_active_bgs_lock);
3935 
3936 	spin_lock(&info->block_group_cache_lock);
3937 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3938 		block_group = rb_entry(n, struct btrfs_block_group,
3939 				       cache_node);
3940 		rb_erase(&block_group->cache_node,
3941 			 &info->block_group_cache_tree);
3942 		RB_CLEAR_NODE(&block_group->cache_node);
3943 		spin_unlock(&info->block_group_cache_lock);
3944 
3945 		down_write(&block_group->space_info->groups_sem);
3946 		list_del(&block_group->list);
3947 		up_write(&block_group->space_info->groups_sem);
3948 
3949 		/*
3950 		 * We haven't cached this block group, which means we could
3951 		 * possibly have excluded extents on this block group.
3952 		 */
3953 		if (block_group->cached == BTRFS_CACHE_NO ||
3954 		    block_group->cached == BTRFS_CACHE_ERROR)
3955 			btrfs_free_excluded_extents(block_group);
3956 
3957 		btrfs_remove_free_space_cache(block_group);
3958 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3959 		ASSERT(list_empty(&block_group->dirty_list));
3960 		ASSERT(list_empty(&block_group->io_list));
3961 		ASSERT(list_empty(&block_group->bg_list));
3962 		ASSERT(refcount_read(&block_group->refs) == 1);
3963 		ASSERT(block_group->swap_extents == 0);
3964 		btrfs_put_block_group(block_group);
3965 
3966 		spin_lock(&info->block_group_cache_lock);
3967 	}
3968 	spin_unlock(&info->block_group_cache_lock);
3969 
3970 	btrfs_release_global_block_rsv(info);
3971 
3972 	while (!list_empty(&info->space_info)) {
3973 		space_info = list_entry(info->space_info.next,
3974 					struct btrfs_space_info,
3975 					list);
3976 
3977 		/*
3978 		 * Do not hide this behind enospc_debug, this is actually
3979 		 * important and indicates a real bug if this happens.
3980 		 */
3981 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3982 			    space_info->bytes_reserved > 0 ||
3983 			    space_info->bytes_may_use > 0))
3984 			btrfs_dump_space_info(info, space_info, 0, 0);
3985 		WARN_ON(space_info->reclaim_size > 0);
3986 		list_del(&space_info->list);
3987 		btrfs_sysfs_remove_space_info(space_info);
3988 	}
3989 	return 0;
3990 }
3991 
3992 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3993 {
3994 	atomic_inc(&cache->frozen);
3995 }
3996 
3997 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3998 {
3999 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4000 	struct extent_map_tree *em_tree;
4001 	struct extent_map *em;
4002 	bool cleanup;
4003 
4004 	spin_lock(&block_group->lock);
4005 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4006 		   block_group->removed);
4007 	spin_unlock(&block_group->lock);
4008 
4009 	if (cleanup) {
4010 		em_tree = &fs_info->mapping_tree;
4011 		write_lock(&em_tree->lock);
4012 		em = lookup_extent_mapping(em_tree, block_group->start,
4013 					   1);
4014 		BUG_ON(!em); /* logic error, can't happen */
4015 		remove_extent_mapping(em_tree, em);
4016 		write_unlock(&em_tree->lock);
4017 
4018 		/* once for us and once for the tree */
4019 		free_extent_map(em);
4020 		free_extent_map(em);
4021 
4022 		/*
4023 		 * We may have left one free space entry and other possible
4024 		 * tasks trimming this block group have left 1 entry each one.
4025 		 * Free them if any.
4026 		 */
4027 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
4028 	}
4029 }
4030 
4031 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4032 {
4033 	bool ret = true;
4034 
4035 	spin_lock(&bg->lock);
4036 	if (bg->ro)
4037 		ret = false;
4038 	else
4039 		bg->swap_extents++;
4040 	spin_unlock(&bg->lock);
4041 
4042 	return ret;
4043 }
4044 
4045 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4046 {
4047 	spin_lock(&bg->lock);
4048 	ASSERT(!bg->ro);
4049 	ASSERT(bg->swap_extents >= amount);
4050 	bg->swap_extents -= amount;
4051 	spin_unlock(&bg->lock);
4052 }
4053