xref: /openbmc/linux/fs/btrfs/block-group.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "disk-io.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 	u64 target = 0;
30 
31 	if (!bctl)
32 		return 0;
33 
34 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 	}
44 
45 	return target;
46 }
47 
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 	u64 num_devices = fs_info->fs_devices->rw_devices;
58 	u64 target;
59 	u64 raid_type;
60 	u64 allowed = 0;
61 
62 	/*
63 	 * See if restripe for this chunk_type is in progress, if so try to
64 	 * reduce to the target profile
65 	 */
66 	spin_lock(&fs_info->balance_lock);
67 	target = get_restripe_target(fs_info, flags);
68 	if (target) {
69 		/* Pick target profile only if it's already available */
70 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
71 			spin_unlock(&fs_info->balance_lock);
72 			return extended_to_chunk(target);
73 		}
74 	}
75 	spin_unlock(&fs_info->balance_lock);
76 
77 	/* First, mask out the RAID levels which aren't possible */
78 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
79 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
80 			allowed |= btrfs_raid_array[raid_type].bg_flag;
81 	}
82 	allowed &= flags;
83 
84 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
85 		allowed = BTRFS_BLOCK_GROUP_RAID6;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
87 		allowed = BTRFS_BLOCK_GROUP_RAID5;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
89 		allowed = BTRFS_BLOCK_GROUP_RAID10;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
91 		allowed = BTRFS_BLOCK_GROUP_RAID1;
92 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
93 		allowed = BTRFS_BLOCK_GROUP_RAID0;
94 
95 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
96 
97 	return extended_to_chunk(flags | allowed);
98 }
99 
100 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
101 {
102 	unsigned seq;
103 	u64 flags;
104 
105 	do {
106 		flags = orig_flags;
107 		seq = read_seqbegin(&fs_info->profiles_lock);
108 
109 		if (flags & BTRFS_BLOCK_GROUP_DATA)
110 			flags |= fs_info->avail_data_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
112 			flags |= fs_info->avail_system_alloc_bits;
113 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
114 			flags |= fs_info->avail_metadata_alloc_bits;
115 	} while (read_seqretry(&fs_info->profiles_lock, seq));
116 
117 	return btrfs_reduce_alloc_profile(fs_info, flags);
118 }
119 
120 void btrfs_get_block_group(struct btrfs_block_group *cache)
121 {
122 	atomic_inc(&cache->count);
123 }
124 
125 void btrfs_put_block_group(struct btrfs_block_group *cache)
126 {
127 	if (atomic_dec_and_test(&cache->count)) {
128 		WARN_ON(cache->pinned > 0);
129 		WARN_ON(cache->reserved > 0);
130 
131 		/*
132 		 * A block_group shouldn't be on the discard_list anymore.
133 		 * Remove the block_group from the discard_list to prevent us
134 		 * from causing a panic due to NULL pointer dereference.
135 		 */
136 		if (WARN_ON(!list_empty(&cache->discard_list)))
137 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
138 						  cache);
139 
140 		/*
141 		 * If not empty, someone is still holding mutex of
142 		 * full_stripe_lock, which can only be released by caller.
143 		 * And it will definitely cause use-after-free when caller
144 		 * tries to release full stripe lock.
145 		 *
146 		 * No better way to resolve, but only to warn.
147 		 */
148 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
149 		kfree(cache->free_space_ctl);
150 		kfree(cache);
151 	}
152 }
153 
154 /*
155  * This adds the block group to the fs_info rb tree for the block group cache
156  */
157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
158 				       struct btrfs_block_group *block_group)
159 {
160 	struct rb_node **p;
161 	struct rb_node *parent = NULL;
162 	struct btrfs_block_group *cache;
163 
164 	spin_lock(&info->block_group_cache_lock);
165 	p = &info->block_group_cache_tree.rb_node;
166 
167 	while (*p) {
168 		parent = *p;
169 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
170 		if (block_group->start < cache->start) {
171 			p = &(*p)->rb_left;
172 		} else if (block_group->start > cache->start) {
173 			p = &(*p)->rb_right;
174 		} else {
175 			spin_unlock(&info->block_group_cache_lock);
176 			return -EEXIST;
177 		}
178 	}
179 
180 	rb_link_node(&block_group->cache_node, parent, p);
181 	rb_insert_color(&block_group->cache_node,
182 			&info->block_group_cache_tree);
183 
184 	if (info->first_logical_byte > block_group->start)
185 		info->first_logical_byte = block_group->start;
186 
187 	spin_unlock(&info->block_group_cache_lock);
188 
189 	return 0;
190 }
191 
192 /*
193  * This will return the block group at or after bytenr if contains is 0, else
194  * it will return the block group that contains the bytenr
195  */
196 static struct btrfs_block_group *block_group_cache_tree_search(
197 		struct btrfs_fs_info *info, u64 bytenr, int contains)
198 {
199 	struct btrfs_block_group *cache, *ret = NULL;
200 	struct rb_node *n;
201 	u64 end, start;
202 
203 	spin_lock(&info->block_group_cache_lock);
204 	n = info->block_group_cache_tree.rb_node;
205 
206 	while (n) {
207 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
208 		end = cache->start + cache->length - 1;
209 		start = cache->start;
210 
211 		if (bytenr < start) {
212 			if (!contains && (!ret || start < ret->start))
213 				ret = cache;
214 			n = n->rb_left;
215 		} else if (bytenr > start) {
216 			if (contains && bytenr <= end) {
217 				ret = cache;
218 				break;
219 			}
220 			n = n->rb_right;
221 		} else {
222 			ret = cache;
223 			break;
224 		}
225 	}
226 	if (ret) {
227 		btrfs_get_block_group(ret);
228 		if (bytenr == 0 && info->first_logical_byte > ret->start)
229 			info->first_logical_byte = ret->start;
230 	}
231 	spin_unlock(&info->block_group_cache_lock);
232 
233 	return ret;
234 }
235 
236 /*
237  * Return the block group that starts at or after bytenr
238  */
239 struct btrfs_block_group *btrfs_lookup_first_block_group(
240 		struct btrfs_fs_info *info, u64 bytenr)
241 {
242 	return block_group_cache_tree_search(info, bytenr, 0);
243 }
244 
245 /*
246  * Return the block group that contains the given bytenr
247  */
248 struct btrfs_block_group *btrfs_lookup_block_group(
249 		struct btrfs_fs_info *info, u64 bytenr)
250 {
251 	return block_group_cache_tree_search(info, bytenr, 1);
252 }
253 
254 struct btrfs_block_group *btrfs_next_block_group(
255 		struct btrfs_block_group *cache)
256 {
257 	struct btrfs_fs_info *fs_info = cache->fs_info;
258 	struct rb_node *node;
259 
260 	spin_lock(&fs_info->block_group_cache_lock);
261 
262 	/* If our block group was removed, we need a full search. */
263 	if (RB_EMPTY_NODE(&cache->cache_node)) {
264 		const u64 next_bytenr = cache->start + cache->length;
265 
266 		spin_unlock(&fs_info->block_group_cache_lock);
267 		btrfs_put_block_group(cache);
268 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
269 	}
270 	node = rb_next(&cache->cache_node);
271 	btrfs_put_block_group(cache);
272 	if (node) {
273 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
274 		btrfs_get_block_group(cache);
275 	} else
276 		cache = NULL;
277 	spin_unlock(&fs_info->block_group_cache_lock);
278 	return cache;
279 }
280 
281 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
282 {
283 	struct btrfs_block_group *bg;
284 	bool ret = true;
285 
286 	bg = btrfs_lookup_block_group(fs_info, bytenr);
287 	if (!bg)
288 		return false;
289 
290 	spin_lock(&bg->lock);
291 	if (bg->ro)
292 		ret = false;
293 	else
294 		atomic_inc(&bg->nocow_writers);
295 	spin_unlock(&bg->lock);
296 
297 	/* No put on block group, done by btrfs_dec_nocow_writers */
298 	if (!ret)
299 		btrfs_put_block_group(bg);
300 
301 	return ret;
302 }
303 
304 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
305 {
306 	struct btrfs_block_group *bg;
307 
308 	bg = btrfs_lookup_block_group(fs_info, bytenr);
309 	ASSERT(bg);
310 	if (atomic_dec_and_test(&bg->nocow_writers))
311 		wake_up_var(&bg->nocow_writers);
312 	/*
313 	 * Once for our lookup and once for the lookup done by a previous call
314 	 * to btrfs_inc_nocow_writers()
315 	 */
316 	btrfs_put_block_group(bg);
317 	btrfs_put_block_group(bg);
318 }
319 
320 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
321 {
322 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
323 }
324 
325 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
326 					const u64 start)
327 {
328 	struct btrfs_block_group *bg;
329 
330 	bg = btrfs_lookup_block_group(fs_info, start);
331 	ASSERT(bg);
332 	if (atomic_dec_and_test(&bg->reservations))
333 		wake_up_var(&bg->reservations);
334 	btrfs_put_block_group(bg);
335 }
336 
337 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
338 {
339 	struct btrfs_space_info *space_info = bg->space_info;
340 
341 	ASSERT(bg->ro);
342 
343 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
344 		return;
345 
346 	/*
347 	 * Our block group is read only but before we set it to read only,
348 	 * some task might have had allocated an extent from it already, but it
349 	 * has not yet created a respective ordered extent (and added it to a
350 	 * root's list of ordered extents).
351 	 * Therefore wait for any task currently allocating extents, since the
352 	 * block group's reservations counter is incremented while a read lock
353 	 * on the groups' semaphore is held and decremented after releasing
354 	 * the read access on that semaphore and creating the ordered extent.
355 	 */
356 	down_write(&space_info->groups_sem);
357 	up_write(&space_info->groups_sem);
358 
359 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
360 }
361 
362 struct btrfs_caching_control *btrfs_get_caching_control(
363 		struct btrfs_block_group *cache)
364 {
365 	struct btrfs_caching_control *ctl;
366 
367 	spin_lock(&cache->lock);
368 	if (!cache->caching_ctl) {
369 		spin_unlock(&cache->lock);
370 		return NULL;
371 	}
372 
373 	ctl = cache->caching_ctl;
374 	refcount_inc(&ctl->count);
375 	spin_unlock(&cache->lock);
376 	return ctl;
377 }
378 
379 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
380 {
381 	if (refcount_dec_and_test(&ctl->count))
382 		kfree(ctl);
383 }
384 
385 /*
386  * When we wait for progress in the block group caching, its because our
387  * allocation attempt failed at least once.  So, we must sleep and let some
388  * progress happen before we try again.
389  *
390  * This function will sleep at least once waiting for new free space to show
391  * up, and then it will check the block group free space numbers for our min
392  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
393  * a free extent of a given size, but this is a good start.
394  *
395  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
396  * any of the information in this block group.
397  */
398 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
399 					   u64 num_bytes)
400 {
401 	struct btrfs_caching_control *caching_ctl;
402 
403 	caching_ctl = btrfs_get_caching_control(cache);
404 	if (!caching_ctl)
405 		return;
406 
407 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
408 		   (cache->free_space_ctl->free_space >= num_bytes));
409 
410 	btrfs_put_caching_control(caching_ctl);
411 }
412 
413 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
414 {
415 	struct btrfs_caching_control *caching_ctl;
416 	int ret = 0;
417 
418 	caching_ctl = btrfs_get_caching_control(cache);
419 	if (!caching_ctl)
420 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
421 
422 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
423 	if (cache->cached == BTRFS_CACHE_ERROR)
424 		ret = -EIO;
425 	btrfs_put_caching_control(caching_ctl);
426 	return ret;
427 }
428 
429 #ifdef CONFIG_BTRFS_DEBUG
430 static void fragment_free_space(struct btrfs_block_group *block_group)
431 {
432 	struct btrfs_fs_info *fs_info = block_group->fs_info;
433 	u64 start = block_group->start;
434 	u64 len = block_group->length;
435 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
436 		fs_info->nodesize : fs_info->sectorsize;
437 	u64 step = chunk << 1;
438 
439 	while (len > chunk) {
440 		btrfs_remove_free_space(block_group, start, chunk);
441 		start += step;
442 		if (len < step)
443 			len = 0;
444 		else
445 			len -= step;
446 	}
447 }
448 #endif
449 
450 /*
451  * This is only called by btrfs_cache_block_group, since we could have freed
452  * extents we need to check the pinned_extents for any extents that can't be
453  * used yet since their free space will be released as soon as the transaction
454  * commits.
455  */
456 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
457 {
458 	struct btrfs_fs_info *info = block_group->fs_info;
459 	u64 extent_start, extent_end, size, total_added = 0;
460 	int ret;
461 
462 	while (start < end) {
463 		ret = find_first_extent_bit(info->pinned_extents, start,
464 					    &extent_start, &extent_end,
465 					    EXTENT_DIRTY | EXTENT_UPTODATE,
466 					    NULL);
467 		if (ret)
468 			break;
469 
470 		if (extent_start <= start) {
471 			start = extent_end + 1;
472 		} else if (extent_start > start && extent_start < end) {
473 			size = extent_start - start;
474 			total_added += size;
475 			ret = btrfs_add_free_space_async_trimmed(block_group,
476 								 start, size);
477 			BUG_ON(ret); /* -ENOMEM or logic error */
478 			start = extent_end + 1;
479 		} else {
480 			break;
481 		}
482 	}
483 
484 	if (start < end) {
485 		size = end - start;
486 		total_added += size;
487 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
488 							 size);
489 		BUG_ON(ret); /* -ENOMEM or logic error */
490 	}
491 
492 	return total_added;
493 }
494 
495 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
496 {
497 	struct btrfs_block_group *block_group = caching_ctl->block_group;
498 	struct btrfs_fs_info *fs_info = block_group->fs_info;
499 	struct btrfs_root *extent_root = fs_info->extent_root;
500 	struct btrfs_path *path;
501 	struct extent_buffer *leaf;
502 	struct btrfs_key key;
503 	u64 total_found = 0;
504 	u64 last = 0;
505 	u32 nritems;
506 	int ret;
507 	bool wakeup = true;
508 
509 	path = btrfs_alloc_path();
510 	if (!path)
511 		return -ENOMEM;
512 
513 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
514 
515 #ifdef CONFIG_BTRFS_DEBUG
516 	/*
517 	 * If we're fragmenting we don't want to make anybody think we can
518 	 * allocate from this block group until we've had a chance to fragment
519 	 * the free space.
520 	 */
521 	if (btrfs_should_fragment_free_space(block_group))
522 		wakeup = false;
523 #endif
524 	/*
525 	 * We don't want to deadlock with somebody trying to allocate a new
526 	 * extent for the extent root while also trying to search the extent
527 	 * root to add free space.  So we skip locking and search the commit
528 	 * root, since its read-only
529 	 */
530 	path->skip_locking = 1;
531 	path->search_commit_root = 1;
532 	path->reada = READA_FORWARD;
533 
534 	key.objectid = last;
535 	key.offset = 0;
536 	key.type = BTRFS_EXTENT_ITEM_KEY;
537 
538 next:
539 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
540 	if (ret < 0)
541 		goto out;
542 
543 	leaf = path->nodes[0];
544 	nritems = btrfs_header_nritems(leaf);
545 
546 	while (1) {
547 		if (btrfs_fs_closing(fs_info) > 1) {
548 			last = (u64)-1;
549 			break;
550 		}
551 
552 		if (path->slots[0] < nritems) {
553 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
554 		} else {
555 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
556 			if (ret)
557 				break;
558 
559 			if (need_resched() ||
560 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
561 				if (wakeup)
562 					caching_ctl->progress = last;
563 				btrfs_release_path(path);
564 				up_read(&fs_info->commit_root_sem);
565 				mutex_unlock(&caching_ctl->mutex);
566 				cond_resched();
567 				mutex_lock(&caching_ctl->mutex);
568 				down_read(&fs_info->commit_root_sem);
569 				goto next;
570 			}
571 
572 			ret = btrfs_next_leaf(extent_root, path);
573 			if (ret < 0)
574 				goto out;
575 			if (ret)
576 				break;
577 			leaf = path->nodes[0];
578 			nritems = btrfs_header_nritems(leaf);
579 			continue;
580 		}
581 
582 		if (key.objectid < last) {
583 			key.objectid = last;
584 			key.offset = 0;
585 			key.type = BTRFS_EXTENT_ITEM_KEY;
586 
587 			if (wakeup)
588 				caching_ctl->progress = last;
589 			btrfs_release_path(path);
590 			goto next;
591 		}
592 
593 		if (key.objectid < block_group->start) {
594 			path->slots[0]++;
595 			continue;
596 		}
597 
598 		if (key.objectid >= block_group->start + block_group->length)
599 			break;
600 
601 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
602 		    key.type == BTRFS_METADATA_ITEM_KEY) {
603 			total_found += add_new_free_space(block_group, last,
604 							  key.objectid);
605 			if (key.type == BTRFS_METADATA_ITEM_KEY)
606 				last = key.objectid +
607 					fs_info->nodesize;
608 			else
609 				last = key.objectid + key.offset;
610 
611 			if (total_found > CACHING_CTL_WAKE_UP) {
612 				total_found = 0;
613 				if (wakeup)
614 					wake_up(&caching_ctl->wait);
615 			}
616 		}
617 		path->slots[0]++;
618 	}
619 	ret = 0;
620 
621 	total_found += add_new_free_space(block_group, last,
622 				block_group->start + block_group->length);
623 	caching_ctl->progress = (u64)-1;
624 
625 out:
626 	btrfs_free_path(path);
627 	return ret;
628 }
629 
630 static noinline void caching_thread(struct btrfs_work *work)
631 {
632 	struct btrfs_block_group *block_group;
633 	struct btrfs_fs_info *fs_info;
634 	struct btrfs_caching_control *caching_ctl;
635 	int ret;
636 
637 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
638 	block_group = caching_ctl->block_group;
639 	fs_info = block_group->fs_info;
640 
641 	mutex_lock(&caching_ctl->mutex);
642 	down_read(&fs_info->commit_root_sem);
643 
644 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
645 		ret = load_free_space_tree(caching_ctl);
646 	else
647 		ret = load_extent_tree_free(caching_ctl);
648 
649 	spin_lock(&block_group->lock);
650 	block_group->caching_ctl = NULL;
651 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
652 	spin_unlock(&block_group->lock);
653 
654 #ifdef CONFIG_BTRFS_DEBUG
655 	if (btrfs_should_fragment_free_space(block_group)) {
656 		u64 bytes_used;
657 
658 		spin_lock(&block_group->space_info->lock);
659 		spin_lock(&block_group->lock);
660 		bytes_used = block_group->length - block_group->used;
661 		block_group->space_info->bytes_used += bytes_used >> 1;
662 		spin_unlock(&block_group->lock);
663 		spin_unlock(&block_group->space_info->lock);
664 		fragment_free_space(block_group);
665 	}
666 #endif
667 
668 	caching_ctl->progress = (u64)-1;
669 
670 	up_read(&fs_info->commit_root_sem);
671 	btrfs_free_excluded_extents(block_group);
672 	mutex_unlock(&caching_ctl->mutex);
673 
674 	wake_up(&caching_ctl->wait);
675 
676 	btrfs_put_caching_control(caching_ctl);
677 	btrfs_put_block_group(block_group);
678 }
679 
680 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
681 {
682 	DEFINE_WAIT(wait);
683 	struct btrfs_fs_info *fs_info = cache->fs_info;
684 	struct btrfs_caching_control *caching_ctl;
685 	int ret = 0;
686 
687 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
688 	if (!caching_ctl)
689 		return -ENOMEM;
690 
691 	INIT_LIST_HEAD(&caching_ctl->list);
692 	mutex_init(&caching_ctl->mutex);
693 	init_waitqueue_head(&caching_ctl->wait);
694 	caching_ctl->block_group = cache;
695 	caching_ctl->progress = cache->start;
696 	refcount_set(&caching_ctl->count, 1);
697 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
698 
699 	spin_lock(&cache->lock);
700 	/*
701 	 * This should be a rare occasion, but this could happen I think in the
702 	 * case where one thread starts to load the space cache info, and then
703 	 * some other thread starts a transaction commit which tries to do an
704 	 * allocation while the other thread is still loading the space cache
705 	 * info.  The previous loop should have kept us from choosing this block
706 	 * group, but if we've moved to the state where we will wait on caching
707 	 * block groups we need to first check if we're doing a fast load here,
708 	 * so we can wait for it to finish, otherwise we could end up allocating
709 	 * from a block group who's cache gets evicted for one reason or
710 	 * another.
711 	 */
712 	while (cache->cached == BTRFS_CACHE_FAST) {
713 		struct btrfs_caching_control *ctl;
714 
715 		ctl = cache->caching_ctl;
716 		refcount_inc(&ctl->count);
717 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
718 		spin_unlock(&cache->lock);
719 
720 		schedule();
721 
722 		finish_wait(&ctl->wait, &wait);
723 		btrfs_put_caching_control(ctl);
724 		spin_lock(&cache->lock);
725 	}
726 
727 	if (cache->cached != BTRFS_CACHE_NO) {
728 		spin_unlock(&cache->lock);
729 		kfree(caching_ctl);
730 		return 0;
731 	}
732 	WARN_ON(cache->caching_ctl);
733 	cache->caching_ctl = caching_ctl;
734 	cache->cached = BTRFS_CACHE_FAST;
735 	spin_unlock(&cache->lock);
736 
737 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
738 		mutex_lock(&caching_ctl->mutex);
739 		ret = load_free_space_cache(cache);
740 
741 		spin_lock(&cache->lock);
742 		if (ret == 1) {
743 			cache->caching_ctl = NULL;
744 			cache->cached = BTRFS_CACHE_FINISHED;
745 			cache->last_byte_to_unpin = (u64)-1;
746 			caching_ctl->progress = (u64)-1;
747 		} else {
748 			if (load_cache_only) {
749 				cache->caching_ctl = NULL;
750 				cache->cached = BTRFS_CACHE_NO;
751 			} else {
752 				cache->cached = BTRFS_CACHE_STARTED;
753 				cache->has_caching_ctl = 1;
754 			}
755 		}
756 		spin_unlock(&cache->lock);
757 #ifdef CONFIG_BTRFS_DEBUG
758 		if (ret == 1 &&
759 		    btrfs_should_fragment_free_space(cache)) {
760 			u64 bytes_used;
761 
762 			spin_lock(&cache->space_info->lock);
763 			spin_lock(&cache->lock);
764 			bytes_used = cache->length - cache->used;
765 			cache->space_info->bytes_used += bytes_used >> 1;
766 			spin_unlock(&cache->lock);
767 			spin_unlock(&cache->space_info->lock);
768 			fragment_free_space(cache);
769 		}
770 #endif
771 		mutex_unlock(&caching_ctl->mutex);
772 
773 		wake_up(&caching_ctl->wait);
774 		if (ret == 1) {
775 			btrfs_put_caching_control(caching_ctl);
776 			btrfs_free_excluded_extents(cache);
777 			return 0;
778 		}
779 	} else {
780 		/*
781 		 * We're either using the free space tree or no caching at all.
782 		 * Set cached to the appropriate value and wakeup any waiters.
783 		 */
784 		spin_lock(&cache->lock);
785 		if (load_cache_only) {
786 			cache->caching_ctl = NULL;
787 			cache->cached = BTRFS_CACHE_NO;
788 		} else {
789 			cache->cached = BTRFS_CACHE_STARTED;
790 			cache->has_caching_ctl = 1;
791 		}
792 		spin_unlock(&cache->lock);
793 		wake_up(&caching_ctl->wait);
794 	}
795 
796 	if (load_cache_only) {
797 		btrfs_put_caching_control(caching_ctl);
798 		return 0;
799 	}
800 
801 	down_write(&fs_info->commit_root_sem);
802 	refcount_inc(&caching_ctl->count);
803 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
804 	up_write(&fs_info->commit_root_sem);
805 
806 	btrfs_get_block_group(cache);
807 
808 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
809 
810 	return ret;
811 }
812 
813 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
814 {
815 	u64 extra_flags = chunk_to_extended(flags) &
816 				BTRFS_EXTENDED_PROFILE_MASK;
817 
818 	write_seqlock(&fs_info->profiles_lock);
819 	if (flags & BTRFS_BLOCK_GROUP_DATA)
820 		fs_info->avail_data_alloc_bits &= ~extra_flags;
821 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
822 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
823 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
824 		fs_info->avail_system_alloc_bits &= ~extra_flags;
825 	write_sequnlock(&fs_info->profiles_lock);
826 }
827 
828 /*
829  * Clear incompat bits for the following feature(s):
830  *
831  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
832  *            in the whole filesystem
833  *
834  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
835  */
836 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
837 {
838 	bool found_raid56 = false;
839 	bool found_raid1c34 = false;
840 
841 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
842 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
843 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
844 		struct list_head *head = &fs_info->space_info;
845 		struct btrfs_space_info *sinfo;
846 
847 		list_for_each_entry_rcu(sinfo, head, list) {
848 			down_read(&sinfo->groups_sem);
849 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
850 				found_raid56 = true;
851 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
852 				found_raid56 = true;
853 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
854 				found_raid1c34 = true;
855 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
856 				found_raid1c34 = true;
857 			up_read(&sinfo->groups_sem);
858 		}
859 		if (found_raid56)
860 			btrfs_clear_fs_incompat(fs_info, RAID56);
861 		if (found_raid1c34)
862 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
863 	}
864 }
865 
866 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
867 			     u64 group_start, struct extent_map *em)
868 {
869 	struct btrfs_fs_info *fs_info = trans->fs_info;
870 	struct btrfs_root *root = fs_info->extent_root;
871 	struct btrfs_path *path;
872 	struct btrfs_block_group *block_group;
873 	struct btrfs_free_cluster *cluster;
874 	struct btrfs_root *tree_root = fs_info->tree_root;
875 	struct btrfs_key key;
876 	struct inode *inode;
877 	struct kobject *kobj = NULL;
878 	int ret;
879 	int index;
880 	int factor;
881 	struct btrfs_caching_control *caching_ctl = NULL;
882 	bool remove_em;
883 	bool remove_rsv = false;
884 
885 	block_group = btrfs_lookup_block_group(fs_info, group_start);
886 	BUG_ON(!block_group);
887 	BUG_ON(!block_group->ro);
888 
889 	trace_btrfs_remove_block_group(block_group);
890 	/*
891 	 * Free the reserved super bytes from this block group before
892 	 * remove it.
893 	 */
894 	btrfs_free_excluded_extents(block_group);
895 	btrfs_free_ref_tree_range(fs_info, block_group->start,
896 				  block_group->length);
897 
898 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
899 	factor = btrfs_bg_type_to_factor(block_group->flags);
900 
901 	/* make sure this block group isn't part of an allocation cluster */
902 	cluster = &fs_info->data_alloc_cluster;
903 	spin_lock(&cluster->refill_lock);
904 	btrfs_return_cluster_to_free_space(block_group, cluster);
905 	spin_unlock(&cluster->refill_lock);
906 
907 	/*
908 	 * make sure this block group isn't part of a metadata
909 	 * allocation cluster
910 	 */
911 	cluster = &fs_info->meta_alloc_cluster;
912 	spin_lock(&cluster->refill_lock);
913 	btrfs_return_cluster_to_free_space(block_group, cluster);
914 	spin_unlock(&cluster->refill_lock);
915 
916 	path = btrfs_alloc_path();
917 	if (!path) {
918 		ret = -ENOMEM;
919 		goto out;
920 	}
921 
922 	/*
923 	 * get the inode first so any iput calls done for the io_list
924 	 * aren't the final iput (no unlinks allowed now)
925 	 */
926 	inode = lookup_free_space_inode(block_group, path);
927 
928 	mutex_lock(&trans->transaction->cache_write_mutex);
929 	/*
930 	 * Make sure our free space cache IO is done before removing the
931 	 * free space inode
932 	 */
933 	spin_lock(&trans->transaction->dirty_bgs_lock);
934 	if (!list_empty(&block_group->io_list)) {
935 		list_del_init(&block_group->io_list);
936 
937 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
938 
939 		spin_unlock(&trans->transaction->dirty_bgs_lock);
940 		btrfs_wait_cache_io(trans, block_group, path);
941 		btrfs_put_block_group(block_group);
942 		spin_lock(&trans->transaction->dirty_bgs_lock);
943 	}
944 
945 	if (!list_empty(&block_group->dirty_list)) {
946 		list_del_init(&block_group->dirty_list);
947 		remove_rsv = true;
948 		btrfs_put_block_group(block_group);
949 	}
950 	spin_unlock(&trans->transaction->dirty_bgs_lock);
951 	mutex_unlock(&trans->transaction->cache_write_mutex);
952 
953 	if (!IS_ERR(inode)) {
954 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
955 		if (ret) {
956 			btrfs_add_delayed_iput(inode);
957 			goto out;
958 		}
959 		clear_nlink(inode);
960 		/* One for the block groups ref */
961 		spin_lock(&block_group->lock);
962 		if (block_group->iref) {
963 			block_group->iref = 0;
964 			block_group->inode = NULL;
965 			spin_unlock(&block_group->lock);
966 			iput(inode);
967 		} else {
968 			spin_unlock(&block_group->lock);
969 		}
970 		/* One for our lookup ref */
971 		btrfs_add_delayed_iput(inode);
972 	}
973 
974 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
975 	key.type = 0;
976 	key.offset = block_group->start;
977 
978 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
979 	if (ret < 0)
980 		goto out;
981 	if (ret > 0)
982 		btrfs_release_path(path);
983 	if (ret == 0) {
984 		ret = btrfs_del_item(trans, tree_root, path);
985 		if (ret)
986 			goto out;
987 		btrfs_release_path(path);
988 	}
989 
990 	spin_lock(&fs_info->block_group_cache_lock);
991 	rb_erase(&block_group->cache_node,
992 		 &fs_info->block_group_cache_tree);
993 	RB_CLEAR_NODE(&block_group->cache_node);
994 
995 	if (fs_info->first_logical_byte == block_group->start)
996 		fs_info->first_logical_byte = (u64)-1;
997 	spin_unlock(&fs_info->block_group_cache_lock);
998 
999 	down_write(&block_group->space_info->groups_sem);
1000 	/*
1001 	 * we must use list_del_init so people can check to see if they
1002 	 * are still on the list after taking the semaphore
1003 	 */
1004 	list_del_init(&block_group->list);
1005 	if (list_empty(&block_group->space_info->block_groups[index])) {
1006 		kobj = block_group->space_info->block_group_kobjs[index];
1007 		block_group->space_info->block_group_kobjs[index] = NULL;
1008 		clear_avail_alloc_bits(fs_info, block_group->flags);
1009 	}
1010 	up_write(&block_group->space_info->groups_sem);
1011 	clear_incompat_bg_bits(fs_info, block_group->flags);
1012 	if (kobj) {
1013 		kobject_del(kobj);
1014 		kobject_put(kobj);
1015 	}
1016 
1017 	if (block_group->has_caching_ctl)
1018 		caching_ctl = btrfs_get_caching_control(block_group);
1019 	if (block_group->cached == BTRFS_CACHE_STARTED)
1020 		btrfs_wait_block_group_cache_done(block_group);
1021 	if (block_group->has_caching_ctl) {
1022 		down_write(&fs_info->commit_root_sem);
1023 		if (!caching_ctl) {
1024 			struct btrfs_caching_control *ctl;
1025 
1026 			list_for_each_entry(ctl,
1027 				    &fs_info->caching_block_groups, list)
1028 				if (ctl->block_group == block_group) {
1029 					caching_ctl = ctl;
1030 					refcount_inc(&caching_ctl->count);
1031 					break;
1032 				}
1033 		}
1034 		if (caching_ctl)
1035 			list_del_init(&caching_ctl->list);
1036 		up_write(&fs_info->commit_root_sem);
1037 		if (caching_ctl) {
1038 			/* Once for the caching bgs list and once for us. */
1039 			btrfs_put_caching_control(caching_ctl);
1040 			btrfs_put_caching_control(caching_ctl);
1041 		}
1042 	}
1043 
1044 	spin_lock(&trans->transaction->dirty_bgs_lock);
1045 	WARN_ON(!list_empty(&block_group->dirty_list));
1046 	WARN_ON(!list_empty(&block_group->io_list));
1047 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1048 
1049 	btrfs_remove_free_space_cache(block_group);
1050 
1051 	spin_lock(&block_group->space_info->lock);
1052 	list_del_init(&block_group->ro_list);
1053 
1054 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1055 		WARN_ON(block_group->space_info->total_bytes
1056 			< block_group->length);
1057 		WARN_ON(block_group->space_info->bytes_readonly
1058 			< block_group->length);
1059 		WARN_ON(block_group->space_info->disk_total
1060 			< block_group->length * factor);
1061 	}
1062 	block_group->space_info->total_bytes -= block_group->length;
1063 	block_group->space_info->bytes_readonly -= block_group->length;
1064 	block_group->space_info->disk_total -= block_group->length * factor;
1065 
1066 	spin_unlock(&block_group->space_info->lock);
1067 
1068 	key.objectid = block_group->start;
1069 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1070 	key.offset = block_group->length;
1071 
1072 	mutex_lock(&fs_info->chunk_mutex);
1073 	spin_lock(&block_group->lock);
1074 	block_group->removed = 1;
1075 	/*
1076 	 * At this point trimming can't start on this block group, because we
1077 	 * removed the block group from the tree fs_info->block_group_cache_tree
1078 	 * so no one can't find it anymore and even if someone already got this
1079 	 * block group before we removed it from the rbtree, they have already
1080 	 * incremented block_group->trimming - if they didn't, they won't find
1081 	 * any free space entries because we already removed them all when we
1082 	 * called btrfs_remove_free_space_cache().
1083 	 *
1084 	 * And we must not remove the extent map from the fs_info->mapping_tree
1085 	 * to prevent the same logical address range and physical device space
1086 	 * ranges from being reused for a new block group. This is because our
1087 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1088 	 * completely transactionless, so while it is trimming a range the
1089 	 * currently running transaction might finish and a new one start,
1090 	 * allowing for new block groups to be created that can reuse the same
1091 	 * physical device locations unless we take this special care.
1092 	 *
1093 	 * There may also be an implicit trim operation if the file system
1094 	 * is mounted with -odiscard. The same protections must remain
1095 	 * in place until the extents have been discarded completely when
1096 	 * the transaction commit has completed.
1097 	 */
1098 	remove_em = (atomic_read(&block_group->trimming) == 0);
1099 	spin_unlock(&block_group->lock);
1100 
1101 	mutex_unlock(&fs_info->chunk_mutex);
1102 
1103 	ret = remove_block_group_free_space(trans, block_group);
1104 	if (ret)
1105 		goto out;
1106 
1107 	btrfs_put_block_group(block_group);
1108 	btrfs_put_block_group(block_group);
1109 
1110 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 	if (ret > 0)
1112 		ret = -EIO;
1113 	if (ret < 0)
1114 		goto out;
1115 
1116 	ret = btrfs_del_item(trans, root, path);
1117 	if (ret)
1118 		goto out;
1119 
1120 	if (remove_em) {
1121 		struct extent_map_tree *em_tree;
1122 
1123 		em_tree = &fs_info->mapping_tree;
1124 		write_lock(&em_tree->lock);
1125 		remove_extent_mapping(em_tree, em);
1126 		write_unlock(&em_tree->lock);
1127 		/* once for the tree */
1128 		free_extent_map(em);
1129 	}
1130 out:
1131 	if (remove_rsv)
1132 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1133 	btrfs_free_path(path);
1134 	return ret;
1135 }
1136 
1137 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1138 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1139 {
1140 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1141 	struct extent_map *em;
1142 	struct map_lookup *map;
1143 	unsigned int num_items;
1144 
1145 	read_lock(&em_tree->lock);
1146 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1147 	read_unlock(&em_tree->lock);
1148 	ASSERT(em && em->start == chunk_offset);
1149 
1150 	/*
1151 	 * We need to reserve 3 + N units from the metadata space info in order
1152 	 * to remove a block group (done at btrfs_remove_chunk() and at
1153 	 * btrfs_remove_block_group()), which are used for:
1154 	 *
1155 	 * 1 unit for adding the free space inode's orphan (located in the tree
1156 	 * of tree roots).
1157 	 * 1 unit for deleting the block group item (located in the extent
1158 	 * tree).
1159 	 * 1 unit for deleting the free space item (located in tree of tree
1160 	 * roots).
1161 	 * N units for deleting N device extent items corresponding to each
1162 	 * stripe (located in the device tree).
1163 	 *
1164 	 * In order to remove a block group we also need to reserve units in the
1165 	 * system space info in order to update the chunk tree (update one or
1166 	 * more device items and remove one chunk item), but this is done at
1167 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1168 	 */
1169 	map = em->map_lookup;
1170 	num_items = 3 + map->num_stripes;
1171 	free_extent_map(em);
1172 
1173 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1174 							   num_items, 1);
1175 }
1176 
1177 /*
1178  * Mark block group @cache read-only, so later write won't happen to block
1179  * group @cache.
1180  *
1181  * If @force is not set, this function will only mark the block group readonly
1182  * if we have enough free space (1M) in other metadata/system block groups.
1183  * If @force is not set, this function will mark the block group readonly
1184  * without checking free space.
1185  *
1186  * NOTE: This function doesn't care if other block groups can contain all the
1187  * data in this block group. That check should be done by relocation routine,
1188  * not this function.
1189  */
1190 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1191 {
1192 	struct btrfs_space_info *sinfo = cache->space_info;
1193 	u64 num_bytes;
1194 	int ret = -ENOSPC;
1195 
1196 	spin_lock(&sinfo->lock);
1197 	spin_lock(&cache->lock);
1198 
1199 	if (cache->ro) {
1200 		cache->ro++;
1201 		ret = 0;
1202 		goto out;
1203 	}
1204 
1205 	num_bytes = cache->length - cache->reserved - cache->pinned -
1206 		    cache->bytes_super - cache->used;
1207 
1208 	/*
1209 	 * Data never overcommits, even in mixed mode, so do just the straight
1210 	 * check of left over space in how much we have allocated.
1211 	 */
1212 	if (force) {
1213 		ret = 0;
1214 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1215 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1216 
1217 		/*
1218 		 * Here we make sure if we mark this bg RO, we still have enough
1219 		 * free space as buffer.
1220 		 */
1221 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1222 			ret = 0;
1223 	} else {
1224 		/*
1225 		 * We overcommit metadata, so we need to do the
1226 		 * btrfs_can_overcommit check here, and we need to pass in
1227 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1228 		 * leeway to allow us to mark this block group as read only.
1229 		 */
1230 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1231 					 BTRFS_RESERVE_NO_FLUSH))
1232 			ret = 0;
1233 	}
1234 
1235 	if (!ret) {
1236 		sinfo->bytes_readonly += num_bytes;
1237 		cache->ro++;
1238 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1239 	}
1240 out:
1241 	spin_unlock(&cache->lock);
1242 	spin_unlock(&sinfo->lock);
1243 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1244 		btrfs_info(cache->fs_info,
1245 			"unable to make block group %llu ro", cache->start);
1246 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1247 	}
1248 	return ret;
1249 }
1250 
1251 /*
1252  * Process the unused_bgs list and remove any that don't have any allocated
1253  * space inside of them.
1254  */
1255 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1256 {
1257 	struct btrfs_block_group *block_group;
1258 	struct btrfs_space_info *space_info;
1259 	struct btrfs_trans_handle *trans;
1260 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1261 	int ret = 0;
1262 
1263 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1264 		return;
1265 
1266 	spin_lock(&fs_info->unused_bgs_lock);
1267 	while (!list_empty(&fs_info->unused_bgs)) {
1268 		u64 start, end;
1269 		int trimming;
1270 
1271 		block_group = list_first_entry(&fs_info->unused_bgs,
1272 					       struct btrfs_block_group,
1273 					       bg_list);
1274 		list_del_init(&block_group->bg_list);
1275 
1276 		space_info = block_group->space_info;
1277 
1278 		if (ret || btrfs_mixed_space_info(space_info)) {
1279 			btrfs_put_block_group(block_group);
1280 			continue;
1281 		}
1282 		spin_unlock(&fs_info->unused_bgs_lock);
1283 
1284 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1285 
1286 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1287 
1288 		/* Don't want to race with allocators so take the groups_sem */
1289 		down_write(&space_info->groups_sem);
1290 
1291 		/*
1292 		 * Async discard moves the final block group discard to be prior
1293 		 * to the unused_bgs code path.  Therefore, if it's not fully
1294 		 * trimmed, punt it back to the async discard lists.
1295 		 */
1296 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1297 		    !btrfs_is_free_space_trimmed(block_group)) {
1298 			trace_btrfs_skip_unused_block_group(block_group);
1299 			up_write(&space_info->groups_sem);
1300 			/* Requeue if we failed because of async discard */
1301 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1302 						 block_group);
1303 			goto next;
1304 		}
1305 
1306 		spin_lock(&block_group->lock);
1307 		if (block_group->reserved || block_group->pinned ||
1308 		    block_group->used || block_group->ro ||
1309 		    list_is_singular(&block_group->list)) {
1310 			/*
1311 			 * We want to bail if we made new allocations or have
1312 			 * outstanding allocations in this block group.  We do
1313 			 * the ro check in case balance is currently acting on
1314 			 * this block group.
1315 			 */
1316 			trace_btrfs_skip_unused_block_group(block_group);
1317 			spin_unlock(&block_group->lock);
1318 			up_write(&space_info->groups_sem);
1319 			goto next;
1320 		}
1321 		spin_unlock(&block_group->lock);
1322 
1323 		/* We don't want to force the issue, only flip if it's ok. */
1324 		ret = inc_block_group_ro(block_group, 0);
1325 		up_write(&space_info->groups_sem);
1326 		if (ret < 0) {
1327 			ret = 0;
1328 			goto next;
1329 		}
1330 
1331 		/*
1332 		 * Want to do this before we do anything else so we can recover
1333 		 * properly if we fail to join the transaction.
1334 		 */
1335 		trans = btrfs_start_trans_remove_block_group(fs_info,
1336 						     block_group->start);
1337 		if (IS_ERR(trans)) {
1338 			btrfs_dec_block_group_ro(block_group);
1339 			ret = PTR_ERR(trans);
1340 			goto next;
1341 		}
1342 
1343 		/*
1344 		 * We could have pending pinned extents for this block group,
1345 		 * just delete them, we don't care about them anymore.
1346 		 */
1347 		start = block_group->start;
1348 		end = start + block_group->length - 1;
1349 		/*
1350 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1351 		 * btrfs_finish_extent_commit(). If we are at transaction N,
1352 		 * another task might be running finish_extent_commit() for the
1353 		 * previous transaction N - 1, and have seen a range belonging
1354 		 * to the block group in freed_extents[] before we were able to
1355 		 * clear the whole block group range from freed_extents[]. This
1356 		 * means that task can lookup for the block group after we
1357 		 * unpinned it from freed_extents[] and removed it, leading to
1358 		 * a BUG_ON() at btrfs_unpin_extent_range().
1359 		 */
1360 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
1361 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1362 				  EXTENT_DIRTY);
1363 		if (ret) {
1364 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1365 			btrfs_dec_block_group_ro(block_group);
1366 			goto end_trans;
1367 		}
1368 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1369 				  EXTENT_DIRTY);
1370 		if (ret) {
1371 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1372 			btrfs_dec_block_group_ro(block_group);
1373 			goto end_trans;
1374 		}
1375 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1376 
1377 		/*
1378 		 * At this point, the block_group is read only and should fail
1379 		 * new allocations.  However, btrfs_finish_extent_commit() can
1380 		 * cause this block_group to be placed back on the discard
1381 		 * lists because now the block_group isn't fully discarded.
1382 		 * Bail here and try again later after discarding everything.
1383 		 */
1384 		spin_lock(&fs_info->discard_ctl.lock);
1385 		if (!list_empty(&block_group->discard_list)) {
1386 			spin_unlock(&fs_info->discard_ctl.lock);
1387 			btrfs_dec_block_group_ro(block_group);
1388 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1389 						 block_group);
1390 			goto end_trans;
1391 		}
1392 		spin_unlock(&fs_info->discard_ctl.lock);
1393 
1394 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1395 		spin_lock(&space_info->lock);
1396 		spin_lock(&block_group->lock);
1397 
1398 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1399 						     -block_group->pinned);
1400 		space_info->bytes_readonly += block_group->pinned;
1401 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1402 				   -block_group->pinned,
1403 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1404 		block_group->pinned = 0;
1405 
1406 		spin_unlock(&block_group->lock);
1407 		spin_unlock(&space_info->lock);
1408 
1409 		/*
1410 		 * The normal path here is an unused block group is passed here,
1411 		 * then trimming is handled in the transaction commit path.
1412 		 * Async discard interposes before this to do the trimming
1413 		 * before coming down the unused block group path as trimming
1414 		 * will no longer be done later in the transaction commit path.
1415 		 */
1416 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1417 			goto flip_async;
1418 
1419 		/* DISCARD can flip during remount */
1420 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1421 
1422 		/* Implicit trim during transaction commit. */
1423 		if (trimming)
1424 			btrfs_get_block_group_trimming(block_group);
1425 
1426 		/*
1427 		 * Btrfs_remove_chunk will abort the transaction if things go
1428 		 * horribly wrong.
1429 		 */
1430 		ret = btrfs_remove_chunk(trans, block_group->start);
1431 
1432 		if (ret) {
1433 			if (trimming)
1434 				btrfs_put_block_group_trimming(block_group);
1435 			goto end_trans;
1436 		}
1437 
1438 		/*
1439 		 * If we're not mounted with -odiscard, we can just forget
1440 		 * about this block group. Otherwise we'll need to wait
1441 		 * until transaction commit to do the actual discard.
1442 		 */
1443 		if (trimming) {
1444 			spin_lock(&fs_info->unused_bgs_lock);
1445 			/*
1446 			 * A concurrent scrub might have added us to the list
1447 			 * fs_info->unused_bgs, so use a list_move operation
1448 			 * to add the block group to the deleted_bgs list.
1449 			 */
1450 			list_move(&block_group->bg_list,
1451 				  &trans->transaction->deleted_bgs);
1452 			spin_unlock(&fs_info->unused_bgs_lock);
1453 			btrfs_get_block_group(block_group);
1454 		}
1455 end_trans:
1456 		btrfs_end_transaction(trans);
1457 next:
1458 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1459 		btrfs_put_block_group(block_group);
1460 		spin_lock(&fs_info->unused_bgs_lock);
1461 	}
1462 	spin_unlock(&fs_info->unused_bgs_lock);
1463 	return;
1464 
1465 flip_async:
1466 	btrfs_end_transaction(trans);
1467 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1468 	btrfs_put_block_group(block_group);
1469 	btrfs_discard_punt_unused_bgs_list(fs_info);
1470 }
1471 
1472 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1473 {
1474 	struct btrfs_fs_info *fs_info = bg->fs_info;
1475 
1476 	spin_lock(&fs_info->unused_bgs_lock);
1477 	if (list_empty(&bg->bg_list)) {
1478 		btrfs_get_block_group(bg);
1479 		trace_btrfs_add_unused_block_group(bg);
1480 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1481 	}
1482 	spin_unlock(&fs_info->unused_bgs_lock);
1483 }
1484 
1485 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1486 				  struct btrfs_path *path,
1487 				  struct btrfs_key *key)
1488 {
1489 	struct btrfs_root *root = fs_info->extent_root;
1490 	int ret = 0;
1491 	struct btrfs_key found_key;
1492 	struct extent_buffer *leaf;
1493 	struct btrfs_block_group_item bg;
1494 	u64 flags;
1495 	int slot;
1496 
1497 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1498 	if (ret < 0)
1499 		goto out;
1500 
1501 	while (1) {
1502 		slot = path->slots[0];
1503 		leaf = path->nodes[0];
1504 		if (slot >= btrfs_header_nritems(leaf)) {
1505 			ret = btrfs_next_leaf(root, path);
1506 			if (ret == 0)
1507 				continue;
1508 			if (ret < 0)
1509 				goto out;
1510 			break;
1511 		}
1512 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1513 
1514 		if (found_key.objectid >= key->objectid &&
1515 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1516 			struct extent_map_tree *em_tree;
1517 			struct extent_map *em;
1518 
1519 			em_tree = &root->fs_info->mapping_tree;
1520 			read_lock(&em_tree->lock);
1521 			em = lookup_extent_mapping(em_tree, found_key.objectid,
1522 						   found_key.offset);
1523 			read_unlock(&em_tree->lock);
1524 			if (!em) {
1525 				btrfs_err(fs_info,
1526 			"logical %llu len %llu found bg but no related chunk",
1527 					  found_key.objectid, found_key.offset);
1528 				ret = -ENOENT;
1529 			} else if (em->start != found_key.objectid ||
1530 				   em->len != found_key.offset) {
1531 				btrfs_err(fs_info,
1532 		"block group %llu len %llu mismatch with chunk %llu len %llu",
1533 					  found_key.objectid, found_key.offset,
1534 					  em->start, em->len);
1535 				ret = -EUCLEAN;
1536 			} else {
1537 				read_extent_buffer(leaf, &bg,
1538 					btrfs_item_ptr_offset(leaf, slot),
1539 					sizeof(bg));
1540 				flags = btrfs_stack_block_group_flags(&bg) &
1541 					BTRFS_BLOCK_GROUP_TYPE_MASK;
1542 
1543 				if (flags != (em->map_lookup->type &
1544 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1545 					btrfs_err(fs_info,
1546 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1547 						found_key.objectid,
1548 						found_key.offset, flags,
1549 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
1550 						 em->map_lookup->type));
1551 					ret = -EUCLEAN;
1552 				} else {
1553 					ret = 0;
1554 				}
1555 			}
1556 			free_extent_map(em);
1557 			goto out;
1558 		}
1559 		path->slots[0]++;
1560 	}
1561 out:
1562 	return ret;
1563 }
1564 
1565 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1566 {
1567 	u64 extra_flags = chunk_to_extended(flags) &
1568 				BTRFS_EXTENDED_PROFILE_MASK;
1569 
1570 	write_seqlock(&fs_info->profiles_lock);
1571 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1572 		fs_info->avail_data_alloc_bits |= extra_flags;
1573 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1574 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1575 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1576 		fs_info->avail_system_alloc_bits |= extra_flags;
1577 	write_sequnlock(&fs_info->profiles_lock);
1578 }
1579 
1580 /**
1581  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1582  * @chunk_start:   logical address of block group
1583  * @physical:	   physical address to map to logical addresses
1584  * @logical:	   return array of logical addresses which map to @physical
1585  * @naddrs:	   length of @logical
1586  * @stripe_len:    size of IO stripe for the given block group
1587  *
1588  * Maps a particular @physical disk address to a list of @logical addresses.
1589  * Used primarily to exclude those portions of a block group that contain super
1590  * block copies.
1591  */
1592 EXPORT_FOR_TESTS
1593 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1594 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1595 {
1596 	struct extent_map *em;
1597 	struct map_lookup *map;
1598 	u64 *buf;
1599 	u64 bytenr;
1600 	u64 data_stripe_length;
1601 	u64 io_stripe_size;
1602 	int i, nr = 0;
1603 	int ret = 0;
1604 
1605 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1606 	if (IS_ERR(em))
1607 		return -EIO;
1608 
1609 	map = em->map_lookup;
1610 	data_stripe_length = em->len;
1611 	io_stripe_size = map->stripe_len;
1612 
1613 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1614 		data_stripe_length = div_u64(data_stripe_length,
1615 					     map->num_stripes / map->sub_stripes);
1616 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1617 		data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
1618 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1619 		data_stripe_length = div_u64(data_stripe_length,
1620 					     nr_data_stripes(map));
1621 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1622 	}
1623 
1624 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1625 	if (!buf) {
1626 		ret = -ENOMEM;
1627 		goto out;
1628 	}
1629 
1630 	for (i = 0; i < map->num_stripes; i++) {
1631 		bool already_inserted = false;
1632 		u64 stripe_nr;
1633 		int j;
1634 
1635 		if (!in_range(physical, map->stripes[i].physical,
1636 			      data_stripe_length))
1637 			continue;
1638 
1639 		stripe_nr = physical - map->stripes[i].physical;
1640 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1641 
1642 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1643 			stripe_nr = stripe_nr * map->num_stripes + i;
1644 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1645 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1646 			stripe_nr = stripe_nr * map->num_stripes + i;
1647 		}
1648 		/*
1649 		 * The remaining case would be for RAID56, multiply by
1650 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1651 		 * instead of map->stripe_len
1652 		 */
1653 
1654 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1655 
1656 		/* Ensure we don't add duplicate addresses */
1657 		for (j = 0; j < nr; j++) {
1658 			if (buf[j] == bytenr) {
1659 				already_inserted = true;
1660 				break;
1661 			}
1662 		}
1663 
1664 		if (!already_inserted)
1665 			buf[nr++] = bytenr;
1666 	}
1667 
1668 	*logical = buf;
1669 	*naddrs = nr;
1670 	*stripe_len = io_stripe_size;
1671 out:
1672 	free_extent_map(em);
1673 	return ret;
1674 }
1675 
1676 static int exclude_super_stripes(struct btrfs_block_group *cache)
1677 {
1678 	struct btrfs_fs_info *fs_info = cache->fs_info;
1679 	u64 bytenr;
1680 	u64 *logical;
1681 	int stripe_len;
1682 	int i, nr, ret;
1683 
1684 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1685 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1686 		cache->bytes_super += stripe_len;
1687 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1688 						stripe_len);
1689 		if (ret)
1690 			return ret;
1691 	}
1692 
1693 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1694 		bytenr = btrfs_sb_offset(i);
1695 		ret = btrfs_rmap_block(fs_info, cache->start,
1696 				       bytenr, &logical, &nr, &stripe_len);
1697 		if (ret)
1698 			return ret;
1699 
1700 		while (nr--) {
1701 			u64 start, len;
1702 
1703 			if (logical[nr] > cache->start + cache->length)
1704 				continue;
1705 
1706 			if (logical[nr] + stripe_len <= cache->start)
1707 				continue;
1708 
1709 			start = logical[nr];
1710 			if (start < cache->start) {
1711 				start = cache->start;
1712 				len = (logical[nr] + stripe_len) - start;
1713 			} else {
1714 				len = min_t(u64, stripe_len,
1715 					    cache->start + cache->length - start);
1716 			}
1717 
1718 			cache->bytes_super += len;
1719 			ret = btrfs_add_excluded_extent(fs_info, start, len);
1720 			if (ret) {
1721 				kfree(logical);
1722 				return ret;
1723 			}
1724 		}
1725 
1726 		kfree(logical);
1727 	}
1728 	return 0;
1729 }
1730 
1731 static void link_block_group(struct btrfs_block_group *cache)
1732 {
1733 	struct btrfs_space_info *space_info = cache->space_info;
1734 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1735 	bool first = false;
1736 
1737 	down_write(&space_info->groups_sem);
1738 	if (list_empty(&space_info->block_groups[index]))
1739 		first = true;
1740 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1741 	up_write(&space_info->groups_sem);
1742 
1743 	if (first)
1744 		btrfs_sysfs_add_block_group_type(cache);
1745 }
1746 
1747 static struct btrfs_block_group *btrfs_create_block_group_cache(
1748 		struct btrfs_fs_info *fs_info, u64 start, u64 size)
1749 {
1750 	struct btrfs_block_group *cache;
1751 
1752 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1753 	if (!cache)
1754 		return NULL;
1755 
1756 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1757 					GFP_NOFS);
1758 	if (!cache->free_space_ctl) {
1759 		kfree(cache);
1760 		return NULL;
1761 	}
1762 
1763 	cache->start = start;
1764 	cache->length = size;
1765 
1766 	cache->fs_info = fs_info;
1767 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1768 	set_free_space_tree_thresholds(cache);
1769 
1770 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1771 
1772 	atomic_set(&cache->count, 1);
1773 	spin_lock_init(&cache->lock);
1774 	init_rwsem(&cache->data_rwsem);
1775 	INIT_LIST_HEAD(&cache->list);
1776 	INIT_LIST_HEAD(&cache->cluster_list);
1777 	INIT_LIST_HEAD(&cache->bg_list);
1778 	INIT_LIST_HEAD(&cache->ro_list);
1779 	INIT_LIST_HEAD(&cache->discard_list);
1780 	INIT_LIST_HEAD(&cache->dirty_list);
1781 	INIT_LIST_HEAD(&cache->io_list);
1782 	btrfs_init_free_space_ctl(cache);
1783 	atomic_set(&cache->trimming, 0);
1784 	mutex_init(&cache->free_space_lock);
1785 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1786 
1787 	return cache;
1788 }
1789 
1790 /*
1791  * Iterate all chunks and verify that each of them has the corresponding block
1792  * group
1793  */
1794 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1795 {
1796 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1797 	struct extent_map *em;
1798 	struct btrfs_block_group *bg;
1799 	u64 start = 0;
1800 	int ret = 0;
1801 
1802 	while (1) {
1803 		read_lock(&map_tree->lock);
1804 		/*
1805 		 * lookup_extent_mapping will return the first extent map
1806 		 * intersecting the range, so setting @len to 1 is enough to
1807 		 * get the first chunk.
1808 		 */
1809 		em = lookup_extent_mapping(map_tree, start, 1);
1810 		read_unlock(&map_tree->lock);
1811 		if (!em)
1812 			break;
1813 
1814 		bg = btrfs_lookup_block_group(fs_info, em->start);
1815 		if (!bg) {
1816 			btrfs_err(fs_info,
1817 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1818 				     em->start, em->len);
1819 			ret = -EUCLEAN;
1820 			free_extent_map(em);
1821 			break;
1822 		}
1823 		if (bg->start != em->start || bg->length != em->len ||
1824 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1825 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1826 			btrfs_err(fs_info,
1827 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1828 				em->start, em->len,
1829 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1830 				bg->start, bg->length,
1831 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1832 			ret = -EUCLEAN;
1833 			free_extent_map(em);
1834 			btrfs_put_block_group(bg);
1835 			break;
1836 		}
1837 		start = em->start + em->len;
1838 		free_extent_map(em);
1839 		btrfs_put_block_group(bg);
1840 	}
1841 	return ret;
1842 }
1843 
1844 static int read_one_block_group(struct btrfs_fs_info *info,
1845 				struct btrfs_path *path,
1846 				const struct btrfs_key *key,
1847 				int need_clear)
1848 {
1849 	struct extent_buffer *leaf = path->nodes[0];
1850 	struct btrfs_block_group *cache;
1851 	struct btrfs_space_info *space_info;
1852 	struct btrfs_block_group_item bgi;
1853 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1854 	int slot = path->slots[0];
1855 	int ret;
1856 
1857 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1858 
1859 	cache = btrfs_create_block_group_cache(info, key->objectid, key->offset);
1860 	if (!cache)
1861 		return -ENOMEM;
1862 
1863 	if (need_clear) {
1864 		/*
1865 		 * When we mount with old space cache, we need to
1866 		 * set BTRFS_DC_CLEAR and set dirty flag.
1867 		 *
1868 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1869 		 *    truncate the old free space cache inode and
1870 		 *    setup a new one.
1871 		 * b) Setting 'dirty flag' makes sure that we flush
1872 		 *    the new space cache info onto disk.
1873 		 */
1874 		if (btrfs_test_opt(info, SPACE_CACHE))
1875 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1876 	}
1877 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1878 			   sizeof(bgi));
1879 	cache->used = btrfs_stack_block_group_used(&bgi);
1880 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1881 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1882 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1883 			btrfs_err(info,
1884 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1885 				  cache->start);
1886 			ret = -EINVAL;
1887 			goto error;
1888 	}
1889 
1890 	/*
1891 	 * We need to exclude the super stripes now so that the space info has
1892 	 * super bytes accounted for, otherwise we'll think we have more space
1893 	 * than we actually do.
1894 	 */
1895 	ret = exclude_super_stripes(cache);
1896 	if (ret) {
1897 		/* We may have excluded something, so call this just in case. */
1898 		btrfs_free_excluded_extents(cache);
1899 		goto error;
1900 	}
1901 
1902 	/*
1903 	 * Check for two cases, either we are full, and therefore don't need
1904 	 * to bother with the caching work since we won't find any space, or we
1905 	 * are empty, and we can just add all the space in and be done with it.
1906 	 * This saves us _a_lot_ of time, particularly in the full case.
1907 	 */
1908 	if (key->offset == cache->used) {
1909 		cache->last_byte_to_unpin = (u64)-1;
1910 		cache->cached = BTRFS_CACHE_FINISHED;
1911 		btrfs_free_excluded_extents(cache);
1912 	} else if (cache->used == 0) {
1913 		cache->last_byte_to_unpin = (u64)-1;
1914 		cache->cached = BTRFS_CACHE_FINISHED;
1915 		add_new_free_space(cache, key->objectid,
1916 				   key->objectid + key->offset);
1917 		btrfs_free_excluded_extents(cache);
1918 	}
1919 
1920 	ret = btrfs_add_block_group_cache(info, cache);
1921 	if (ret) {
1922 		btrfs_remove_free_space_cache(cache);
1923 		goto error;
1924 	}
1925 	trace_btrfs_add_block_group(info, cache, 0);
1926 	btrfs_update_space_info(info, cache->flags, key->offset,
1927 				cache->used, cache->bytes_super, &space_info);
1928 
1929 	cache->space_info = space_info;
1930 
1931 	link_block_group(cache);
1932 
1933 	set_avail_alloc_bits(info, cache->flags);
1934 	if (btrfs_chunk_readonly(info, cache->start)) {
1935 		inc_block_group_ro(cache, 1);
1936 	} else if (cache->used == 0) {
1937 		ASSERT(list_empty(&cache->bg_list));
1938 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1939 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1940 		else
1941 			btrfs_mark_bg_unused(cache);
1942 	}
1943 	return 0;
1944 error:
1945 	btrfs_put_block_group(cache);
1946 	return ret;
1947 }
1948 
1949 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1950 {
1951 	struct btrfs_path *path;
1952 	int ret;
1953 	struct btrfs_block_group *cache;
1954 	struct btrfs_space_info *space_info;
1955 	struct btrfs_key key;
1956 	int need_clear = 0;
1957 	u64 cache_gen;
1958 
1959 	key.objectid = 0;
1960 	key.offset = 0;
1961 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1962 	path = btrfs_alloc_path();
1963 	if (!path)
1964 		return -ENOMEM;
1965 	path->reada = READA_FORWARD;
1966 
1967 	cache_gen = btrfs_super_cache_generation(info->super_copy);
1968 	if (btrfs_test_opt(info, SPACE_CACHE) &&
1969 	    btrfs_super_generation(info->super_copy) != cache_gen)
1970 		need_clear = 1;
1971 	if (btrfs_test_opt(info, CLEAR_CACHE))
1972 		need_clear = 1;
1973 
1974 	while (1) {
1975 		ret = find_first_block_group(info, path, &key);
1976 		if (ret > 0)
1977 			break;
1978 		if (ret != 0)
1979 			goto error;
1980 
1981 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1982 		ret = read_one_block_group(info, path, &key, need_clear);
1983 		if (ret < 0)
1984 			goto error;
1985 		key.objectid += key.offset;
1986 		key.offset = 0;
1987 		btrfs_release_path(path);
1988 	}
1989 
1990 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
1991 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1992 		      (BTRFS_BLOCK_GROUP_RAID10 |
1993 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
1994 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
1995 		       BTRFS_BLOCK_GROUP_DUP)))
1996 			continue;
1997 		/*
1998 		 * Avoid allocating from un-mirrored block group if there are
1999 		 * mirrored block groups.
2000 		 */
2001 		list_for_each_entry(cache,
2002 				&space_info->block_groups[BTRFS_RAID_RAID0],
2003 				list)
2004 			inc_block_group_ro(cache, 1);
2005 		list_for_each_entry(cache,
2006 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2007 				list)
2008 			inc_block_group_ro(cache, 1);
2009 	}
2010 
2011 	btrfs_init_global_block_rsv(info);
2012 	ret = check_chunk_block_group_mappings(info);
2013 error:
2014 	btrfs_free_path(path);
2015 	return ret;
2016 }
2017 
2018 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2019 {
2020 	struct btrfs_fs_info *fs_info = trans->fs_info;
2021 	struct btrfs_block_group *block_group;
2022 	struct btrfs_root *extent_root = fs_info->extent_root;
2023 	struct btrfs_block_group_item item;
2024 	struct btrfs_key key;
2025 	int ret = 0;
2026 
2027 	if (!trans->can_flush_pending_bgs)
2028 		return;
2029 
2030 	while (!list_empty(&trans->new_bgs)) {
2031 		block_group = list_first_entry(&trans->new_bgs,
2032 					       struct btrfs_block_group,
2033 					       bg_list);
2034 		if (ret)
2035 			goto next;
2036 
2037 		spin_lock(&block_group->lock);
2038 		btrfs_set_stack_block_group_used(&item, block_group->used);
2039 		btrfs_set_stack_block_group_chunk_objectid(&item,
2040 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2041 		btrfs_set_stack_block_group_flags(&item, block_group->flags);
2042 		key.objectid = block_group->start;
2043 		key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2044 		key.offset = block_group->length;
2045 		spin_unlock(&block_group->lock);
2046 
2047 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
2048 					sizeof(item));
2049 		if (ret)
2050 			btrfs_abort_transaction(trans, ret);
2051 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
2052 		if (ret)
2053 			btrfs_abort_transaction(trans, ret);
2054 		add_block_group_free_space(trans, block_group);
2055 		/* Already aborted the transaction if it failed. */
2056 next:
2057 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2058 		list_del_init(&block_group->bg_list);
2059 	}
2060 	btrfs_trans_release_chunk_metadata(trans);
2061 }
2062 
2063 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2064 			   u64 type, u64 chunk_offset, u64 size)
2065 {
2066 	struct btrfs_fs_info *fs_info = trans->fs_info;
2067 	struct btrfs_block_group *cache;
2068 	int ret;
2069 
2070 	btrfs_set_log_full_commit(trans);
2071 
2072 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
2073 	if (!cache)
2074 		return -ENOMEM;
2075 
2076 	cache->used = bytes_used;
2077 	cache->flags = type;
2078 	cache->last_byte_to_unpin = (u64)-1;
2079 	cache->cached = BTRFS_CACHE_FINISHED;
2080 	cache->needs_free_space = 1;
2081 	ret = exclude_super_stripes(cache);
2082 	if (ret) {
2083 		/* We may have excluded something, so call this just in case */
2084 		btrfs_free_excluded_extents(cache);
2085 		btrfs_put_block_group(cache);
2086 		return ret;
2087 	}
2088 
2089 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2090 
2091 	btrfs_free_excluded_extents(cache);
2092 
2093 #ifdef CONFIG_BTRFS_DEBUG
2094 	if (btrfs_should_fragment_free_space(cache)) {
2095 		u64 new_bytes_used = size - bytes_used;
2096 
2097 		bytes_used += new_bytes_used >> 1;
2098 		fragment_free_space(cache);
2099 	}
2100 #endif
2101 	/*
2102 	 * Ensure the corresponding space_info object is created and
2103 	 * assigned to our block group. We want our bg to be added to the rbtree
2104 	 * with its ->space_info set.
2105 	 */
2106 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2107 	ASSERT(cache->space_info);
2108 
2109 	ret = btrfs_add_block_group_cache(fs_info, cache);
2110 	if (ret) {
2111 		btrfs_remove_free_space_cache(cache);
2112 		btrfs_put_block_group(cache);
2113 		return ret;
2114 	}
2115 
2116 	/*
2117 	 * Now that our block group has its ->space_info set and is inserted in
2118 	 * the rbtree, update the space info's counters.
2119 	 */
2120 	trace_btrfs_add_block_group(fs_info, cache, 1);
2121 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2122 				cache->bytes_super, &cache->space_info);
2123 	btrfs_update_global_block_rsv(fs_info);
2124 
2125 	link_block_group(cache);
2126 
2127 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2128 	trans->delayed_ref_updates++;
2129 	btrfs_update_delayed_refs_rsv(trans);
2130 
2131 	set_avail_alloc_bits(fs_info, type);
2132 	return 0;
2133 }
2134 
2135 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2136 {
2137 	u64 num_devices;
2138 	u64 stripped;
2139 
2140 	/*
2141 	 * if restripe for this chunk_type is on pick target profile and
2142 	 * return, otherwise do the usual balance
2143 	 */
2144 	stripped = get_restripe_target(fs_info, flags);
2145 	if (stripped)
2146 		return extended_to_chunk(stripped);
2147 
2148 	num_devices = fs_info->fs_devices->rw_devices;
2149 
2150 	stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2151 		BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2152 
2153 	if (num_devices == 1) {
2154 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2155 		stripped = flags & ~stripped;
2156 
2157 		/* turn raid0 into single device chunks */
2158 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
2159 			return stripped;
2160 
2161 		/* turn mirroring into duplication */
2162 		if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2163 			     BTRFS_BLOCK_GROUP_RAID10))
2164 			return stripped | BTRFS_BLOCK_GROUP_DUP;
2165 	} else {
2166 		/* they already had raid on here, just return */
2167 		if (flags & stripped)
2168 			return flags;
2169 
2170 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2171 		stripped = flags & ~stripped;
2172 
2173 		/* switch duplicated blocks with raid1 */
2174 		if (flags & BTRFS_BLOCK_GROUP_DUP)
2175 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
2176 
2177 		/* this is drive concat, leave it alone */
2178 	}
2179 
2180 	return flags;
2181 }
2182 
2183 /*
2184  * Mark one block group RO, can be called several times for the same block
2185  * group.
2186  *
2187  * @cache:		the destination block group
2188  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2189  * 			ensure we still have some free space after marking this
2190  * 			block group RO.
2191  */
2192 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2193 			     bool do_chunk_alloc)
2194 {
2195 	struct btrfs_fs_info *fs_info = cache->fs_info;
2196 	struct btrfs_trans_handle *trans;
2197 	u64 alloc_flags;
2198 	int ret;
2199 
2200 again:
2201 	trans = btrfs_join_transaction(fs_info->extent_root);
2202 	if (IS_ERR(trans))
2203 		return PTR_ERR(trans);
2204 
2205 	/*
2206 	 * we're not allowed to set block groups readonly after the dirty
2207 	 * block groups cache has started writing.  If it already started,
2208 	 * back off and let this transaction commit
2209 	 */
2210 	mutex_lock(&fs_info->ro_block_group_mutex);
2211 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2212 		u64 transid = trans->transid;
2213 
2214 		mutex_unlock(&fs_info->ro_block_group_mutex);
2215 		btrfs_end_transaction(trans);
2216 
2217 		ret = btrfs_wait_for_commit(fs_info, transid);
2218 		if (ret)
2219 			return ret;
2220 		goto again;
2221 	}
2222 
2223 	if (do_chunk_alloc) {
2224 		/*
2225 		 * If we are changing raid levels, try to allocate a
2226 		 * corresponding block group with the new raid level.
2227 		 */
2228 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2229 		if (alloc_flags != cache->flags) {
2230 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2231 						CHUNK_ALLOC_FORCE);
2232 			/*
2233 			 * ENOSPC is allowed here, we may have enough space
2234 			 * already allocated at the new raid level to carry on
2235 			 */
2236 			if (ret == -ENOSPC)
2237 				ret = 0;
2238 			if (ret < 0)
2239 				goto out;
2240 		}
2241 	}
2242 
2243 	ret = inc_block_group_ro(cache, 0);
2244 	if (!do_chunk_alloc)
2245 		goto unlock_out;
2246 	if (!ret)
2247 		goto out;
2248 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2249 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2250 	if (ret < 0)
2251 		goto out;
2252 	ret = inc_block_group_ro(cache, 0);
2253 out:
2254 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2255 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2256 		mutex_lock(&fs_info->chunk_mutex);
2257 		check_system_chunk(trans, alloc_flags);
2258 		mutex_unlock(&fs_info->chunk_mutex);
2259 	}
2260 unlock_out:
2261 	mutex_unlock(&fs_info->ro_block_group_mutex);
2262 
2263 	btrfs_end_transaction(trans);
2264 	return ret;
2265 }
2266 
2267 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2268 {
2269 	struct btrfs_space_info *sinfo = cache->space_info;
2270 	u64 num_bytes;
2271 
2272 	BUG_ON(!cache->ro);
2273 
2274 	spin_lock(&sinfo->lock);
2275 	spin_lock(&cache->lock);
2276 	if (!--cache->ro) {
2277 		num_bytes = cache->length - cache->reserved -
2278 			    cache->pinned - cache->bytes_super - cache->used;
2279 		sinfo->bytes_readonly -= num_bytes;
2280 		list_del_init(&cache->ro_list);
2281 	}
2282 	spin_unlock(&cache->lock);
2283 	spin_unlock(&sinfo->lock);
2284 }
2285 
2286 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2287 				 struct btrfs_path *path,
2288 				 struct btrfs_block_group *cache)
2289 {
2290 	struct btrfs_fs_info *fs_info = trans->fs_info;
2291 	int ret;
2292 	struct btrfs_root *extent_root = fs_info->extent_root;
2293 	unsigned long bi;
2294 	struct extent_buffer *leaf;
2295 	struct btrfs_block_group_item bgi;
2296 	struct btrfs_key key;
2297 
2298 	key.objectid = cache->start;
2299 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2300 	key.offset = cache->length;
2301 
2302 	ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
2303 	if (ret) {
2304 		if (ret > 0)
2305 			ret = -ENOENT;
2306 		goto fail;
2307 	}
2308 
2309 	leaf = path->nodes[0];
2310 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2311 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2312 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2313 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2314 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2315 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2316 	btrfs_mark_buffer_dirty(leaf);
2317 fail:
2318 	btrfs_release_path(path);
2319 	return ret;
2320 
2321 }
2322 
2323 static int cache_save_setup(struct btrfs_block_group *block_group,
2324 			    struct btrfs_trans_handle *trans,
2325 			    struct btrfs_path *path)
2326 {
2327 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2328 	struct btrfs_root *root = fs_info->tree_root;
2329 	struct inode *inode = NULL;
2330 	struct extent_changeset *data_reserved = NULL;
2331 	u64 alloc_hint = 0;
2332 	int dcs = BTRFS_DC_ERROR;
2333 	u64 num_pages = 0;
2334 	int retries = 0;
2335 	int ret = 0;
2336 
2337 	/*
2338 	 * If this block group is smaller than 100 megs don't bother caching the
2339 	 * block group.
2340 	 */
2341 	if (block_group->length < (100 * SZ_1M)) {
2342 		spin_lock(&block_group->lock);
2343 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2344 		spin_unlock(&block_group->lock);
2345 		return 0;
2346 	}
2347 
2348 	if (trans->aborted)
2349 		return 0;
2350 again:
2351 	inode = lookup_free_space_inode(block_group, path);
2352 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2353 		ret = PTR_ERR(inode);
2354 		btrfs_release_path(path);
2355 		goto out;
2356 	}
2357 
2358 	if (IS_ERR(inode)) {
2359 		BUG_ON(retries);
2360 		retries++;
2361 
2362 		if (block_group->ro)
2363 			goto out_free;
2364 
2365 		ret = create_free_space_inode(trans, block_group, path);
2366 		if (ret)
2367 			goto out_free;
2368 		goto again;
2369 	}
2370 
2371 	/*
2372 	 * We want to set the generation to 0, that way if anything goes wrong
2373 	 * from here on out we know not to trust this cache when we load up next
2374 	 * time.
2375 	 */
2376 	BTRFS_I(inode)->generation = 0;
2377 	ret = btrfs_update_inode(trans, root, inode);
2378 	if (ret) {
2379 		/*
2380 		 * So theoretically we could recover from this, simply set the
2381 		 * super cache generation to 0 so we know to invalidate the
2382 		 * cache, but then we'd have to keep track of the block groups
2383 		 * that fail this way so we know we _have_ to reset this cache
2384 		 * before the next commit or risk reading stale cache.  So to
2385 		 * limit our exposure to horrible edge cases lets just abort the
2386 		 * transaction, this only happens in really bad situations
2387 		 * anyway.
2388 		 */
2389 		btrfs_abort_transaction(trans, ret);
2390 		goto out_put;
2391 	}
2392 	WARN_ON(ret);
2393 
2394 	/* We've already setup this transaction, go ahead and exit */
2395 	if (block_group->cache_generation == trans->transid &&
2396 	    i_size_read(inode)) {
2397 		dcs = BTRFS_DC_SETUP;
2398 		goto out_put;
2399 	}
2400 
2401 	if (i_size_read(inode) > 0) {
2402 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2403 					&fs_info->global_block_rsv);
2404 		if (ret)
2405 			goto out_put;
2406 
2407 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2408 		if (ret)
2409 			goto out_put;
2410 	}
2411 
2412 	spin_lock(&block_group->lock);
2413 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2414 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2415 		/*
2416 		 * don't bother trying to write stuff out _if_
2417 		 * a) we're not cached,
2418 		 * b) we're with nospace_cache mount option,
2419 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2420 		 */
2421 		dcs = BTRFS_DC_WRITTEN;
2422 		spin_unlock(&block_group->lock);
2423 		goto out_put;
2424 	}
2425 	spin_unlock(&block_group->lock);
2426 
2427 	/*
2428 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2429 	 * skip doing the setup, we've already cleared the cache so we're safe.
2430 	 */
2431 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2432 		ret = -ENOSPC;
2433 		goto out_put;
2434 	}
2435 
2436 	/*
2437 	 * Try to preallocate enough space based on how big the block group is.
2438 	 * Keep in mind this has to include any pinned space which could end up
2439 	 * taking up quite a bit since it's not folded into the other space
2440 	 * cache.
2441 	 */
2442 	num_pages = div_u64(block_group->length, SZ_256M);
2443 	if (!num_pages)
2444 		num_pages = 1;
2445 
2446 	num_pages *= 16;
2447 	num_pages *= PAGE_SIZE;
2448 
2449 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2450 	if (ret)
2451 		goto out_put;
2452 
2453 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2454 					      num_pages, num_pages,
2455 					      &alloc_hint);
2456 	/*
2457 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2458 	 * of metadata or split extents when writing the cache out, which means
2459 	 * we can enospc if we are heavily fragmented in addition to just normal
2460 	 * out of space conditions.  So if we hit this just skip setting up any
2461 	 * other block groups for this transaction, maybe we'll unpin enough
2462 	 * space the next time around.
2463 	 */
2464 	if (!ret)
2465 		dcs = BTRFS_DC_SETUP;
2466 	else if (ret == -ENOSPC)
2467 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2468 
2469 out_put:
2470 	iput(inode);
2471 out_free:
2472 	btrfs_release_path(path);
2473 out:
2474 	spin_lock(&block_group->lock);
2475 	if (!ret && dcs == BTRFS_DC_SETUP)
2476 		block_group->cache_generation = trans->transid;
2477 	block_group->disk_cache_state = dcs;
2478 	spin_unlock(&block_group->lock);
2479 
2480 	extent_changeset_free(data_reserved);
2481 	return ret;
2482 }
2483 
2484 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2485 {
2486 	struct btrfs_fs_info *fs_info = trans->fs_info;
2487 	struct btrfs_block_group *cache, *tmp;
2488 	struct btrfs_transaction *cur_trans = trans->transaction;
2489 	struct btrfs_path *path;
2490 
2491 	if (list_empty(&cur_trans->dirty_bgs) ||
2492 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2493 		return 0;
2494 
2495 	path = btrfs_alloc_path();
2496 	if (!path)
2497 		return -ENOMEM;
2498 
2499 	/* Could add new block groups, use _safe just in case */
2500 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2501 				 dirty_list) {
2502 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2503 			cache_save_setup(cache, trans, path);
2504 	}
2505 
2506 	btrfs_free_path(path);
2507 	return 0;
2508 }
2509 
2510 /*
2511  * Transaction commit does final block group cache writeback during a critical
2512  * section where nothing is allowed to change the FS.  This is required in
2513  * order for the cache to actually match the block group, but can introduce a
2514  * lot of latency into the commit.
2515  *
2516  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2517  * There's a chance we'll have to redo some of it if the block group changes
2518  * again during the commit, but it greatly reduces the commit latency by
2519  * getting rid of the easy block groups while we're still allowing others to
2520  * join the commit.
2521  */
2522 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2523 {
2524 	struct btrfs_fs_info *fs_info = trans->fs_info;
2525 	struct btrfs_block_group *cache;
2526 	struct btrfs_transaction *cur_trans = trans->transaction;
2527 	int ret = 0;
2528 	int should_put;
2529 	struct btrfs_path *path = NULL;
2530 	LIST_HEAD(dirty);
2531 	struct list_head *io = &cur_trans->io_bgs;
2532 	int num_started = 0;
2533 	int loops = 0;
2534 
2535 	spin_lock(&cur_trans->dirty_bgs_lock);
2536 	if (list_empty(&cur_trans->dirty_bgs)) {
2537 		spin_unlock(&cur_trans->dirty_bgs_lock);
2538 		return 0;
2539 	}
2540 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2541 	spin_unlock(&cur_trans->dirty_bgs_lock);
2542 
2543 again:
2544 	/* Make sure all the block groups on our dirty list actually exist */
2545 	btrfs_create_pending_block_groups(trans);
2546 
2547 	if (!path) {
2548 		path = btrfs_alloc_path();
2549 		if (!path)
2550 			return -ENOMEM;
2551 	}
2552 
2553 	/*
2554 	 * cache_write_mutex is here only to save us from balance or automatic
2555 	 * removal of empty block groups deleting this block group while we are
2556 	 * writing out the cache
2557 	 */
2558 	mutex_lock(&trans->transaction->cache_write_mutex);
2559 	while (!list_empty(&dirty)) {
2560 		bool drop_reserve = true;
2561 
2562 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2563 					 dirty_list);
2564 		/*
2565 		 * This can happen if something re-dirties a block group that
2566 		 * is already under IO.  Just wait for it to finish and then do
2567 		 * it all again
2568 		 */
2569 		if (!list_empty(&cache->io_list)) {
2570 			list_del_init(&cache->io_list);
2571 			btrfs_wait_cache_io(trans, cache, path);
2572 			btrfs_put_block_group(cache);
2573 		}
2574 
2575 
2576 		/*
2577 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2578 		 * it should update the cache_state.  Don't delete until after
2579 		 * we wait.
2580 		 *
2581 		 * Since we're not running in the commit critical section
2582 		 * we need the dirty_bgs_lock to protect from update_block_group
2583 		 */
2584 		spin_lock(&cur_trans->dirty_bgs_lock);
2585 		list_del_init(&cache->dirty_list);
2586 		spin_unlock(&cur_trans->dirty_bgs_lock);
2587 
2588 		should_put = 1;
2589 
2590 		cache_save_setup(cache, trans, path);
2591 
2592 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2593 			cache->io_ctl.inode = NULL;
2594 			ret = btrfs_write_out_cache(trans, cache, path);
2595 			if (ret == 0 && cache->io_ctl.inode) {
2596 				num_started++;
2597 				should_put = 0;
2598 
2599 				/*
2600 				 * The cache_write_mutex is protecting the
2601 				 * io_list, also refer to the definition of
2602 				 * btrfs_transaction::io_bgs for more details
2603 				 */
2604 				list_add_tail(&cache->io_list, io);
2605 			} else {
2606 				/*
2607 				 * If we failed to write the cache, the
2608 				 * generation will be bad and life goes on
2609 				 */
2610 				ret = 0;
2611 			}
2612 		}
2613 		if (!ret) {
2614 			ret = write_one_cache_group(trans, path, cache);
2615 			/*
2616 			 * Our block group might still be attached to the list
2617 			 * of new block groups in the transaction handle of some
2618 			 * other task (struct btrfs_trans_handle->new_bgs). This
2619 			 * means its block group item isn't yet in the extent
2620 			 * tree. If this happens ignore the error, as we will
2621 			 * try again later in the critical section of the
2622 			 * transaction commit.
2623 			 */
2624 			if (ret == -ENOENT) {
2625 				ret = 0;
2626 				spin_lock(&cur_trans->dirty_bgs_lock);
2627 				if (list_empty(&cache->dirty_list)) {
2628 					list_add_tail(&cache->dirty_list,
2629 						      &cur_trans->dirty_bgs);
2630 					btrfs_get_block_group(cache);
2631 					drop_reserve = false;
2632 				}
2633 				spin_unlock(&cur_trans->dirty_bgs_lock);
2634 			} else if (ret) {
2635 				btrfs_abort_transaction(trans, ret);
2636 			}
2637 		}
2638 
2639 		/* If it's not on the io list, we need to put the block group */
2640 		if (should_put)
2641 			btrfs_put_block_group(cache);
2642 		if (drop_reserve)
2643 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2644 
2645 		if (ret)
2646 			break;
2647 
2648 		/*
2649 		 * Avoid blocking other tasks for too long. It might even save
2650 		 * us from writing caches for block groups that are going to be
2651 		 * removed.
2652 		 */
2653 		mutex_unlock(&trans->transaction->cache_write_mutex);
2654 		mutex_lock(&trans->transaction->cache_write_mutex);
2655 	}
2656 	mutex_unlock(&trans->transaction->cache_write_mutex);
2657 
2658 	/*
2659 	 * Go through delayed refs for all the stuff we've just kicked off
2660 	 * and then loop back (just once)
2661 	 */
2662 	ret = btrfs_run_delayed_refs(trans, 0);
2663 	if (!ret && loops == 0) {
2664 		loops++;
2665 		spin_lock(&cur_trans->dirty_bgs_lock);
2666 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2667 		/*
2668 		 * dirty_bgs_lock protects us from concurrent block group
2669 		 * deletes too (not just cache_write_mutex).
2670 		 */
2671 		if (!list_empty(&dirty)) {
2672 			spin_unlock(&cur_trans->dirty_bgs_lock);
2673 			goto again;
2674 		}
2675 		spin_unlock(&cur_trans->dirty_bgs_lock);
2676 	} else if (ret < 0) {
2677 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2678 	}
2679 
2680 	btrfs_free_path(path);
2681 	return ret;
2682 }
2683 
2684 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2685 {
2686 	struct btrfs_fs_info *fs_info = trans->fs_info;
2687 	struct btrfs_block_group *cache;
2688 	struct btrfs_transaction *cur_trans = trans->transaction;
2689 	int ret = 0;
2690 	int should_put;
2691 	struct btrfs_path *path;
2692 	struct list_head *io = &cur_trans->io_bgs;
2693 	int num_started = 0;
2694 
2695 	path = btrfs_alloc_path();
2696 	if (!path)
2697 		return -ENOMEM;
2698 
2699 	/*
2700 	 * Even though we are in the critical section of the transaction commit,
2701 	 * we can still have concurrent tasks adding elements to this
2702 	 * transaction's list of dirty block groups. These tasks correspond to
2703 	 * endio free space workers started when writeback finishes for a
2704 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2705 	 * allocate new block groups as a result of COWing nodes of the root
2706 	 * tree when updating the free space inode. The writeback for the space
2707 	 * caches is triggered by an earlier call to
2708 	 * btrfs_start_dirty_block_groups() and iterations of the following
2709 	 * loop.
2710 	 * Also we want to do the cache_save_setup first and then run the
2711 	 * delayed refs to make sure we have the best chance at doing this all
2712 	 * in one shot.
2713 	 */
2714 	spin_lock(&cur_trans->dirty_bgs_lock);
2715 	while (!list_empty(&cur_trans->dirty_bgs)) {
2716 		cache = list_first_entry(&cur_trans->dirty_bgs,
2717 					 struct btrfs_block_group,
2718 					 dirty_list);
2719 
2720 		/*
2721 		 * This can happen if cache_save_setup re-dirties a block group
2722 		 * that is already under IO.  Just wait for it to finish and
2723 		 * then do it all again
2724 		 */
2725 		if (!list_empty(&cache->io_list)) {
2726 			spin_unlock(&cur_trans->dirty_bgs_lock);
2727 			list_del_init(&cache->io_list);
2728 			btrfs_wait_cache_io(trans, cache, path);
2729 			btrfs_put_block_group(cache);
2730 			spin_lock(&cur_trans->dirty_bgs_lock);
2731 		}
2732 
2733 		/*
2734 		 * Don't remove from the dirty list until after we've waited on
2735 		 * any pending IO
2736 		 */
2737 		list_del_init(&cache->dirty_list);
2738 		spin_unlock(&cur_trans->dirty_bgs_lock);
2739 		should_put = 1;
2740 
2741 		cache_save_setup(cache, trans, path);
2742 
2743 		if (!ret)
2744 			ret = btrfs_run_delayed_refs(trans,
2745 						     (unsigned long) -1);
2746 
2747 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2748 			cache->io_ctl.inode = NULL;
2749 			ret = btrfs_write_out_cache(trans, cache, path);
2750 			if (ret == 0 && cache->io_ctl.inode) {
2751 				num_started++;
2752 				should_put = 0;
2753 				list_add_tail(&cache->io_list, io);
2754 			} else {
2755 				/*
2756 				 * If we failed to write the cache, the
2757 				 * generation will be bad and life goes on
2758 				 */
2759 				ret = 0;
2760 			}
2761 		}
2762 		if (!ret) {
2763 			ret = write_one_cache_group(trans, path, cache);
2764 			/*
2765 			 * One of the free space endio workers might have
2766 			 * created a new block group while updating a free space
2767 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2768 			 * and hasn't released its transaction handle yet, in
2769 			 * which case the new block group is still attached to
2770 			 * its transaction handle and its creation has not
2771 			 * finished yet (no block group item in the extent tree
2772 			 * yet, etc). If this is the case, wait for all free
2773 			 * space endio workers to finish and retry. This is a
2774 			 * a very rare case so no need for a more efficient and
2775 			 * complex approach.
2776 			 */
2777 			if (ret == -ENOENT) {
2778 				wait_event(cur_trans->writer_wait,
2779 				   atomic_read(&cur_trans->num_writers) == 1);
2780 				ret = write_one_cache_group(trans, path, cache);
2781 			}
2782 			if (ret)
2783 				btrfs_abort_transaction(trans, ret);
2784 		}
2785 
2786 		/* If its not on the io list, we need to put the block group */
2787 		if (should_put)
2788 			btrfs_put_block_group(cache);
2789 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2790 		spin_lock(&cur_trans->dirty_bgs_lock);
2791 	}
2792 	spin_unlock(&cur_trans->dirty_bgs_lock);
2793 
2794 	/*
2795 	 * Refer to the definition of io_bgs member for details why it's safe
2796 	 * to use it without any locking
2797 	 */
2798 	while (!list_empty(io)) {
2799 		cache = list_first_entry(io, struct btrfs_block_group,
2800 					 io_list);
2801 		list_del_init(&cache->io_list);
2802 		btrfs_wait_cache_io(trans, cache, path);
2803 		btrfs_put_block_group(cache);
2804 	}
2805 
2806 	btrfs_free_path(path);
2807 	return ret;
2808 }
2809 
2810 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2811 			     u64 bytenr, u64 num_bytes, int alloc)
2812 {
2813 	struct btrfs_fs_info *info = trans->fs_info;
2814 	struct btrfs_block_group *cache = NULL;
2815 	u64 total = num_bytes;
2816 	u64 old_val;
2817 	u64 byte_in_group;
2818 	int factor;
2819 	int ret = 0;
2820 
2821 	/* Block accounting for super block */
2822 	spin_lock(&info->delalloc_root_lock);
2823 	old_val = btrfs_super_bytes_used(info->super_copy);
2824 	if (alloc)
2825 		old_val += num_bytes;
2826 	else
2827 		old_val -= num_bytes;
2828 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2829 	spin_unlock(&info->delalloc_root_lock);
2830 
2831 	while (total) {
2832 		cache = btrfs_lookup_block_group(info, bytenr);
2833 		if (!cache) {
2834 			ret = -ENOENT;
2835 			break;
2836 		}
2837 		factor = btrfs_bg_type_to_factor(cache->flags);
2838 
2839 		/*
2840 		 * If this block group has free space cache written out, we
2841 		 * need to make sure to load it if we are removing space.  This
2842 		 * is because we need the unpinning stage to actually add the
2843 		 * space back to the block group, otherwise we will leak space.
2844 		 */
2845 		if (!alloc && !btrfs_block_group_done(cache))
2846 			btrfs_cache_block_group(cache, 1);
2847 
2848 		byte_in_group = bytenr - cache->start;
2849 		WARN_ON(byte_in_group > cache->length);
2850 
2851 		spin_lock(&cache->space_info->lock);
2852 		spin_lock(&cache->lock);
2853 
2854 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2855 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2856 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2857 
2858 		old_val = cache->used;
2859 		num_bytes = min(total, cache->length - byte_in_group);
2860 		if (alloc) {
2861 			old_val += num_bytes;
2862 			cache->used = old_val;
2863 			cache->reserved -= num_bytes;
2864 			cache->space_info->bytes_reserved -= num_bytes;
2865 			cache->space_info->bytes_used += num_bytes;
2866 			cache->space_info->disk_used += num_bytes * factor;
2867 			spin_unlock(&cache->lock);
2868 			spin_unlock(&cache->space_info->lock);
2869 		} else {
2870 			old_val -= num_bytes;
2871 			cache->used = old_val;
2872 			cache->pinned += num_bytes;
2873 			btrfs_space_info_update_bytes_pinned(info,
2874 					cache->space_info, num_bytes);
2875 			cache->space_info->bytes_used -= num_bytes;
2876 			cache->space_info->disk_used -= num_bytes * factor;
2877 			spin_unlock(&cache->lock);
2878 			spin_unlock(&cache->space_info->lock);
2879 
2880 			percpu_counter_add_batch(
2881 					&cache->space_info->total_bytes_pinned,
2882 					num_bytes,
2883 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2884 			set_extent_dirty(info->pinned_extents,
2885 					 bytenr, bytenr + num_bytes - 1,
2886 					 GFP_NOFS | __GFP_NOFAIL);
2887 		}
2888 
2889 		spin_lock(&trans->transaction->dirty_bgs_lock);
2890 		if (list_empty(&cache->dirty_list)) {
2891 			list_add_tail(&cache->dirty_list,
2892 				      &trans->transaction->dirty_bgs);
2893 			trans->delayed_ref_updates++;
2894 			btrfs_get_block_group(cache);
2895 		}
2896 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2897 
2898 		/*
2899 		 * No longer have used bytes in this block group, queue it for
2900 		 * deletion. We do this after adding the block group to the
2901 		 * dirty list to avoid races between cleaner kthread and space
2902 		 * cache writeout.
2903 		 */
2904 		if (!alloc && old_val == 0) {
2905 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2906 				btrfs_mark_bg_unused(cache);
2907 		}
2908 
2909 		btrfs_put_block_group(cache);
2910 		total -= num_bytes;
2911 		bytenr += num_bytes;
2912 	}
2913 
2914 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2915 	btrfs_update_delayed_refs_rsv(trans);
2916 	return ret;
2917 }
2918 
2919 /**
2920  * btrfs_add_reserved_bytes - update the block_group and space info counters
2921  * @cache:	The cache we are manipulating
2922  * @ram_bytes:  The number of bytes of file content, and will be same to
2923  *              @num_bytes except for the compress path.
2924  * @num_bytes:	The number of bytes in question
2925  * @delalloc:   The blocks are allocated for the delalloc write
2926  *
2927  * This is called by the allocator when it reserves space. If this is a
2928  * reservation and the block group has become read only we cannot make the
2929  * reservation and return -EAGAIN, otherwise this function always succeeds.
2930  */
2931 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2932 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2933 {
2934 	struct btrfs_space_info *space_info = cache->space_info;
2935 	int ret = 0;
2936 
2937 	spin_lock(&space_info->lock);
2938 	spin_lock(&cache->lock);
2939 	if (cache->ro) {
2940 		ret = -EAGAIN;
2941 	} else {
2942 		cache->reserved += num_bytes;
2943 		space_info->bytes_reserved += num_bytes;
2944 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2945 					      space_info->flags, num_bytes, 1);
2946 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2947 						      space_info, -ram_bytes);
2948 		if (delalloc)
2949 			cache->delalloc_bytes += num_bytes;
2950 	}
2951 	spin_unlock(&cache->lock);
2952 	spin_unlock(&space_info->lock);
2953 	return ret;
2954 }
2955 
2956 /**
2957  * btrfs_free_reserved_bytes - update the block_group and space info counters
2958  * @cache:      The cache we are manipulating
2959  * @num_bytes:  The number of bytes in question
2960  * @delalloc:   The blocks are allocated for the delalloc write
2961  *
2962  * This is called by somebody who is freeing space that was never actually used
2963  * on disk.  For example if you reserve some space for a new leaf in transaction
2964  * A and before transaction A commits you free that leaf, you call this with
2965  * reserve set to 0 in order to clear the reservation.
2966  */
2967 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2968 			       u64 num_bytes, int delalloc)
2969 {
2970 	struct btrfs_space_info *space_info = cache->space_info;
2971 
2972 	spin_lock(&space_info->lock);
2973 	spin_lock(&cache->lock);
2974 	if (cache->ro)
2975 		space_info->bytes_readonly += num_bytes;
2976 	cache->reserved -= num_bytes;
2977 	space_info->bytes_reserved -= num_bytes;
2978 	space_info->max_extent_size = 0;
2979 
2980 	if (delalloc)
2981 		cache->delalloc_bytes -= num_bytes;
2982 	spin_unlock(&cache->lock);
2983 	spin_unlock(&space_info->lock);
2984 }
2985 
2986 static void force_metadata_allocation(struct btrfs_fs_info *info)
2987 {
2988 	struct list_head *head = &info->space_info;
2989 	struct btrfs_space_info *found;
2990 
2991 	rcu_read_lock();
2992 	list_for_each_entry_rcu(found, head, list) {
2993 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2994 			found->force_alloc = CHUNK_ALLOC_FORCE;
2995 	}
2996 	rcu_read_unlock();
2997 }
2998 
2999 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3000 			      struct btrfs_space_info *sinfo, int force)
3001 {
3002 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3003 	u64 thresh;
3004 
3005 	if (force == CHUNK_ALLOC_FORCE)
3006 		return 1;
3007 
3008 	/*
3009 	 * in limited mode, we want to have some free space up to
3010 	 * about 1% of the FS size.
3011 	 */
3012 	if (force == CHUNK_ALLOC_LIMITED) {
3013 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3014 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3015 
3016 		if (sinfo->total_bytes - bytes_used < thresh)
3017 			return 1;
3018 	}
3019 
3020 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3021 		return 0;
3022 	return 1;
3023 }
3024 
3025 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3026 {
3027 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3028 
3029 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3030 }
3031 
3032 /*
3033  * If force is CHUNK_ALLOC_FORCE:
3034  *    - return 1 if it successfully allocates a chunk,
3035  *    - return errors including -ENOSPC otherwise.
3036  * If force is NOT CHUNK_ALLOC_FORCE:
3037  *    - return 0 if it doesn't need to allocate a new chunk,
3038  *    - return 1 if it successfully allocates a chunk,
3039  *    - return errors including -ENOSPC otherwise.
3040  */
3041 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3042 		      enum btrfs_chunk_alloc_enum force)
3043 {
3044 	struct btrfs_fs_info *fs_info = trans->fs_info;
3045 	struct btrfs_space_info *space_info;
3046 	bool wait_for_alloc = false;
3047 	bool should_alloc = false;
3048 	int ret = 0;
3049 
3050 	/* Don't re-enter if we're already allocating a chunk */
3051 	if (trans->allocating_chunk)
3052 		return -ENOSPC;
3053 
3054 	space_info = btrfs_find_space_info(fs_info, flags);
3055 	ASSERT(space_info);
3056 
3057 	do {
3058 		spin_lock(&space_info->lock);
3059 		if (force < space_info->force_alloc)
3060 			force = space_info->force_alloc;
3061 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3062 		if (space_info->full) {
3063 			/* No more free physical space */
3064 			if (should_alloc)
3065 				ret = -ENOSPC;
3066 			else
3067 				ret = 0;
3068 			spin_unlock(&space_info->lock);
3069 			return ret;
3070 		} else if (!should_alloc) {
3071 			spin_unlock(&space_info->lock);
3072 			return 0;
3073 		} else if (space_info->chunk_alloc) {
3074 			/*
3075 			 * Someone is already allocating, so we need to block
3076 			 * until this someone is finished and then loop to
3077 			 * recheck if we should continue with our allocation
3078 			 * attempt.
3079 			 */
3080 			wait_for_alloc = true;
3081 			spin_unlock(&space_info->lock);
3082 			mutex_lock(&fs_info->chunk_mutex);
3083 			mutex_unlock(&fs_info->chunk_mutex);
3084 		} else {
3085 			/* Proceed with allocation */
3086 			space_info->chunk_alloc = 1;
3087 			wait_for_alloc = false;
3088 			spin_unlock(&space_info->lock);
3089 		}
3090 
3091 		cond_resched();
3092 	} while (wait_for_alloc);
3093 
3094 	mutex_lock(&fs_info->chunk_mutex);
3095 	trans->allocating_chunk = true;
3096 
3097 	/*
3098 	 * If we have mixed data/metadata chunks we want to make sure we keep
3099 	 * allocating mixed chunks instead of individual chunks.
3100 	 */
3101 	if (btrfs_mixed_space_info(space_info))
3102 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3103 
3104 	/*
3105 	 * if we're doing a data chunk, go ahead and make sure that
3106 	 * we keep a reasonable number of metadata chunks allocated in the
3107 	 * FS as well.
3108 	 */
3109 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3110 		fs_info->data_chunk_allocations++;
3111 		if (!(fs_info->data_chunk_allocations %
3112 		      fs_info->metadata_ratio))
3113 			force_metadata_allocation(fs_info);
3114 	}
3115 
3116 	/*
3117 	 * Check if we have enough space in SYSTEM chunk because we may need
3118 	 * to update devices.
3119 	 */
3120 	check_system_chunk(trans, flags);
3121 
3122 	ret = btrfs_alloc_chunk(trans, flags);
3123 	trans->allocating_chunk = false;
3124 
3125 	spin_lock(&space_info->lock);
3126 	if (ret < 0) {
3127 		if (ret == -ENOSPC)
3128 			space_info->full = 1;
3129 		else
3130 			goto out;
3131 	} else {
3132 		ret = 1;
3133 		space_info->max_extent_size = 0;
3134 	}
3135 
3136 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3137 out:
3138 	space_info->chunk_alloc = 0;
3139 	spin_unlock(&space_info->lock);
3140 	mutex_unlock(&fs_info->chunk_mutex);
3141 	/*
3142 	 * When we allocate a new chunk we reserve space in the chunk block
3143 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3144 	 * add new nodes/leafs to it if we end up needing to do it when
3145 	 * inserting the chunk item and updating device items as part of the
3146 	 * second phase of chunk allocation, performed by
3147 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3148 	 * large number of new block groups to create in our transaction
3149 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3150 	 * in extreme cases - like having a single transaction create many new
3151 	 * block groups when starting to write out the free space caches of all
3152 	 * the block groups that were made dirty during the lifetime of the
3153 	 * transaction.
3154 	 */
3155 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3156 		btrfs_create_pending_block_groups(trans);
3157 
3158 	return ret;
3159 }
3160 
3161 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3162 {
3163 	u64 num_dev;
3164 
3165 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3166 	if (!num_dev)
3167 		num_dev = fs_info->fs_devices->rw_devices;
3168 
3169 	return num_dev;
3170 }
3171 
3172 /*
3173  * Reserve space in the system space for allocating or removing a chunk
3174  */
3175 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3176 {
3177 	struct btrfs_fs_info *fs_info = trans->fs_info;
3178 	struct btrfs_space_info *info;
3179 	u64 left;
3180 	u64 thresh;
3181 	int ret = 0;
3182 	u64 num_devs;
3183 
3184 	/*
3185 	 * Needed because we can end up allocating a system chunk and for an
3186 	 * atomic and race free space reservation in the chunk block reserve.
3187 	 */
3188 	lockdep_assert_held(&fs_info->chunk_mutex);
3189 
3190 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3191 	spin_lock(&info->lock);
3192 	left = info->total_bytes - btrfs_space_info_used(info, true);
3193 	spin_unlock(&info->lock);
3194 
3195 	num_devs = get_profile_num_devs(fs_info, type);
3196 
3197 	/* num_devs device items to update and 1 chunk item to add or remove */
3198 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3199 		btrfs_calc_insert_metadata_size(fs_info, 1);
3200 
3201 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3202 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3203 			   left, thresh, type);
3204 		btrfs_dump_space_info(fs_info, info, 0, 0);
3205 	}
3206 
3207 	if (left < thresh) {
3208 		u64 flags = btrfs_system_alloc_profile(fs_info);
3209 
3210 		/*
3211 		 * Ignore failure to create system chunk. We might end up not
3212 		 * needing it, as we might not need to COW all nodes/leafs from
3213 		 * the paths we visit in the chunk tree (they were already COWed
3214 		 * or created in the current transaction for example).
3215 		 */
3216 		ret = btrfs_alloc_chunk(trans, flags);
3217 	}
3218 
3219 	if (!ret) {
3220 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3221 					  &fs_info->chunk_block_rsv,
3222 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3223 		if (!ret)
3224 			trans->chunk_bytes_reserved += thresh;
3225 	}
3226 }
3227 
3228 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3229 {
3230 	struct btrfs_block_group *block_group;
3231 	u64 last = 0;
3232 
3233 	while (1) {
3234 		struct inode *inode;
3235 
3236 		block_group = btrfs_lookup_first_block_group(info, last);
3237 		while (block_group) {
3238 			btrfs_wait_block_group_cache_done(block_group);
3239 			spin_lock(&block_group->lock);
3240 			if (block_group->iref)
3241 				break;
3242 			spin_unlock(&block_group->lock);
3243 			block_group = btrfs_next_block_group(block_group);
3244 		}
3245 		if (!block_group) {
3246 			if (last == 0)
3247 				break;
3248 			last = 0;
3249 			continue;
3250 		}
3251 
3252 		inode = block_group->inode;
3253 		block_group->iref = 0;
3254 		block_group->inode = NULL;
3255 		spin_unlock(&block_group->lock);
3256 		ASSERT(block_group->io_ctl.inode == NULL);
3257 		iput(inode);
3258 		last = block_group->start + block_group->length;
3259 		btrfs_put_block_group(block_group);
3260 	}
3261 }
3262 
3263 /*
3264  * Must be called only after stopping all workers, since we could have block
3265  * group caching kthreads running, and therefore they could race with us if we
3266  * freed the block groups before stopping them.
3267  */
3268 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3269 {
3270 	struct btrfs_block_group *block_group;
3271 	struct btrfs_space_info *space_info;
3272 	struct btrfs_caching_control *caching_ctl;
3273 	struct rb_node *n;
3274 
3275 	down_write(&info->commit_root_sem);
3276 	while (!list_empty(&info->caching_block_groups)) {
3277 		caching_ctl = list_entry(info->caching_block_groups.next,
3278 					 struct btrfs_caching_control, list);
3279 		list_del(&caching_ctl->list);
3280 		btrfs_put_caching_control(caching_ctl);
3281 	}
3282 	up_write(&info->commit_root_sem);
3283 
3284 	spin_lock(&info->unused_bgs_lock);
3285 	while (!list_empty(&info->unused_bgs)) {
3286 		block_group = list_first_entry(&info->unused_bgs,
3287 					       struct btrfs_block_group,
3288 					       bg_list);
3289 		list_del_init(&block_group->bg_list);
3290 		btrfs_put_block_group(block_group);
3291 	}
3292 	spin_unlock(&info->unused_bgs_lock);
3293 
3294 	spin_lock(&info->block_group_cache_lock);
3295 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3296 		block_group = rb_entry(n, struct btrfs_block_group,
3297 				       cache_node);
3298 		rb_erase(&block_group->cache_node,
3299 			 &info->block_group_cache_tree);
3300 		RB_CLEAR_NODE(&block_group->cache_node);
3301 		spin_unlock(&info->block_group_cache_lock);
3302 
3303 		down_write(&block_group->space_info->groups_sem);
3304 		list_del(&block_group->list);
3305 		up_write(&block_group->space_info->groups_sem);
3306 
3307 		/*
3308 		 * We haven't cached this block group, which means we could
3309 		 * possibly have excluded extents on this block group.
3310 		 */
3311 		if (block_group->cached == BTRFS_CACHE_NO ||
3312 		    block_group->cached == BTRFS_CACHE_ERROR)
3313 			btrfs_free_excluded_extents(block_group);
3314 
3315 		btrfs_remove_free_space_cache(block_group);
3316 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3317 		ASSERT(list_empty(&block_group->dirty_list));
3318 		ASSERT(list_empty(&block_group->io_list));
3319 		ASSERT(list_empty(&block_group->bg_list));
3320 		ASSERT(atomic_read(&block_group->count) == 1);
3321 		btrfs_put_block_group(block_group);
3322 
3323 		spin_lock(&info->block_group_cache_lock);
3324 	}
3325 	spin_unlock(&info->block_group_cache_lock);
3326 
3327 	/*
3328 	 * Now that all the block groups are freed, go through and free all the
3329 	 * space_info structs.  This is only called during the final stages of
3330 	 * unmount, and so we know nobody is using them.  We call
3331 	 * synchronize_rcu() once before we start, just to be on the safe side.
3332 	 */
3333 	synchronize_rcu();
3334 
3335 	btrfs_release_global_block_rsv(info);
3336 
3337 	while (!list_empty(&info->space_info)) {
3338 		space_info = list_entry(info->space_info.next,
3339 					struct btrfs_space_info,
3340 					list);
3341 
3342 		/*
3343 		 * Do not hide this behind enospc_debug, this is actually
3344 		 * important and indicates a real bug if this happens.
3345 		 */
3346 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3347 			    space_info->bytes_reserved > 0 ||
3348 			    space_info->bytes_may_use > 0))
3349 			btrfs_dump_space_info(info, space_info, 0, 0);
3350 		list_del(&space_info->list);
3351 		btrfs_sysfs_remove_space_info(space_info);
3352 	}
3353 	return 0;
3354 }
3355